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1 Introduction

In this paper we extend the Baumol-Tobin inventory model for cash balances to a

dynamic environment which allows for the possibility of withdrawing cash at random

times at low or zero cost. We argue that this modification captures the developments

in the withdrawal technology such as the increase in the number bank branches

and the availability of ATM cards as well as the increase in the number of ATM

terminals. The model captures this feature of the withdrawal technology with a

single parameter p, the expected number of opportunities for a withdrawal at zero

(or low) cost per unit of time. This random specifications captures the idea the the

main cost of withdrawals is the opportunity cost of time, so that the events that

occur with probability p represent a match of an agent with an ATM (or a bank

desk) at a moment of low opportunity cost of the agent’s time.

For positive values of p the proposed specification changes some of the predictions

of the Baumol-Tobin model in ways that, we argue, are consistent with stylized facts

for the cash management behavior of households. For instance, several studies report

interest rate elasticities for money demand below one half, the value predicted by the

Baumol-Tobin model. It is also widely documented that money holdings decrease

as new payment technologies are introduced. In our model both the level, as well

as the interest rate elasticity of the money demand are decreasing in the parameter

p. Additionally we document other patterns that differ from the predictions of the

Baumol-Tobin model, as well as from the Miller and Orr model, using a micro

data for the cash-management of Italian households. One is that the interest rate

elasticity of the average number of withdrawals is also smaller than 1/2. Another

is that the ratio of withdrawal to average cash holdings tends to be below 2, the

value predicted by the Baumol-Tobin model. Finally, households report to have

substantial amount of cash at the time of withdrawals, as opposed to withdraw



when they cash reaches zero, as predicted by the Baumol-Tobin model. We show

that as p increases the theoretical model predict patterns of cash-management that

are consistent with these observations.

In Section 2 we discuss some patterns of cash management behavior based on a

panel data of Italian households. Section 3 analyzes some of the effects of financial

diffusion using a deterministic steady-state model that allows a close comparison

with the well known results of Baumol and Tobin. The core of this section is a

simple model where, as opposed to the case in Baumol and Tobin, agents have a

deterministic number of free withdrawals per period. We show that both the level of

money demand and the interest rate elasticity decrease as the number of free with-

drawals increases. Section 4 introduces our benchmark stochastic dynamic inventory

model. In this model agents have random meetings with a financial intermediary in

which they can withdraw money at no cost. This is a dynamic version of the model

of Section 3. The implications of this model concerning the distribution of currency

holdings, aggregate money demand, the average number of withdrawals, the aver-

age size of withdrawals, and the average cash balances at the time of a withdrawal

are presented in Section 5. We show that, qualitatively, the model reproduces the

features of the data that we highlight in Section 2. Section 6 generalizes the model

of Section 4 to a more realistic set up, where there is also a small fixed cost at the

time of a convenient random meeting. In section 7 we estimate the model using the

panel data for Italian household. We discuss the identification of the parameters,

the goodness of the fit of the model, and we use the estimated parameters to evalu-

ate the benefits of owning an ATM card, as well as the impact of the technological

changes in withdrawal technology.

In the paper we abstract from the intensive as well as extensive margin for the

cash/credit decision. That is, we abstract from the decision of whether to have

a credit card or not, and for those that have a credit card, whether a particular
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purchase is done using cash or credit. In particular, the model in our paper, as

well as its empirical implementation, takes as given the expenditure that has to be

financed using cash. The problem solve in the model is to minimize the cost of

financing these purchases using cash. We are able to study this problem for Italian

households because we have measures of the consumption purchases using cash. We

view our paper as an input on the study cash/credit decision, an important topic

that we plan to address in the future.

There is a large literature on both theoretical inventory models of money demand,

as well as estimation of their key features. Here we briefly discuss two related

models in the literature. These models provide a rationale for an interest rate

elasticity smaller than 1/2, the value obtained in the Baumol and Tobin model.

The explanation that we propose is complementary to the ones in those papers

because it focuses on the level and interest rate elasticity of individual households

demand for money.

Miller and Orr (1966) study the optimal inventory policy of cash for an agent

subject to stochastic cash inflows and outflows, and obtain an interest rate elasticity

of 1/3. Their model is more suitable for the problem faced by firms, given the

nature of stochastic cash inflows and outflows. Instead, our paper focuses on a

problem that better describes individual consumers problem, since we study the

optimal inventory policy of cash for an agent that faces deterministic cash outflows

(consumption expenditure) and no cash inflows. To be consistent with our model,

when we analyze micro-level household data, we exclude households headed by self-

employed.

Mulligan and Sala-i-Martin (2000) also study a model where the aggregate money

demand can feature interest rate elasticity smaller than 1/2. In their model agents

must pay a fixed cost to have a deposit account. Agents who face a low value for

the total benefit of investing their wealth (either because wealth is low or because
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its return is low) will not pay the fixed cost and hence locally they will show a

zero elasticity to changes in interest rates. Their model offers an explanation for a

low interest elasticity of aggregate money demand. Instead, we concentrate on the

interest rate elasticity of individual demands, by using micro-level household data

and conditioning on the agents who do possess an interest bearing deposit account.

2 Cash Holdings Patterns of Italian Households

This section presents summary statistics of the cash holdings patters of Italian house-

holds from the Survey of Household Income and Wealth.1 We focus on the surveys

conducted from 1993 to 2004 because they include a section dedicated to the house-

hold cash management. Table 1 reports cross section mean and medians of some

key money holdings statistics, normalized by daily cash expenditures.

Three statistics of Table 1 are at odds with the simplest versions of two classic

money demand models: the one by Baumol and Tobin (BT henceforth) and the one

by Miller and Orr (MO henceforth). First, households withdraw much before their

cash balances reach zero, as they report that the holdings upon a withdrawal are

about one third of their average cash balances. Second, the average ratio between

the withdrawal amount and the currency holdings is smaller than 2, in some cases

about 1. For comparison, this ratio is 2 in the BT model and 3/4 in the MO model.

Third, the difference between the number of withdrawals and the corresponding

number that is implied by the BT model, given by c/W = c/2M is large.

The inconsistency between the Baumol-Tobin model and the Italian data are

illustrated in Figure 1, which plots the theoretical prediction (black dashed line)

versus the data both for households with ATM (the filled blue dots) and for house-

1This is a periodic survey of the Bank of Italy that collects information on several social and
economic characteristics of household members, such as age, gender, education, employment, in-
come, real and financial wealth, consumption and saving behavior. Each survey is conducted on a
sample of about 8,000 households. Cash consumption is only available since 1993.
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Table 1: Households’ currency management

Variable 1993 1995 1998 2000 2002 2004
Average currencya

Household w/o account (mean) 17.1 20.0 20.0 21.8 26.8 25.5
(median) 15 16 16.7 18.7 21.4 30

Household w. account
w/o ATM (mean) 15.4 17.2 19.3 17.7 16.9 17.8

(median) 12.5 15 15 15 13.1 13.6
w. ATM (mean) 10.4 11.2 12.9 12.4 12.9 13.6

(median) 8.2 8 9 8.3 9 9.4
Average withdrawala

Household w/o ATM (mean) 23.8 20.4 24.5 21.5 21.2 21.7
(median) 18 15 17.5 15 17.1 17.1

Household w. ATM (mean) 10.9 9.3 12.6 11.6 11.3 12.3
(median) 8.5 7.9 9 8.4 8.9 10

Withdrawal to Currency Ratio
Household w/o ATM (mean) 2.3 1.7 1.9 2.0 2.0 1.9

(median) 1.5 1.0 1 1.1 1.3 1.2
Household w. ATM (mean) 1.5 1.2 1.3 1.4 1.3 1.4

(median) 1 1 1 1 1 1
Cash at withdrawalsa,b

Household w/o ATM (mean) 5.3 4.1 7.8 6.6 6.2 na
(median) 3 2 3.7 3.3 3.7 na

Household w. ATM (mean) 3.7 2.8 4.0 4.5 4.5 na
(median) 2.2 1.7 2 2 2.5 na

Number of withdrawalsc

Household w/o ATM (mean) 16.4 17.3 25.2 23.9 22.6 23.0
(median) 6 12 12 12 12 12

Household w. ATM (mean) 50.2 51.3 59.1 64.1 57.9 63.1
(median) 38 48 48 48 48 48

Non durable consumption
and servicesc,d

Household w/o ATM (mean) 12,187 13,345 12,750 13,561 14,420 15,924
Household w. ATM (mean) 17,373 19,416 19,069 20,948 21,876 23,378

Share of cash expenditurese

Household w/o ATM (mean) 0.70 0.69 0.66 0.68 0.67 0.65
Household w. ATM (mean) 0.66 0.64 0.61 0.57 0.55 0.50

N. of observationsf 6,938 6,970 6,089 7,005 7,112 7,159
Entries are sample mean and medians computed using sample weights and excluding households
with a self-employed head.
Notes: aRatio to daily expenditures done in cash. - bReported level of currency at the time
of withdrawal. - cPer year. - dIn euros, in year 2000 prices. - eRatio of cash expenditure to
consumption of nondurables and services. - fNumber of respondents for whom the currency and
the cash consumption data are available in each survey. Data on withdrawals are supplied by a
smaller number of respondents. Source: Bank of Italy - Survey of Household Income and Wealth.
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holds without ATM (empty red dots). Each dot represents the mean of the values

for e.g. currency holdings and number of withdrawals (panel 1,1) observed for the

households in a given province-year (the size of the dot is proportional to the number

of observations).

