Learning about Comparative Advantage in Entrepreneurship: Evidence from Thailand

Anant Nyshadham

University of Southern California

October 5, 2012

・ロト ・回ト ・ヨト ・ヨト … ヨ

Non-agricultural household enterprise is an important part of economic livelihood in developing countries

- Entrepreneurship proposed as important driver of growth (e.g. Foster & Rosenzweig (2004))
- Policy and public resources focused on encouraging entrepreneurship and improving business prospects (microfinance, training, consulting, etc.)
- <u>Townsend Thai Data:</u> over 40% of households own a non-agricultural enterprise each year

- Non-agricultural household enterprise is an important part of economic livelihood in developing countries
 - Entrepreneurship proposed as important driver of growth (e.g. Foster & Rosenzweig (2004))
 - Policy and public resources focused on encouraging entrepreneurship and improving business prospects (microfinance, training, consulting, etc.)
 - <u>Townsend Thai Data:</u> over 40% of households own a non-agricultural enterprise each year

- Non-agricultural household enterprise is an important part of economic livelihood in developing countries
 - Entrepreneurship proposed as important driver of growth (e.g. Foster & Rosenzweig (2004))
 - Policy and public resources focused on encouraging entrepreneurship and improving business prospects (microfinance, training, consulting, etc.)
 - <u>Townsend Thai Data:</u> over 40% of households own a non-agricultural enterprise each year

- Non-agricultural household enterprise is an important part of economic livelihood in developing countries
 - Entrepreneurship proposed as important driver of growth (e.g. Foster & Rosenzweig (2004))
 - Policy and public resources focused on encouraging entrepreneurship and improving business prospects (microfinance, training, consulting, etc.)
 - <u>Townsend Thai Data:</u> over 40% of households own a non-agricultural enterprise each year

 Few household businesses grow to represent primary income source or employ non-household members

- roughly 1/4 of enterprise households generate at least 50% of household income from business
- roughly 11% of enterprise households had paid employees
- Why do a fraction succeed and grow? Why do seemingly unsuccessful enterprises persist?

- Few household businesses grow to represent primary income source or employ non-household members
 - roughly 1/4 of enterprise households generate at least 50% of household income from business
 - roughly 11% of enterprise households had paid employees
- Why do a fraction succeed and grow? Why do seemingly unsuccessful enterprises persist?
 - SPOILER ALER?: Some households relatively bod at enterprise; wan't do it in the long-run, but participate intermittently as they figure this out.

- Few household businesses grow to represent primary income source or employ non-household members
 - roughly 1/4 of enterprise households generate at least 50% of household income from business
 - roughly 11% of enterprise households had paid employees
- Why do a fraction succeed and grow? Why do seemingly unsuccessful enterprises persist?
 - SPOILER ALERT: Some households relatively bad at enterprise; won't do it in the long-run, but participate intermittently as they figure this out

- Few household businesses grow to represent primary income source or employ non-household members
 - roughly 1/4 of enterprise households generate at least 50% of household income from business
 - roughly 11% of enterprise households had paid employees
- Why do a fraction succeed and grow? Why do seemingly unsuccessful enterprises persist?
 - SPOILER ALERT: Some households relatively bad at enterprise; won't do it in the long-run, but participate intermittently as they figure this out

- Few household businesses grow to represent primary income source or employ non-household members
 - roughly 1/4 of enterprise households generate at least 50% of household income from business
 - roughly 11% of enterprise households had paid employees
- Why do a fraction succeed and grow? Why do seemingly unsuccessful enterprises persist?
 - SPOILER ALERT: Some households relatively bad at enterprise; won't do it in the long-run, but participate intermittently as they figure this out

What are the returns to entrepreneurship?

- Does everyone face the same returns?
- Do households know their returns?
- Which households sort in/out of entrepreneurship?
- What factors predominantly drive this sorting?

- What are the returns to entrepreneurship?
- Does everyone face the same returns?
- Do households know their returns?
- Which households sort in/out of entrepreneurship?
- What factors predominantly drive this sorting?

- What are the returns to entrepreneurship?
- Does everyone face the same returns?
- Do households know their returns?
- Which households sort in/out of entrepreneurship?
- What factors predominantly drive this sorting?

- What are the returns to entrepreneurship?
- Does everyone face the same returns?
- Do households know their returns?
- Which households sort in/out of entrepreneurship?
- What factors predominantly drive this sorting?

- What are the returns to entrepreneurship?
- Does everyone face the same returns?
- Do households know their returns?
- Which households sort in/out of entrepreneurship?
- What factors predominantly drive this sorting?

- Can think of entrepreneurship decision as being driven primarily by 2 factors:
 - gross return (ability/productivity)
 - cost (access to financial resources)
- Are non-entrants constrained more by cost or ability (comparative advantage)?

- Can think of entrepreneurship decision as being driven primarily by 2 factors:
 - gross return (ability/productivity)
 - cost (access to financial resources)
- Are non-entrants constrained more by cost or ability (comparative advantage)?

- Can think of entrepreneurship decision as being driven primarily by 2 factors:
 - gross return (ability/productivity)
 - cost (access to financial resources)
- Are non-entrants constrained more by cost or ability (comparative advantage)?

Theoretical:

- credit constraints keep (high return) households from starting businesses (e.g. Banerjee & Newman (1993, 1994); Paulson, Townsend, & Karaivanov (2006))
- maybe not so simple (Buera (2009); Buera, Kaboski, & Shin (2011); Midgrigan & Xu (2011))
- Empirical/Experimental:
 - Mixed results on role of finance, insurance, regulatory infrostructure (Partial review: McKenzle (2010))
 - No effects of loan offers on business starts in Marocco (Orepon, Devolo, Dullo & Pariente (2011))

Large effects of new MRI branch on entry in India (Banegee, Duto), Giennerster & Unnan (2010)

- credit constraints keep (high return) households from starting businesses (e.g. Banerjee & Newman (1993, 1994); Paulson, Townsend, & Karaivanov (2006))
- maybe not so simple (Buera (2009); Buera, Kaboski, & Shin (2011); Midgrigan & Xu (2011))
- Empirical/Experimental:
 - Mixed results on role of finance, insurance, regulatory infrastructure (Partial review: McKenzie (2010))
 - No effects of loan offers on business starts in Morocco (Crepon, Devoto, Duflo & Parlente (2011))
 - Large effects of new MFI branch on entry in India (Banerjee, Duflo, Glennerster & Kinnan (2010))

- credit constraints keep (high return) households from starting businesses (e.g. Banerjee & Newman (1993, 1994); Paulson, Townsend, & Karaivanov (2006))
- maybe not so simple (Buera (2009); Buera, Kaboski, & Shin (2011); Midgrigan & Xu (2011))
- Empirical/Experimental:
 - Mixed results on role of finance, insurance, regulatory infrastructure (Partial review: McKenzie (2010))
 - No effects of loan offers on business starts in Morocco (Crepon, Devoto, Duflo & Pariente (2011))
 - Large effects of new MFI branch on entry in India (Banerjee, Duflo, Glennerster & Kinnan (2010))

- credit constraints keep (high return) households from starting businesses (e.g. Banerjee & Newman (1993, 1994); Paulson, Townsend, & Karaivanov (2006))
- maybe not so simple (Buera (2009); Buera, Kaboski, & Shin (2011); Midgrigan & Xu (2011))
- Empirical/Experimental:
 - Mixed results on role of finance, insurance, regulatory infrastructure (Partial review: McKenzie (2010))
 - No effects of loan offers on business starts in Morocco (Crepon, Devoto, Duflo & Pariente (2011))
 - Large effects of new MFI branch on entry in India (Banerjee, Duflo, Glennerster & Kinnan (2010))

- credit constraints keep (high return) households from starting businesses (e.g. Banerjee & Newman (1993, 1994); Paulson, Townsend, & Karaivanov (2006))
- maybe not so simple (Buera (2009); Buera, Kaboski, & Shin (2011); Midgrigan & Xu (2011))
- Empirical/Experimental:
 - Mixed results on role of finance, insurance, regulatory infrastructure (Partial review: McKenzie (2010))
 - No effects of loan offers on business starts in Morocco (Crepon, Devoto, Duflo & Pariente (2011))
 - Large effects of new MFI branch on entry in India (Banerjee, Duflo, Glennerster & Kinnan (2010))

- This study contributes to recent literature on role of ability/business skills in
 - entry/exit decisions (e.g. Bruhn & Zia (2011); de Mel, McKenzie, and Woodruff (2012))
 - performance and growth of existing enterprises (e.g. Bloom et al (2011); Karlan & Valdivia (2011); Bruhn et al (2011); Drexler et al (2011); de Mel et al(2012))
- Review reveals issues (McKenzie & Woodruff (2012))
 - attrition, selective survival, and start-up in sample → high frequency switching of enterprise status
 - → low objection and small effects on implementation → low objects on implementation of the index of the i

- This study contributes to recent literature on role of ability/business skills in
 - entry/exit decisions (e.g. Bruhn & Zia (2011); de Mel, McKenzie, and Woodruff (2012))
 - performance and growth of existing enterprises (e.g. Bloom et al (2011); Karlan & Valdivia (2011); Bruhn et al (2011); Drexler et al (2011); de Mel et al(2012))
- Review reveals issues (McKenzie & Woodruff (2012))
 - \blacktriangleright attrition, selective survival, and start-up in sample \rightarrow high frequency switching of enterprise status
 - ► low adoption and small effects on implementation → consistent with uncertainty about future enterprise

- This study contributes to recent literature on role of ability/business skills in
 - entry/exit decisions (e.g. Bruhn & Zia (2011); de Mel, McKenzie, and Woodruff (2012))
 - performance and growth of existing enterprises (e.g. Bloom et al (2011); Karlan & Valdivia (2011); Bruhn et al (2011); Drexler et al (2011); de Mel et al(2012))
- Review reveals issues (McKenzie & Woodruff (2012))
 - \blacktriangleright attrition, selective survival, and start-up in sample \rightarrow high frequency switching of enterprise status
 - \blacktriangleright low adoption and small effects on implementation \rightarrow consistent with uncertainty about future enterprise

- This study contributes to recent literature on role of ability/business skills in
 - entry/exit decisions (e.g. Bruhn & Zia (2011); de Mel, McKenzie, and Woodruff (2012))
 - performance and growth of existing enterprises (e.g. Bloom et al (2011); Karlan & Valdivia (2011); Bruhn et al (2011); Drexler et al (2011); de Mel et al(2012))
- Review reveals issues (McKenzie & Woodruff (2012))
 - \blacktriangleright attrition, selective survival, and start-up in sample \rightarrow high frequency switching of enterprise status
 - \blacktriangleright low adoption and small effects on implementation \rightarrow consistent with uncertainty about future enterprise

Model Hypothesis

 Households sort into the entrepreneurial sector on expected comparative advantage

- expectations of relative ability in business over agriculture drive choice more than do financial constraints in this setting
- Over time, households
 - learn about their comparative advantage
 - switch in and out of the entrepreneurial sector.

converge to the optimal sector choice

- Households sort into the entrepreneurial sector on expected comparative advantage
 - expectations of relative ability in business over agriculture drive choice more than do financial constraints in this setting
- Over time, households
 - learn about their comparative advantage
 - switch in and out of the entrepreneurial sector
 - converge to the optimal sector choice

