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Abstract 

Airports facilitate many economic activities and likely affect the value of many 
resources, including land.   Using residential home sales in Denver during 2003-2010, we 
use an innovative approach – Local Polynomial Regressions – to separate the value of 
land from the value of structures. Next, for the years in which a property was not sold, we  
interpolate land values for each property in our sample in each year. To assess the 
accuracy of our interpolations, we perform a within-sample forecasting exercise and 
determine that the Normalized Root Mean Squared Error is approximately 0.4%. Finally, 
we estimate the impacts of changes in airport infrastructure improvements on land values. 
We find that airfields, terminals, parking, and intermodal transportation lead to higher 
land values in the short-run, while “other” airport infrastructure lead to lower land values.  
We find similar results with a longer-run perspective in terms of the signs and 
significance of each of these airport capital stock variables. 
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Introduction 

 
A common, yet challenging, issue in urban economics and local public finance is to 
produce an accurate estimate of the effect of infrastructure on land prices.  One approach 
to obtain estimates of landowners’ valuation of airport improvements would be to 
consider the implied value of land in sales of particular houses (and/or plots of vacant 
land) near airports, based on the product of the sales price and the ratio of the assessed 
value of land to total assessed value. After imputing the value of land for all properties 
sold, a regression analysis based on the relationship between changes in the sizes of 
airport capital stocks between two periods and changes in land values across space over 
the same time frame, after controlling for other factors that may affect the land values, 
can be undertaken. If positive, this estimated coefficient on the capital stock variable 
would represent the surplus obtained by homeowners or landowners as a result of airport 
improvements, after controlling for other factors that may have influenced their surplus.  
 
Any approach using assessed values can be criticized due to the complex interaction 
between land values and the values of improvements, an interaction that may not be 
included in assessed values.1  We introduce an alternative approach that considers the 
interaction between structure and land.  The local polynomial regression method uses a 
nonparametric model for land values over time and a linear ordinary least squares model 
for the characteristics of the structure.  A backfitting method insures independence 
between land and structure. 

 
To generate land values, our empirical analysis uses housing sales data in Denver, over 
the period of 2003-2010; data include sales price, location, and various housing 
characteristics.2,3 Our findings reveal that the interpolation approach is quite accurate.  In 
an application of our land estimates, we examine the impact of airport infrastructure on 
land prices.  We examine airport spending data available from the Federal Aviation 
Administration in several categories.   Our results highlight the relationship between 
changes in the capital stock and land value.  Most types of airport infrastructure, 
including airfields, terminals, parking, and intermodal transportation, are positively 
related to land values.  

 
The major contributions of this paper include our application of the Local Polynomial 
Regression model (LRM) to separate the value of land from the value of structures. 

                                            
1 In most U.S. jurisdictions, property is taxed on the basis of total value, so the assessor has little 
incentive to be careful about separating land value and structure value.  
2 We have chosen this time frame due to the availability of airport infrastructure investment data 
over this period. 
3 We also analyze properties in Atlanta over the same period, but due in part to the sharp drop in 
the Lincoln Institute’s land price index in the years 2008 through 2010, the land value estimates 
and the resulting analysis of their determinants are unstable. This suggests that caution should be 
exercised when attempting to use our approach if the time period under analysis includes sharp 
decreases in land prices due to a real estate “bust”. 
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Second, we develop an interpolation method to construct balanced panel data: that is, we 
estimate land value at every location at each point in time.  Third, the panel data allows 
us to use a fixed effects model to determine the impacts of changes in airport 
infrastructure capital on land values, which is important for the purpose of extracting land 
value from property owners. Fourth, more generally, our work contributes to the 
literature of the impacts of infrastructure improvements on housing prices. 
 
This line of research is important because separate estimates of land and building value 
are used to adjust property tax assessments for structure depreciation and for changes in 
land value.4 Moreover, the ratio of structure to land is used by investors to choose the 
time and intensity of redevelopment (Hendriks, 2005; Clapp and Salavei, 2011; Ozdilek, 
2012). The application we pursue here is suitable for use by planners to evaluate the 
effects of infrastructure investment and to decide where to allocate urban renewal funds. 
 

 
The body of the paper consists of several sections.  The next section is a literature review.  
This review is followed by a summary of our estimation procedure for land prices, which 
is a semiparametric approach developed by Clapp (2004), the interpolation procedure, 
and the resulting land values.  The following section describes the details of our data. In 
the next section, the determinants of the land values are examined.  The key determinants 
are various categories of airport infrastructure.  A summary of key results and several 
questions for further research completes the paper. 
 

Literature Survey 

 
Housing prices (i.e., the total price that includes land and structures) in the U.S. 
experienced a dramatic increase in the years leading up to 2008, followed by a substantial 
“bust” in the subsequent years.5 Cohen, Coughlin and Lopez (2012) describe how some 
regions of the U.S. faced more of a downturn than others. Figure 1 depicts quarterly 
housing prices in Denver in the years 2000 through 2012, which includes the boom, bust, 
and nascent recovery in the U.S. housing market.    
 
During roughly this same time period, there has been substantial variation in airport 
infrastructure investment, as well as depreciation, at the Denver airport. The past 
investment levels, net of depreciation, can be used to obtain a stock of airport 
infrastructure for a variety of airport infrastructure categories. These stocks of 
infrastructure are presented in Table 1 for Denver over the period 2003 through 2010. 
 
A large literature examines how and to what extent transportation infrastructure becomes 
capitalized into housing prices, including McMillen and McDonald (2004), Weinberger 
(2000), and Forest, Glen, and Ward (1996). These papers use a hedonic pricing approach 
                                            
4 The relative volatility of the land value component contributes to macroeconomic risks as 
suggested by Davis and Palumbo (2008) and by Bourassa et al. (2011). 
5 See Cohen, Coughlin, and Lopez (2012) for details. 
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to assess the impacts of the transportation infrastructure on housing prices (or commercial 
rents, in the case of Weinberger). Gatzlaff and Smith (1993) use both a repeat sales 
approach and a hedonic housing prices approach to examine the effects of a new rail line 
in Miami, and find that it had only a minimal impact. However, none of these papers 
directly address the issue of transportation infrastructure capitalization by distinguishing 
the distinct impacts on land values.  
 