Figure 1: Baumol-Tobin and the data
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Table 2 reports summary statistics on the supply of bank services, such as the

diffusion of bank branches and ATMs, and on the interest rate paid on deposits.2

2These data are drawn from the Supervisory Reports to the Bank of Italy and the Italian Central
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Differences in nominal interest rates across provinces (witnessed by the standard

deviations reported in parenthesis) are the result of segmentation in banking mar-

kets.3 Until the early nineties commercial banks faced restrictions to open new bank

branches in other provinces. A gradual process of liberalization has occurred since

then, which has led to a sharp increase in the number of bank branches and a reduc-

tion of the interest rate differentials (see Casolaro, Gambacorta and Guiso (2006)

for a review of the main developments in the banking industry during the past two

decades).

Table 2: Financial development and interest rates

Variable 1993 1995 1998 2000 2002 2004
Bank branchesa,b 0.38 0.42 0.47 0.50 0.53 0.55

(0.13) (0.14) (0.16) (0.17) (0.18) (0.18)
ATMa,c 0.31 0.39 0.50 0.57 0.65 0.65

(0.18) (0.19) (0.22) (0.22) (0.23) (0.22)

Interest ratec,d 6.10 5.23 2.15 1.16 0.77 0.32
(0.42) (0.32) (0.23) (0.22) (0.15) (0.11)

Notes: Cross-section mean (standard deviation in parenthesis). a Per thousand residents. -
b Elementary data available at the city / year level. - c Elementary data available at the
province / year level. d Net nominal interest rates expressed in percentages (Source: Central
credit register).

Table 3 presents least square regressions of the currency to consumption ratio for

households with a deposit account and an ATM card. We think that the identifica-

tion of the effects of interest rate on cash holdings is complicated by the fact that,

as Table 2 shows, both variables display a time trend during the short time period

covered by this data set. The regressions thus use year and province dummies in an

Credit Register. Elementary data on ATMs and interest rates are available at the province/year
level (the sample covers about 100 provinces; the size of a province is broadly comparable to that
of a U.S. county). Elementary data for bank branches are available at the city/year level (the
sample covers about 400 cities).

3They do not reflect differences in the services or features of the underlying checking account
(these statistics are built with the main objective of ensuring comparability and thus focus on a
highly homogenous type of service).
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attempt to remove unobserved time and regional effects affecting money demand,

e.g. differences in the incidence of small crime, a factor which likely reduces currency

holdings.

Table 3: The Demand for Currency and tech. development

Bank account holders without ATM card

Estimation method Ordinary Instrumental Household
Least Squares Variablesa Fixed Effects

(1) (2) (3)
log(cash expenditure) 0.486 0.487 0.393

(0.018) (0.018) (0.025)

log(interest rate) -0.180 -0.236 -0.334
(0.092) (0.135) (0.088)

log(interest rate) · Number of bank 0.109 0.103 0.098
branches in the city (0.036) (0.062) (0.046)

Number of bank branches in the city -0.113 -0.159 -0.399
(0.058) (0.127) (0.135)

Province dummies Yes Yes No
Year dummies Yes Yes Yes
R2 0.23 0.23 0.08
Sample size 17,371 17,371 17,371

Note: Robust standard errors in parenthesis. aThe instruments used for the deposit
interest rate and the number of bank branches at the city level are the interest rate
lagged value and the number of firms and employees per resident at the city level.

The estimates display a systematic negative correlation between the (log) level

of currency holdings and the diffusion of bank branches. The correlation of cash

holdings with the interest rate is smaller than one half. The point estimate is about

nil for agents who hold an ATM card and around -0.1 for agents without ATM card.

The interaction term between bank branches and the interest rate suggests that

the interest rate elasticity is decreasing (in absolute value) in the number of bank

branches. Thus these regressions imply that more financial development imply less

response of currency holdings to interest rate variations.

Finally we compare the estimated interest rate elasticities with the predictions

of the BT and MO model. In the BT model, the interest rate elasticity of currency

8



holdings is -1/2 and the elasticity of the average number of withdrawals is 1/2, which

are larger in absolute value relative to the ones reported in the regression in Tables

3-6. In the MO model the interest rate elasticity of currency holdings is -1/3, a

value close to one estimated in the regressions in Table 4. Nevertheless, the MO

model predicts an interest rate elasticity of the average of number of withdrawals of

2/3, which is even larger than the one predicted by the BT model, and larger than

the one estimated in the regressions above.

3 A deterministic steady state problem

In this section we model a form of technological progress on the withdrawal tech-

nology and discuss its implications for money demand. We conduct the analysis by

focusing on steady state calculations. We minimize the steady state cost of attaining

a given constant flow of consumption, as opposed to minimizing the expected dis-

counted cost. We do this to increase the comparability with the standard derivation

of the Baumol-Tobin money demand and to simplify the exposition of the effect of

progress on technology for withdrawals from banks. In particular, this calculation

helps understand why the level of the money demand and its interest rate elasticity

are smaller for better withdrawal technologies.

Consider the following steady state problem. We let M be the average money

balances, and T (M, c) be the average (steady state) number of costly withdrawals

from the bank per unit of time required to finance a consumption flow c when

the average money balances are M . The function T depends on the withdrawal

technology available to agents. We assume that T is decreasing in M , so that

fewer withdrawals require higher average balances, and that T , is convex, so the

minimization problem is well behaved. We let R be the net nominal interest rate

(the marginal cost of forgone interest due to an extra unit of money holdings) and
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b the cost of each withdrawal. The average money demand solves the minimization

problem

min
M

R M + b T (M, c) (1)

The optimal choice of M must balance the impact on the cost due to forgone interest,

R M with the effect on the cost of withdrawals, T (M, c) . The formulation of this

problem, as in the traditional BT model, uses three simplifying assumptions:

(i) average (steady state) money balances times the interest rate is used to measure

the cost, instead of the discounted interest rate cost, and

(ii) the average (steady state) number of withdrawals from the bank is used as

opposed to the discounted (expected) cost of withdrawals,

(iii) R is not an argument of the function T.

The assumptions behind this formulation make the comparative statics analysis

of the optimal M simple and intuitive. In particular the combination of iii) and the

Fisher equation (say that R = r + π for a fixed interest rate r), implies that the

inflation rate π is not an argument of T . This is not satisfactory because if c and M

denote real variables then the inflation rate should appear as an argument of T, as

inflation erodes the real value of money holdings.4 We will remove these simplifying

assumptions in the analysis of Section 4. The first order condition for problem (1)

is:

1 +
b

R
T ′ (M, c) = 1 +

b

R c
T ′

(
M

c
, 1

)
= 0

where the first equality follows by assuming, as it seems natural, that the technol-

ogy T (M, c)is homogenous of degree zero (Appendix A presents a thorough discus-

sion of the consequences of the homogeneity assumption for a general cost function

4Alternatively, one might take c and M to denote nominal quantities, which is an unsatisfactory
characterazion of the consumption behavior. Yet another (not so satisfactory) interpretation is that
the inflation rate does not change as R changes, which means that the model comparative statics
concern changes in the real rate r.
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T (M, c)).

In this first order condition T ′ (M) ≡ ∂T (M, c) /∂M is the decrease in the cost

of withdrawals due to an extra unit of money holdings. We will refer to T ′ as the

marginal cost of a withdrawal and to −R as the marginal benefit of an increase in

M . Notice that R , b and c enter the foc as a ratio, hence the money demand per

unit of cash consumption, M/c, is conveniently defined as a function (only) of the

relative cost β ≡ b/ (c R).

