Liquidity and the Threat of Fraudulent Assets

Yiting Li, Guillaume Rocheteau, Pierre-Olivier Weill

NTU, UCI, UCLA, NBER, CEPR

fraudulent behavior in asset markets

in this paper:

with sufficient costly effort...

...individuals can sell, or borrow against, a "bad" asset

- Examples:
 - clipping of coins in ancient Rome and Medieval Europe
 - counterfeiting of banknotes during 1800-1850
 - identity theft
 - securitizing bad mortgages
 - cherry picking bad collateral to secure credit transactions

what we do

- Asset pricing with lack of recognizability due to the threat of fraud many assets differing in vulnerability to fraud
- Step 1: solve for terms of bilateral trades
 assets are used as collateral or means of payment
 different vulnerability to fraud ⇒ different collateralizability
- Step 2: solve for asset prices
 - assets with identical cash flows differ in prices
 assets differ in their sensitivity to policy intervention
 open market operations resembling Quantitative Easing
 regulatory measures resembling Dodd-Frank
 assets differ in their sensitivity to shocks
 generate "flight to liquidity"

related literature

- Macro models in which assets have limited re-salability Kiyotaki Moore (2001, 2005), Lagos (2010), Lester et al. (2011)
- Private information and money
 Williamson Wright (1994), Nosal Wallace (2007) among many others
- Asset pricing when moral hazard limits pledgeability Holmstrom Tirole (2011) among many others
- Asset pricing with adverse selection
 Rocheteau (2009), Guerrieri Shimer (2011) among many others

the economic environment

• Two periods, continuum of risk neutral agents, discount $\beta \in (0,1)$: measure one of buyers, measure one of sellers

- Two periods, continuum of risk neutral agents, discount $\beta \in (0,1)$: measure one of buyers, measure one of sellers
- t = 0: buyers and sellers trade assets in a competitive market

- Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$: measure one of buyers, measure one of sellers
- t = 0: buyers and sellers trade assets in a competitive market
- $\underline{t = 1}$: buyers and sellers trade goods in a decentralized market a buyer is matched with a seller with probability σ the buyer likes goods that the seller can produce but lack of commitment
 - \Rightarrow no unsecured credit
 - \Rightarrow assets become useful as means of payment or collateral

- Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$: measure one of buyers, measure one of sellers
- t = 0: buyers and sellers trade assets in a competitive market
- $\underline{t = 1}$: buyers and sellers trade goods in a decentralized market a buyer is matched with a seller with probability σ the buyer likes goods that the seller can produce but lack of commitment
 - \Rightarrow no unsecured credit
 - \Rightarrow assets become useful as means of payment or collateral
- End of t = 1: assets pay off their terminal value

assets and the threat of fraud

Assets come in (arbitrary) finitely many types $s \in S$

• terminal value normalized to 1

assets and the threat of fraud

Assets come in (arbitrary) finitely many types $s \in S$

- terminal value normalized to 1
- supply of A(s) shares
- type-specific vulnerability to fraud

assets and the threat of fraud

Assets come in (arbitrary) finitely many types $s \in S$

- terminal value normalized to 1
- supply of A(s) shares
- type-specific vulnerability to fraud

at t = 0 at fixed cost k(s), can create type-s fraudulent assets

have zero terminal value zero

are undistinguishable from genuine ones

can only be used in decentralized trades

high cost $k(s) \implies$ low vulnerability to fraud

some interpretations

in the paper, we provide explicit models supporting these interpretations

- Counterfeiting of money or bond
- Creating and cherry picking bad collateral

mortage fraud: houses used as collateral in consumer loans assets used as collateral for credit derivative contracts

• Securitization fraud

bad mortgages bundled inside mortgage-based securities buyers are securitizers, sellers are final investors

mortgage fraud

bilateral trade under the threat of fraud

the bargaining game

For now take asset prices $\phi(s) \ge \beta$ as given

• t = 0: buyer chooses a portfolio of assets

genuine assets of type s at price $\phi(s)$ fraudulent assets of type s at fixed cost k(s)

- t = 1: buyer matches with seller and makes an offer specifying that the seller produces q units of goods for the buyer the buyer transfers a portfolio {d(s)} of assets to the seller
- The seller accepts or rejects. If accepts:

the buyer enjoys the utility u(q)the seller suffers a production cost equal to q

equilibrium concept and refinement

• Perfect Bayesian equilibrium

sellers' beliefs about buyer's portfolio are not pinned down ... lots of equilibria, some of them arguably unreasonable

• Refinement: Inn and Wright's (2011) "reverse order game"

the buyer post an offer $(q, \{d(s)\})$ at t = 0then the buyer chooses:

> how much genuine and fraudulent assets to bring subject to offer $\{d(s)\}$ being feasible

 Note: there is a proper subgame after any offer (q, {d(s)}) the Nash Equilibrium of the subgame pins down beliefs

equilibrium asset demands and offers

After an equilibrium offer:

- the buyer brings genuine assets with probability one
- the seller accepts the offer with probability one

equilibrium asset demands and offers

After an equilibrium offer:

- the buyer brings genuine assets with probability one
- the seller accepts the offer with probability one

Equilibrium asset demands and offers maximize buyer's utility subject to

- seller's individual rationality, offer feasibility
- buyer's no-fraud IC constraint

$$\left[\phi(s) - \beta(1-\sigma)
ight]d(s)$$

 $\leq \underbrace{k(s)}_{\text{cost of fraud}}$

net cost of offering d(s) genuine assets

- asset specific
- limits resalability
- depends negatively on price

asset prices and liquidity

• k(s)/A(s) = cost of fraud per share of asset

• k(s)/A(s) = cost of fraud per share of asset

- k(s)/A(s) = cost of fraud per share of asset
- $\xi = \text{marginal value of transaction services} = \beta \sigma (u'(q) 1)$

- k(s)/A(s) = cost of fraud per share of asset
- $\xi = \text{marginal value of transaction services} = \beta \sigma (u'(q) 1)$

- k(s)/A(s) = cost of fraud per share of asset
- $\xi = \text{marginal value of transaction services} = \beta \sigma (u'(q) 1)$

- k(s)/A(s) = cost of fraud per share of asset
- $\xi = \text{marginal value of transaction services} = \beta \sigma (u'(q) 1)$

as long as L small enough

as long as L small enough

as long as L small enough

• Liquid assets: $\theta(s) = 1$

IC constraint doesn't bind when buyers hold and spend A(s)

as long as L small enough

• Liquid assets: $\theta(s) = 1$

• Partially liquid assets: $\theta(s) = 1$

IC constraint binds when buyers hold and spend A(s)

as long as L small enough

• Liquid assets: $\theta(s) = 1$

• Partially liquid assets: $\theta(s) = 1$

• Illiquid assets: $\theta(s) < 1$

IC constraint binds

buyers hold A(s) but find it optimal to spend less

partially liquid assets

- Have the same $\theta(s)$ as liquid assets!
- Yet, they have a lower price

partially liquid asset prices < marginal social value of their liquidity services

Why?

partially liquid assets

- Have the same $\theta(s)$ as liquid assets!
- Yet, they have a lower price

partially liquid asset prices < marginal social value of their liquidity services

Why?

• Because: pecuniary externality running through the IC constraint

a high price reduces asset demand in two waysthrough the budget constraint (as usual)through the IC constraint, b/c raise incentive to commit fraud

two applications

(more in the paper)

e.g., selling Treasuries to purchase MBS

e.g., selling Treasuries to purchase MBS

• Using liquid assets to purchase partially liquid assets

liquid assets have higher prices

- \Rightarrow one share of liquid asset ...
 - ... buys more than one share of partially liquid assets

e.g., selling Treasuries to purchase MBS

• Using liquid assets to purchase partially liquid assets

liquid assets have higher prices

 \Rightarrow one share of liquid asset ...

... buys more than one share of partially liquid assets but liquid assets and partially liquid assets have the same $\theta(s)$ \Rightarrow L, q, interest rates, and welfare go down

e.g., selling Treasuries to purchase MBS

• Using liquid assets to purchase partially liquid assets

liquid assets have higher prices

⇒ one share of liquid asset ...
 ... buys more than one share of partially liquid assets
 but liquid assets and partially liquid assets have the same θ(s)
 ⇒ L, q, interest rates, and welfare go down

• Using liquid assets to purchase illiquid assets

difference in $\theta(s)$ large enough

L, q, interest rates, and welfare go up

concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ , the probability of trade in the t = 1 market

interpretation: collateral is more needed

concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ , the probability of trade in the t = 1 market interpretation: collateral is more needed

 Two effects going in opposite directions liquidity demand increases:

fraud incentives increase:

concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ , the probability of trade in the t=1 market

interpretation: collateral is more needed

• Two effects going in opposite directions

liquidity demand increases: dominates for liquid assets, price increase

fraud incentives increase:

concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ , the probability of trade in the t = 1 market

interpretation: collateral is more needed

• Two effects going in opposite directions

liquidity demand increases: dominates for liquid assets, price increase

fraud incentives increase: dominates for partially liquid assets price decrease so no-fraud IC constraint binds

concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ , the probability of trade in the t = 1 market

interpretation: collateral is more needed

• Two effects going in opposite directions

liquidity demand increases: dominates for liquid assets, price increase

fraud incentives increase: dominates for partially liquid assets price decrease so no-fraud IC constraint binds

• The set of liquid assets shrinks

The set of partially liquid and illiquid assets expands

conclusion

- A fraud-based model of liquidity
- An explanation for price and liquidity differences
- Applications
 - open-market operations flight to quality regulatory measures (in the paper) time varying liquidity (in the paper)