Dynamic Lending under Adverse Selection and Limited Borrower Commitment: Can it Outperform Group Lending?

Christian Ahlin
Michigan State University

Brian Waters
UCLA Anderson

Minn Fed/BREAD, October 2012
Microcredit research questions

- (Microcredit = small loans for self-employment opportunities, typically in developing countries)

- Does it work? e.g. does it raise household consumption?

- How does it work?

 "Loans to poor people without any financial security had appeared to be an impossible idea." – Nobel Peace Prize 2006 press release

Yet, lending has grown at unprecedented rates in these markets throughout the world
How is microlending possible?

- Given recent explosion of microlending, potential answers naturally focused on innovative techniques of microlenders – especially, group lending
 - Group lending requires groups of borrowers to bear liability for each other’s loans

- But, group lending is at best a partial answer
 - Not all successful micro-lenders use group lending
 - Anecdotal evidence of a trend away from group lending (?)
 - Evidence in Gine and Karlan (2009)
How is microlending possible?

- The extensive theoretical literature justifying group lending typically compares it to **static** individual lending ...

 even though leading alternative to group lending is probably repeated, **dynamic** individual lending

- Has group lending been overemphasized theoretically by comparison to static rather than dynamic individual lending?
Dynamic Lending under Adverse Selection

- Relatively few models of dynamic lending under adverse selection exist – more focus on dynamic moral hazard

- Simple problem: how to use information about borrower type, revealed over time, to price for risk

- However, use of information often subject to constraints:
 - Borrowers can drop out (after repaying current loan) – “limited commitment”
 - Success cannot be rewarded too heavily – “monotonicity”

- In this setting, what are efficiency properties and contract structure?
This Paper

- We solve for an optimal two-period lending contract in an environment of adverse selection, subject to limited borrower commitment and monotonicity constraints
 - Show how dynamic contracting can be useful in overcoming adverse selection by improving risk pricing
 - Dynamic contracts are back-loaded – high rates for first-time borrowers, followed by lower, performance-contingent rates, as in “relationship lending”
 - A standardized (pooling) contract is optimal and robust to (hidden) savings
 - Safe borrowers prefer to be priced out of the market when they fail ⇒ can be a tradeoff between equity and efficiency
This Paper

- We compare dynamic individual contracts with static group contracts
 - Each dominates under different circumstances – can potentially help explain co-existence of, and variation in, lending techniques across environments
 - Both reveal same amount of information to lender, but constraints on use of information make the difference
 - Serially correlated risk works against dynamic lending; spatially correlated risk works against group lending
 - Results consistent with dynamic lending playing as significant a role as group lending in reviving credit markets
Related Literature

- Extensive literature on dynamic adverse selection.
 Distinguishing features of this paper include:
 - Borrower types fixed (unlike large insurance literature)
 - Lender can commit to dynamic contract (unlike “ratchet effect” literature, most “relationship lending” literature)
 - Borrower can leave dynamic contract after any period
Related Literature

- Extensive literature on dynamic adverse selection. Distinguishing features of this paper include:
 - Borrower types fixed (unlike large insurance literature)
 - Lender can commit to dynamic contract (unlike “ratchet effect” literature, most “relationship lending” literature)
 - Borrower can leave dynamic contract after any period

- Similar one-sided commitment also studied by
 - Harris/Holmström (1982) – labor contracts
 - Cooper/Hayes (1987), Phelan (1995) – insurance contracts
 - Boot/Thakor (1992) – lending contracts
 - All tend to find back-loaded contracts, as we do
 - Only Boot/Thakor study lending; there it is about inducing effort rather than pricing for inherent risk
Related Literature

- Also close is Webb (1992) – two-period lending contract under adverse selection
 - He shows borrowers can be separated by a menu of contracts where only the safe borrower’s period-2 rates are contingent on period-1 performance
 - We more thoroughly explore a similar model, and add limited borrower commitment and monotonicity constraints

- We also first compare standard group lending contracts under adverse selection (Ghatak 1999, 2000) with dynamic lending contracts
Basic setup

- Risk-neutral agents with (self-known) risk-types $\tau \in \{r, s\}$
 - θ risky, $1 - \theta$ safe agents

- Type-τ agent can produce $\bar{u} \geq 0$ without capital, or undertake a project that requires 1 unit of capital and
 - “succeeds” with prob. $p_{\tau} \Rightarrow$ returns R_{τ}
 - “fails” with prob. $1 - p_{\tau} \Rightarrow$ returns 0
 - $0 < p_r < p_s < 1$