3.1 A technology with (exactly) p free withdrawals

Now we use this setup results to analyze the effect on money demand of a simple

form of technological progress in T. We consider

Tp (M/c) = max{(c/2)

M
− p, 0} . (2)

The parameter p index the level of technology T, in particular it has the interpreta-

tion of the average number of free withdrawals per unit of time. The following is a

concrete set-up that gives rise to the assumption of p free withdrawals. Assume that

the cost b represents the opportunity cost of the time of a trip to a bank branch or

an ATM. Think of an agent who, on her way to the ball game, passes by a bank

branch or an ATM, say once a week. In this case we can represent the technology

Tp as saying that she has one free withdrawal a week, or p = 1 per week. Now

imagine that an ATM is installed on the way of her job, and assume that she works

6 days a week. This technological improvement can be represented by an increase

in p, so that she gets 7 free withdrawals a week, or p = 7 per week.

Setting p = 0 in (2) all the trips are costly, and we obtain as a baseline case the

classical Baumol-Tobin,

T0 (M/c) =
(c/2)

M
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An agent with consumption flow c, withdraws 2 M, which last 2M/c periods, and

hence has average balances M and makes (c/2M) trips to the bank. Notice that

T0 has a marginal cost function T ′
0 has a constant elasticity equal to 2, which implies

the well known result that the money demand elasticity is 1/2. The interpretation

of the case of p > 0 is that the agent has p free withdrawals, so that if the total

number of withdrawals is (c/2) /M, then she pays only for the excess of (c/2) /M over

p, which gives the expression (2).

Throughout the analysis in this section we allow T to take any real value. How-

ever, the specification of the technology in (2) essentially puts a lower bound of

p on T. This is similar to the seminal analysis of Tobin (1956) where the integer

constraint on the number of transactions is carefully taken into account. Of course

the integer constraint puts a lower bound equal to zero on the number of transac-

tions. Our specification of Tp can be thought of as allowing the lower bound on the

transactions to be a parameter that indexes technological change.

The money demand for a technology with p ≥ 0 is given by

Mp (R) /c = (1/p)

√√√√ 1

4 max
{

R

2 b̂
, 1

} (3)

where

b̂ ≡ bp2/c . (4)

Consider the case where p = 0, so that it is the BT set-up. In this case, for low

R the forgone interest cost is small, so that agents decide to economize in costly

withdrawals, and hence choose a large value of M . Now consider the case of p > 0.

In this case there is no reason to have less than p withdrawals per unit of time,

since these are, by assumption, free. Hence, for all R < 2b̂ agents will choose the
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same level money holdings, namely, Mp (R) = Mp

(
2b̂

)
, since they are not paying

for any withdrawal but they are subject to positive forgone interest rate costs (hence

the interest elasticity is zero for R < 2b̂). Since for p > 0 the money demand is

constant for R < 2b̂, it is both lower in its level and it has a lower interest rate

elasticity than the money demand from the BT model. Indeed, (3)-(4) imply that

the range of interest rate R for which the money demand is lower and has lower

interest rate elasticity is increasing in p. For future reference, notice that keeping

b̂ fixed, as increasing p decreases the level of the money demand but it does not

change its interest rate elasticity. Hence the departure of the behavior relative to

the BT model is captured by the parameter b̂.

4 Money demand: a stochastic dynamic problem

This section extends the analysis along two dimensions. First, it takes an explicit

account of the dynamic nature of the cash inventory problem, as opposed to the

steady state analysis of Section 3. In doing so it also relaxes the steady state

assumptions in (A1). Second, it introduces a variation on the withdrawal technology

considered in Section 3.1. In particular, the technology considered here is one where

agents have a Poisson arrival of free opportunities to withdraw cash , as opposed to

the assumption of Section 3.1 of having a deterministic number of free withdrawals

per period. We think that, relative to the deterministic number of free withdrawals,

this assumption is a more realistic depiction of reality. Our maintained assumption

is that the main component of the cost for a withdrawal is the opportunity cost

of the households. We imagine that, for a given density of ATMs and bank desk,

an agent bumps into them at certain rate per unit of time – denoted by p in the

model. These are chance meetings with an intermediary that involves zero cost of

13



withdrawal5. We argue that random meetings with a financial intermediary is a

more realistic depiction of the opportunities faced by households. Our hypothesis

is that, as the density of bank branches and ATMs increases, then households get

more of these free opportunities to withdraw.

This model has several advantages, besides realism in the modeling of the search

technology, over the one with a fixed deterministic number of withdrawals per period.

First, a piece of evidence in favor of the random meeting model is that households

withdraw much before their cash balances reach zero (see the statistics on the cash at

withdrawals in Table 1). A related feature, is that the model with random meetings

implies, as shown in the data of Table 1 –and contrary to the implication of the

basic BT model and of the model with exactly p free withdrawals– that the ratio of

the average withdrawal to the average cash balances is below 2. Second, the model

with random meetings smooths out some of the stark features of the model with

exactly p free withdrawals. For instance, it turns out that its interest elasticity is

lower than 1/2 for the whole range of interest rates, as opposed to be either 1/2 or

0.

We emphasize that the model solves the problem of minimizing the cost of fi-

nancing a given cash consumption. We think that the explicit dynamic nature of

the model will allow us to use it in future work as a building block of a more com-

plete model of cash management, where the decision of paying with cash is formally

introduced. Finally, it turns out that the cost of introducing random meetings in

an explicitly dynamic model is small, in the sense that the agent decision problem

turns out to be very tractable, with an almost close form solution, a feature that we

plan to use in a structural estimation of the model.

We turn now to the description of the agent problem. She faces a cash-in-advance

constraint and can withdraw or deposit from an interest bearing account. The

5In section 6 we extend the model by assuming that withdrawals that occur upon these chance
meetings, rather than being free, are subject to a small fixed cost.
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sequence problem is to choose an increasing sequence of stopping times {τj} at which

to withdraw (or deposit) money in an interest bearing account, and the amounts to

withdraw at each time, so as to minimize the expected discounted cost of financing

a given constant real consumption flow c, denoted by TC0:

TC0 (τ,m) = E0

[ ∞∑
j=0

e−r τj
{
b Iτj

+
(
m

(
τ+
j

)−m
(
τ−j

))}
]

(5)

where we use m (t) to denote the real value of the stock of currency. The stock of

currency jumps discontinuously up at the time of a withdrawal, so use m (t+) and

m (t−) to denote the right and left limits of m. Thus the amount of a withdrawal at

τj is m
(
τ+
j

) −m
(
τ−j

)
. The law of motion of the real value of the stock of money

between withdrawals is given by

dm (t)

dt
= −c−m (t) π (6)

where π is the inflation rate and c the real consumption flow . We assume that

the agent contacts a financial institution with an exogenous probability p per unit

of time. More precisely, contacts with the financial intermediary follow a Poisson

process with arrival rate p. In the case of a contact the agent can withdraw (or

deposit) money in an interest bearing account without incurring a cost. If the agent

wants to withdraw (or deposit) in the financial institution in any other time, it

must pay a real cost b. The indicator Iτj
takes the value of zero if the withdrawal (or

deposit) takes place at the time t = τj of a contact with a financial intermediary, and

takes the value of one otherwise. The agent chooses stopping times and withdrawals

as function of the history of contacts with the intermediary. We use r for the real

rate at which cash flows are discounted. The initial conditions for the problem are

the real cash balances, m (0) = m0 and whether at time t = 0 the agent is matched
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with a financial intermediary or not.

We define the shadow cost of a policy {τj,m} as the expected discounted cost of

the withdrawals plus the expected discounted opportunity cost of the cash balances

held by the agent. We denote the shadow cost as SC0, which is given by:

SC0 (τ, m) = E0

[ ∞∑
j=0

e−r τj

{
b Iτj

+

∫ τj+1−τj

0

R m (τj + t) e−rt dt

}]
(7)

where R is the nominal interest rate and m follows the law of motion (6). The

shadow costs is defined in terms of the opportunity cost R and the parameters used

to define the total cost, (r, p, π, b). In the next Proposition we show that, provided

the Fisher equation R = r + π holds, then the total cost can be written as the

shadow cost plus the present value of c.

Proposition 1. Assume that R = r + π. For any policy {τ,m} the total cost equals

the shadow cost plus the present value of c, or

TC0 =
c

r
+ SC0 .