- Households sort into the entrepreneurial sector on expected comparative advantage
 - expectations of relative ability in business over agriculture drive choice more than do financial constraints in this setting
- Over time, households
 - learn about their comparative advantage
 - switch in and out of the entrepreneurial sector
 - converge to the optimal sector choice

- Households sort into the entrepreneurial sector on expected comparative advantage
 - expectations of relative ability in business over agriculture drive choice more than do financial constraints in this setting
- Over time, households
 - learn about their comparative advantage
 - switch in and out of the entrepreneurial sector
 - converge to the optimal sector choice

- Households sort into the entrepreneurial sector on expected comparative advantage
 - expectations of relative ability in business over agriculture drive choice more than do financial constraints in this setting
- Over time, households
 - learn about their comparative advantage
 - switch in and out of the entrepreneurial sector
 - converge to the optimal sector choice

Descriptive Evidence

 This study uses data from the Townsend Thai Project over last half decade

- Evaluations of large microfinance initiative from earlier in the decade find
 - large investment responses among some households (Kaboski & Townsend (2011))
 - no effects on entrepreneurial entry (Kaboski & Townsend (2012))
- Descriptive evidence from Thai data does <u>not</u> support important role for credit constraints in entry decision

- This study uses data from the Townsend Thai Project over last half decade
- Evaluations of large microfinance initiative from earlier in the decade find
 - large investment responses among some households (Kaboski & Townsend (2011))
 - no effects on entrepreneurial entry (Kaboski & Townsend (2012))
- Descriptive evidence from Thai data does <u>not</u> support important role for credit constraints in entry decision

- This study uses data from the Townsend Thai Project over last half decade
- Evaluations of large microfinance initiative from earlier in the decade find
 - large investment responses among some households (Kaboski & Townsend (2011))
 - no effects on entrepreneurial entry (Kaboski & Townsend (2012))
- Descriptive evidence from Thai data does <u>not</u> support important role for credit constraints in entry decision

Descriptive Evidence: Trends

Descriptive Evidence: Switching

11

Descriptive Evidence: Switching by Age of HH

Large positive average returns to entrepreneurship

- Sorting on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Evidence of dynamics from learning about return rather than saving out of financial constraints
 - households switch into enterprise after low productivity realization in agriculture
- Validate model predictions and structural estimates using data on expected incomes by enterprise history

- Large positive average returns to entrepreneurship
- Sorting on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Evidence of dynamics from learning about return rather than saving out of financial constraints
 - households switch into enterprise after <u>low</u> productivity realization in agriculture
- Validate model predictions and structural estimates using data on expected incomes by enterprise history

- Large positive average returns to entrepreneurship
- Sorting on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Evidence of dynamics from learning about return rather than saving out of financial constraints
 - households switch into enterprise after <u>low</u> productivity realization in agriculture
- Validate model predictions and structural estimates using data on expected incomes by enterprise history

- Large positive average returns to entrepreneurship
- Sorting on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Evidence of dynamics from learning about return rather than saving out of financial constraints
 - households switch into enterprise after <u>low</u> productivity realization in agriculture
- Validate model predictions and structural estimates using data on expected incomes by enterprise history

▶ 2 sectors: farm (default) and enterprise $j \in \{F, E\}$

- Farm: cropping (wage labor too)
- Enterprise: shop, trading, restaurant, etc.
- Cobb-Douglas production functions with sector-specific
 - productivity
 - capital inpution

- ▶ 2 sectors: farm (default) and enterprise $j \in \{F, E\}$
- Farm: cropping (wage labor too)
- Enterprise: shop, trading, restaurant, etc.
- Cobb-Douglas production functions with sector-specific
 - productivity
 - capital input

- ▶ 2 sectors: farm (default) and enterprise $j \in \{F, E\}$
- Farm: cropping (wage labor too)
- Enterprise: shop, trading, restaurant, etc.
- Cobb-Douglas production functions with sector-specific
 - productivity
 - capital input

- ▶ 2 sectors: farm (default) and enterprise $j \in \{F, E\}$
- Farm: cropping (wage labor too)
- Enterprise: shop, trading, restaurant, etc.
- Cobb-Douglas production functions with sector-specific
 - productivity
 - capital input

- 2 components to productivity:
 - mean productivity, β_t^j
 - household-specific deviation from mean, η_i^j
- Household chooses in each period
 - optimal capital input level for each sector
 - entrepreneurship status by comparing optimized profits across sectors

Details

- 2 components to productivity:
 - mean productivity, β_t^j
 - household-specific deviation from mean, η_i^j
- Household chooses in each period
 - optimal capital input level for each sector
 - entrepreneurship status by comparing optimized profits across sectors

Details

- Household-specific, sector-specific productivities (η^j_i) can be expressed in terms of
 - τ_i, represents absolute advantage (skills valued equally across sectors)
 - η_i, represents comparative advantage in entrepreneurship (skills valued differentially)
 - $(1 + \phi)$, represents <u>correlation</u> of market's value of η_i <u>across sectors</u>
- Entrepreneurship decision driven by comparative advantage, η_i

- Household-specific, sector-specific productivities (η^j_i) can be expressed in terms of
 - τ_i, represents absolute advantage (skills valued equally across sectors)
 - η_i, represents comparative advantage in entrepreneurship (skills valued differentially)
 - $(1 + \phi)$, represents <u>correlation</u> of market's value of η_i <u>across sectors</u>
- Entrepreneurship decision driven by comparative advantage, η_i

Details

- Household-specific, sector-specific productivities (η^j_i) can be expressed in terms of
 - τ_i, represents absolute advantage (skills valued equally across sectors)
 - η_i, represents comparative advantage in entrepreneurship (skills valued differentially)
 - $(1 + \phi)$, represents <u>correlation</u> of market's value of η_i <u>across sectors</u>
- Entrepreneurship decision driven by comparative advantage, η_i

- Household-specific, sector-specific productivities (η^j_i) can be expressed in terms of
 - τ_i, represents absolute advantage (skills valued equally across sectors)
 - η_i, represents comparative advantage in entrepreneurship (skills valued differentially)
 - $(1 + \phi)$, represents <u>correlation</u> of market's value of η_i <u>across sectors</u>
- Entrepreneurship decision driven by comparative advantage, η_i

Assume households know

- average return to entrepreneurship $(\beta_t^E \beta_t^F)$
- return to capital $\rho^E \approx \rho^F \equiv \rho$
- absolute advantage τ_i
- correlation of earnings across sectors $(1 + \phi)$
- Imperfect information about $\eta_i \rightarrow (\eta_i + \varepsilon_{it})$

- Assume households know
 - average return to entrepreneurship $(\beta_t^E \beta_t^F)$
 - return to capital $\rho^{\rm E} \approx \rho^{\rm F} \equiv \rho$
 - absolute advantage τ_i
 - correlation of earnings across sectors $(1 + \phi)$
- Imperfect information about $\eta_i \rightarrow (\eta_i + \varepsilon_{lt})$

- Assume households know
 - average return to entrepreneurship $(\beta_t^E \beta_t^F)$
 - return to capital $\rho^{\rm E} \approx \rho^{\rm F} \equiv \rho$
 - absolute advantage τ_i
 - correlation of earnings across sectors $(1 + \phi)$
- Imperfect information about $\eta_i \rightarrow (\eta_i + \varepsilon_{it})$

- Assume households know
 - average return to entrepreneurship $(\beta_t^E \beta_t^F)$
 - return to capital $\rho^{\rm E} \approx \rho^{\rm F} \equiv \rho$
 - absolute advantage τ_i
 - correlation of earnings across sectors $(1 + \phi)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

• Imperfect information about $\eta_i \rightarrow (\eta_i + \varepsilon_{it})$

- Assume households know
 - average return to entrepreneurship $(\beta_t^E \beta_t^F)$
 - return to capital $\rho^{\rm E} \approx \rho^{\rm F} \equiv \rho$
 - absolute advantage τ_i
 - correlation of earnings across sectors $(1 + \phi)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

• Imperfect information about $\eta_i \rightarrow (\eta_i + \varepsilon_{it})$

17

- Comparative advantage in entrepreneurship, η_i
 - example: ratio of marketing skill to physical strength
- Household knows $(1 + \phi)$:
 - entrepreneurship values marketing skill more
 - farming values physical strength more
- Household doesn't know own realization on skill index

- Comparative advantage in entrepreneurship, η_i
 - example: ratio of marketing skill to physical strength
- Household knows $(1 + \phi)$:
 - entrepreneurship values marketing skill more
 - farming values physical strength more
- Household doesn't know own realization on skill index

- Comparative advantage in entrepreneurship, η_i
 - example: ratio of marketing skill to physical strength
- Household knows $(1 + \phi)$:
 - entrepreneurship values marketing skill more
 - farming values physical strength more
- Household doesn't know own realization on skill index

Details

- Initial belief $\eta_i \sim N(m_{i0}, \sigma^2 = 1/h)$
- Observe output each period
- ► Calculate productivity signal independent of current entrepreneurial status $(\eta_i + \varepsilon_{it})$
- Martingale law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- Series of one-off entrepreneurship decisions

- Initial belief $\eta_i \sim N(m_{i0}, \sigma^2 = 1/h)$
- Observe output each period
- ► Calculate productivity signal independent of current entrepreneurial status $(\eta_i + \varepsilon_{it})$
- Martingale law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- Series of one-off entrepreneurship decisions

- Initial belief $\eta_i \sim N(m_{i0}, \sigma^2 = 1/h)$
- Observe output each period
- Calculate productivity signal independent of current entrepreneurial status (η_i + ε_{it})
- Martingale law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- Series of one-off entrepreneurship decisions

- Initial belief $\eta_i \sim N(m_{i0}, \sigma^2 = 1/h)$
- Observe output each period
- Calculate productivity signal independent of current entrepreneurial status (η_i + ε_{it})
- Martingale law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- Series of one-off entrepreneurship decisions

► Details

- Initial belief $\eta_i \sim N(m_{i0}, \sigma^2 = 1/h)$
- Observe output each period
- Calculate productivity signal independent of current entrepreneurial status (η_i + ε_{it})
- Martingale law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- Series of one-off entrepreneurship decisions

Learn about relative ability in entrepreneurship in either sector

- \blacktriangleright low yield on farm, but good at selling crops $~\rightarrow~$ switch to enterprise
- \blacktriangleright bad at trading, but able to work long hours $~\rightarrow~$ switch to farming
- Different from learning-by-doing
 - not new technology (ivestock, trader, shop, etc.)

Details

- Learn about relative ability in entrepreneurship in either sector
 - \blacktriangleright low yield on farm, but good at selling crops $~\rightarrow~$ switch to enterprise
 - \blacktriangleright bad at trading, but able to work long hours $~\rightarrow~$ switch to farming

Different from learning-by-doing

not new technology (livestock, trader, shop, etc.)

- Learn about relative ability in entrepreneurship in either sector
 - \blacktriangleright low yield on farm, but good at selling crops $~\rightarrow~$ switch to enterprise
 - \blacktriangleright bad at trading, but able to work long hours $~\rightarrow~$ switch to farming

Different from learning-by-doing

not new technology (livestock, trader, shop, etc.)

Details

- Learn about relative ability in entrepreneurship in either sector
 - \blacktriangleright low yield on farm, but good at selling crops $~\rightarrow~$ switch to enterprise
 - \blacktriangleright bad at trading, but able to work long hours $~\rightarrow~$ switch to farming
- Different from learning-by-doing
 - not new technology (livestock, trader, shop, etc.)