- Stiglitz/Weiss Assumption: $p_{\tau} R_{\tau} = \bar{R}$, for $\tau \in \{r, s\}$
 - Agents differ in variance, not mean – no “bad” types
Basic setup

- Agents have no wealth

- Risk-neutral lender maximizes total borrower surplus subject to earning opportunity cost $\rho > 0$ per unit of capital (zero-profit constraint, “ZPC”)

- Contracts subject to limited liability

- Lender does not observe output exactly, only success ($R_\tau > 0$) or failure ($R_\tau = 0$)
 - This plus limited liability \Rightarrow debt contracts

- Lender does not observe borrower type
Basic setup

- Let $\mathcal{N} \equiv \frac{\bar{R} - \bar{u}}{\rho}$ and $G \equiv \frac{\bar{R}}{\rho}$

 - \mathcal{N} is the net excess return to capital in this market
 - G is the gross excess return to capital

- “Lending is Efficient” Assumption:

 $\bar{R} - \bar{u} > \rho \iff \mathcal{N} > 1$

 - net project payoff ($\bar{R} - u$) exceeds cost of capital (ρ)
 - \Rightarrow total surplus monotonically increasing in # projects funded
 - \Rightarrow full efficiency means lendings to all agents
Known Result: Potential for “Lemons” Problem

- Static, individual debt contracts are priced based on average risk in the pool, can be too expensive for safe borrowers

 \[p = \theta \bar{p}_r + (1 - \theta) \bar{p}_s \]

 \[\Rightarrow \text{market can partially break down and only fund risky projects – due to inability to price for risk} \]

- Let \(\bar{p} \) be average risk-type \((\bar{p} = \theta \bar{p}_r + (1 - \theta) \bar{p}_s) \)

 Efficient lending cannot be attained by static individual lending iff

 \[1 < \mathcal{N} < \overline{\mathcal{N}}_{1,1} \equiv \frac{\bar{p}_s}{\bar{p}} \quad (A3) \]
Dynamic Lending

- Two-period setting: each agent (fixed type) is endowed with risky or safe project, and outside option, in both periods

- First, consider two-period simple pooling contract: (r_0, r_1, r_0), all non-negative

 - r_0 – period-1 interest rate (after null history)
 - r_0, r_1 – period-2 interest rate after 0,1 success, resp.
Contract Restrictions

- Deterministic

- Borrower limited liability ("LL")

- Limited borrower commitment

 - Lender can commit to 2-period contract, but borrowers cannot commit to taking a second loan
Contract Restrictions

- Assume **monotonic** contracts that involve (weakly) lower payment for failure than for success
 - Addresses concern that a borrower may pretend to have succeeded after failing – if it means paying less
 - As in Innes (1990), Che (2002), Gangopadhyay et al. (2005)
 - Monotonicity ("MC") constraints:
 \[
 r_0, \ r_1 \geq 0
 \]
 \[
 r_\emptyset + p_\tau r_1 \geq p_\tau r_0
 \]
Optimal Contract

- Lemma 1: If safe agents opt to borrow in period 1, so do risky agents.

- Since including safe is the challenge, strategy will be to maximize safe-borrower payoff subject to constraints:
 - bank’s ZPC, assuming all borrow
 - MC-2: non-negativity of period-2 rates
 - LL-failure: zero payment after failure
 - Other constraints verified later

- Let \(\hat{r}_s \) be safe borrower’s reservation rate on one-shot loan:
 \[
 \bar{R} - p_s \hat{r}_s = \bar{u}
 \]

- Let \(\hat{r}_r \) be defined similarly; can show \(\hat{r}_r > \hat{r}_s \)
Optimal Contract

- Consider $r_1 \in (-\infty, \hat{r}_s]\$
 - (Safe borrower opts for a period-2 loan after success)
 - Lowering r_1, raising r_\emptyset along ZPC raises safe borrower’s payoff
 \Rightarrow Set r_1 to lower bound (MC-2): $r_1 = 0$
Optimal Contract

- Consider \(r_1 \in (-\infty, \hat{r}_s] \)

 - (Safe borrower opts for a period-2 loan after success)

 - Lowering \(r_1 \), raising \(r_{\emptyset} \) along ZPC raises safe borrower’s payoff
 \(\Rightarrow \) Set \(r_1 \) to lower bound (MC-2): \(r_1 = 0 \)