Proof. See appendix C.

Proposition 1 implies that minimizing the shadow cost is equivalent to minimiz-

ing the total cost only when R = r +π. Nevertheless, below we consider the shadow

cost problem for the general case of arbitrary values for R, r and π. We keep this

general case for two reasons. One is to accommodate other costs and benefits of

holding cash (such as the costs of petty crime). The second relates to the literature,

such as the classic papers by Baumol and Tobin, that does not impose the Fisher

equation as discussed above.

We use Vs (m) for the value function corresponding to the minimization of the
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shadow cost:

Vs (m0) = min
τ,m

SC0 (τ, m) (8)

subject to m (0) = m0 and where s = f denotes that the agent is matched to a

financial intermediary and s = u that she is not. The next section solves for V.

Finally, Proposition 1 also helps linking the dynamic model with the steady state

analysis done in Section 3. Each of the terms

b Iτj
+ R

∫ τj+1−τj

0

m (τj + t) e−rt dt

in the summation of the shadow cost is similar to cost b T (M, c)+RM in the steady

state formulation of Section 3. The difference is that here
∫ τj+1−τj

0
m (τj + t) e−rt dt are

real balances, as opposed to the nominal M , and that the consumption flow c in (6)

that is to be maintained constant is also real, as opposed to nominal, as discussed

above.

4.1 Bellman equation for V and optimal policies

We now describe the Bellman equation for Vs (·), find an analytical solution for it

and the associated optimal policy. We first write down the Bellman equation for an

agent unmatched with a financial intermediary and holding a real value of cash m.

The only decision that this agent must make is whether to remain unmatched, or

to pay the fixed cost b and be matched with a financial intermediary. If the agent

chooses not to contact the intermediary then, as standard, the Bellman equation

states that the return on the value function rVu (m) must equal the flow cost, given

by the opportunity cost Rm, plus the expected change per unit of time. There

are two sources of expected changes per unit of time: The first is that she finds a

financial intermediary with probability p, upon which she incurs in a change in value

Vf (m) − Vu (m) . The second is that in the next instant of time the real value of
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cash balances decreases by the amount c+mπ due, respectively, to her consumption

and the effect of inflation. Thus, denoting by V ′
u (m) the derivative of Vu (m) with

respect to m, the Bellman equation satisfies:

rVu (m) = Rm + p (Vf (m)− Vu (m)) + V ′
u (m) (−c−mπ) (9)

On the other hand, if the agent chooses to contact the intermediary, the Bellman

equation satisfies

Vu (m) = b + Vf (m) (10)

Notice that an agent can end up being matched with a financial intermediary

either because it exogenously ”bumps” into it with probability p, or because she

pays the cost b. Regardless of how she is matched, an agent matched with a financial

intermediary chooses the optimal withdrawal, which we denote by w, as follows

Vf (m) = min
w

Vu (m + w) (11)

subject to

w + m ≥ 0 (12)

where the constraint stipulates that after the withdrawal, or deposit, the cash bal-

ances are non-negative. Inspection of (11) reveals that Vf (·) does not depend on

m, so from now we denote this value as V ∗.

We now turn to the characterization of the Bellman equations and its optimal

policy. We will guess and later verify that the optimal policy is described by two

parameters, 0 < m∗ < m∗∗. The threshold m∗ is the value of cash that agents

choose at a financial intermediary; we refer to it as the cash replenishment level.

The threshold m∗∗ is a value of cash beyond which agents will pay the cost b, contact

the intermediary, and make a deposit so as to leave her cash balances at m∗.
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Given our guesses, m∗,m∗∗, Vu (m) and V ∗ we will assume, and later verify, that

Vu (m) < V ∗ + b for m ∈ (0,m∗∗)

so that for m ∈ (0,m∗∗) is not optimal to pay the cost and contact the intermediary.

We have that

Vu (0) = V ∗ + b

This equality follows since at m = 0 the agent must withdraw, since if she does not

in the next instance either m (t) becomes negative or she will not be able to finance

her consumption. Similarly,

Vu (m) = V ∗ + b for m ≥ m∗∗

which follows from the assumption that agents contact the intermediary for m ≥
m∗∗. Inserting these guesses into (9), (10), (11) implies that a solution of (8) is given

by numbers V ∗, m∗, m∗∗ and the function Vu (m) , satisfying:

V ∗ = Vu (m∗) = min
z

Vu (z) (13)

Vu (m) =





V ∗ + b if m = 0

Rm + pV ∗ − V ′
u (m) (c + mπ)

r + p
if m ∈ (0,m∗∗)

V ∗ + b if m ≥ m∗∗

(14)

In Appendix B we display the Bellman equations for the a discrete time version

of the model. The appendix provides an alternative derivation of the continuous

time Bellman equations (13) and (14) by taking limits of the discrete time case as

the length of the time interval goes to zero.

The next proposition gives one non-linear equation whose unique solution deter-
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mines the cash replenishment value m∗ as a function of the parameters of the model:

R, π, r, p, c and b.

Proposition 2. Assume that r + π + p > 0. The optimal return point m∗ is given

by the unique positive solution to

(
m∗

c
π + 1

)1+ r+p
π

=
m∗

c
(r + p + π) + 1 + (r + p) (r + p + π)

b

cR
(15)

for π 6= 0. See appendix C for a proof, and appendix F for the π = 0 case.

Note that, keeping r and π fixed, the solution for m∗/c is a function of (b/cR) , as

it is in the steady state derivation of money demand of Section 3. The next propo-

sition gives a closed form solution for the function Vu (·) , and the scalar V ∗ in terms

of m∗.

Proposition 3. Assume that r + π + p > 0. Let m∗ be the solution of (15).

(i) The value for the agents not matched with a financial institution, for m ∈
(0,m∗∗) , is given by the convex function:

Vu (m) =

[
pV ∗ −Rc/ (r + p + π)

r + p

]
+

[
R

r + p + π

]
m +

(
c

r + p

)2

A
[
1 +

π

c
m

]− r+p
π

where the constant A is given by:

A =
r + p

c2

(
R m∗ + (r + p) b +

Rc

r + p + π

)
> 0.

For m ≥ m∗∗

Vu (m) = V ∗ + b
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(ii) The value for the agents matched with a financial institution, V ∗, is given by:

V ∗ =
R

r
m∗

See appendix C for a proof and appendix F for the π = 0 case.

The close relationship between the value function at zero cash and the optimal

return point Vu (0) = (R/r) m∗ + b derived in these proposition will be useful to

measure the gains of different financial arrangements. The following picture displays

an example value function:

Figure 2: An example Value function
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The next proposition uses the characterization of the solution for m∗ to conduct

some comparative statics.
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Proposition 4. The optimal return point m∗ (R, r, π, c, b, p) has the following prop-

erties:

1. m∗ is homogenous of degree one in (c, b) .

2. The elasticity of m∗ with respect to b

0 ≤ b

m∗
dm∗

db
≤ 1

2

is decreasing in p, moreover m∗ → 0 as b → 0

3. m∗ is increasing in c, and

c

m∗
dm∗

dc
= 1− b

m∗
dm∗

db
.

4. The interest rate elasticity satisfies

0 ≤ − R

m∗
dm∗

dR
=

b

m∗
dm∗

db
≤ 1

2

and hence it is decreasing in p.

5. For small b/c, we can approximate m∗ by the the solution in BT model, or

m∗/c =

√
2

b

cR
+ o

(√
b

c

)

where o
(√

b
c

)
/
√

b
c
→ 0 as

√
b
c
→ 0.

6. Assuming that the Fisher equation holds, in that π = R − r, the elasticity of

m∗ evaluated at zero inflation, i.e. at R = r, satisfies

0 ≤ − p

m∗
dm∗

dp
|R=r ≤ p

p + r
.

7. Assuming that the Fisher equation holds, in that π = R − r, the elasticity of
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m∗ evaluated at zero inflation, i.e. at R = r, satisfies

− R

m∗
dm∗

dR
|R=r ≤ 1

2
.

with strict inequality iff r + p > 0.

Proof. See appendix C.

Properties 1-4 are the same as in the steady state money demand derived in

Section 3. Property 5 says that when b is small relative to c, the resulting money

demand is well approximated by the one for the BT model. Property 6. has its

analog in the model with p free trips of Section 3.1. The elasticities in 6. and 7. are

computed imposing the Fisher equation R = r+π, in particular we replace inflation

using π = R − r. Instead in the elasticity computed in property 4, as R changes,

the inflation rate π and the real rate r are kept constant. The fact that the interest

rate elasticity is smaller than 1/2 and decreasing (in absolute value) on p is is one

the main results of the model.