Model: Credit Constraints

Include one form of constraint: limited liability

- Estimation of returns robust to alternate forms
 - additional variables (e.g. assets, interest rates) only effect output through capital and sector
 - address endogeneity in sector and input decisions
 - Interpretation and predicted signs of other structural parameters differ
- Distinguish ability from financial constraint in results

► Details

Model: Credit Constraints

- Include one form of constraint: limited liability
- Estimation of returns robust to alternate forms
 - additional variables (e.g. assets, interest rates) only effect output through capital and sector
 - address endogeneity in sector and input decisions
 - interpretation and predicted signs of other structural parameters differ
- Distinguish ability from financial constraint in results

Model: Credit Constraints

- Include one form of constraint: limited liability
- Estimation of returns robust to alternate forms
 - additional variables (e.g. assets, interest rates) only effect output through capital and sector
 - address endogeneity in sector and input decisions
 - interpretation and predicted signs of other structural parameters differ
- Distinguish ability from financial constraint in results
Model: Credit Constraints

- Include one form of constraint: limited liability
- Estimation of returns robust to alternate forms
 - additional variables (e.g. assets, interest rates) only effect output through capital and sector
 - address endogeneity in sector and input decisions
 - interpretation and predicted signs of other structural parameters differ
- Distinguish ability from financial constraint in results

▶ Details

Model: Credit Constraints

- Include one form of constraint: limited liability
- Estimation of returns robust to alternate forms
 - additional variables (e.g. assets, interest rates) only effect output through capital and sector
 - address endogeneity in sector and input decisions
 - interpretation and predicted signs of other structural parameters differ
- Distinguish ability from financial constraint in results

► Details

Model: Credit Constraints

- Include one form of constraint: limited liability
- Estimation of returns robust to alternate forms
 - additional variables (e.g. assets, interest rates) only effect output through capital and sector
 - address endogeneity in sector and input decisions
 - interpretation and predicted signs of other structural parameters differ
- Distinguish ability from financial constraint in results

• Let us consider T = 2

$$\mathbf{y}_{it} = \alpha_t + \beta_t D_{it} + \rho \mathbf{k}_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$$
(1)

•
$$\alpha_t \equiv \beta_t^F$$
 and $\beta_t \equiv (\beta_t^E - \beta_t^F) = \beta \quad \forall t$

•
$$k_{it} \equiv k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}$$
 and remember $\rho^F \approx \rho^E = \rho$

 measurement error ζ_{it} is assumed mean independent of D_{it} and k_{it} conditional on η_i and τ_i

• Let us consider T = 2

$$\mathbf{y}_{it} = \alpha_t + \beta_t D_{it} + \rho \mathbf{k}_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$$
(1)

•
$$\alpha_t \equiv \beta_t^F$$
 and $\beta_t \equiv (\beta_t^E - \beta_t^F) = \beta \quad \forall t$

•
$$k_{it} \equiv k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}$$
 and remember $\rho^F \approx \rho^E = \rho$

• measurement error ζ_{it} is assumed mean independent of D_{it} and k_{it} conditional on η_i and τ_i

• Let us consider T = 2

$$\mathbf{y}_{it} = \alpha_t + \beta_t D_{it} + \rho \mathbf{k}_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$$
(1)

•
$$\alpha_t \equiv \beta_t^F$$
 and $\beta_t \equiv (\beta_t^E - \beta_t^F) = \beta \quad \forall t$

•
$$k_{it} \equiv k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}$$
 and remember $\rho^F \approx \rho^E = \rho$

 measurement error ζ_{it} is assumed mean independent of D_{it} and k_{it} conditional on η_i and τ_i

• Let us consider T = 2

$$\mathbf{y}_{it} = \alpha_t + \beta_t D_{it} + \rho \mathbf{k}_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$$
(1)

•
$$\alpha_t \equiv \beta_t^F$$
 and $\beta_t \equiv (\beta_t^E - \beta_t^F) = \beta \quad \forall t$

•
$$k_{it} \equiv k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}$$
 and remember $\rho^F \approx \rho^E = \rho$

 measurement error ζ_{it} is assumed mean independent of D_{it} and k_{it} conditional on η_i and τ_i

$y_{it} = \alpha_t + \beta D_{it} + \rho k_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$

- ▶ D_{it} and k_{it} are chosen endogenously based on $m_{i,t-1}$
- OLS estimate of β and ρ will be biased
- (1 + φ) is of interest (correlation between earnings across sectors)

$y_{it} = \alpha_t + \beta D_{it} + \rho k_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$

• D_{it} and k_{it} are chosen endogenously based on $m_{i,t-1}$

- OLS estimate of β and ρ will be biased
- (1 + φ) is of interest (correlation between earnings across sectors)

$$y_{it} = \alpha_t + \beta D_{it} + \rho k_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$$

- D_{it} and k_{it} are chosen endogenously based on $m_{i,t-1}$
- OLS estimate of β and ρ will be biased
- (1 + φ) is of interest (correlation between earnings across sectors)

$$y_{it} = \alpha_t + \beta D_{it} + \rho k_{it} + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i + \zeta_{it}$$

- D_{it} and k_{it} are chosen endogenously based on $m_{i,t-1}$
- OLS estimate of β and ρ will be biased
- (1 + φ) is of interest (correlation between earnings across sectors)

• $m_{i,t} = m_{i,t-1} + \xi_{it} \Rightarrow m_{i,t-1} = m_{i0} + \sum_{k=1}^{t-1} \xi_{ik},$

m_{i0} will affect choices in all periods

• Updates, $m_i^{t-1} \equiv \sum_{k=1}^{t-1} \xi_{ik}$, are orthogonal to m_{i0}

m_i^{t-1} will only affect choices in period *t* and onward
 η_i + ε_{it} = *m_{i0}* + *m_i^{t-1}* + φ_{it}

•
$$m_{i,t} = m_{i,t-1} + \xi_{it} \Rightarrow m_{i,t-1} = m_{i0} + \sum_{k=1}^{t-1} \xi_{ik},$$

*m*_{i0} will affect choices in all periods

• Updates, $m_i^{t-1} \equiv \sum_{k=1}^{t-1} \xi_{ik}$, are orthogonal to m_{i0}

• m_i^{t-1} will only affect choices in period t and onward • $\eta_i + \varepsilon_{it} = m_{i0} + m_i^{t-1} + \varphi_{it}$

•
$$m_{i,t} = m_{i,t-1} + \xi_{it} \Rightarrow m_{i,t-1} = m_{i0} + \sum_{k=1}^{t-1} \xi_{ik},$$

- *m*_{i0} will affect choices in all periods
- Updates, $m_i^{t-1} \equiv \sum_{k=1}^{t-1} \xi_{ik}$, are orthogonal to m_{i0}
- m_i^{t-1} will only affect choices in period t and onward • $\eta_i + \varepsilon_{it} = m_{i0} + m_i^{t-1} + \varphi_{it}$

•
$$m_{i,t} = m_{i,t-1} + \xi_{it} \Rightarrow m_{i,t-1} = m_{i0} + \sum_{k=1}^{t-1} \xi_{ik},$$

- *m*_{i0} will affect choices in all periods
- Updates, $m_i^{t-1} \equiv \sum_{k=1}^{t-1} \xi_{ik}$, are orthogonal to m_{i0}
- m_i^{t-1} will only affect choices in period t and onward
 η_i + ε_{it} = m_{i0} + m_i^{t-1} + φ_{it}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

•
$$m_{i,t} = m_{i,t-1} + \xi_{it} \Rightarrow m_{i,t-1} = m_{i0} + \sum_{k=1}^{t-1} \xi_{ik},$$

- *m*_{i0} will affect choices in all periods
- Updates, $m_i^{t-1} \equiv \sum_{k=1}^{t-1} \xi_{ik}$, are orthogonal to m_{i0}
- m_i^{t-1} will only affect choices in period t and onward

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

$y_{it} = \alpha_t + \beta D_{it} + \rho k_{it} + (m_{i0} + m_i^{t-1} + \varphi_{it})(1 + \phi D_{it}) + v_{it}, \quad (2)$

• $v_{it} \equiv \tau_i + \zeta_{it}$ and φ_{it} orthogonal to D_{it}

 All information to be used in entrepreneurship decision at time t is fully summarized in m_{i0} and m_i^{t-1}

$$y_{it} = \alpha_t + \beta D_{it} + \rho k_{it} + (m_{i0} + m_i^{t-1} + \varphi_{it})(1 + \phi D_{it}) + v_{it}, \quad (2)$$

- $v_{it} \equiv \tau_i + \zeta_{it}$ and φ_{it} orthogonal to D_{it}
- All information to be used in entrepreneurship decision at time t is fully summarized in m_{i0} and m_i^{t-1}

Empirical Strategy: Dynamic CRC

- Building on Chamberlain (1982, 1984), can project m_{i0} and m_i^{t-1} onto history of choices
- Purge composite error of correlation with D_{it} and k_{it}
- Project m_{i0} on 3 entrepreneurship histories, 2 capital choices, and 6 interactions of capital and sector choices

$$m_{i0} = \Lambda_0(\lambda; \mathbf{D}_i, \mathbf{k}_i) + \psi_{i0}$$
(3)

 Project m^{t-1}_i on choices in period t onward, no interactions

$$m_i^{t-1} = \Theta_{t-1}(\theta_{t-1}; \mathbf{D}_i^t, \mathbf{k}_i^t) + \psi_{i,t-1}$$
(4)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Projections

Empirical Strategy: Reduced Form

$$y_{it} = \alpha_t + \left[\Lambda_0(\lambda; \mathbf{D}_i, \mathbf{k}_i) + \Theta_{t-1}(\theta_{t-1}; \mathbf{D}_i^{\dagger}, \mathbf{k}_i^{\dagger}) \right] (1 + \phi D_{it}) \\ + \beta D_{it} + \rho k_{it} + (\psi_{i0} + \psi_{i,t-1} + \varphi_{it}) (1 + \phi D_{it}) + v_{it},$$
(5)

y_{it} as a function of entire history of entrepreneurship decisions

- Estimate these equations using seemingly unrelated regressions (SUR)
- Recover 22 reduced form coefficients

Empirical Strategy: Reduced Form

$$y_{it} = \alpha_t + \left[\Lambda_0(\lambda; \mathbf{D}_i, \mathbf{k}_i) + \Theta_{t-1}(\theta_{t-1}; \mathbf{D}_i^{\dagger}, \mathbf{k}_i^{\dagger}) \right] (1 + \phi D_{it}) \\ + \beta D_{it} + \rho k_{it} + (\psi_{i0} + \psi_{i,t-1} + \varphi_{it}) (1 + \phi D_{it}) + v_{it},$$
(5)

- y_{it} as a function of entire history of entrepreneurship decisions
- Estimate these equations using seemingly unrelated regressions (SUR)
- Recover 22 reduced form coefficients

Empirical Strategy: Reduced Form

$$y_{it} = \alpha_t + \left[\Lambda_0(\lambda; \mathbf{D}_i, \mathbf{k}_i) + \Theta_{t-1}(\theta_{t-1}; \mathbf{D}_i^{\dagger}, \mathbf{k}_i^{\dagger}) \right] (1 + \phi D_{it}) \\ + \beta D_{it} + \rho k_{it} + (\psi_{i0} + \psi_{i,t-1} + \varphi_{it}) (1 + \phi D_{it}) + v_{it},$$
(5)

