Consumption and Labor Supply with Partial Insurance: An Analytical Framework

Jonathan Heathcote
Federal Reserve Bank of Minneapolis, CEPR

Kjetil Storesletten
Federal Reserve Bank of Minneapolis, CEPR

Gianluca Violante
New York University, CEPR, and NBER

Conference in Honor of Thomas Sargent and Christopher Sims
Federal Reserve Bank of Minneapolis, May 4-5 2012
Measurement of risk sharing
Measurement of risk sharing

Three broad questions:

1. Fraction of individual shocks that transmits to consumption

2. Insurability of the recent increase in U.S. inequality

3. Life-cycle shocks vs. initial conditions in determining inequality
Measurement of risk sharing

Two complementary approaches:

1. **Structural model** \(\Rightarrow\) risk sharing as equilibrium outcome

 - Sensitive to assumed market structure and insurance channels
Measurement of risk sharing

Two complementary approaches:

1. **Structural model** ⇒ risk sharing as equilibrium outcome
 - Sensitive to assumed market structure and insurance channels

2. **Quantify overall risk sharing** from data ⇒ agnostic about sources
 - Requires long, high-quality panel data on \((c, y)\)
Our approach

1. **Structural equilibrium model** with non-contingent bond, labor supply, and redistributive taxation

2. **Flexible financial market structure** that does not hardwire agents’ access to insurance
Our approach

1. **Structural equilibrium model** with non-contingent bond, labor supply, and redistributive taxation

2. **Flexible financial market structure** that does not hardwire agents’ access to insurance

Analytical tractability

- Closed-form equilibrium cross-sectional (co-)variances of \((w, h, c)\)
Our approach

1. **Structural equilibrium model** with non-contingent bond, labor supply, and redistributive taxation

2. **Flexible financial market structure** that does not hardwire agents’ access to insurance

Analytical tractability

- Closed-form equilibrium cross-sectional (co-)variances of \((w, h, c)\)

Labor supply data informative about risk-sharing

- Like \(c, h\) react differently to insurable vs. uninsurable shocks to \(w\)
ECONOMIC ENVIRONMENT
Demographics and preferences

- **Demographics**: perpetual youth – constant survival probability δ

- **Preferences** over sequences of consumption and hours worked:

$$
E_b \sum_{t=b}^{\infty} (\beta \delta)^{t-b} u(c_t, h_t; \varphi)
$$

$$
u(c_t, h_t; \varphi) = \frac{c_t^{1-\gamma} - 1}{1 - \gamma} - \exp(\varphi) \frac{h_t^{1+\sigma}}{1 + \sigma}
$$

where $\varphi \sim F_{\varphi,b}$ is distaste for work relative to consumption
Technology and individual endowments

- **Technology**: linear in aggregate effective labor
 - Competitive labor market: wage = individual productivity
Technology and individual endowments

- **Technology**: linear in aggregate effective labor

 - Competitive labor market: wage $= \text{individual productivity}$

- **Individual wage**: sum of two orthogonal components (in logs):

 $$\log w_t = \alpha_t + \varepsilon_t$$
Technology and individual endowments

- **Technology**: linear in aggregate effective labor
 - Competitive labor market: wage = individual productivity

- **Individual wage**: sum of two orthogonal components (in logs):
 \[
 \log w_t = \alpha_t + \varepsilon_t
 \]

 \[
 \alpha_t = \alpha_{t-1} + \omega_t \quad \text{with} \quad \omega_t \sim F_{\omega,t}
 \]
Technology and individual endowments

• **Technology**: linear in aggregate effective labor

 ▶ Competitive labor market: wage = individual productivity

• **Individual wage**: sum of two orthogonal components (in logs):

\[
\log w_t = \alpha_t + \varepsilon_t
\]

\[
\alpha_t = \alpha_{t-1} + \omega_t \quad \text{with} \quad \omega_t \sim F_{\omega,t}
\]

\[
\varepsilon_t = \kappa_t + \theta_t \quad \text{with} \quad \theta_t \sim F_{\theta,t}
\]

\[
\kappa_t = \kappa_{t-1} + \eta_t \quad \text{with} \quad \eta_t \sim F_{\eta,t}
\]