- Consider \(r_1 \in (\hat{r}_s, \infty) \)

 - (Safe borrower opts out of period-2 loan after success)

 - Safe borrower does not pay \(r_1 \), prefers it to be set to maximally extract surplus from risky borrower, e.g. to allow for lower \(r_{\emptyset} \)
 \(\Rightarrow \) Set \(r_1 \) to risky reservation rate: \(r_1 = \hat{r}_r \)
Optimal Contract

- Consider \(r_1 \in (-\infty, \hat{r}_s] \)
 - (Safe borrower opts for a period-2 loan after success)
 - Lowering \(r_1 \), raising \(r_{\emptyset} \) along ZPC raises safe borrower’s payoff
 \(\Rightarrow \) Set \(r_1 \) to lower bound (MC-2): \(r_1 = 0 \)

- Consider \(r_1 \in (\hat{r}_s, \infty) \)
 - (Safe borrower opts out of period-2 loan after success)
 - Safe borrower does not pay \(r_1 \), prefers it to be set to maximally extract surplus from risky borrower, e.g. to allow for lower \(r_{\emptyset} \)
 \(\Rightarrow \) Set \(r_1 \) to risky reservation rate: \(r_1 = \hat{r}_r \)

- Can show safe borrower prefers \(r_1 = 0 \) to \(r_1 = \hat{r}_r \)
 - Free loan after success is best for safe borrowers
Optimal Contract

- Consider $r_0 \in (-\infty, \hat{r}_s]$
 - (Safe borrower opts for a period-2 loan after failure)
 - Raising r_0, lowering r_\emptyset along ZPC raises safe borrower’s payoff
 \[\Rightarrow \text{Set } r_0 \text{ to upper bound: } r_0 = \hat{r}_s \]
Optimal Contract

- Consider $r_0 \in (-\infty, \hat{r}_s]$
 - (Safe borrower opts for a period-2 loan after failure)
 - Raising r_0, lowering r_\emptyset along ZPC raises safe borrower’s payoff
 \Rightarrow Set r_0 to upper bound: $r_0 = \hat{r}_s$

- Consider $r_0 \in (\hat{r}_s, \infty)$
 - (Safe borrower opts out of period-2 loan after failure)
 - Safe borrower does not pay r_0, prefers it to be set to maximally extract surplus from risky borrower, e.g. to allow for lower r_\emptyset
 \Rightarrow Set r_0 to risky reservation rate: $r_0 = \hat{r}_r$

- Either way, safe borrowers get reservation payoff after failure; but $r_0 = \hat{r}_r$ raises most revenue (under Assumption A3)
 - Safe borrowers prefer to be priced out of the market after failure
Optimal Contract

▷ ⇒ Best-for-safe contract:

\[r_1 = 0, \quad r_0 = \hat{r}, \quad r_\emptyset \text{ from ZPC} \]

▷ This contract attracts safe borrowers in period 1 iff \(N \geq \overline{N}_{1,2} \)

▷ \(\overline{N}_{1,2} \) a function of only \((p_r, p_s, \theta)\)
 (Recall \(N \) is net excess return, equals \((\overline{R} - \overline{u})/\rho\))

▷ 1 < \(\overline{N}_{1,2} < \overline{N}_{1,1} \), i.e. a dynamic contract can sometimes attract safe borrowers when a static contract cannot

▷ But investment is only “nearly”-efficient: unlucky safe borrowers take only one loan, all others take two

▷ Can another contract achieve higher borrower surplus?
Optimal Contract

- Any higher-surplus contract must attract failed safe borrowers
 \(\Rightarrow \) must involve \(r_0 \leq \hat{r}_s \)

- Maximizing safe payoffs with extra constraint \(r_0 \leq \hat{r}_s \) gives:
 \[r_1 = 0, \quad r_0 = \hat{r}_s, \quad r_∅ \text{ from ZPC} \]

- This contract attracts safe borrowers in period 1 iff \(\bar{N} \geq \bar{N}_{1,2} \)
 \[\bar{N}_{1,2} \text{ a function of } (p_r, p_s, \theta) \]
 \[\bar{N}_{1,2}^* < \bar{N}_{1,2} < \bar{N}_{1,1}, \text{ implying that} \]
 \[\text{Dynamic contract can sometimes achieve full efficiency when a static contract cannot} \]
 \[\text{Dynamic contract can sometimes achieve “near”-efficiency when it cannot achieve full efficiency} \]
Efficiency Results