- y_{it} as a function of entire history of entrepreneurship decisions
- Estimate these equations using seemingly unrelated regressions (SUR)
- Recover 22 reduced form coefficients

- Model imposes relationship between 22 reduced form coefficients and 17 structural parameters
- > 11 λ 's estimate heterogeneity in initial beliefs
- 3 θ's estimate heterogeneity in belief update that drives switching
- β , ρ , and ϕ from model
- Estimate these structural parameters using minimum distance (MD)

- Model imposes relationship between 22 reduced form coefficients and 17 structural parameters
- > 11 λ 's estimate heterogeneity in initial beliefs
- 3 θ's estimate heterogeneity in belief update that drives switching
- β , ρ , and ϕ from model
- Estimate these structural parameters using minimum distance (MD)

- Model imposes relationship between 22 reduced form coefficients and 17 structural parameters
- > 11 λ 's estimate heterogeneity in initial beliefs
- 3 θ's estimate heterogeneity in belief update that drives switching
- β , ρ , and ϕ from model
- Estimate these structural parameters using minimum distance (MD)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Model imposes relationship between 22 reduced form coefficients and 17 structural parameters
- > 11 λ 's estimate heterogeneity in initial beliefs
- 3 θ's estimate heterogeneity in belief update that drives switching
- β , ρ , and ϕ from model
- Estimate these structural parameters using minimum distance (MD)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Model imposes relationship between 22 reduced form coefficients and 17 structural parameters
- > 11 λ 's estimate heterogeneity in initial beliefs
- 3 θ's estimate heterogeneity in belief update that drives switching
- β , ρ , and ϕ from model
- Estimate these structural parameters using minimum distance (MD)

Empirical Strategy: Parameter Interpretation

• β is average return to entrepreneurship

- ρ is average return to capital
- $(1 + \phi)$ is correlation of earnings across sectors
 - ▶ If $\phi > 0$, good farmers are good at enterprise
 - if $\phi < 0$, less income inequality

Empirical Strategy: Parameter Interpretation

- β is average return to entrepreneurship
- ρ is average return to capital
- $(1 + \phi)$ is correlation of earnings across sectors
 - If $\phi > 0$, good farmers are good at enterprise
 - if $\phi < 0$, less income inequality

Empirical Strategy: Parameter Interpretation

- β is average return to entrepreneurship
- ρ is average return to capital
- $(1 + \phi)$ is correlation of earnings across sectors
 - if $\phi > 0$, good farmers are good at enterprise
 - if $\phi < 0$, less income inequality

Empirical Strategy: Identification

- Compare conditional sample means of income across households and time
- Condition on household's entire history of choices
- Identified from within household switching of entrepreneurship status and input expenditure

Threats to Identification

Empirical Strategy: Identification

- Compare conditional sample means of income across households and time
- Condition on household's entire history of choices
- Identified from within household switching of entrepreneurship status and input expenditure

Threats to Identification

Empirical Strategy: Identification

- Compare conditional sample means of income across households and time
- Condition on household's entire history of choices
- Identified from within household switching of entrepreneurship status and input expenditure

Threats to Identification

Identification: Income By Entrepreneurship History

Townsend Thai Project data from 2005 and 2008

 4 provinces: 2 from rural Northeast region and 2 from urban Central region

Balanced panel includes 1103 households

Sum Stats

- Townsend Thai Project data from 2005 and 2008
- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
- Balanced panel includes 1103 households

Sum Stats
- Townsend Thai Project data from 2005 and 2008
- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
- Balanced panel includes 1103 households

- Information on income and expenditure in agriculture, wage labor, and enterprise
- Information on expected income next year, savings and self-reported credit constraints
- Over 40% of HHs have enterprises in each wave
- Over 20% of HHs switch enterprise status

- Information on income and expenditure in agriculture, wage labor, and enterprise
- Information on expected income next year, savings and self-reported credit constraints
- Over 40% of HHs have enterprises in each wave
- Over 20% of HHs switch enterprise status

- Information on income and expenditure in agriculture, wage labor, and enterprise
- Information on expected income next year, savings and self-reported credit constraints
- Over 40% of HHs have enterprises in each wave
- Over 20% of HHs switch enterprise status

- Information on income and expenditure in agriculture, wage labor, and enterprise
- Information on expected income next year, savings and self-reported credit constraints
- Over 40% of HHs have enterprises in each wave
- Over 20% of HHs switch enterprise status

- 3 main types of businesses (in order of prevalence):
 - shop (convenience store, food store, noodle shop / restaurant, repair shop, barber, etc.)
 - trader
 - fish/shrimp and other livestock
- roughly 22% of enterprise households get majority of income from business
- roughly 11% of enterprise households hire paid employees

- 3 main types of businesses (in order of prevalence):
 - shop (convenience store, food store, noodle shop / restaurant, repair shop, barber, etc.)
 - trader
 - fish/shrimp and other livestock
- roughly 22% of enterprise households get majority of income from business
- roughly 11% of enterprise households hire paid employees

- 3 main types of businesses (in order of prevalence):
 - shop (convenience store, food store, noodle shop / restaurant, repair shop, barber, etc.)
 - trader
 - fish/shrimp and other livestock
- roughly 22% of enterprise households get majority of income from business
- roughly 11% of enterprise households hire paid employees

Structural Estimates

	CRE	DCRE	CRC	DCRC
ρ	0.0595***	0.0638***	0.0671***	0.0726***
	(0.0087)	(0.0098)	(0.0102)	(0.0119)
β	0.1858***	0.1633***	0.2191***	0.2408***
	(0.0510)	(0.0607)	(0.0647)	(0.0878)
φ			-0.3052	-0.4614**
			(0.2113)	(0.2149)
χ^2	85.1951	84.2665	14.9055	13.149
df	16	14	8	5
obs	1103	1103	1103	1103
p-value	< 0.0001	< 0.0001	0.061	0.022

Structural Estimates (Village x Time Dummies)

	CRE	DCRE	CRC	DCRC
ρ	0.0608***	0.0610***	0.0641***	0.0686***
	(0.0084)	(0.0095)	(0.0095)	(0.0119)
β	0.1764***	0.1688***	0.2287**	0.3512***
	(0.0519)	(0.0631)	(0.1138)	(0.1166)
φ			-0.1432	-0.5512*
			(0.3476)	(0.2947)
χ^2	67.2846	67.2263	12.8105	9.2845
df	16	14	8	5
obs	1103	1103	1103	1103
p-value	< 0.0001	< 0.0001	0.1185	0.0982

Perceived Gains ($\beta + \phi m_{i,t-1}$)

37

Learning: Expected Income Next Year By Entrepreneurship History

Learning: Real vs. Expected Income By Entrepreneurship History

Learning: Real vs. Expected Income - Older Households

Learning: Real vs. Expected Income - Younger Households

Large average return to entrepreneurship

- Households sort on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Suggestive evidence of learning about heterogeneous return
- Households learn about comparative advantage in entrepreneurship from
 - negative shocks in default sector
 - Positive shocks in entrepreneurial sector

- Large average return to entrepreneurship
- Households sort on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Suggestive evidence of learning about heterogeneous return
- Households learn about comparative advantage in entrepreneurship from
 - negative shocks in default sector
 - positive shocks in entrepreneurial sector

- Large average return to entrepreneurship
- Households sort on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Suggestive evidence of learning about heterogeneous return
- Households learn about comparative advantage in entrepreneurship from

- negative shocks in default sector
- positive shocks in entrepreneurial sector

- Large average return to entrepreneurship
- Households sort on heterogeneous returns (marginal return is low)
 - households with high earnings in default sector have low returns to entrepreneurship
- Suggestive evidence of learning about heterogeneous return
- Households learn about comparative advantage in entrepreneurship from
 - negative shocks in default sector
 - positive shocks in entrepreneurial sector

Empirical facts to be matched:

- 1. Stable aggregate enterprise participation
- 2. High frequency switching of enterprise status
- 3. Negative shocks drive switching
- 4. Persistence of productivity innovations
- 5. Reduced switching over time

Households save out of financial constraints:

- 1. Stable aggregate enterprise participation Fail
- 2. High frequency switching of enterprise status Pass
- 3. Negative shocks drive switching Fail
- 4. Persistence of productivity innovations Pass
- 5. Reduced switching over time **Pass**

Financial Constraints By Entrepreneurship History

Savings By Entrepreneurship History

Comparison of Alternate Models

Heterogeneous returns, learning-by-doing:

- 1. Stable aggregate enterprise participation Fail
- 2. High frequency switching of enterprise status Pass
- 3. Negative shocks drive switching Fail
- 4. Persistence of productivity innovations Pass
- 5. Reduced switching over time Pass

Comparison of Alternate Models

Persistent shocks to η_i , no learning:

- 1. Stable aggregate enterprise participation Pass
- 2. High frequency switching of enterprise status Pass
- 3. Negative shocks drive switching Pass
- 4. Persistence of productivity innovations Pass
- 5. Reduced switching over time Fail

- Health and enterprise in Tanzania (with Ach Adhvaryu)
 - households use enterprise activity to weather acute health shocks
 - extensive margin (entry) and intensive margins (capital and labor allocations)
 - entire household (both sick and non-sick members) shifts labor allocation
 - apparent complementarity in labor inputs emphasizes importance of access to alternate technologies

- Health and enterprise in Tanzania (with Ach Adhvaryu)
 - households use enterprise activity to weather acute health shocks
 - extensive margin (entry) and intensive margins (capital and labor allocations)
 - entire household (both sick and non-sick members) shifts labor allocation
 - apparent complementarity in labor inputs emphasizes importance of access to alternate technologies

- Health and enterprise in Tanzania (with Ach Adhvaryu)
 - households use enterprise activity to weather acute health shocks
 - extensive margin (entry) and intensive margins (capital and labor allocations)
 - entire household (both sick and non-sick members) shifts labor allocation
 - apparent complementarity in labor inputs emphasizes importance of access to alternate technologies

- Health and enterprise in Tanzania (with Ach Adhvaryu)
 - households use enterprise activity to weather acute health shocks
 - extensive margin (entry) and intensive margins (capital and labor allocations)
 - entire household (both sick and non-sick members) shifts labor allocation
 - apparent complementarity in labor inputs emphasizes importance of access to alternate technologies

- Agricultural profitability and enterprise (with Ach Adhvaryu and Namrata Kala)
 - coffee price down: some households switch into enterprise
 - coffee price up: some divest, reduce or discontinue enterprise activity; others *expand* enterprises
 - can we predict differential response from observable baseline characteristics of household (e.g. demographic composition, schooling or cognitive skills) or enterprise (employment, contribution to household income, proportion of labor hours)?
 - help to target the earnest entrepreneurs

- Agricultural profitability and enterprise (with Ach Adhvaryu and Namrata Kala)
 - coffee price down: some households switch into enterprise
 - coffee price up: some divest, reduce or discontinue enterprise activity; others *expand* enterprises
 - can we predict differential response from observable baseline characteristics of household (e.g. demographic composition, schooling or cognitive skills) or enterprise (employment, contribution to household income, proportion of labor hours)?
 - help to target the earnest entrepreneurs

- Agricultural profitability and enterprise (with Ach Adhvaryu and Namrata Kala)
 - coffee price down: some households switch into enterprise
 - coffee price up: some divest, reduce or discontinue enterprise activity; others *expand* enterprises
 - can we predict differential response from observable baseline characteristics of household (e.g. demographic composition, schooling or cognitive skills) or enterprise (employment, contribution to household income, proportion of labor hours)?
 - help to target the earnest entrepreneurs

- Agricultural profitability and enterprise (with Ach Adhvaryu and Namrata Kala)
 - coffee price down: some households switch into enterprise
 - coffee price up: some divest, reduce or discontinue enterprise activity; others *expand* enterprises
 - can we predict differential response from observable baseline characteristics of household (e.g. demographic composition, schooling or cognitive skills) or enterprise (employment, contribution to household income, proportion of labor hours)?
 - help to target the earnest entrepreneurs

The End

Thanks!