During a period with wide fluctuation in housing prices as well as improvements in 
public services such as airport infrastructure, it could be useful to isolate for policy 
makers and fiscal authorities the impacts of improvements in airports on land values. This 
capitalization could provide the basis for land value capture based on airport 
improvements. Chapman et al. (2009) examine the feasibility of land value taxation for 
financing transportation infrastructure in Utah, and find that in addition to being a non-
distortionary form of taxation, the land value tax could generate significant revenue and 
would be relatively straightforward to administer. 
 
Cohen (2012) summarizes the ideas behind value capture at airports. He describes that 
economic theory underlying how value capture implies improvements to airports become 
capitalized in land values. These land rents can be taxed with a land value tax, and this 
tax is preferable because it is non-distortionary. However, in order to achieve land value 
capture in practice, it is necessary to obtain estimates of land separately from the 
improvements to land. This is one of a number of practical issues involved in estimation 
of transportation infrastructure capitalization into land values.  
 
The separation of urban land value from structure value is an important topic made 
challenging by the scarcity of vacant land sales in an urban setting. Hendriks (2005) 
evaluates three methods used by appraisal professionals for this purpose: fractional 
apportionment (FAT), rent apportionment (RAT) and price apportionment (PAT) 
theories. He raises substantial questions about each, recommending that appraisers 
caution their clients about the unreliability of apportionment methods. Our LRM method 
is most closely related to PAT since it uses sales prices together with location and 
property characteristics to allocate value (i.e., predicted price from a hedonic model) 
between land and structure. 
 
Longhofer and Redfearn (2009) examine how one might in practice disentangle the value 
of land from the value of structures on the land. Longhofer and Redfearn argue that land 
and structures are inseparable, as does Hendriks (2005). Their argument is that houses 
within a neighborhood are fairly homogeneous. For example, it may not be possible to 
buy a small house on a small lot in a neighborhood with much larger houses. They give 
an example where the supply of pools cannot adjust to the demand within a given 
neighborhood, so pools are priced “too high” in some neighborhoods. They use vacant 
land on the periphery of a city, along with the estimation technique of locally weighted 
regressions, to estimate the values of land throughout the city. One drawback of their 
approach, however, is that it requires data on vacant land sales to derive the land values 
for all properties.  
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As an alternative, Clapp and Salavei (2010) implement an “option value” approach that 
addresses the problem from a different perspective than Longhofer and Redfearn: 
existing structure relative to optimal structure at any time will influence the value of the 
land. The costs of adjustment are high, so it takes a long time to reach the trigger point to 
redevelop. The costs of rebuilding to a new optimal level are the cost of construction and 
the sacrificed rents from the existing structure (i.e., this is an exchange option). Thus, a 
house with specific characteristics, such as age, layout, and size, will have implicit 
characteristic prices that vary with the land value.  
 
Identical to the approach we utilize, Clapp (2004) uses a local polynomial regression 
model (LRM) to disentangle land and structure prices by holding constant structure value 
and extracting the associated land value. Similar to Longhofer and Redfern (2009), a 
locally weighted regression is part of the research design.  
 
In the context of the effect of transportation infrastructure, another issue is the timing of 
the capitalization effect. Clearly, market prices respond to many types of information, so 
price adjustments may occur at the time of the expansion announcement.  What is not 
clear is the time path of the adjustment process.  Prices may not adjust fully until the 
investments are in place or even later if the potential effects of the investment, such as 
new services and ease of use, are initially unclear. 
 
Jud and Winkler (2006) examine the impact of announcement of construction of a new 
hub airport, which is expected to lead to greater noise, on housing prices in Greensboro, 
NC. They find that this post-announcement effect is nearly a 10 percent reduction in 
housing prices within 2.5 miles from the airport. Agostini and Palmucci (2008) found an 
announcement of new transit station construction led to an increase in nearby housing 
prices ranging between 3% and 8%. Similarly, McMillen and McDonald (2004) found 
the housing market began adjusting to a new rail line before the construction was 
completed. Clearly, it will be important in our context to consider both the 
announcements of expansions as well as the actual construction expenditures and dates, 
by examining first and second differences around the actual year of the expenditure.  We 
address the timing issue by examining long-term as well as short-run effects of changes 
in the value of various categories of airport infrastructure stocks on land values.  
 
 
 

Method for Separating Land and Structure Values 

 
First, we consider the problem of obtaining the land values separately from structure 
prices. The Clapp (2004) local regression model (LRM) and Clapp and Salavei (2010) 
“option value” approach is followed here. The choice of LRM is motivated by the 
observation that structures are reproducible at current construction costs whereas location 
value (the value of the right to build a single family residence at a given location) varies 
substantially across space and time. By separating the structure and land components we 
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can estimate the variation in location value over time, and correlate it with airport 
expansion events.6 
 
We begin by motivating our problem with a standard hedonic model, a parametric 
method for finding implicit prices for each element of the vector of housing 
characteristics (structure and location), and a price index independent of these 
characteristics.  Regress the log of sales price (lnSP) on a vector of house structure 
characteristics (Z), locational characteristics (S), and time (t) which is represented here in 
the form of annual time dummies, Qt:    
 

0 0 0 1 1i i T T itZ S Q Q Q            ln itSP    (1) 

where  is typically an iid noise term that is assumed to be normally distributed for the 
purposes of hypothesis testing.7  
 
The cumulative log price index for a standard house in the area where the data were 
collected is measured by the parameters on the annual time dummies,  . The assumption 
is that the parameters on structure and location are constant over time. Since they are not, 
we are measuring the average implicit prices,  and   over the time interval T. Thus, 
any change over time is forced into the estimates of the   parameters; they can be 
considered an approximation to a pure time component that shifts the constant of the 
regression, 0 . 