5 Distribution of cash balances and average num-

ber and size of cash withdrawals

This section derives the distribution of real cash holdings when the policy character-

ized by the parameters (m∗, p, c) is followed and the inflation rate is π. The policy

is to replenish cash holdings up to the return value m∗, either when a match with a

financial intermediary occurs, which happens at a rate p per unit of time, or when

the agent runs out of money (i.e. real balances hit zero). In the previous section

we showed that this is the nature of the optimal policy and we characterized how

m∗ depends on the fundamental parameters (R, r, π, p, c, b).

Our first result is to compute the expected number of withdrawals per unit
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of time, denoted by n. This includes both the withdrawals that occur upon an

exogenous contact with the financial intermediary and the ones initiated by the

agent when her cash balances reach zero.6

Proposition 5. The number of cash withdrawals per unit of time when π 6= 0 is

n (m∗; c, π, p) =
p

1− (1 + m∗π/c)−
p
π

(16)

See appendix C for a proof and appendix F for the π = 0 case.

For future reference we notice that n is homogenous of degree zero in (m∗, c) .As

can be seen from the expression the ratio n/p ≥ 1 since in addition to the p free

withdrawals it includes the costly withdrawals that agents do when they exhaust

their cash. Notice that n/p is decreasing in m∗, indicating that a greater value for

the return point allows the agent to finance consumption over a longer time-span.

The reciprocal of n gives the expected time between withdrawals. We can see that

1/n is a concave and increasing function of m∗π/c. A second order approximation

of this function gives:

1

n (m∗; c π, p)
=

m∗

c
− 1

2
(π + p)

(
m∗

c

)2

(17)

Note how this formula yields exactly the expression in the BT model when p =

π = 0. The formula shows, moreover, that the expected time between withdrawals

is decreasing in π and in p.

The next figures displays the average number of withdrawals against the level

of interest rates R for different values of the parameter p. All the flow variables are

6For instance if n = 52 when all the parameters are measured per annum or equivalently if
nday = 52/365 = 1/7 if measured per day, then the agent withdraws 52 times in a year or,
equivalently, she withdraws every 7 days (1/nday = 7).
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expressed annually, except consumption which is expressed daily, so n is the average

number of withdrawals per year.

Figure 3: Number of withdrawals
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We use b = 0.03 as implying a cost of about 3 percent of daily cash consumption,

which is equivalent to less than 2 percent of consumption of non-durables an services

(see Table 2), or about 1 percent of daily income. Comparing the numbers in this

plot with the ones of Table 1, it seems that a value of p of about 40 is reasonable

for those households with an ATM card and one p about 10 may be appropriate for

those without an ATM card.

The next Proposition derives the density of the distribution of real cash balances

as a function of p, π, c and m∗.
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Proposition 6. (i) The density for the real balances m when π 6= 0 is

h (m) =
(p

c

) ( [
1 + π

c
m

] p
π
−1

[
1 + π

c
m∗] p

π − 1

)
(18)

(ii) Let H (m,m∗
1) be the cumulative distribution of m for a given m∗. Let m∗

1 <

m∗
2, then H (m,m∗

2) ≤ H (m,m∗
1) , i.e. H (·, m∗

2) first order stochastically dominates

H (·,m∗
1).

See appendix C for a proof and appendix F for the π = 0 case.

In the proof of Proposition 6 we show that the density of m solves the following

ODE:

∂h (m)

∂m
=

(p− π)

(πm + c)
h (m)

for any m ∈ (0,m∗) . There are two forces determining how the mass is spread out,

i.e. determining the shape of this density. One force is that agents meet a financial

intermediary at a rate p, where they replenish their cash balances. The other is

that inflation eats away the real value of their nominal balances. Notice that if

p = π these two effects cancel and the density is uniformly constant. If p < π, the

density is downward sloping, with more agents at low values of real balances due

to the greater pull of the inflation effect. If p > π, the density is upward sloping

due the the greater effect of the replenishing of cash balances. To see this notice

that, as shown in the proof of Proposition 2 (in appendix C), πm∗ + c > 0, thus

πm + c > 0 for all m in the invariant support (0,m∗) and the sign of ∂h (m) /∂m is

given by the sign of (p− π) .

We can now define the aggregate money demand as

M =

∫ m∗

0

mh (m) dm.

The next proposition gives a formula for M as a function of p, π, c, and m∗.
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Proposition 7. (i) For a given m∗ , the aggregate money demand is given by :

M = µ (m∗; c, π, p) ≡ c

(
1 + π

c
m∗) p

π

[
m∗
c
− (1+π

c
m∗)

p+π

]
+ 1

p+π

[
1 + π

c
m∗] p

π − 1
(19)

for π 6= 0.

(ii) M is increasing in m∗.

See appendix C for a proof and appendix F for the π = 0 case.

The next figure displays a plot of the aggregate money demand M as a function

of the nominal interest rate R at various levels of financial diffusion p.

Figure 4: Aggregate money demand
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Very roughly, the numbers in this figure suggest that p = 40 produces cash

balances of similar magnitudes that those of ATM card holders in our Italian data

set. On the other hand, matching the cash balances of those households without an
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ATM, requires a much lower values of p, closer to 10.

The next proposition compares the interest rate elasticity of the aggregate money

demand, with the one for the average number of withdrawals. As a benchmark, recall

that in the Baumol Tobin model these two elasticities are −1/2 and 1/2 respectively.

In our model, for p > 0, the elasticity of the money demand is higher in absolute

value than the elasticity of the average number of withdrawals. The intuition for

this result is that the average money demand depends on both the target level for

cash replenishment m∗ and the average number of withdrawals, n. Indeed we have

that if the replenishment policy described above is followed then:

M

c
=

1

p + π
[n (m∗/c)− 1] , (20)

which can be verified by inserting the expression for n given by (16) into the formula

for M in (19). But, since for p > 0 some withdrawals entail no cost, the households

always makes p withdrawals on average. Notice that this is different from the de-

terministic steady state model with p free withdrawals (Section 3.1), where the two

interest rate elasticities were the same. This is also different from the evidence in

Tables 4 and 6 for Italian households, where we find similar interest rate elasticities,

in absolute values, for M/c and n.

Proposition 8. The interest rate elasticity of the average cash balances is larger in

absolute value than the interest rate elasticity of the average number of withdrawals, evaluated

at π = 0.

−M (R, r, π, p)

R

∂n (R, r, π, p)

∂R
|π=0 ≥ n (R, r, π, p)

R

∂n (R, r, π, p)

∂R
|π=0

See the appendix for the proof.

The next figure displays the interest rate elasticity of the average money balances
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for different values of the parameter p.

Figure 5: Interest rate elasticity of M
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The figure shows that to obtain an interest rate elasticity of the money demand

as low as 1/3 in absolute value the model requires a relatively large value of p. For

instance, with p = 80 the interest rate elasticity is 1/3 when evaluated at an interest

of 3 percent.

For future reference, the next proposition studies the relationship between M and

m∗ :

Proposition 9. The ratio M/m∗ is increasing in p with

M/m∗ =
1

2
for p = 0

M/m∗ → 1 as p →∞.
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Proof. To be done.

For the case of π = 0, the ratio M/m∗ has the following a simple expression:

M/m∗ =
1

1− exp (−pm∗/c)
− 1

p (m∗/c)

Since the right hand side is a decreasing function of (m∗/c) p, and since we had

shown that the elasticity of m∗/c is (in absolute value) smaller than p/ (p + r) , then

it implies that M∗/c is decreasing in p.

Now we turn to the analysis of the average number of withdrawals, which we

denote by W.

Proposition 10. The average withdrawal is given by:

W = m∗
[
1− p

n

]
+

[p

n

] ∫ m∗

0

(m∗ −m) h (m) dm (21)

where
∫ m∗

0

(m∗ −m) h (m) dm =

(1+π
c
m∗)

p
π +1−1

(p+π)/c
−m∗

(
1 + π

c
m∗) p

π − 1

Proof. Follows from Proposition 19 below setting f = 0.