Policy Implications

Marginal non-entrant has low gross return to (low ability in) entrepreneurship

- allocation of financial resources to lowering his cost might not be welfare-enhancing
- improving his entrepreneurial skill might be a better endeavor
- improving skills of labor force might improve long-run growth of enterprises

- Marginal non-entrant has low gross return to (low ability in) entrepreneurship
 - allocation of financial resources to lowering his cost might not be welfare-enhancing
 - improving his entrepreneurial skill might be a better endeavor
 - improving skills of labor force might improve long-run growth of enterprises
- Marginal non-entrant has low gross return to (low ability in) entrepreneurship
 - allocation of financial resources to lowering his cost might not be welfare-enhancing
 - improving his entrepreneurial skill might be a better endeavor
 - improving skills of labor force might improve long-run growth of enterprises

- Marginal non-entrant has low gross return to (low ability in) entrepreneurship
 - allocation of financial resources to lowering his cost might not be welfare-enhancing
 - improving his entrepreneurial skill might be a better endeavor
 - improving skills of labor force might improve long-run growth of enterprises

$$D_{it} = 0: \qquad Y_{it}^F = e^{\beta_t^F} K_{iFt}^{\rho^F} e^{\eta_i^F}, \qquad (6)$$

$$D_{it} = 1: \qquad Y_{it}^{E} = \mathbf{e}^{\beta_{t}^{E}} K_{iEt}^{\rho^{E}} \mathbf{e}^{\eta_{t}^{E}}, \qquad (7)$$

- D_{it} is a dummy for household i producing in entrepreneurial sector in period t
- K_{iFt}^F and K_{iFt}^E are capital inputs in the two sectors
- ρ^F and ρ^E are factor loadings on capital in the two sectors

$$D_{it} = 0: \qquad Y_{it}^F = e^{\beta_t^F} K_{iFt}^{\rho^F} e^{\eta_i^F}, \qquad (6)$$

$$D_{it} = 1: \qquad Y_{it}^{E} = \mathbf{e}^{\beta_{t}^{E}} K_{iEt}^{\rho^{E}} \mathbf{e}^{\eta_{i}^{E}}, \qquad (7)$$

- D_{it} is a dummy for household i producing in entrepreneurial sector in period t
- K_{iFt}^{F} and K_{iFt}^{E} are capital inputs in the two sectors
- $\blacktriangleright \ \rho^{\rm F}$ and $\rho^{\rm E}$ are factor loadings on capital in the two sectors

$$D_{it} = 0: \qquad Y_{it}^F = e^{\beta_t^F} K_{iFt}^{\rho^F} e^{\eta_i^F}, \qquad (6)$$

$$D_{it} = 1: \qquad Y_{it}^{E} = \mathbf{e}^{\beta_{t}^{E}} K_{iEt}^{\rho^{E}} \mathbf{e}^{\eta_{i}^{E}}, \qquad (7)$$

- D_{it} is a dummy for household i producing in entrepreneurial sector in period t
- K_{iFt}^{F} and K_{iFt}^{E} are capital inputs in the two sectors
- ρ^F and ρ^E are factor loadings on capital in the two sectors

► Back

$$D_{it} = 0: \qquad Y_{it}^{F} = e^{\beta_{t}^{F}} K_{iFt}^{\rho^{F}} e^{\eta_{i}^{F}},$$
$$D_{it} = 1: \qquad Y_{it}^{E} = e^{\beta_{t}^{E}} K_{iEt}^{\rho^{E}} e^{\eta_{i}^{E}},$$

• β_t^F and β_t^E are mean productivities in the two sectors

 η^F_i and η^E_i are heterogeneous components of productivity productivities in the two sectors

$$D_{it} = 0: \qquad Y_{it}^{F} = e^{\beta_{t}^{F}} K_{iFt}^{\rho^{F}} e^{\eta_{i}^{F}},$$
$$D_{it} = 1: \qquad Y_{it}^{E} = e^{\beta_{t}^{E}} K_{iEt}^{\rho^{E}} e^{\eta_{i}^{E}},$$

- β_t^F and β_t^E are mean productivities in the two sectors
- η^E_i and η^E_i are heterogeneous components of productivity productivities in the two sectors

Model: Capital Input

- Assuming cost of capital is r; no adjustment cost
- ▶ In each sector $j \in \{E, F\}$, household solves

$$\max_{K_{ijt}} \left[e^{\beta_t^j} K_{ijt}^{\rho^j} e^{\eta_i^j} - r K_{ijt} \right]$$
(8)

Household's period t optimal input in sector j is

$$K_{ijt}^{*} = \kappa \left(\eta_{i}^{j}; \boldsymbol{r}, \rho^{j} \right)$$
(9)

Model: Sectoral Choice

► Then,
$$D_{it} = 1$$
 iff $\left[e^{\beta_t^E} K_{iEt}^{\rho^E} e^{\eta_i^E} - rK_{iEt}^* \right] > \left[e^{\beta_t^F} K_{iFt}^{\rho^F} e^{\eta_i^F} - rK_{iFt}^* \right]$

- Substitute in for K_{iEt}^* and K_{iFt}^*
- Make simplifying assumption $\rho^E \approx \rho^F \equiv \rho$
- Household i will choose to produce in the entrepreneurial sector iff:

$$e^{(\eta_i^E - \eta_i^F)} > e^{(\beta_t^F - \beta_t^E)}$$
(10)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

🕨 Back

Model: Comparative Advantage (Roy (1951), Lemieux (1998) and Suri (2011))

- Sectoral choice depends on $(\eta_i^E \eta_i^F)$
- Only the relative magnitude of η_i^F and η_i^E can be identified
- ► Project η_i^F and η_i^E onto relative productivity in entrepreneurship over default production, $(\eta_i^E \eta_i^F)$

$$\eta_i^F = \mathcal{b}_F(\eta_i^E - \eta_i^F) + \tau_i \tag{11}$$

$$\eta_i^E = b_E(\eta_i^E - \eta_i^F) + \tau_i \tag{12}$$

Model: Comparative Advantage (Roy (1951), Lemieux (1998) and Suri (2011))

- Household's absolute advantage is represented by τ_i
- \(\tau_i\) has the same effect on the household's productivity in both sectors

$$\eta_i^F = b_F(\eta_i^E - \eta_i^F) + \tau_i$$

$$\eta_i^E = b_E(\eta_i^E - \eta_i^F) + \tau_i$$

(► Back

Model: Comparative Advantage (Roy (1951), Lemieux (1998) and Suri (2011))

• Defining household's <u>comparative advantage</u> $\eta_i \equiv b_F(\eta_i^E - \eta_i^F)$

• Defining
$$\phi \equiv b_E/b_F - 1$$

$$\eta_i^F = \eta_i + \tau_i \tag{13}$$

$$\eta_i^E = (1+\phi)\eta_i + \tau_i \tag{14}$$

► Back

Model: Generalized Output Equation

Substituting in and taking logs:

$$\boldsymbol{y}_{it}^{F} = \beta_{t}^{F} + \rho \boldsymbol{k}_{it}^{F} + \eta_{i} + \tau_{i}$$
(15)

$$\boldsymbol{y}_{it}^{E} = \beta_{t}^{E} + \rho \boldsymbol{k}_{it}^{E} + (1 + \phi)\eta_{i} + \tau_{i}$$
(16)

 Generalized, log gross output equation (D_{it} is entrepreneurship dummy):

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + \eta_i(1 + \phi D_{it}) + \tau_i$$

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + \eta_i(1 + \phi D_{it}) + \tau_i$$

- average productivity: β_t^F and β_t^E
- return to capital: ρ
- absolute advantage: τ_i (unobserved)
- covariance of productivity across sectors, ϕ , given η_i
- ▶ perfect information about $\eta_i \rightarrow$ static selection on comparative advantage

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + \eta_i(1 + \phi D_{it}) + \tau_i$$

- average productivity: β_t^F and β_t^E
- return to capital: ρ
- absolute advantage: τ_i (unobserved)
- covariance of productivity across sectors, ϕ , given η_i
- ▶ perfect information about $\eta_i \rightarrow$ static selection on comparative advantage

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + \eta_i(1 + \phi D_{it}) + \tau_i$$

- average productivity: β_t^F and β_t^E
- return to capital: ρ
- absolute advantage: τ_i (unobserved)
- covariance of productivity across sectors, ϕ , given η_i
- ▶ perfect information about $\eta_i \rightarrow$ static selection on comparative advantage

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + \eta_i(1 + \phi D_{it}) + \tau_i$$

- average productivity: β_t^F and β_t^E
- return to capital: ρ
- absolute advantage: τ_i (unobserved)
- covariance of productivity across sectors, ϕ , given η_i
- ▶ perfect information about $\eta_i \rightarrow$ static selection on comparative advantage

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + \eta_i(1 + \phi D_{it}) + \tau_i$$

- average productivity: β_t^F and β_t^E
- return to capital: ρ
- absolute advantage: τ_i (unobserved)
- covariance of productivity across sectors, ϕ , given η_i
- ▶ perfect information about $\eta_i \rightarrow$ static selection on comparative advantage

Model: Imperfect Information

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i$$
(17)

• Imperfect information about η_i

• Replace η_i with $(\eta_i + \varepsilon_{it})$

• Random error: $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2 = 1/h_{\varepsilon})$

Model: Imperfect Information

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i$$
(17)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

- Imperfect information about η_i
- Replace η_i with $(\eta_i + \varepsilon_{it})$

▶ Random error: $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2 = 1/h_{\varepsilon})$

Model: Imperfect Information

$$y_{it} = \beta_t^F + (\beta_t^E - \beta_t^F)D_{it} + \rho[k_{it}^F + (k_{it}^E - k_{it}^F)D_{it}] + (\eta_i + \varepsilon_{it})(1 + \phi D_{it}) + \tau_i$$
(17)

- Imperfect information about η_i
- Replace η_i with $(\eta_i + \varepsilon_{it})$
- Random error: $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2 = 1/h_{\varepsilon})$

- Can compute noisy signal of comparative advantage each period, independent of sectoral choice
- Let l^t_i = (l_{i1},..., l_{it}) denote the history of the normalized comparative advantage observations up to period t

$$I_{it} = \frac{Y_{it} - \beta_{t}^{F} - (\beta_{t}^{E} - \beta_{t}^{F})D_{it} - \rho[k_{it}^{F} + (k_{it}^{E} - k_{it}^{F})D_{it}] - \tau_{i}}{(1 + \phi D_{it})}$$

$$= \eta_i + \varepsilon_{it}, \tag{18}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