 
Before estimating the local polynomial regression model, it is necessary to define the grid 
size and the bandwidth. The grid is composed of equally spaced time, latitude, and 
longitude points that span the data. In our model, there are 20 time, 15 latitude, and 15 
longitude points, for a total of 4500 “knots” on the grid. The size of the bandwidth 
determines whether or not an observation will be used to estimate the function value at 
the knot. See below for a discussion of the cross-validation bandwidth selection 
approach. For this paper, the bandwidth is chosen to be {.3σ(time), .3σ(latitude), .3 
σ(longitude)}. The knots on the grid are estimated from the function values of the 
observations “close to” the knots. The local polynomial regression then fits a surface to 
the observations conditional on the function values estimated at each knot on the grid. 
The LRM is designed to allow substantial nonlinearity in the spatial and time dimensions: 
it fits a value surface at each point in time as an alternative to estimating the set of 
parameters in equation (1).  The LRM views price index and value surface estimates as 

                                            
6 Davis and Palumbo (2008) develop a model decomposing property value into structure and land 
components, and they use this model to find significant changes in land value over time and 
across metropolitan areas. They depend on subtracting the cost of construction from sales prices, 
whereas we use the implicit value of the structure. The Davis and Palumbo approach can be 
viewed as a robustness check. 
7 The log of sales price is the dependent variable because logarithms control for heteroscedasticity 
and some nonlinearity.   Using sales price, SP, instead would cost degrees of freedom; See Hastie 
and Tibshirani (1990), pp. 52-55 for a discussion of degrees of freedom for smoothing models. 
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descriptive exercises that are not designed to test hypothesis about parameters.  Writing 
the model as follows emphasizes the nonlinear and nonparametric aspect of the LRM: 
 

  itiiiit tSZf  ,,SPln   (2) 

We allow the function f( ) to be nonlinear because local house prices rarely move in a 
straight line over time and a nonlinear spatial pattern is well known.  These 
nonlinearities, as well as the descriptive purpose of the model, make nonparametric 
smoothing regressions an ideal tool. 
 
The first step to estimating the value of residential location and time at each of the 
326,744 observations is to run the local polynomial regression to estimate the value of 
house prices given time and space, as well as to estimate the value of structural 
characteristics given time and space. The next step is to subtract these estimated values 
from the original values to determine the sales price (Y*) and value of structure (Z*) 
independent of time and space. The parameters of the structural characteristics are 
estimated by regressing Y* on X*. Finally, the partial residuals are calculated by 
subtracting the estimated value of structural characteristics. We use these partial residuals 
as input to the local polynomial regression to create a smooth function of land values at 
each point in the grid, which are then used to estimate the value of land at each 
observation.  
 
LRM estimation methods can be introduced by imagining that a number, q, of identical 
houses trade at a given point in space and time, denoted by the fixed vector (z0, s0, t0).  
Then, an obvious way of estimating equation (2) at the fixed point would be to average 
those prices: 
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The error term results from negotiation between heterogeneous buyers and sellers.  Since 
the average error term will tend to zero as the sample size gets large, we will have a 
consistent estimator of a point on the value surface at the given point in time. 
 
Actual sales prices are spread out in space and time as well as over the range of housing 
characteristics, z.  If the data were densely distributed over these characteristics, then we 
could average prices that are “close to” any particular point in characteristic space (z0), 
physical space (s0) and time (t0).  This averaging process is very much in the spirit of 
nonparametric smoothing. 
 
Nonparametric smoothing implements this local averaging idea by down-weighting 
observations that are more distant from the fixed point:   
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where the weighting function, Kh(
.), is defined such that greater distances (e.g., larger 

values for Si – s0) imply lower values for K; h is bandwidth, a set of parameters that 
govern the selection of points “close to” the target vector.8 
 
Bandwidth selection is a trade-off between high variance (bandwidth is too small) and 
high bias (bandwidth is too large).  This paper uses a cross validation method for 
bandwidth selection: See Wand and Jones (1995, Chapter 4).  Locally adaptive 
bandwidths are allowed by increasing bandwidth until 20 observations are within one 
bandwidth of the fixed point. 
 
Equation (4) is a special case of local polynomial regression (LPR), given a specific point 
in space and time, x0 = (z0, s0, t0), the data, Xi = (Zi, Si, ti) and Yi = lnSPi.  Local 
polynomial regression now takes the form of equation (5):9  
 

             ip
p

iiioiY   )( 2
2)(1)()( 0000 xXxXxXx     (5) 

Here, the j (j=1,…,p) are column vectors with number of elements equal to the columns 
of Xi: 0 is a scalar.10  Note that, when Xi equal x0 then equation (5) reduces to 0, the 
parameter of interest.  Thus, LPR fits a surface to the Y-values conditional on the values 
of x given by x0: E.g., x is a grid of equally spaced points that span the data; the level of 
Y is estimated conditional on each knot of the grid. 
 
Kernel weights are applied when estimating equation (5): 
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where the weights are applied to each of the variables including the constant term (the 
vector of ones).  The only difference between the weights in equation (6) and those in 

                                            
8 Equation (4) is the well-known Nadaraya-Watson (NW) smoother. See Clapp (2004) for details 
on the choice of the kernel weighting (i.e., density) function. Experts in this field have found that 
the choice of bandwidth is much more important than the choice of a kernel density function. 
9 The exponents in equations (5), (6) and (8) are taken element-by-element. 
10 The parameters other than 0 allow for curvature around x0; a weighted average of neighboring 
points, equation (4), would ignore curvature.  Also, comparing equations (6) and (3) show how 
LPR takes local averages. 
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equation (4) is that time has been entered as a vector rather than a scalar.11  Thus, the 
parameters estimated using equation (6) can be defined as follows: 
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This regression is repeated for each point on the 0x grid. 

LPR is a weighted OLS regression at the point x0, so we can test hypotheses on the ̂ ’s 
by assuming that they are multivariate normal with the following covariances:   
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x WWWCovVar XXXXXX xVW ,where V is a diagonal matrix of variances for i. 

The treatment of time is much more flexible in equation (5) than it would be in the OLS 
model, equation (1).  LPR treats time as an addition to the spatial dimension:  that is, we 
grid time as finely as the data permit at each point in space.  For example, to estimate the 
value function at 10 points in time, and at each point of a 30x30 spatial grid, we need 
9,000 regressions.  Each estimator gives high weight to observations that are nearby in 
space and time and lower weight to those that are farther away. 
 
The semi-parametric LRM model enters because of the “curse of dimensionality.”  As a 
practical matter, there would typically be five or six variables for structural 
characteristics (e.g., interior area, bathrooms) in the X matrix. If all were represented by 
even a coarse grid, the data would typically be sparse near any point.  The semi-
parametric solution assumes linearity for the equation (1) parameters, α,  on all the 
housing characteristics in the matrix Z.12  In the LRM method, an LPR model is used to 
estimate these coefficients allowing for conditional on the location of the house. This 
approach addresses the concerns of Longhofer and Redfearn (2009) and provides 
statistical independence between the estimated coefficients on Z and the nonlinear part of 
the model. Then the residuals from this regression can be fit with an LPR model. 