To understand the expression for W notice that n−p is the number of withdrawals

in a unit of time that occur because agents reach zero balances, so if we divide it

by the total number of withdrawals per unit of time (n) we obtain the fraction of

withdrawals that occur the agent reaches zero balances. Each of these withdrawals

is of size m∗. The complementary fraction gives the withdrawals that occur due to

a chance meeting with the intermediary. A withdrawal of size m∗−m happens with

frequency h (m).

Combining the previous results we can see that for p > 0, the ratio of withdrawals
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to average cash holdings is less than 2. To see this, using the definition of W we

can write

W

M
=

m∗

M
− p

n
. (22)

Since M/m∗ ≥ 1/2, then it follows that W/M ≤ 2. Indeed notice that for p large

enough this ratio can be smaller than one. We mention this property because for

the Baumol - Tobin model the ratio W/M is exactly two, while in the data of Table

1 the average ratio is below 1.4 for those households without an ATM card and

about 1.2 for those with an ATM card. The intuition for this result in our model

is clear: agents take advantage of the free random withdrawals regardless of their

cash balances, hence the withdrawals are distributed on [0,m∗] , as opposed to be

concentrated on m∗, as in the BT model.

Figure 6: Withdrawal to currency ratio (W/M)
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We let M be the average amount of money that an agent has at the time of
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withdrawal. A fraction [1− p/n] of the withdrawals happens when m = 0. For the

remaining fraction, p/n, an agent has money holdings at the time of the withdrawal

distributed with density h, so that:

M = 0
[
1− p

n

]
+

[p

n

] ∫ m∗

0

m h (m) dm

Simple algebra shows that:

M = m∗ −W (23)

or inserting the definition of M into the expression for M we obtain:

M =
p

n
M (24)

Notice that in the BT model M = 0, since agents withdraw only when their cash

balances reach zero.

The theoretical model that we have proposed adds one parameter, namely p, to

a dynamic version of the BT model, which allows a larger class of cash-management

policies. In the BT model average withdrawal to currency W/M = 2, average cash

at withdrawal M/M = 0, and interest rate elasticities of M/c and n equal 1/2. The

model with p > 0, admits a wider range of values, including W/M < 2, M/M >

0, and lower interest rate elasticities of M/c and n. Indeed it is possible to obtain

the polar opposite of the BT model: as p → ∞, then W/M → 0, M/M → 1, and

the interest rate elasticities of M/c and n tend to zero. Indeed the next proposition

finds a one dimensional index, b̂ that determines how close is the cash-management

behavior of households is to the one prescribed by the BT model. The index b̂ is

defined as

b̂ ≡ (p + r)2 b/c

For low values of b̂/R, the cash-management behavior is as in the BT model, and
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for high values it is its polar opposite. The next proposition specializes the analysis

for π = 0 and, for most of it, for r → 0. The cost of consider this special set up has

been discussed before when we compare our set-up to the one in BT. The benefits

of consider this case is that the resulting expressions are very simple. For the next

proposition, we consider the case of π = 0 and define the normalized optimal return

point x as

x ≡ m∗ (r + p) /c .

Proposition 11. The normalized return point x is given by a strictly increasing

function γ
(
b̂/R

)
and has an interest rate elasticity of − (R/x) (∂x/∂R) that is

strictly decreasing in b̂/R :

−R

γ

∂γ

∂R
→ 1/2 as

(
b̂/R

)
→ 0, and − R

γ

∂γ

∂R
→ 0 as

(
b̂/R

)
→∞.

ii) There are functions φ (·) , ω (·) , α (·) , such that:

(M/c) p = φ

(
x

[
p

p + r

])
,

W/M = α (ω (x)) and
M

M
= 1/ω (x)

so that, as r → 0, the ratios: (M/c) p, W/M and M/M are functions of x =

γ
(
b̂/R

)
only, and satisfy:

W/M → 0 as x →∞ and W/M → 2 as x → 0,

M/M → 1 as x →∞ and M/M → 0 as x → 0,

−R

M/c

∂M/c

∂R
→ 0 as x →∞ and

−R

M/c

∂M/c

∂R
→ 1

2
as x → 0

moreover, ∂ log (M/c) /∂ log R ≤ 1.25/2 for all x, and decreases in x, for x ≥ 20.
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Proof. See appendix C.

This proposition makes clear the sense in which both b and p determine whether

cash-management behaves as in BT model or not. In particular, consider first the

case where financial development has the effect of decreasing b and increasing p, in

such a way as to keep b̂ constant. In this case the level of money demand M/c will

be converging to zero at the rate 1/p, but its interest rate elasticity as well as the

ratios W/M and M/M will stay constant. If instead the increase in p dominates the

decrease in b, so that b̂ → ∞, then −R/ (M/c) (∂M/c/∂R) → 0, W/M → 0 and

M/M → 1, so the cash-management behavior is the polar opposite of the one in

the BT model. Otherwise, if b̂ → 0, even as money holdings disappear, the cash-

management behavior becomes as in BT: since −R/ (M/c) (∂M/c/∂R) → 1/2,

W/M → 2 and M/M → 0.

Notice that the role of b̂ in Proposition 11 generalizes the effect of this parameter

in the deterministic model with exactly p free withdrawals analyzed in Section 3.1.

The effects on p and b̂ on the level and interest rate elasticity of the money demand

are a smooth version of the results for the model with exactly p free withdrawals.

The model of this section generalizes the effects of b̂ to the ratios W/M and M/M.

Finally, we consider a model where we introduce petty crime as an additional

cost of holding money. This is relevant for the empirical implementation of the

model. Assume that with probability q per unit of time an agent is robbed, so that

her cash balances go to zero, and she must withdraw. As before, we assume that

with probability p the agent can make a withdrawal (or deposit) at no cost. The

Bellman equation becomes:

rṼu (m) = Rm + p
(
Ṽ ∗ − Ṽu (m)

)
+ q

(
Ṽ ∗ + b− Ṽu (m) + m

)
+ Ṽ ′

u (m) (−c− πm)

(25)
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or

(r + p̃) Ṽu (m) = R̃m + p̃V ∗ − Ṽ ′
u (m) (c + πm) + qb (26)

with

Ṽ ∗ ≡ min
z

Ṽu (z) ≡ Ṽu (m∗) (27)

thus Ṽ ′
u (m∗) = 0 where:

R̃ = R + q and p̃ = p + q (28)

Notice that, after redefining the interest rate and the probability of a free withdrawal

this Bellman equation differs from the original one only by the constant qb in the

flow term. Hence its solution should differ only by a constant, and the optimal

policy should be the same, as the next proposition states.

Proposition. If Vu solves

(r + p̃) Vu (m) = R̃m + p̃V ∗ − V ′
u (m) (c + πm) (29)

for all m and

V ∗ = Vu (m∗) , V ′
u (m∗) = 0 (30)

then

Ṽu (m) = Vu (m) +
qb

r
(31)

Ṽ ∗ = V ∗ +
qb

r

m̃∗ = m∗

solves (26) and (27).

Thus, to find the optimal return point m∗ in the model with crime, we simply

use the same function as in the case of the model without crime, and replace R by
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R̃ = R + q and p by p̃ = p + q. Likewise, for a given return point m∗,the expressions

for M/c, W/M, and M/M are the same as in the model without crime, once we

replace the value of p by p̃ = p + q. We use this version of the model to reinterpret

the relative cost of holding cash, R̃/ (b/c) as well as to find empirical proxies for p̃.

6 Costly random withdrawals

The dynamic model discussed above has the unrealistic feature that agents withdraw

every time a match with a financial intermediary occurs, thus making as many

withdrawals as contact with the financial intermediary, many of which of a very small

size. In this section we extend the model to the case where the withdrawals (deposits)

done upon the random contacts with the financial intermediary are subject to a fixed

cost f. We assume that 0 < f < b.

As mentioned above, this model has a more realistic depiction of the distribution

of withdrawals, by limiting the minimum withdrawal size. In particular, we show

that the minimum withdrawal size is determined by the fixed cost relative to the

interest cost, i.e., f/R. Importantly, the minium withdrawal size is independent of

p. On the other hand, if f is large relative to b, the prediction of the model gets

closer to the ones of the Baumol-Tobin model. Indeed, if as f goes to b, then then

there is no advantage of a chance meeting with the financial intermediary, and hence

the model is identical to the one of the previous section, but with p = 0.