- Initial belief $\eta_i \sim N(m_{i0}, \sigma^2 = 1/h)$
- ► Posterior distribution of η_i given history I_i^{\dagger} is $N(m_t(I_i^{\dagger}), 1/h_t)$, where

$$m_t(l_i^t) = \frac{hm_{i0} + h_{\varepsilon}(l_{i1} + \dots + l_{it})}{h + th_{\varepsilon}}, \quad \text{and} \quad h_t = h + th_{\varepsilon}$$
(19)

Bayesian beliefs are a martingale

• $m_{i,t}$ is shorthand for $m_t(l_i^{\dagger})$

- Law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- ξ_{it} is a noise term orthogonal to $m_{i,t-1}$

- Bayesian beliefs are a martingale
- $m_{i,t}$ is shorthand for $m_t(l_i^t)$
- Law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- ξ_{it} is a noise term orthogonal to $m_{i,t-1}$

- Bayesian beliefs are a martingale
- $m_{i,t}$ is shorthand for $m_t(l_i^t)$
- Law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- ξ_{it} is a noise term orthogonal to $m_{i,t-1}$

- Bayesian beliefs are a martingale
- $m_{i,t}$ is shorthand for $m_t(l_i^t)$
- Law of motion: $m_{i,t} = m_{i,t-1} + \xi_{it}$
- ξ_{it} is a noise term orthogonal to $m_{i,t-1}$

- 1. Household *i* chooses D_{it} and K_{ijt} at the beginning of period *t* using $m_{i,t-1} \equiv m_{t-1}(l_i^{t-1})$
- 2. Household *i* produces y_{it} during period *t* and observes the productivity shock ε_{it}
- 3. End of period *t*, household *i* calculates productivity signal and updates expectation of η_i according to law of motion

- 1. Household *i* chooses D_{it} and K_{ijt} at the beginning of period *t* using $m_{i,t-1} \equiv m_{t-1}(l_i^{t-1})$
- 2. Household *i* produces y_{it} during period *t* and observes the productivity shock ε_{it}
- 3. End of period *t*, household *i* calculates productivity signal and updates expectation of η_i according to law of motion

- 1. Household *i* chooses D_{it} and K_{ijt} at the beginning of period *t* using $m_{i,t-1} \equiv m_{t-1}(l_i^{t-1})$
- 2. Household *i* produces y_{it} during period *t* and observes the productivity shock ε_{it}
- 3. End of period *t*, household *i* calculates productivity signal and updates expectation of η_i according to law of motion

Model: Capital Input (Learning)

▶ In each sector $j \in \{E, F\}$, household solves

$$\max_{K_{ijt}} E_t \left[e^{\beta_t^j} K_{ijt}^{\rho^j} e^{\eta_i^j} - r K_{ijt} \right]$$

► where the expectation is with respect to beliefs at beginning of period t, E_t[η_i] = m_{i,t-1}

$$K_{iEt}^* = \kappa \Big(m_{i,t-1}, \phi; r, \rho \Big)$$
(20)

$$K_{iFt}^{*} = \kappa \left(m_{i,t-1}; r, \rho \right)$$
(21)

Capital Equations

- Substitute in for K_{iEt}^* and K_{iFt}^*
- Take logs, as in estimation
- Household produces in entrepreneurial sector in period t iff:

$$m_{i,t-1} > \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, \quad \text{if} \quad \phi > 0$$

$$m_{i,t-1} < \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, \quad \text{if} \quad \phi < 0 \quad (22)$$

🕨 Back

 Sign of \u03c6 determines which direction of evolution in m_{i,t-1} will drive switching

• $\phi > 0$ \rightarrow *upward* evolution predicts entry

• $\phi < 0 \rightarrow$ *downward* evolution predicts entry

$$\begin{split} m_{i,t-1} &> \ \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, & \text{if} \quad \phi > 0 \\ m_{i,t-1} &< \ \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, & \text{if} \quad \phi < 0 \end{split}$$

🕨 Back

- - $\phi > 0 \rightarrow upward$ evolution predicts entry

• $\phi < 0$ \rightarrow *downward* evolution predicts entry

$$\begin{split} m_{i,t-1} &> \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, & \text{if } \phi > 0 \\ m_{i,t-1} &< \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, & \text{if } \phi < 0 \end{split}$$

🕩 Back

- Sign of \u03c6 determines which direction of evolution in m_{i,t-1} will drive switching
 - $\phi > 0 \rightarrow upward$ evolution predicts entry

• $\phi < 0 \rightarrow$ *downward* evolution predicts entry

$$\begin{split} m_{i,t-1} &> \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, & \text{if } \phi > 0 \\ m_{i,t-1} &< \frac{-(\beta_t^E - \beta_t^F) - (1/2)\phi^2 \sigma_t^2}{\phi}, & \text{if } \phi < 0 \end{split}$$

🕩 Back

- Suppose now household *i* inputs $(A_{it} + K_{ijt})$ in sector *j*
 - A_{it} is household's beginning-of-period t savings (exogenous)
 - K_{ijt} is additional capital that is borrowed (or lent)
- When household borrows, it has option to default

🕨 Back
- Suppose now household *i* inputs $(A_{it} + K_{ijt})$ in sector *j*
 - A_{it} is household's beginning-of-period t savings (exogenous)
 - K_{ijt} is additional capital that is borrowed (or lent)
- When household borrows, it has option to default

- Suppose now household *i* inputs $(A_{it} + K_{ijt})$ in sector *j*
 - A_{it} is household's beginning-of-period t savings (exogenous)
 - K_{ijt} is additional capital that is borrowed (or lent)
- When household borrows, it has option to default

→ Back

If household repays, it receives payoff:

$$e^{\beta_t^j} K_{ijt}^{\rho^j} e^{\eta_i^j} + r(A_{it} - K_{ijt}), \qquad (23)$$

If household <u>defaults</u>, it receives payoff:

$$\mathbf{e}^{\beta_t^j} K_{ijt}^{\rho^j} \mathbf{e}^{\eta_i^j} - \pi \mathbf{A}_{it}, \qquad (24)$$

• where π is the fraction of assets A_{it} put up as collateral

▶ Back

Model: Credit Constraints

• Lenders will only lend up to $\left(1 + \frac{\pi}{r}\right)A_{it}$ in equilibrium

Households constrained if

$$m_{i,t-1} > \Gamma\left(\pi, r, A_{it}\right) \quad \rightarrow \quad K_{ijt}^* = \left(1 + \frac{\pi}{r}\right) A_{it}$$

• Otherwise, K_{ijt}^* as in unconstrained case

$$K_{iEt}^{*} = \kappa \left(m_{i,t-1}, \phi; \mathbf{r}, \rho; \pi, A_{it} \right)$$
(25)

$$K_{iFt}^{*} = \kappa \left(m_{i,t-1}; r, \rho; \pi, A_{it} \right)$$
(26)

Constraint Equation
 Fack

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Model: Credit Constraints

Plug capital inputs into sectoral choice cutoff rule, as in unconstrained case

- ► D_{it} will now also be a function of constraint, which is itself a function of π , r, A_{it} and $m_{i,t-1}$
- ▶ π , r, A_{it} have no effect on output except through K_{ijt}^* and D_{it}
- Address correlation between m_{i,t-1} and choices, K^{*}_{ijt} and D_{it}, in empirical strategy
- Robust to treating A_{it} as a choice variable

- Plug capital inputs into sectoral choice cutoff rule, as in unconstrained case
- ► D_{it} will now also be a function of constraint, which is itself a function of π , r, A_{it} and $m_{i,t-1}$
- ▶ π , r, A_{it} have no effect on output except through K^*_{ijt} and D_{it}
- Address correlation between m_{i,t-1} and choices, K^{*}_{ijt} and D_{it}, in empirical strategy
- Robust to treating A_{it} as a choice variable

- Plug capital inputs into sectoral choice cutoff rule, as in unconstrained case
- ► D_{it} will now also be a function of constraint, which is itself a function of π , r, A_{it} and $m_{i,t-1}$
- ► π , r, A_{it} have no effect on output except through K_{ijt}^* and D_{it}
- ► Address correlation between $m_{i,t-1}$ and choices, K_{ijt}^* and D_{it} , in empirical strategy
- Robust to treating A_{it} as a choice variable

- Plug capital inputs into sectoral choice cutoff rule, as in unconstrained case
- ► D_{it} will now also be a function of constraint, which is itself a function of π , r, A_{it} and $m_{i,t-1}$
- ► π , r, A_{it} have no effect on output except through K_{ijt}^* and D_{it}
- Address correlation between m_{i,t-1} and choices, K^{*}_{ijt} and D_{it}, in empirical strategy
- Robust to treating A_{it} as a choice variable

- Plug capital inputs into sectoral choice cutoff rule, as in unconstrained case
- ► D_{it} will now also be a function of constraint, which is itself a function of π , r, A_{it} and $m_{i,t-1}$
- ► π , r, A_{it} have no effect on output except through K_{ijt}^* and D_{it}
- Address correlation between m_{i,t-1} and choices, K^{*}_{ijt} and D_{it}, in empirical strategy
- Robust to treating A_{it} as a choice variable

🕨 Back

Model: Capital Input (Unconstrained)

• Then, for
$$D_{it} = 1$$
,

$$K_{iEt}^{*} = E_{t} \left[\left(\frac{\rho^{E} e^{\beta_{t}^{E} + (1+\phi)\eta_{i} + \tau_{i}}}{r} \right)^{\frac{1}{1-\rho^{E}}} \right]$$
(27)

• For
$$D_{it} = 0$$
,

$$K_{iFt}^{*} = E_{t} \left[\left(\frac{\rho^{F} e^{\beta_{t}^{F} + \eta_{i} + \tau_{i}}}{r} \right)^{\frac{1}{1 - \rho^{F}}} \right]$$
(28)

▶ Back

Model: Credit Constraints

• Lenders learn at same rate as household and observe sector choice, constrained if $\lambda \equiv \left(1 + \frac{\pi}{r}\right)$

$$m_{i,t-1} > \left(\ln \left[(\lambda A_{it})^{1-\rho} \frac{r}{\rho} \right] - \beta_t^F - (\beta_t^E - \beta_t^F) D_{it} - \tau_i \right) \frac{1}{1 + \phi D_{it}}$$

$$\blacktriangleright \rightarrow \quad K_{ijt}^* = \lambda A_{it}$$

Otherwise, K^{*}_{iit} as in unconstrained case

$$K_{ijt}^* = \kappa' \Big(E_t[\eta_i], r, A_{it}, \pi \Big)$$

Empirical Strategy: Dynamic CRC

2 period, endogenous capital projections:

$$m_{i0} = \lambda_0 + \lambda_1 D_{i1} + \lambda_2 D_{i2} + \lambda_3 D_{i1} D_{i2} + \lambda_{k1} k_{i1} + \lambda_{k2} k_{i2}$$

+ $\lambda_{k1-1} k_{i1} D_{i1} + \lambda_{k1-2} k_{i1} D_{i2} + \lambda_{k1-12} k_{i1} D_{i1} D_{i2}$
+ $\lambda_{k2-1} k_{i2} D_{i1} + \lambda_{k2-2} k_{i2} D_{i2} + \lambda_{k2-12} k_{i2} D_{i1} D_{i2} + \psi_{i0}$
$$m_i^1 = \theta_0 + \theta_2 D_{i2} + \theta_{k2} k_{i2} + \theta_{k2-2} k_{i2} D_{i2} + \psi_{i1}$$