                                            
11 The metric for time is different from that for space (and also different for structural 
characteristics). Cross-validation (CV) is used to select optimal bandwidths: If CV indicates that 
observations more distant in space should receive more weight, then a larger bandwidth will be 
chosen in the spatial dimension.  This addresses a concern raised by Pavlov (2000). 
12 Of course, a nonlinear relationship (e.g., with building age) might be more appropriate.  The 
point here is to focus on the highly nonlinear space-time relationships. 
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Following this logic, the LRM method begins by estimating equation (1), then revising 

the 


’s to assure independence from the land value estimates: this is termed the 
“backfitting” method.13  Then, partial residuals are taken by subtracting the estimated 
value of structural characteristics:  


 i - it  lnSPitpartres   (10) 

where partres is the partial residual from equation (1).  

The nonparametric part of the LRM model is: 

 S ,it i i itpartres q t    (11) 

where iS is now defined as the latitude and longitude for house i. Typically, LPR 

estimation of equation (11) can deal with the two spatial dimensions and the time 
dimension without substantially increasing the standard error of the q(.) estimate. From 
another perspective, the method requires sufficient density of transactions near the given 
target point,  S ,i it .14 Estimation methods for standard errors reveal any problem with 

lack of data.  
 
To summarize, the purpose of the LRM is to estimate location value over time,  S ,i iq t , 

equation (11). Since we subtracted an average value of structural characteristics, 
i



 

estimated so as to require independence from  S ,i iq t , the LRM estimate may be taken 

as a reasonable approximation to location value.15 

                                            

13 See Clapp (2004) for details on methods for estimation of 


. 
14 A problem with temporal aggregation in the standard hedonic method - the bunching of 
transactions within the quarters, equation (1) - is handled nicely by the kernel weighting scheme 
applied to equation (11); the ti variable is based on day, month, and year of the transactions and 
the t0 target is typically the middle of the year. 
15 However, it may be objected that location value should be estimated as property value less 
construction costs, as suggested by Davis and Palumbo (2008).  To get to this quantity, one would 

add back 
i



 and then subtract construction costs.  An approximation to construction costs can 

be obtained by assuming that they are invariant within the metropolitan area and that they change 
slowly over time as the costs of material and labor change. With these assumptions, the level of 
construction costs at time zero is the same for all houses in the city. One can use the Marshall 
Valuation Service (MVS) to approximate this level. Then percentage changes over time can be 
approximated by using a construction cost indexes such as those published by Engineering News-
Record (ENR, http://enr.construction.com/economics/ ). With these adjustments, location value is 
estimated by: 
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Applications 
 
Once we obtain the land values, holding constant for structure values, we perform two 
applicaitons. First, we perform an interpolation procedure to obtain estimates of land 
values for each house in our sample in every year over the period 2003-2010, and 
examine the accuracy of these land value estimates. In other words, the interpolation 
procedure estimates the value of land at each location, in every point of time. There are 
2,613,744 (equal to 326,744 x 8) points to interpolate. Second, once we have interpolated 
these land values, we use them to assess the impacts of changes in various categories of 
airport infrastructure stock values on land values. 
 
Land Value Interpolation 
 
The interpolation procedure uses the grid of equally spaced knots from the local 
polynomial regression. Since this grid spans the data, each point to be interpolated is 
surrounded by 8 knots. To understand this grid, one might imagine a cube (or more 
generally, a prism with 6 sides and 8 vertices), with the point to be interpolated in the 
middle. The method of tri-linear interpolation (Bourke, 1999) approximates the land 
value in the center of the cube (or prism) using the values on the lattice points. 
 
Figures 5-12 show the land values in quintiles for each year 2003 through 2010.  The 
quintiles are not calculated by separate years, but rather for the entire period.  For a given 
figure, the darker it appears, the higher the estimated land values.  Thus, an eyeball 
comparison of Figure 5 with Figure 8 suggests that land prices tended to rise somewhat 
between 2003 and 2005.  This is similar to Figure 2.  Subsequently, land prices tended to 
decline for a few years and then flattened out.  To confirm these results and indicate the 
general movement of land prices, here the medians in natural logs by year: 2003 – 9.90, 
2004 – 9.92, 2005 – 9.95, 2006 – 9.94, 2007 – 9.90, 2008 – 9.84, 2009  – 9.83, and 2010 
– 9.84.  
 
The next step is to test the accuracy of the tri-linear interpolation using the land values 
from the local polynomial regression procedure as our standard of measure. We omit the 
land values from 20% of the 326,744 observations and use the 80% of known 
observations to “forecast” the missing 20%. We run the local polynomial regression to fit 
a smooth surface of land values based on the partial residuals of the 80%. The output is a 
grid, slightly different than in the initial case because it is produced using only 80% of 
the data. For the forecasting procedure to work, it is necessary that the 20% of omitted 
observations do not contain the most extreme values for time, longitude, and latitude. 
Also, since the partial residuals come from the LPR program, the same grid size and 

                                                                                                                                  
    ˆˆ S ,i i i itq t Z C   

where itC is an estimate of construction costs for house i at time t. This procedure can be 

considered as a robustness check. 
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bandwidth should be used for this step. The method of tri-linear interpolation estimates 
the 20% of missing land values, based on the grid defined by the 80%. We compare the 
20% of land value estimated from the interpolation procedure to their estimated produced 
by the local polynomial regression.  
 
The land values that we obtain from the LRM and interpolation procedure are in natural 
logarithms. We perform several exercises to show the accuracy of the interpolated land 
values. We calculate the Root Mean Squared Error (RMSE) and the Normalized Root 
Mean Squared Error (NRMSE), for the difference between the land values (in natural 
logs) and the interpolated land values for the 20% sample that is omitted. We also 
separately calculate the NRMSE for the land values converted into dollars. The NRMSE 
can be viewed as a unit-less measure that is analogous to a percentage, and is calculated 
by dividing the RMSE by the difference between the two extreme points among the 
combined set of the land values and interpolated land values. In our exercise, we find that 
the NRMSE is virtually identical, and equal to approximately 0.39%, for the two different 
units of land value. This small NRMSE supports the notion that our land value 
interpolation approach is very accurate. 
 