- Proposition 1: With G high enough, either

 - $N \geq \overline{N}_{1,2} \Rightarrow$ Fully efficient lending is achievable

 - $\overline{N}_{1,2} \leq N < \overline{N}_{1,2} \Rightarrow$ Nearly efficient lending is achievable – only failed safe borrowers drop out

 - $1 < N < \overline{N}^* \Rightarrow$ Only risky agents borrow

 - (G needs to be high enough for r_\emptyset to be affordable)

- Dynamic lending works under adverse selection by improving risk-pricing as information is revealed

 - Targets higher expected rates toward risky borrowers, reduces cross-subsidy from safe to risky
Contract Structure

- Borrower limited commitment leads to back-loaded incentives.

Under the fully-efficient contract:

\[r_\emptyset > r_0 > r_1 \]

- A borrower with no credit history faces a higher rate than one with any credit history

- Lender starts agents at high rate and offers performance-dependent “refunds” over time

- Starting at a neutral rate and raising it after failure would risk excluding unlucky safe borrowers in period 2

- New rationale for “relationship lending” – here it is the optimal way to dynamically price for risk when borrowers can drop out
Contract Structure

- Safe agents prefer “nearly”-efficient lending even when fully efficient lending is possible
 - I.e. they prefer to be priced out of the market when they fail (Even when priced into the market after they fail, it is at their reservation rate)
 - The loss in total surplus is more than compensated for by the shift in repayment burden toward the risky
 - Tradeoff between efficiency and equity (since safe borrowers earn less than risky)
More Complicated Contracts

- Proposition 2: Cannot do better with forced savings or collateral, menu of contracts, subsidies after success
 - Forced savings/collateral can be collected upfront through initial interest rate, r_\emptyset
 - Hidden savings also no problem – borrower will take free loan
 - Subsidies after success have to be mirrored by equally strong subsidies of failure – by monotonicity
 - Screening safe and risky with two contracts cannot improve:
 - Risky IC will bind at optimum
 - Risky payoff and lender profits are zero-sum
 - \Rightarrow Give risky borrower the safe contract, he and lender are just as happy
Group lending – Ghatak et al.

- Consider static lending to agents in groups of size 2; agents know each others’ types and can match frictionlessly

- Contract contains 2 parameters:
 - interest rate r, due from a borrower who succeeds
 - joint liability payment c, due from a borrower who succeeds and whose partner fails

- Key result: joint liability ($c > 0$) \Rightarrow homogeneous matching: safe with safe, risky with risky

- The relevant MC constraint is “no more than full liability”:
 $$c \leq r$$
Group lending – Ghatak et al.

- Optimal contract: raising liability c, lowering interest rate r along ZPC raises the safe-borrower payoff

- Since including safe borrowers is the binding constraint, impose full liability: $c = r$

 - Maximally targets payments to states with more failures, i.e. to risky borrowers (subject to MC)

- For G high enough, safe borrowers are included iff $\mathcal{N} \geq \overline{\mathcal{N}}_{2,1}$

 - $\overline{\mathcal{N}}_{2,1}$ a function of only (p_r, p_s, θ)
Dynamic vs Group

- Corollary 1: Static group lending achieves full efficiency under weaker conditions than dynamic individual lending, i.e.

\[1 < \bar{N}_{2,1} < \bar{N}_{1,2} \]

- Why does group lending dominate?
Dynamic vs Group

- Corollary 1: Static group lending achieves full efficiency under weaker conditions than dynamic individual lending, i.e.

\[1 < \overline{N}_{2,1} < \overline{N}_{1,2} \]

- Why does group lending dominate?

- Both contracts ultimately reveal the same information: observations of 2 draws from a borrower’s distribution
 - Group lending: two cross-sectional observations (equally informative due to homogeneous matching)
 - Dynamic lending: two time-series observations
 - \(\Rightarrow \) lender’s posterior assessment of borrower type is identical in each case
Compare expected per-period repayment under group lending and dynamic lending:

\[
p_r \left[r + (1 - p_r) \right] c \]
\[
p_r \left[\frac{r_0 + r_1}{2} + (1 - p_r) \frac{(r_0 - r_1)}{2} \right]
\]

- Both are quadratic in borrower risk-type, \(p_r \)
- The efficient-lending ZPCs are also isomorphic

⇒ Ignoring constraints, they can achieve identical outcomes

⇒ Constraints on using information make the difference
Efficiency requires large discount in interest rate for safe borrowers
Efficiency requires large discount in interest rate for safe borrowers.