Empirical Strategy: Threats to Identification

- Sequential exogeneity: unpredictable current and future productivity shocks
 - If households predict shocks, current choices still endogenous
- Households know distribution of returns given realization of relative ability, but not own ability
 - If don't know distribution, becomes dynamic programming problem
- Projections are "complete"
 - If unobserved productive decisions, returns not consistently estimated

Empirical Strategy: Threats to Identification

- Sequential exogeneity: unpredictable current and future productivity shocks
 - If households predict shocks, current choices still endogenous
- Households know distribution of returns given realization of relative ability, but not own ability
 - If don't know distribution, becomes dynamic programming problem
- Projections are "complete"
 - If unobserved productive decisions, returns not consistently estimated

Empirical Strategy: Threats to Identification

- Sequential exogeneity: unpredictable current and future productivity shocks
 - If households predict shocks, current choices still endogenous
- Households know distribution of returns given realization of relative ability, but not own ability
 - If don't know distribution, becomes dynamic programming problem
- Projections are "complete"
 - If unobserved productive decisions, returns not consistently estimated

▶ Back

Data on labor input is unavailable

- Omission of labor does not affect estimation under some assumptions
 - no market for entrepreneurial labor
 - household composition is either fixed or subject only to exogenous shocks
 - ▶ leisure is not valued

🕨 Back

- Data on labor input is unavailable
- Omission of labor does not affect estimation under some assumptions
 - no market for entrepreneurial labor
 - household composition is either fixed or subject only to exogenous shocks
 - leisure is not valued

🕨 Back

- Data on labor input is unavailable
- Omission of labor does not affect estimation under some assumptions
 - no market for entrepreneurial labor
 - household composition is either fixed or subject only to exogenous shocks
 - leisure is not valued

- Data on labor input is unavailable
- Omission of labor does not affect estimation under some assumptions
 - no market for entrepreneurial labor
 - household composition is either fixed or subject only to exogenous shocks
 - leisure is not valued

🕨 Back

Labor Checks: No Market

	Business Owner		Unpaid Family Worker		Wage Employee	
	Mean	SD	Mean	SD	Mean	SD
All Entrepreneurial Industries	0.258	0.438	0.144	0.351	0.043	0.203
Fish or Shrimp Farming	0.033	0.178	0.032	0.175	0.029	0.169
Raising Livestock	0.149	0.356	0.086	0.280	0.033	0.178
Shop / Mechanic	0.076	0.265	0.054	0.226	0.037	0.188
Trade	0.098	0.297	0.063	0.242	0.033	0.178
All Default Industries	0.457	0.498	0.388	0.487	0.419	0.494
Farm	0.456	0.498	0.334	0.472	0.214	0.411
Construction	0.030	0.172	0.029	0.169	0.076	0.265
Low Skilled (Factory, Janitorial, etc.)	0.030	0.170	0.087	0.282	0.144	0.351
High Skilled (Nurse, Teacher, Accountant, etc.)	0.030	0.170	0.030	0.170	0.118	0.323

▶ Back

Labor Checks: Household Composition Fixed

	Mean	SD
1(Change in Household Size)	0 551	0 498
(Change in Household Size)	0.001	0.170
1(Change in Number of Males)	0.430	0.495
1(Change in Number of Primary Educated)	0.514	0.500
1(Change in Number of Unemployed,	0.503	0.500
Inactive, In School)		

Labor Checks: Exogenous Composition Changes

	Household Business		
	OLS	FE	
Household Size	0.0170	0.00672	
	(0.0109)	(0.0188)	
Number of Males	-0.0145	-0.0180	
	(0.0149)	(0.0276)	
Number of Primary Educated	0.0616***	0.0138	
Tvaniber of Finnary Educated	(0.0112)	(0.0184)	
	0.050(***	0.0007	
Number of Unemployed, Inactive, In School	-0.0526***	-0.0207	
r,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0.0120)	(0.0167)	
Observations	2,206	2,206	
R-squared	0.0482	0.0324	
1			

No market for entrepreneurial labor

- Changes to composition appear exogenous
 - number of primary educated and number of active laborers contribute to η
 - ightarrow household size and number of males contribute to η
- Cannot check valuation of leisure

No market for entrepreneurial labor

Changes to composition appear exogenous

• number of primary educated and number of active laborers contribute to η_i

• household size and number of males contribute to τ_i

Cannot check valuation of leisure

▶ Back

- No market for entrepreneurial labor
- Changes to composition appear exogenous
 - number of primary educated and number of active laborers contribute to η_i
 - household size and number of males contribute to τ_i
- Cannot check valuation of leisure

- No market for entrepreneurial labor
- Changes to composition appear exogenous
 - number of primary educated and number of active laborers contribute to η_i
 - household size and number of males contribute to τ_i

Cannot check valuation of leisure

- No market for entrepreneurial labor
- Changes to composition appear exogenous
 - number of primary educated and number of active laborers contribute to η_i
 - household size and number of males contribute to τ_i
- Cannot check valuation of leisure

Comparative advantage with perfect information

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{\eta_i}^{\text{no shock, } \varepsilon_{it}} (1 + \phi D_{it}) + \tau_i + \zeta_{it}$$
(29)

 A single projection of η_i on sector choices, capital choices, and interactions

▶ Back

• 3 restrictions on full model: θ 's = 0

14 remaining structural parameters:

- 11 \u03c6's estimate correlations of choices with known comparative advantage
- ρ, β , and ϕ are as in preferred model

- 3 restrictions on full model: θ 's = 0
- 14 remaining structural parameters:
 - \blacktriangleright 11 λ 's estimate correlations of choices with known comparative advantage
 - ρ , β , and ϕ are as in preferred model

🕨 Back

- 3 restrictions on full model: θ 's = 0
- 14 remaining structural parameters:
 - 11 λ's estimate correlations of choices with known comparative advantage

• ρ , β , and ϕ are as in preferred model

- 3 restrictions on full model: θ 's = 0
- ► 14 remaining structural parameters:
 - 11 λ's estimate correlations of choices with known comparative advantage
 - ρ , β , and ϕ are as in preferred model

→ Back

Homogeneous return with imperfect information

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{(\eta_i + \varepsilon_{it})}^{\text{no slope component, } \phi D_{it}} + \tau_i + \zeta_{it}$$
(30)

- η_i is household's unknown part of fixed effect that affects choices
- Histories no longer matter:
 - project m₀ on sector and capital choices, no interactions
 - project m⁽⁻¹) on choices in period it onward, no interactions

Homogeneous return with imperfect information

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{(\eta_i + \varepsilon_{it})}^{\text{no slope component, } \phi D_{it}} + \tau_i + \zeta_{it}$$
(30)

- η_i is household's unknown part of fixed effect that affects choices
- Histories no longer matter:
 - project m₀ on sector and capital choices, no interactions
 - project m^{t-1} on choices in period t onward, no interactions

Homogeneous return with imperfect information

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{(\eta_i + \varepsilon_{it})}^{\text{no slope component, } \phi D_{it}} + \tau_i + \zeta_{it}$$
(30)

- η_i is household's unknown part of fixed effect that affects choices
- Histories no longer matter:
 - project m_{i0} on sector and capital choices, no interactions
 - project m_i^{t-1} on choices in period t onward, no interactions

Homogeneous return with imperfect information

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{(\eta_i + \varepsilon_{it})}^{\text{no slope component, } \phi D_{it}} + \tau_i + \zeta_{it}$$
(30)

- η_i is household's unknown part of fixed effect that affects choices
- Histories no longer matter:
 - project m_{i0} on sector and capital choices, no interactions
 - project m_i^{t-1} on choices in period t onward, no interactions
- ▶ 9 restrictions on full model: 7 of the λ 's = 0, 1 of the θ 's = 0 and ϕ = 0
- ▶ 8 remaining structural parameters:
 - 4 λ's estimate differences in initial belief of entrepreneurs vs. non-entrepreneurs in each period
 - 2.0's estimate updates that drive switching.
 - \succ ρ and β are as in preferred model.

- ▶ 9 restrictions on full model: 7 of the λ 's = 0, 1 of the θ 's = 0 and ϕ = 0
- 8 remaining structural parameters:
 - 4 λ's estimate differences in initial belief of entrepreneurs vs. non-entrepreneurs in each period
 - 2 θ 's estimate updates that drive switching
 - ρ and β are as in preferred model

▶ Back

- ▶ 9 restrictions on full model: 7 of the λ 's = 0, 1 of the θ 's = 0 and ϕ = 0
- 8 remaining structural parameters:
 - 4 λ's estimate differences in initial belief of entrepreneurs vs. non-entrepreneurs in each period
 - > 2 θ 's estimate updates that drive switching
 - ρ and β are as in preferred model

► Back

- ▶ 9 restrictions on full model: 7 of the λ 's = 0, 1 of the θ 's = 0 and ϕ = 0
- 8 remaining structural parameters:
 - 4 λ's estimate differences in initial belief of entrepreneurs vs. non-entrepreneurs in each period
 - > 2 θ 's estimate updates that drive switching
 - ρ and β are as in preferred model

- ▶ 9 restrictions on full model: 7 of the λ 's = 0, 1 of the θ 's = 0 and ϕ = 0
- 8 remaining structural parameters:
 - 4 λ's estimate differences in initial belief of entrepreneurs vs. non-entrepreneurs in each period
 - > 2 θ 's estimate updates that drive switching
 - ρ and β are as in preferred model

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{\eta_i}^{\text{no shock } (\varepsilon_{it})} + \tau_i + \zeta_{it}$$
(31)

• η_i is known part of fixed effect that affects choices

- Histories still do not matter
- Single projection of η_i on sector and capital choices, no interactions

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{\eta_i}^{\text{no shock } (\varepsilon_{it})} + \tau_i + \zeta_{it}$$
(31)

• η_i is known part of fixed effect that affects choices

- Histories still do not matter
- Single projection of η_i on sector and capital choices, no interactions

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{\eta_i}^{\text{no shock } (\varepsilon_{it})} + \tau_i + \zeta_{it}$$
(31)

- η_i is known part of fixed effect that affects choices
- Histories still do not matter
- Single projection of η_i on sector and capital choices, no interactions

$$y_{it} = \alpha_t + \beta D_{it} + \overbrace{\eta_i}^{\text{no shock } (\varepsilon_{it})} + \tau_i + \zeta_{it}$$
(31)

- η_i is known part of fixed effect that affects choices
- Histories still do not matter
- Single projection of η_i on sector and capital choices, no interactions

Nested Models: CRE

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - ► 3 θ's = 0
 - 7 of the λ 's = 0
 - $\blacktriangleright \phi = 0$
- 4 remaining structural parameters:

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - ► 3 θ's = 0
 - 7 of the λ 's = 0
- 4 remaining structural parameters:

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - S θ'S = 0
 - 7 of the λ's = 0
 - ► *φ* = 0
- 4 remaining structural parameters:

is as in preferred model

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - S θ'S = 0
 - ▶ 7 of the λ's = 0
 - ▶ φ = 0
- 4 remaining structural parameters:
 - ► 4 λ′s
 - \triangleright β is as in preferred model