Estimating the Impact Airport Capital Stocks on Land Values 
 
The unit of observation is the individual house transaction (not repeat sales). Specifically, 
we consider major improvements such as terminal expansions, airfield improvements, 
parking structures, roads/transit/rail, and all other expenses, to construct airport capital 
stocks for each of these categories. These capital stocks control for depreciation. We 
identify the impact of a major improvement in year t off of change from before to after 
the event. Specifically, 

 

o   We expect distance from the airport to attenuate the effect. 
 
 
o   We expect long run changes (more than one year before and after changes in the 
airport capital stock) to be different from short-run effects (one year or less before and 
after). See Clapp and Ross (2004). The effect should build up to a larger total over a 
longer term, if the cause is a permanent increase in the number/frequency of airline 
service. 
 
We also initially include cross-sectional dummies to control for unobservables. Also, 
those professional jobs requiring a lot of travel might locate closer to the airport, 
especially after expansion. However, we don’t have the identifying demographic groups 
that Clapp and Ross (2004) had. For our paper, a strategy for allowing sorting is to allow 
sufficient lags after airport expansion for those valuing this to bid up the price of housing 
benefiting from the expansion. We evaluate increasingly long intervals around the 
expansion event, as described above, to deal with the lag issue. 
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While we would also be able to control for any increase in airport noise using methods 
similar to earlier work by Cohen and Coughlin (2008), there are few houses in the noisy 
zones. Also, any heterogeneity due to noise can be captured through our individual-level 
Fixed Effects (FE). Since our model is based on the FE, there is also little point in trying 
to collect demographics at the CBG level. The reason for individual transactions is that 
houses within the CBG will differ in their access to the expanded airport. By lining all the 
transactions up around the expansion events (time zero is event date, regardless of 
calendar date), and including calendar year FE along with the individual level FE, we 
control for omitted variables other than the expansion. However, we do not have enough 
“events” in enough MSAs to do the statistical tests used in event studies in the finance 
literature. The most important explanatory variables are distance from the airport 
interacted with the amount and type of expansion. It may also be the case that some 
expansions don’t increase congestion but only make the terminal facilities more 
attractive. 
 
For our estimation of effects of infrastructure stocks on land values, we estimate the 
following model after obtaining extrapolated land values for each house in each year (see 
Appendix for description of the extrapolation approach): 
 
Li,t = c0 + c1 *A1, i,t + c2 *A2, i,t + c3 *A3, i,t + c4 *A4, i,t + c5 *A5, i,t + i + t + i,t            (12) 
 

In this model, Li,t is log of land value, normalized by log of acres16 for property i in year 
t; A1, i,t  through A5, i,t represent airport infrastructure stocks for property i in year t for 
airfields, terminals, parking, roads/rails/transit, and “other”, respectively; A1, i,t  through 
A5, i,t are weighted by the distance from house i to the airport;  and  are individual and 
time fixed effects, respectively; and i,t is an iid error term with mean zero, constant 
variance and zero covariance across observations; and for Denver,  i=1, 2,…, 178,731; 
t=2003, 2004,…, 2010.  
 
To compare the short-run versus long run impacts on land values of changes in airport 
infrastructure, we employ a year-over-year change approach, which leads to the 
following model: 
 
dLi,t =  c1 *dA1, i,t + c2 *dA2, i,t + c3 *dA3, i,t + c4 *dA4, i,t + c5 *dA5, i,t + + di,t (13) 
 
where d is the d-year-over-year change, d=1,2. When d=1, this represents the short-run 
impacts of changes in airport infrastructure on land values; d=2 represents the medium or 
long-term impacts. Note that examining year-over-year changes causes the cross-
sectional fixed effects to drop out, and there are a new set of time-specific fixed effects, 
, which includes a constant (intercept) term. 
 

                                            
16 There is evidence that land values increase with the square root of lot size, so the fact that we 
are using logs is important since it prevents excess acreage from having the same effect on value 
as the building pad. 
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Denver Analysis 
 
Figure 1 depicts housing prices in Denver in the years 2000 through 2012. During the 
period of our data sample for airport infrastructure investment (2003 through 2010), 
housing prices rose by about 8% in the boom years (2003 through 2007), while they fell 
by about 7.4% during the bust years (2007 through 2010). There were somewhat larger 
fluctuations in land prices, with a steadily decreasing land price from Davis and Palumbo 
(2008), as can be seen in Figure 2. Specifically, between 2003 and 2007, land prices in 
Denver fell by 11.5%, while during the years 2007 through 2010 land prices fell by 
30.7%. This trend can be seen in Figure 2, which covers the broader period of 2000 
through 2010. It is noteworthy that land prices rose dramatically between 2000 and 2003, 
before the steady subsequent decrease in land prices. 
 

Descriptive statistics for the housing data are presented in Table 2 for Denver. There 
were over 326,000 sales observations for single family residential homes that sold 

between 2003 and 2010 in Denver. The average house in Denver had 3 bedrooms, with 
approximately 2 full baths and 0.18 half-baths. The average sale price was approximately 
$280,000, and was located about 19.3 miles from the airport. The closest house was 4.8 
miles from the airport while the furthest house was 56 miles away. Figures 3 and 4 show 
the locations of the Denver home sales relative to the airport for the years 2003 and 2010, 

respectively. 
 
The annual Denver International Airport capital stock data for 2003 through 2010 are 
listed in Table 1. As can be seen by examining the data for each category (airfields, 
terminals, parking, intermodal transportation, and other) in each year, there is variation in 
these capital stocks over time and across different categories. We used investment data to 
construct capital stocks for each of these categories of airport infrastructure, using the 
perpetual inventory method. Specifically, we deflated the investment series using a 
national deflator for government investment obtained from the 2013 Economic Report of 
the President, and the initial (or seed) value for the capital stock for each category is 
obtained as the average of the investment data for the years 2001 through 2004, 
multiplied by the estimated service life for each category of investment. The depreciation 
rate was assumed to be the inverse of the service life, and the capital stocks followed a 
straight line depreciation path. Additional details on the capital stock construction can be 
found in the data appendix. Once we constructed the capital stocks, our approach was to 
assign a capital stock value for each category to each single family residence sold, by 
weighting the capital stock by the property’s inverse distance from the airport. Thus, 
properties more distant from the airport are viewed as having less airport capital.  
 