Under group lending, the safe-borrower discount in “effective” interest rate is $(p_s - p_r)c$

- Equals expected savings in joint liability payment from having a safe partner instead of risky
- Size of this discount is limited by monotonicity: $c \leq r$
Efficiency requires large discount in interest rate for safe borrowers.

Under group lending, the safe-borrower discount in “effective” interest rate is \((p_s - p_r)c\)

- Equals expected savings in joint liability payment from having a safe partner instead of risky
- Size of this discount is limited by monotonicity: \(c \leq r\)

Under dynamic lending, safe-borrower discount in per-period “effective” interest rate is \((p_s - p_r)(r_0 - r_1)/2\)

- Equals expected per-period savings in interest rate from succeeding more often in period 1
- Limited commitment and monotonicity cap this discount: \(r_0 \leq \hat{r}_s\) and \(r_1 \geq 0\)
- Ultimately, dynamic lending constrained in risk-pricing by limited commitment: cannot vary interest rate much while retaining all borrowers
Corollary 2: Dynamic individual lending can in some cases achieve “nearly”-efficient lending when static group lending only attracts risky borrowers, i.e.

\[\overline{N}_{1,2}^* < \overline{N}_{2,1} < \overline{N}_{1,2} \]

(under some parameter values: \(p_r \) low enough)

Thus, dynamic individual lending can outperform group lending – but only by giving up on failed safe borrowers
Other factors affecting group vs dynamic comparison

- Strong local information, frictionless matching required for group lending
 Dynamic project endowment and lender commitment required for dynamic lending

- Spatial correlation hampers group lending, serial correlation hampers dynamic lending – limits information revelation

- Constraints on relationship duration or group size, since more periods/larger groups allow for greater information revelation

- No universally dominant contract structure
Dynamic Group Lending

- If both sets of assumptions are met, lender need not choose between group lending or dynamic lending

- Consider a two-period group lending contract
 - Efficiency. Can achieve fully efficient lending over more of parameter space than group or dynamic, i.e.
 \[N_{2,2} < N_{1,2}, N_{2,1} \]

- Structure. Hybrid of group and dynamic contracts:
 - Full liability on all loans
 - Free loan after first loan repaid, otherwise safe borrower’s reservation rate (backloading)
 - Dynamic aspect works against but does not overturn homogeneous matching
Competition

- Consider competitive market instead of single non-profit lender

- Charging $r_0 = \hat{r}_r$ as in “nearly”-efficient lending not feasible
 - Because risky borrowers can always get the full-information competitive rate, ρ/p_r
 - Instead charge $r_0 = \rho/p_r$
 - This limits lender’s ability to reduce cross-subsidy
 $\Rightarrow \overline{N}^{*}_{1,2}$ increases but remains below $\overline{N}_{1,2}$
 - Dynamic contract can still outperform group contract

- Fully efficient contract does not survive competition
 - Even if feasible for non-profit lender
 - Because safe borrowers prefer the “nearly”-efficient contract, and they pay more than their share
T Periods

- Information revelation increases with T

- Preliminary work suggests full efficiency can always be achieved if T and G are large enough
 - But, is the condition on G realistic?

- (Group lending with group size n: efficient lending achievable if n high enough (Ahlin 2012)
 - Condition on G relatively weak)
Conclusion

- Dynamic lending useful in overcoming adverse selection
 - Provides a way to lower cross-subsidy from safe borrowers, target greater repayment obligation to risky borrowers by “penalizing’ failure

- But, usefulness limited by borrowers’ ability to drop out
 - Goal of retaining borrowers limits the ability to use revealed information to price for risk

- As a result, contracts feature high rates for new borrowers, better for returning customers
 - “Relationship lending” as optimal dynamic risk-pricing when borrowers can drop out
Conclusion

- Given borrowers know each others’ types, group lending and dynamic lending extract similar information
 - Group lending: cross-section observations, informative about the individual borrower due to homogeneous matching
 - Dynamic lending: time-series observations

- Relative ability to achieve efficient lending depends on constraints on using the information
 - Dynamic lending can outperform when it gives up on unlucky safe borrowers in order to shift the repayment burden more toward risky borrowers – at the expense of some efficiency
 - Model consistent with dynamic lending playing a role similar to group lending’s in the success of microcredit