At labor market entry, agents draw \(\alpha^0 \sim F_{\alpha^0,b} \) and \(\kappa^0 \sim F_{\kappa^0,b} \)
Private risk-sharing

1. **Non-state-contingent bond** traded in zero net supply

2. **Insurance claims** traded against shocks to ε only
 - Implements other (residual) insurance arrangements: financial markets, family, etc.
 - Alternative interpretation: *foreseeable* fluctuations in wages

Heathcote-Storesletten-Violante, "Consumption and Labor Supply with Partial Insurance"
Private risk-sharing

1. Non-state-contingent bond traded in zero net supply

2. Insurance claims traded against shocks to ε only
 - Implements other (residual) insurance arrangements: financial markets, family, etc.
 - Alternative interpretation: foreseeable fluctuations in wages

Partial insurance: between bond economy and complete markets

- \[\frac{\text{var}(\alpha_t)}{\text{var}(\log(w_t))} \rightarrow 0: \text{complete markets economy} \]
- \[\frac{\text{var}(\varepsilon_t)}{\text{var}(\log(w_t))} \rightarrow 0: \text{bond economy} \]
Government

- **Government**: runs a progressive tax/transfer scheme

 ➤ Device for redistribution and financing of expenditures

 ➤ Two-parameter function maps pre-government earnings \((y_t = w_t h_t)\) to disposable earnings \((\tilde{y}_t)\)

\[
\tilde{y}_t = \lambda y_t^{1-\tau}
\]

\(\tau\) measure the degree of progressivity
EQUILIBRIUM
Equilibrium

• In equilibrium, there is no bond trade among households

• Sharp dichotomy between shocks:
 - ε_t perfectly insured
 - α_t uninsured privately, but smoothed through labor supply and progressive taxation
Link to Constantinides and Duffie (1996)

- (i) CRRA, (ii) zero initial wealth, (iii) zero net wealth, (iv) unit root shocks to log disposable income \Rightarrow no bond-trade equilibrium
(i) CRRA, (ii) zero initial wealth, (iii) zero net wealth, (iv) unit root shocks to log disposable income ⇒ no bond-trade equilibrium

Our environment micro-founds unit root disposable income:

1. **Primitive exogenous process**: wages
2. **Labor supply**: exogenous wages → endogenous earnings
3. **Non-linear taxation**: pre-tax earnings → after-tax earnings
4. **Private risk-sharing**: earnings → post-trade disposable income
5. **No bond-trade**: disposable income = consumption
Hours worked

\[\log h_t^a (\varphi, \alpha, \varepsilon) = -\hat{\varphi} + \left(\frac{1 - \gamma}{\hat{\sigma} + \gamma} \right) \alpha + \frac{1}{\hat{\sigma}} \varepsilon + H_t^a \]

where \(\hat{\varphi} \equiv \frac{\varphi}{\hat{\sigma} + \gamma} \) and \(\frac{1}{\hat{\sigma}} \equiv \frac{1 - \tau}{\sigma + \tau} \)

- Hours worked decrease in effort cost \(\hat{\varphi} \)
- Response to \(\varepsilon \) proportional to tax-modified Frisch elasticity
- Response to \(\alpha \) depends on \(\gamma \) which controls wealth effect
Consumption

$$\log c^a_t (\varphi, \alpha) = -(1 - \tau) \cdot \hat{\varphi} + (1 - \tau) \cdot \left(\frac{1 + \hat{\sigma}}{\hat{\sigma} + \gamma} \right) \alpha + C^a_t$$