We examine how land prices, obtained for each SFR sold in 2003-2010, are impacted by 
investment in airport infrastructure over time, for Denver and Atlanta. After 
implementing the LPR approach to obtain land values for each of these cities, and then 
interpolating to obtain a land value for each house in each year of our sample, we regress 
(for each city separately) the log of land values (normalized by log of acres) on a 
constant, on each of 5 categories of airport infrastructure capital stocks (airways, 
terminals, parking, roadways/railways, and other), as well as a set of cross-sectional and 
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time fixed effects.17 In these regressions, we normalize the capital stocks by each house’s 
inverse distance to the airport (and a robustness check, we also normalize by inverse of 
distance-squared, which has little impact on the results). The distance is calculated as the 
Euclidean distance from the house to the airport using latitude and longitude data for each 
point.  
 
Tables 4 and 5 present the second-stage regressions of the log of land values on the 
various infrastructure categories for Denver (weighted by the inverse of the distance from 
the airport). Our approach is to consider first- and second-differences. In the first-
difference specification, the parameter estimates on the infrastructure variables are 
considered to be short-run effects. 
 
Given the complex nature of the urban area southwest of the airport, we choose to focus 
this part of our analysis on the properties in the northwest quadrant of the airport. Figures 
13-20 show the locations of the properties examined and their associated land values for 
2003-2010.  Relative to the entire sample, land values used for this part of our analysis 
tend to be less than in the other part of the Denver area. The southwest region is close to 
downtown Denver, and there are likely a broad variety of economic factors that can be 
expected to influence land values. Although there were 54,439 home sales between the 
years 2003-2010 in the northwest region, it is less developed than the southwest region 
and there are fewer other factors (such as other types of infrastructure, business activity, 
etc) that might be expected to impact land values. After interpolating the land values in 
all years for the houses sold in the northwest region, we have over 381,000 land value 
observations. 
 
Table 4 presents the regression results with the one-year change in land values as the 
dependent variable, and the one-year changes in each infrastructure category as the 
independent variables. We also included year fixed effects in the model, however the 
cross-sectional fixed effects drop out when looking at the year-over-year changes.  In the 
very short run, the coefficients for airfields, parking, intermodal transportation, and roads, 
rail, and transit are positive, while the coefficient for other infrastructure is negative. All 
variables reveal a statistically significant relationship with land prices.  One interpretation 
of these results is that expenditures to improve or expand airports generates excitement 
among potential air travelers very quickly, while some of the “other” activities, such as 
de-icing equipment improvements, can lead to other externalities such as pollution 
runoff.  
 
Support for such an interpretation is also contained in Table 5.  The results for the two-
year changes in land values regressed against the two-year changes in airport 
infrastructure categories, presented in Table 5, can be considered the longer-term effects. 
Identical to Table 4 each of the infrastructure variables is statistically significant.  The 
key similarities are that the expenditures on airfields, terminals, parking, intermodal, are 
all positive, while the “other” category is still negative.18  
                                            
17 Figures 5-12 show quintiles for the interpolated land values in Denver in the years 2003-2010. 
18 As an alternative, the announcements of expansions, coupled with their values, might be an 
appropriate approach to organize the expansion data. We are unable to implement such an 
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Conclusion 

 
 
We implement a Local Polynomial Regression framework to estimate land values for 
single family houses sold in Denver between 2003 and 2010. We interpolate the land 
values for every property in our sample in every year between 2003 and 2010, and 
validate the accuracy of the interpolated estimates with a within-sample forecasting 
approach. We then use these interpolated land value estimates to assess how various 
types of airport infrastructure investment affect land values. For the very short-run, we 
find that the coefficients for airfields, terminals, parking, intermodal transportation are 
positive, while the coefficient for “other” infrastructure is negative.  Meanwhile, for the 
longer-term, we find similar relationships in terms of the signs and statistical significance 
of these relationships.  One interpretation of these results is that some of the expenditures 
to improve or expand a terminal can produce results very quickly, depending on whether 
parts of the terminal are opened before renovations of the entire terminal are completed. 
On the other hand, building an entirely new terminal, expanding a parking facility or 
building a new runway can take years to begin and complete.  In some cases, it takes time 
before the value of the expenditures is clear to market participants.   
 
In future work, we aim to assess the robustness of these findings for airports in other 
cities. One such example is Atlanta, given its size and volume of operations. 
 
The results demonstrate the importance of obtaining reliable estimates of land values, 
particularly during a period of a pronounced boom and bust. In a boom, the price of land 
is too high relative to its fundamental value, so eventually there is a bust, leading to a 
dramatic drop-off in land prices relative to one of the boom years. Although there were 
fluctuations in land prices in Denver, they remained plausible in the bust years, and we 
believe this is reflected in the results of our differencing analysis. Further research could 
explore additional data for such complex environments of sharply declining land values. 
Perhaps gathering additional data would be a more promising approach when the extra 
data spans over years when land prices were increasing or stable. Unfortunately the time 
period of our study (2003-2010) was limited by the availability of airport infrastructure 
data from the FAA. 
 

                                                                                                                                  
alternative because the airport investment data we obtained from the Federal Aviation 
Administration does not distinguish between the announcement of expansions and the time of 
expenditures associated with the expansions. 
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Data Appendix 
 
 

-Capital stocks:  
 

We use the perpetual inventory method, along with annual data on new airport 
investments in several different categories (airfields; terminals; parking; rail, road and 
transit; and “other”) to obtain separate estimates of capital stocks for each of these 
categories. We assume the depreciation rate = 1/service life, where service life of airport 
terminals and airfields = 25 years; service life of parking = 40 years; service life of 
roads/rail/transit = 44 years; service life of "other" = 25 years.  
 
The 25 year number for airfields and terminals came from airports council international, 
used in Cohen and Morrison Paul (2003). 
 
The highways and streets service life: 60 years (0.0152); state and local railroad 
equipment: 28 years (0.0590); For the roads, rail, and transit variable, we take the average 
of these two service lives and use 44 years for the service life. Source: 
http://www.bea.gov/scb/account_articles/national/0797fr/table3.htm:   
 
Parking: http://www.chamberlinltd.com/extending-the-service-life-of-parking-structures-
a-systematic-repair-approach/ 
 
Initial capital stocks are average of 2001, 2002, 2003, and 2004 expenditures, times the 
service life for that category 
 
-Land price indexes: 
 
We interpolated land values for all years for each house, using a method devised by 
Clapp (2004) and subsequently modified by Brett Fawley, Diana Cooke, and us. Details 
are available from the authors upon request. 
 