Agents face a cash-in-advance constraint, and they can withdraw or deposit from

an interest bearing account. The sequence problem is to choose an increasing se-

quence of stopping times {τj} at which to withdraw (or deposit) money in an interest

bearing account, and the amounts to withdraw at each time, so as to minimize the

expected discounted cost of financing a given constant real consumption flow c. The
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expected discounted total cost, denoted by TC0 is:

TC0 (τ, m) = E0

[ ∞∑
j=0

e−r τj

{
b Iτj

+ f Îτj
+

(
m

(
τ+
j

)−m
(
τ−j

))}
]

(32)

where we use m (t) to denote the real value of the stock of currency. As before,

the stock of currency jumps discontinuously up at the time of a withdrawal (so the

amount of a withdrawal at τj is m
(
τ+
j

)−m
(
τ−j

)
) and the law of motion of the real

value of the stock of money between withdrawals is given by equation (6).

As before we assume that contacts with the financial intermediary follow a Pois-

son process with arrival rate p. In the case of a contact the agent can withdraw (or

deposit) money in an interest bearing account at a real cost f . If the agent wants

to withdraw (or deposit) in the financial institution in any other time, it must pay

a real cost b. The indicator Iτj
takes the value of zero if the withdrawal (or deposit)

takes place at the time t = τj of a contact with a financial intermediary, and takes

the value of one otherwise. The indicator Îτj
takes the value of one if the withdrawal

(or deposit) takes place at the time t = τj of a contact with a financial interme-

diary, and takes the value of one otherwise. The agent chooses stopping times and

withdrawals as function of the history of contacts with the intermediary.

As before, we define the shadow cost of a policy {τj,m} as the expected dis-

counted cost of the withdrawals plus the expected discounted opportunity cost of

the cash balances held by the agent. We denote the shadow cost as SC0, which is

given by:

SC0 (τ, m) = E0

[ ∞∑
j=0

e−r τj

{
b Iτj

+ f Îτj
+

∫ τj+1−τj

0

R m (τj + t) e−rt dt

}]
(33)

The next Proposition is the analogous of Proposition 1.

Proposition 12. Assume that R = r+π. For any policy {τ, m} the total cost equals
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the shadow cost plus the present value of c, or

TC0 =
c

r
+ SC0 .

Proof. The proof is completely analogous to the one for Proposition 1.

We use Vs (m) for the value function corresponding to the minimization of the

shadow cost:

Vs (m0) = min
τ,m

SC0 (τ, m)

subject to m (0) = m0 and where s = f denotes that the agent is matched to a

financial intermediary and s = u that she is not. Let V ∗ be the minimum attained

by the value function, i.e. V ∗ ≡ V (m∗) = minz V (z) , which is the value attained

at the optimal return point m∗ and is independent of the state s.

Using notation that is analogous to the one that was used above, the Bellman

equation for this problem when the agent is not matched is given by:

rVu (m) = Rm + p min {V ∗ + f − Vu (m) , 0}+ V ′
u (m) (−c−mπ) (34)

where min {V ∗ + f − Vu (m) , 0} takes into account that it may not be optimal to

withdraw/deposit for all contacts with a financial intermediary. Indeed, whether

the agent chooses to do so will depend on her level of cash balances.

We will guess, and later verify, a shape for Vu (·) that implies a simple threshold

rule for the optimal policy. Our guess is that Vu (·) is strictly decreasing at m = 0

and single peaked attaining a minimum at a finite value of m. Then we guess that

there will be two thresholds, m and m̄, that satisfy:

V ∗ + f = Vu (m) = Vu (m̄) (35)
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Under these assumptions the minimized cost takes the form:

min {V ∗ + f − Vu (m) , 0} =





V ∗ + f − Vu (m) < 0 if m < m

0 if m ∈ (m, m̄)

V ∗ + f − Vu (m) < 0 if m > m̄

Thus solving the Bellman equation is equivalent to finding 5 numbers m∗,m∗∗,m, m̄, V ∗ and

a function Vu (·) such that:

V ∗ = Vu (m∗) = min
z

Vu (z)

which, given the convexity of Vu, we can write as the following two equations:

V ∗ = Vu (m∗) (36)

0 = V ′
u (m∗) (37)

and

Vu (m) =





Rm + p (V ∗ + f)− V ′
u (m) (c + mπ)

r + p
if m ∈ (0, m)

Rm− V ′
u (m) (c + mπ)

r
if m ∈ (m, m̄)

Rm + p (V ∗ + f)− V ′
u (m) (c + mπ)

r + p
if m ∈ (m̄, m∗∗)

(38)

and the conditions:

Vu (0) = V ∗ + b (39)

Vu (m) = V ∗ + b for m > m∗∗ (40)

Hence the optimal policy in this model is to pay the fixed cost f and withdraw

cash when the agent contact the financial intermediary, if her cash balance are
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in (0,m) or to deposit if the cash balances are larger than m̄. In either case the

withdrawal or deposits is such that the post transfer cash balances are set equal

to m∗. If the agent contacts a financial intermediary when her cash balances are in

(m, m̄) then, no action is taken. If the agent cash balances get to zero, then the

fixed cost b is paid, and after the withdraw the cash balances are set to m∗. Notice

that m∗ ∈ (m, m̄) . Hence, in this version the withdrawals will have minimum size,

namely m∗ −m. This is a more realistic depiction of actual management of cash.

Now we turn to the characterization and solution of the Bellman equation. The

solution of the model is similar to the one in the body of the paper, in Propositions

2 and 3. By using the analogous of lemma 1 we obtain the following:

Proposition 13. For a given V ∗, m, m̄,m∗∗ satisfying 0 < m < m̄ < m∗∗ :

The solution of (38) for m ∈ (m, m̄) is given by:

Vu (m) = ϕ (m,Aϕ) ≡ (41)

≡ −Rc/ (r + π)

r
+

(
R

r + π

)
m +

(c

r

)2

Aϕ

[
1 +

π

c
m

]− r
π

for an arbitrary constant Aϕ

Likewise, the solution of (38) for m ∈ (0, m) or m ∈ (m̄, m∗∗) is given by:

Vu (m) = η (m,V ∗, Aη) ≡ (42)

≡ p (V ∗ + f)−Rc/ (r + p + π)

r + p
+

(
R

r + p + π

)
m +

(
c

r + p

)2

Aη

[
1 +

π

c
m

]− r+p
π

for an arbitrary constant Aη.

Proof. See appendix D.

Next we are going to list a system of 5 equations in 5 unknowns that describes

a C1 solution of Vu (m) on the range [0,m∗]. The unknowns in the system are

V ∗, Aη, Aϕ,m,m∗. Using proposition 13, and the boundary conditions (35),(36),(37)
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and (39), the system is given by:

ϕm (m∗, Aϕ) = 0 (43)

ϕ (m∗, Aϕ) = V ∗ (44)

η (m,V ∗, Aη) = V ∗ + f (45)

η (0, V ∗, Aη) = V ∗ + b (46)

ϕ (m,Aϕ) = V ∗ + f (47)

In the proof of proposition 14 we show that the solution of this system can be

found by solving one non-linear equation in one unknown, namely m. Once the

system is solved it is straightforward to extend the solution to the range: (m∗,∞) .

Proposition 14. There is a unique solution for the system (43)-(47). The solution

characterizes a C1 function that is strictly decreasing on (0,m∗) , convex on (0, m̄)

and strictly increasing on (m∗,m∗∗). This function solves the Bellman equations

described above. The value function satisfies

Vu (0) =
R

r
m∗ + b

Proof. See appendix D.

Next we present a proposition about the determinants of the range of inaction

m∗−m, or equivalently the size of the minimum withdrawal.

Proposition 15. The range of inaction (m∗ −m) relative to the drift of cash bal-

ances, c + πm∗, solves:

f

R (c + m∗π)
=

(
m∗ −m

c + m∗π

)2
[

1

2
+

∑

k=1

1

(k + 2)!

(
m∗ −m

c + m∗π

)k

Πk+1
j=2 (r + jπ)

]
(48)
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Figure 7: Value function for f > 0
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Hence (m∗ −m) / (c + m∗π) is increasing in f/R (with elasticity smaller than 1/2)

and decreasing in r. Moreover it is decreasing (increasing) in π if π > 0 (π < 0).

Finally, for small f / [R (c + πm∗)] we have

m∗ −m

c + m∗π
=

√
2 f

R (c + πm∗)
+ o

((
f

R (c + πm∗)

)2
)

. (49)

Proof. See appendix D.