- Independent of the insurable shock ε
- Heterogeneity in $\hat{\varphi}$ compressed by tax progressivity
- Response to α mediated by labor supply and tax progressivity
- Random walk, displays excess smoothness relative to PIH
IDENTIFICATION AND ESTIMATION
Data, identification, and estimation

Parameters

- Time invariant: preference parameters and measurement error
- Time varying: life-cycle shocks and cohort effects in productivity

Moments

- Cross-sectional (co-)variances of \((w, h, c)\), conditional on age/time

Data

- CEX (1980-2006) and PSID (1967-2006)

Identification

- Yes, even without consumption data (with external estimate of \(\nu_{\mu y}\))
Answers to the Three Questions
Pass-through coefficient

- Pass-through from permanent wage shocks to consumption:

\[
\phi_{t}^{w,c} \equiv \frac{cov(\Delta \log c_t, \omega_t + \eta_t)}{var(\omega_t + \eta_t)}
\]
Pass-through coefficient

• Pass-through from permanent wage shocks to consumption:

$$\phi_{t}^{w,c} \equiv \frac{cov(\Delta \log c_t, \omega_t + \eta_t)}{var(\omega_t + \eta_t)} = (1 - \tau) \cdot \frac{1 + \hat{\sigma}}{\hat{\sigma} + \gamma} \cdot \frac{v_{\omega t}}{v_{\omega t} + v_{\eta t}}$$

▶ progressive taxation ($\tau = 0.27$) $\rightarrow 0.73$

▶ labor supply ($\gamma = 1.5, \hat{\sigma} = 2.6$) $\rightarrow 0.87$

▶ private insurance ($v_{\omega} = 0.007, v_{\eta} = 0.004$) $\rightarrow 0.63$

• Overall, we estimate: $\phi_{t}^{w,c} = 0.40$
Risk-sharing over time

\[\Delta var_t(\log w) = \Delta var_t(\alpha) + \Delta var_t(\varepsilon) \]

\[\Delta var_t(\log c) = (1 - \tau)^2 \left(\frac{1 + \hat{\sigma}}{\hat{\sigma} + \gamma}\right)^2 \Delta var_t(\alpha) \]
Risk-sharing over time

\[
\Delta \text{var}_t(\log w) = \Delta \text{var}_t(\alpha) + \Delta \text{var}_t(\varepsilon)
\]

\[
\Delta \text{cov}_t(\log w, \log h) = \left(\frac{1 - \gamma}{\hat{\sigma} + \gamma}\right) \Delta \text{var}_t(\alpha) + \frac{1}{\hat{\sigma}} \Delta \text{var}_t(\varepsilon)
\]
Lifecycle inequality decomposition

<table>
<thead>
<tr>
<th>Total Variance of Logs</th>
<th>Percent Contribution to Total Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Heterogeneity</td>
</tr>
<tr>
<td></td>
<td>Preferences</td>
</tr>
<tr>
<td>W</td>
<td>0.35</td>
</tr>
<tr>
<td>H</td>
<td>0.11</td>
</tr>
<tr>
<td>C</td>
<td>0.16</td>
</tr>
</tbody>
</table>

All components are orthogonal \Rightarrow decomposition is unique
Why preference heter. is a source of inequality

\[\text{cov}_t(\log w, \log h) = \left(\frac{1 - \gamma}{\hat{\sigma} + \gamma} \right) \text{var}_t(\alpha) + \frac{1}{\hat{\sigma}} \text{var}_t(\varepsilon) - \nu_{\mu h} < 0 \]

\[\text{cov}_t(\log h, \log c) = (1 - \tau) \text{var}_t(\hat{\phi}) + \frac{(1 - \tau)(1 + \hat{\sigma})(1 - \gamma)}{(\hat{\sigma} + \gamma)^2} \text{var}_t(\alpha) > 0 \]

\[\gamma = 1.5 \Rightarrow \text{var}_t(\hat{\phi}) > 0 \]