Subsequently, we add back the values of the time dummy variables from the hedonic 
regressions, then deflated the land values by the CPI for Denver. 
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Figure 1 – Single Family Home Sales Prices, Denver 
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Figure 2 
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Figure 3 – Prices of Single Family Home Sales in 2003 for Denver 
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Figure 4 – Prices of Single Family Home Sales in 2010 for Denver 
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Figure 5 – 2003 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2003 are 

estimated directly by local polynomial regression. Values for homes not sold in 2003 use 
linear interpolations.) 
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Figure 6 – 2004 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2004 are 

estimated directly by local polynomial regression. Values for homes not sold in 2004 use 
linear interpolations.) 
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Figure 7 – 2005 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2005 are 

estimated directly by local polynomial regression. Values for homes not sold in 2005 use 
linear interpolations.) 
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Figure 8 – 2006 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2006 are 

estimated directly by local polynomial regression. Values for homes not sold in 2006 use 
linear interpolations.) 
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Figure 9 – 2007 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2007 are 

estimated directly by local polynomial regression. Values for homes not sold in 2007 use 
linear interpolations.) 
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Figure 10 – 2008 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2008 are 

estimated directly by local polynomial regression. Values for homes not sold in 2008 use 
linear interpolations.) 
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Figure 11 – 2009 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2009 are 

estimated directly by local polynomial regression. Values for homes not sold in 2009 use 
linear interpolations.) 
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Figure 12 – 2010 Land Values for Homes Sold Between 2003 and 2010, Denver 
(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2010 are 

estimated directly by local polynomial regression. Values for homes not sold in 2010 use 
linear interpolations.) 
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Figure 13 – 2003 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2003 are 
estimated directly by local polynomial regression. Values for homes not sold in 2003 use 

linear interpolations.) 
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Figure 14 – 2004 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2004 are 
estimated directly by local polynomial regression. Values for homes not sold in 2004 use 

linear interpolations.) 
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Figure 15 – 2005 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2005 are 
estimated directly by local polynomial regression. Values for homes not sold in 2005 use 

linear interpolations.) 
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Figure 16 – 2006 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2006 are 
estimated directly by local polynomial regression. Values for homes not sold in 2006 use 

linear interpolations.) 
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Figure 17 – 2007 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2007 are 
estimated directly by local polynomial regression. Values for homes not sold in 2007 use 

linear interpolations.) 
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Figure 18 – 2008 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2008 are 
estimated directly by local polynomial regression. Values for homes not sold in 2008 use 

linear interpolations.) 
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Figure 19 – 2009 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2009 are 
estimated directly by local polynomial regression. Values for homes not sold in 2009 use 

linear interpolations.) 
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Figure 20 – 2010 Land Values for Homes Sold Between 2003 and 2010 with Latitude 
> 39.8439 and Longitude < -104.6733, Denver 

(Note: Land Values are expressed in Natural Logs. Values for homes sold in 2010 are 
estimated directly by local polynomial regression. Values for homes not sold in 2010 use 

linear interpolations.) 

 
‘ 
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Table 1: Airport Infrastructure Capital Stocks, Denver International Airport, 2003-2010 (millions of dollars) 
Note: capital stock estimates are in constant (2003) millions of dollars, net of depreciation. 

 
 2003 2004 2005 2006 2007 2008 2009 2010 

Airfield 759.3 735.2 710.6 695.0 678.8 664.0 675.6 670.2 
Terminal 592.1 581.4 570.7 591.8 596.6 601.3 590.9 589.1 
Parking 88.9 88.4 87.3 96.5 131.2 136.0 139.6 138.9 

Road, Rail & Transit 104.4 107.1 111.9 112.3 110.4 113.0 111.7 114.3 
Other 385.2 379.1 367.8 358.9 348.3 350.6 345.1 349.6 
Total 1929.8 1891.3 1848.4 1854.4 1865.3 1865.0 1863.0 1862.1 
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Table 2: Descriptive Statistics, Denver Single Family Home Sales, 2003-2010 
 
 
  

Variable Mean Std. Dev. Variance Minimum Maximum Valid 

Sale Price (Log) 12.4315  0.5486  0.3010  6.9078  15.4249  326,744 

Yr2003 0.1393  0.3463  0.1199  0  1  326,744 

Yr2004 0.1530  0.3600  0.1296  0  1  326,744 

Yr2005 0.1528  0.3598  0.1295  0  1  326,744 

Yr2006 0.1384  0.3453  0.1192  0  1  326,744 

Yr2007 0.1232  0.3286  0.1080  0  1  326,744 

Yr2008 0.1112  0.3144  0.0989  0  1  326,744 

Yr2009 0.0955  0.2940  0.0864  0  1  326,744 

Yr2010 0.0865  0.2811  0.0790  0  1  326,744 

No of Bedrooms 3.1587  0.8403  0.7061  1  13  326,744 

No of Full Baths 2.2924  0.8853  0.7838  1  12  326,744 

No of Half Baths 0.3259  0.4938  0.2439  0  5  326,744 

No of Fireplaces 0.7669  0.7313  0.5348  0  10  326,744 

Garage Dummy 0.9103  0.2858  0.0817  0  1  326,744 

Basement Dummy 0.8031  0.3977  0.1581  0  1  326,744 

Stories Dummy 0.4839  0.4997  0.2497  0  1  326,744 

Adams County Dummy 0.1900  0.3923  0.1539  0  1  326,744 

Denver County Dummy 0.2268  0.4188  0.1754  0  1  326,744 

Douglas County Dummy 0.1782  0.3827  0.1465  0  1  326,744 

Araphoe County Dummy 0.2114  0.4083  0.1667  0  1  326,744 

Jefferson County Dummy 0.1935  0.3951  0.1561  0  1  326,744 

Longitude ‐104.9384  0.1441  0.0208  ‐105.4648  ‐103.765  326,744 
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Latitude 39.6936  0.1440  0.0207  39.1305  40.242  326,744 

Longitude Squared 11012.0871  30.2435  914.6665  10767.1109  11122.82  326,744 

Latitude Squared 1575.6048  11.4253  130.5373  1531.1990  1619.42  326,744 

Lat*Lon ‐4165.3879  16.7768  281.4625  ‐4206.4213  ‐4098.49  326,744 

Age 34.0694  27.3488  747.9552  0  145  326,744 

Age Squared 1908.6075  2870.4277  8238049  0  21025  326,744 

Land Square Feet (Log) 9.0213  0.6916  0.4765  6.2146  18.1084  326,744 
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Table 3 – Hedonic Regressions, Denver SFR Home Sales, 2003-2010 