→ Back

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - ► 3 θ's = 0
 - 7 of the λ's = 0
 - ▶ φ = 0
- 4 remaining structural parameters:
 - ► 4 λ's
 - β is as in preferred model

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - S θ's = 0
 - 7 of the λ's = 0
 - ▶ φ = 0
- 4 remaining structural parameters:
 - ► 4 λ's
 - β is as in preferred model

- 11 restrictions on full model, combination of restrictions from CRC and DCRE
 - ▶ 3 θ's = 0
 - ▶ 7 of the λ's = 0
 - ▶ φ = 0
- 4 remaining structural parameters:
 - ► 4 λ's
 - β is as in preferred model

Summary Statistics

Count	11	03
	Mean	SD
Income		
ln(gross income), 2005	11.58	1.04
ln(gross income), 2008	11.84	1.03
Entrepreneurship		
Household Business, 2005	0.44	0.50
Household Business, 2008	0.47	0.50
Inputs		
In(Total Expenditure), 2005	8.23	4.09
ln(Total Expenditure), 2008	8.16	4.50
Household Demographics, 2005		
Household Size	4.23	1.74
Average Age	37.64	13.20
Proportion Male	0.47	0.20
Proportion Completed Primary School	0.27	0.26

89

Summary Statistics

Count	30	54	15	56	12	23	46	50
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Income								
ln(gross income), 2005	11.99	1.08	11.42	0.90	11.85	0.91	11.23	0.96
ln(gross income), 2008	12.24	1.18	11.99	0.79	11.82	0.90	11.49	0.89
Inputs								
ln(Total Expenditure), 2005	10.44	2.19	8.09	3.74	9.97	2.38	6.07	4.57
ln(Total Expenditure), 2008	10.59	2.64	9.59	2.98	7.01	4.90	6.07	4.86
Household Demographics, 2005								
Household Size	4.36	1.60	4.49	1.70	4.30	1.72	4.02	1.85
Average Age	35.89	11.35	35.25	11.61	38.35	13.05	39.64	14.73
Proportion Male	0.48	0.18	0.49	0.18	0.47	0.20	0.46	0.23
Proportion Completed Primary School	0.32	0.26	0.28	0.25	0.27	0.25	0.23	0.25

Summary Statistics

Count	36	54	15	6	12	23	46	60
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Savings								
Household Has Savings, 2005	0.87	0.34	0.74	0.44	0.86	0.35	0.68	0.47
Household Has Savings, 2008	0.90	0.30	0.86	0.35	0.88	0.33	0.76	0.43
Credit Constrained								
Expansion would be profitable, 2005	0.26	0.44	0.10	0.30	0.28	0.45	0.10	0.31
Expansion would be profitable, 2008	0.03	0.18	0.05	0.22	0.01	0.09	0.02	0.13
Borrowing								
Any Loans, 2005	0.90	0.31	0.82	0.38	0.83	0.38	0.71	0.45
Any Loans, 2008	0.87	0.34	0.83	0.37	0.78	0.42	0.67	0.47

	Prices & Inputs	Inputs	No Covariates
Household Business	0.307***	0.245***	0.646***
	(0.0452)	(0.0467)	(0.0516)
ln(Input Expenditure)	0.106*** (0.00640)	0.103*** (0.00653)	
Observations	2,206	2,206	2,206
R-squared	0.432	0.239	0.095

	Prices & Inputs	Inputs	No Covariates
Household Business	0.178**	0.194**	0.332***
	(0.0797)	(0.0812)	(0.0804)
ln(Input Expenditure)	0.0675*** (0.0130)	0.0646*** (0.0130)	
Observations	2,206	2,206	2,206
R-squared	0.860	0.828	0.815

MD (No Covariates)

	CRE	DCRE	CRC	DCRC
β	0.3044***	0.3064***	0.3436	0.3493
	(0.0546)	(0.0624)	(0.2050)	(0.2146)
φ			-0.1647	-0.1732
			(0.8056)	(0.8235)
χ^2	0.428	0.4238	0.0135	
df	3	2	1	0
obs	1103	1103	1103	1103
p-value	0.9344	0.809	0.9075	

MD (Endogenous Capital with Prices)

	CRE	DCRE	CRC	DCRC
θ_2		0.0149		-0.7488
		(0.0683)		(0.7710)
θ_{k2}		-0.0002		-0.0050
		(0.0079)		(0.0090)
θ_{k2-2}				0.0709
				(0.0677)

MD (Endogenous Capital with Prices)

	CRE	DCRE	CRC	DCRC
λ_1	0.2099***	0.2133***	0.1465	0.1627
	(0.0484)	(0.0510)	(0.2425)	(0.2464)
λ_2	0.1396	0.1356**	-0.2109	-0.1345
	(0.0518)	(0.0545)	(.2433)	(0.2606)
λ_{12}			-2.1101**	-4.1961
			(1.0329)	(2.9516)

MD (Endogenous Capital with Prices)

	CRE	DCRE	CRC	DCRC
λ_{k1}	0.0056	0.0055	0.0068	0.0050
	(0.0071)	(0.0072)	(0.0091)	(0.0096)
$\lambda_{ m k2}$	0.0231***	0.0231***	0.0133	0.0139
	(0.0077)	(0.0079)	(0.0096)	(0.0105)
λ_{k1-1}			0.0143	0.0137
			(0.0235)	(0.0247)
λ_{k1-2}			-0.0346**	-0.0453**
			(0.0168)	(0.0204)
λ_{k1-12}			0.1512**	0.2543
			(0.0739)	(0.1627)
λ_{k2-1}			-0.0130	-0.0123
			(0.0153)	(0.0171)
λ_{k2-2}			0.0603**	0.0601**
			(0.0253)	(0.0259)
λ_{k2-12}			0.0603	0.1715
			(0.0508)	(0.1585)

Perceived Gains ($\beta + \phi \eta_i$)

Townsend Thai Project data from 2001, 2005 and 2009

- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
 - 4 sub-regions randomly selected (tambons) from each province
 - 4 villages from each sub-region
 - 15 households from each village
- 2009 latest available wave

- Townsend Thai Project data from 2001, 2005 and 2009
- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
 - 4 sub-regions randomly selected (tambons) from each province
 - 4 villages from each sub-region
 - 15 households from each village
- 2009 latest available wave

- Townsend Thai Project data from 2001, 2005 and 2009
- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
 - 4 sub-regions randomly selected (tambons) from each province
 - 4 villages from each sub-region
 - 15 households from each village
- 2009 latest available wave

- Townsend Thai Project data from 2001, 2005 and 2009
- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
 - 4 sub-regions randomly selected (tambons) from each province
 - 4 villages from each sub-region
 - 15 households from each village

- Townsend Thai Project data from 2001, 2005 and 2009
- 4 provinces: 2 from rural Northeast region and 2 from urban Central region
 - 4 sub-regions randomly selected (tambons) from each province
 - 4 villages from each sub-region
 - 15 households from each village
- 2009 latest available wave

Balanced panel includes 794 households

- Information on income and expenditure in agriculture, wage labor, and entrepreneurship
- Information on savings, self-reported credit constraints, and expected incomes in good and bad states and on average
- Roughly 45% of households engage in entrepreneurship in each wave
- Roughly 49% switch sectors at least once

- Balanced panel includes 794 households
- Information on income and expenditure in agriculture, wage labor, and entrepreneurship
- Information on savings, self-reported credit constraints, and expected incomes in good and bad states and on average
- Roughly 45% of households engage in entrepreneurship in each wave
- Roughly 49% switch sectors at least once

- Balanced panel includes 794 households
- Information on income and expenditure in agriculture, wage labor, and entrepreneurship
- Information on savings, self-reported credit constraints, and expected incomes in good and bad states and on average
- Roughly 45% of households engage in entrepreneurship in each wave
- Roughly 49% switch sectors at least once

- Balanced panel includes 794 households
- Information on income and expenditure in agriculture, wage labor, and entrepreneurship
- Information on savings, self-reported credit constraints, and expected incomes in good and bad states and on average
- Roughly 45% of households engage in entrepreneurship in each wave
- Roughly 49% switch sectors at least once

- Balanced panel includes 794 households
- Information on income and expenditure in agriculture, wage labor, and entrepreneurship
- Information on savings, self-reported credit constraints, and expected incomes in good and bad states and on average
- Roughly 45% of households engage in entrepreneurship in each wave
- Roughly 49% switch sectors at least once
3 Period: Summary Statistics

Count	794	
	Mean	SD
ln(gross income), 2001	11.365	1.080
ln(gross income), 2005	11.563	1.073
ln(gross income), 2009	11.951	1.037
Entrepreneurship		
Household Business, 2001	0.447	0.498
Household Business, 2005	0.485	0.500
Household Business, 2009	0.466	0.499
Inputs		
In(Total Expenditure), 2001	8.710	3.671
In(Total Expenditure), 2005	8.558	3.836
ln(Total Expenditure), 2009	8.119	4.692
Household Demographics, 2001		
Household Size	4.630	1.803
Average Age	35.076	11.515
Proportion Male	0.490	0.196
Proportion Completed Primary School	0.241	0.244
1 1 7		

3 Period: Summary Statistics

	Mean	SD
Savings		
Household Has Savings, 2001	0.722	0.448
Household Has Savings, 2005	0.787	0.410
Household Has Savings, 2009	0.849	0.358
Financial Shocks		
Low Income Last Year, 2001	0.540	0.499
Low Income Last Year, 2005	0.492	0.500
Low Income Last Year, 2009	0.271	0.445
Credit Constrained		
Expansion would be profitable, 2001	0.283	0.451
Expansion would be profitable, 2005	0.180	0.385
Expansion would be profitable, 2009	0.006	0.079
Borrowing		
Any Loans, 2001	0.732	0.443
Any Loans, 2005	0.827	0.378
Any Loans, 2009	0.775	0.418

	OLS			
	Prices, Inputs and Savings	Prices and Inputs	Village x Year Dummies (Prices)	No Covariates
Household Business	0.344*** (0.0372)	0.346*** (0.0377)	0.792*** (0.0435)	0.766*** (0.0429)
ln(Input Expenditure)	0.106*** (0.00769)	0.117*** (0.00530)		
Saving	0.326***			
ln(Input Expenditure) x Saving	0.00272 (0.00944)			

]	FE	
	Prices, Inputs and Savings	Prices and Inputs	Village x Year Dummies (Prices)	No Covariates
Household Business	0.223*** (0.0526)	0.225*** (0.0528)	0.369*** (0.0557)	0.368*** (0.0547)
ln(Input Expenditure)	0.0795*** (0.0127)	0.0785*** (0.00900)		
Saving	0.240** (0.116)			
ln(Input Expenditure) x Saving	-0.00525 (0.0128)			

3 Period: MD (Price and Input Controls)

	CRE	CRC	DCRE	DCRC
β	0.4664	0.5428	1.278	1.3721
	(0.4882)	(0.4745)	(0.6285)	(0.6202)
φ		-0.3388		-0.6509
		(0.0927)		(0.1634)
χ^2	378.5737	465.467	6.68	12.1924
df	5	12	2	9
obs	794	794	794	794
p-value	0.0001	0.0001	0.0354	0.2027

3 Period: Perceived Returns (DCRC)

3 Period: Perceived Returns (DCRC)

3 Period: Perceived Returns (CRC)

Back

◆□ > ◆□ > ◆目 > ◆目 > ● 目 の Q @

3 Period: Perceived Returns (CRC)