 
Valid cases: 326744  Dependent variable: Sales Price (Log) 

Missing cases: 0  Deletion method: None 

Total SS: 98336.134  Degrees of freedom: 326717 

R-squared: 0.591  Rbar-squared: 0.591 

Residual SS: 40228.422  Std error of est: 0.351 

F(24,178706): 18150.942  Probability of F: 0 

Variable Coefficient Estimate Std. Error T-Value P-Value Std. Estimate Corr. With Dep Var 

Constant -4233.666469 312.963735 -13.527658 0.00 --- --- 

Yr2003 0.056438 0.002659 21.222047 0.00 0.035622 0.000693 

Yr2004 0.085489 0.002612 32.724294 0.00 0.056102 0.030246 

Yr2005 0.121738 0.002614 46.576639 0.00 0.079846 0.069579 

Yr2006 0.111406 0.002662 41.845352 0.00 0.070121 0.060327 

Yr2007 0.065053 0.002724 23.879809 0.00 0.038971 0.018106 

Yr2008 -0.051856 0.002784 -18.623067 0.00 -0.029721 -0.094189 

Yr2009 -0.041102 0.002882 -14.261565 0.00 -0.022025 -0.081952 

No of Bedrooms 0.014671 0.000925 15.866329 0.00 0.022472 0.336672 

No of Full Baths 0.164688 0.001078 152.781209 0.00 0.265771 0.578731 

No of Half Baths 0.151836 0.001667 91.099069 0.00 0.136678 0.246221 

No of Fireplaces 0.170455 0.001058 161.099640 0.00 0.227216 0.545866 

Garage Dummy 0.170616 0.002378 71.760975 0.00 0.088873 0.299812 

Basement Dummy 0.138199 0.001707 80.941398 0.00 0.100176   0.354783 

Stories Dummy 0.014131 0.001730 8.167266 0.00 0.012872 0.356637 

Adams County Dummy 0.003398 0.003325 1.021937 .307 0.002430 -0.2141020 

Denver County Dummy 0.183828 0.002970 61.887987 0.00 0.140325 -0.091960 

Douglas County Dummy 0.016086     0.004209 3.821778 0.00 0.011221 0.241680 

Araphoe County Dummy -0.021698 0.003374 -6.430422 0.00 -0.016150 -0.009083 
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Longitude -107.719767   4.971578 -21.667117 0.00 -28.295438 -0.064119 

Latitude -72.155186   4.580548 -15.752523 0.00 -18.935222 -0.291193 

Longitude Squared -0.799777   0.021529 -37.149268 0.00 -44.090696 0.064119 

Latitude Squared -1.115896 0.033850 -32.965914 0.00 -23.240076 -0.291193 

Lat*Lon -1.529108 0.036917 -41.419968 0.00 -46.762224   0.240276 

Age -0.014724 0.000091 -160.94147 0.00 -0.734021 -0.304837 

Age Squared 0.000122 0.000001 156.981420  0.00 0.639077 -0.197236 

Land Sq Feet (Log) 0.183304 0.001149 159.507617 0.00 0.231085 0.329327 
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 Table 4 – Regression of one-year change of Land Value on airport infrastructure capital stocks 
(normalized by distance to the airport), Denver International Airport 

Note: land values are in real terms 
 
 

 
 
 

Dependent Variable: One-Year Change Land Level  
Method: Panel Least Squares  
  
Sample (adjusted): 2003 2010 if latitude>39.8439 and longitude <-104.6733 
Periods included: 7  
Cross-sections included: 54439  
Total panel (balanced) observations: 381073  

Variable Coefficient Std. Error t-Statistic Prob.  

C -2087.111 1.028625 -2029.030 0.0000
One-Year Change Airfield 0.000131 2.86E-06 45.98280 0.0000
One-Year Change Terminal 0.000362 1.69E-06 214.2468 0.0000
One-Year Change Parking 0.000116 2.19E-06 53.25792 0.0000

One-Year Change Rd, Rl, Tr 0.001748 1.62E-05 107.9825 0.0000
One-Year Change Other -0.000254 3.23E-06 -78.58469 0.0000

 Effects Specification   

Period fixed (dummy variables)  

R-squared 0.983675    Mean dependent var -1887.896
Adjusted R-squared 0.983675    S.D. dependent var 1916.389
S.E. of regression 244.8578    Akaike info criterion 13.83926
Sum squared resid 2.28E+10    Schwarz criterion 13.83961
Log likelihood -2636873    Hannan-Quinn criter. 13.83936
F-statistic 2087400    Durbin-Watson stat 0.831727
Prob(F-statistic) 0.000000    
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Table 5 – Regression of two-year change of Land Value on airport infrastructure capital stocks 
(normalized by distance to the airport), Denver International Airport 

Note: land values are in real terms 
 
 
 

  

  

Dependent Variable: Two-Year Change Land Level   
Method: Panel Least Squares   
    
Sample: 2003 2010 IF LATITUDE>39.8439 AND LONGITUDE<-104.6733 
Periods included: 6   
Cross-sections included: 54439  
Total panel (balanced) observations: 326634  

Variable Coefficient Std. Error t-Statistic Prob.  

C -4895.050 2.295313 -2132.629 0.0000
Two-Year Change Airfield 0.000152 4.54E-06 33.45443 0.0000
Two-Year Change Terminal 0.000368 4.94E-06 74.51339 0.0000
Two-Year Change Parking 0.000156 3.01E-06 51.75401 0.0000

Two-Year Change Rd, Rl, Tr 0.002013 3.61E-05 55.80649 0.0000
Two-Year Change Other -0.000203 9.40E-06 -21.55340 0.0000

 Effects Specification   

Period fixed (dummy variables)  

R-squared 0.974601    Mean dependent var -4427.153
Adjusted R-squared 0.974600    S.D. dependent var 2880.269
S.E. of regression 459.0389    Akaike info criterion 15.09618
Sum squared resid 6.88E+10    Schwarz criterion 15.09654
Log likelihood -2465452    Hannan-Quinn criter. 15.09628
F-statistic 1253296    Durbin-Watson stat 0.545849
Prob(F-statistic) 0.000000    