Importantly, this proposition says that the scaled range of inaction (m∗ −m) / (c + m∗π)

is not a function of p or b. Its approximation implies that

R

(m∗ −m)

∂ (m∗ −m)

∂R
|π=0 = −1

2
+

1

2

(
R

m∗

c

)
∂π

∂R
.
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The quantity c + m∗π is a measure of the use of cash per period: the sum of cash

consumption plus the opportunity cost πm∗. The quantity m∗−m also measures

the size of the smallest withdrawal. Hence (m∗ −m) / (c + m∗π) is a measure of

the minimum withdrawal in terms of the cash used per period. We stress that the

minimum withdrawal does not depend on p and b, and that, as the approximation

above makes clear, it is analogous to the withdrawal of the BT model facing a fixed

cost f and an interest rate R.

The next proposition examines the expected number of withdrawals n.

Proposition 16. The expected number of withdrawals per unit of time, n is given

by

n =
p

(p/π) log (1 + (m∗ −m) π/c) + 1− (1 + mπ/c)−
p
π

(50)

and the fraction of agents with cash balances below m is given by

H (m) =
1− (1 + mπ/c)−

p
π

(p/π) log (1 + (m∗ −m) π/c) + 1− (1 + mπ/c)−
p
π

(51)

Proof. See appendix D.

Inspection of equation (50) confirms that when m∗ > m the expected number

of withdrawals (n) is no longer bounded below by p. Indeed, as p → ∞ then n →
[(1/π) log (1 + (m∗ −m) π/c)]−1 , which is the reciprocal of the time that it takes

for an agent that starts with money holding m∗ (and consuming at rate c when the

inflation rate is π) to reach real money holdings m.

The next figure plots n against the nominal interest rate for several values of p.

To highlight the role of f > 0 all the subsequent figures have the same parameter

values for b, c and r that were used above for the case where f = 0.

Compare this figure with the one obtained for f = 0 . Notice that the number
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Figure 8: Number of withdrawals for f > 0
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of trips associated to the same values for p and R are much smaller; in particular

notice than in this case n < p. Given the parameters in this figure, a value of p of

about 200 is required for the number of withdrawals to be similar to the ones in the

case of f = 0 and p = 40, which are similar to the ones of households with an ATM

card in our data set.

As in the case of f = 0, for any m ∈ [0,m] the density h (m) solves the following

ODE:

∂h (m)

∂m
=

(p− π)

(πm + c)
h (m)

The reason for this is that in this interval the behavior of the system is the same as

the one for f = 0. On the interval m ∈ [m,m∗] the density h (m) solves the following

ODE:

∂h (m)

∂m
=

−π

(πm + c)
h (m)
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The reason for this is that locally in this interval the chance meetings with the

intermediary do not trigger a withdrawal, and hence it is as if p = 0.

Proposition 17. The density h (m) and CDF H (m) for m ∈ [0,m] are given by:

h (m) = A0

(
1 +

π

c
m

) p
π
−1

(52)

H (m) =
c

p
A0

[(
1 +

π

c
m

) p
π − 1

]
(53)

where

A0 =
p

c

H (m)
(
1 + π

c
m

) p
π − 1

(54)

.

The density h (m) and CDF H (m) for m ∈ [m,m∗] are given by:

h (m) = A1

(
1 +

π

c
m

)−1

(55)

H (m) =
c

π
A1 log

(
1 + π

c
m

1 + π
c
m∗

)
+ 1 (56)

where

A1 =
π

c

1−H (m)

log
(
1 + π

c
m∗)− log

(
1 + π

c
m

) (57)

Proof. See appendix D.

Using the previous density we compute average money holdings.

Proposition 18. The average (expected) real money holdings are:

M =

∫ m

0

mh (m) dm +

∫ m∗

m

mh (m) dm
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or

M = m∗ − c

p
A0

[(
1 + π

c
m

) p
π

+1 − 1

(p + π) /c
−m

]
(58)

−A1

( c

π

)2 {(
1 +

π

c
m∗

) [
log

(
1 +

π

c
m∗

)
− 1

]
−

(
1 +

π

c
m

) [
log

(
1 +

π

c
m

)
− 1

]}

+ (m∗ −m)
( c

π
A1 log

(
1 +

π

c
m∗

)
− 1

)

where A0 and A1 are given in (54) and (57).

Proof. See appendix D.

The next figures plot the level and elasticity of money demand for the same

parameter values.

Figure 9: Money demand for f > 0
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While, as shown in the previous figures, the introduction of f > 0 has a large

effect on the average number of withdrawals, it has a much smaller effect on the level
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Figure 10: Interest elasticity of money demand for f > 0
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and on the interest rate elasticity of money demand. This is quite natural, since the

effect of the fixed cost f on the number of withdrawals comes from eliminating the

ones that are small in size.

As done in Section 5, we use the density to compute the average withdrawal:

Proposition 19. The average withdrawal W is given by:

W = m∗
[
1− p

n
H (m)

]
+

[p

n
H (m)

] ∫ m

0
(m∗ −m) h (m) dm

H (m)
(59)

where
∫ m

0
(m∗ −m) h (m) dm

H (m)
= m∗ −m +

(1+π
c
m)

p
π +1−1

(p+π)/c
−m

(
1 + π

c
m

) p
π − 1

To understand this expressions notice that n − pH (m) is the number of with-

drawals in a unit of time that occur because agents reach zero balances, so if we
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divided it by the total number of withdrawals per unit of time, n, we obtain

[
n− pH (m)

n

]
= 1− p

n
H (m)

i.e. the fraction of withdrawals that occur when agent reach zero balances. Each of

these withdrawals is of size m∗. The complementary fraction gives the withdrawals

that occur due to a chance meeting with the intermediary. Conditional on having

money balances in (0,m) then a withdrawal of size (m∗ −m) happens with frequency

h (m) /H (m) .

By the same reasoning than in the f = 0 case, the average amount of money

that an agent has at the time of withdrawal, M, satisfies

M = 0
[
1− p

n
H (m)

]
+

[p

n
H (m)

] ∫ m

0
m h (m) dm

H (m)
.

Simple algebra shows that:

M = m∗ −W. (60)

Alternatively, inserting the definition of M into the expression for M we obtain

M =
n

p
M +

∫ m∗

m

mh (m) dm

or

p = n
M/M

1−
[∫ m∗

m
mh (m) dm

]
/M

.

7 Estimation of the model

This section estimates the structural parameters of the theoretical model presented

above using the household data set described in Section 2. Our estimation procedure

selects parameters values of (b, f, p) to produce values for (M/c, W/c, n, M/M)
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that are closest to the analogous quantities in the data, for each year, province and

type of households, i.e. those with and without ATM cards. We investigate how

our estimates of (b, f, p) relate to the empirical measures of financial innovations

presented in Table 2 , and use them to asses if the pattern of financial development

makes the cash-management more or less similar to the one of the Baumol-Tobin

type . Finally, we use our model and the estimated parameters to compute the

implied benefits of using an ATM card.

In the following discussion we fix a particular combination of year-province-type

of household, where type is defined by the ownership of an ATM card. We let i index

the household in that year-province-type combination. For a given year-province-

type we assume that households can differ in their cash consumption ci and their

cost parameter bi and fi. We constraint these parameters so that bi = ci b and

fi = ci f. The rationale behind this assumption is that the cost bi and fi are mostly

opportunity cost of the time, so that they are likely to be high for those household wit

high cash-consumption. We assume that p is common for all households. Given the

homogeneity of the optimal decision rules, these assumption allows us to aggregate

the decisions of different households of a given year-province-type.

We assume that the variables M/c, W/M, n and M/M, which we index as

j = 1, 2, 3 and 4, are measured with a multiplicative error (additive in logs). Let

xj
i be the (log of the) i − th observation on variable j, and f j (θ) the (log of the)

model prediction of the j variable for the parameter vector θ. The number Nj is the

size of the sample of the variable j.7The idea behind this formulation is that the

variable xj
i is observed with a measurement error εj

i which has zero expected value

and variance σ2
j so that

xj
i = f j (θ) + εj

i

7Our data set have different number of observations for different variables. For instance, in year
2004 the question about the cash at withdrawal M was dropped from the survey. Additionally
only a fraction of the households are asked about withdrawal amounts W.
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where the errors εj
i are assumed to be independent across observations (i.e. house-

holds) and for now, across variables j. We estimate a the vector of parameters

θ = (b, f, p) for each province-year-type by minimizing the following objective func-

tion:

F (θ; x) ≡
4∑

j=1

(
Nj

σ2
j

) 
 1

Nj

Nj∑
i=1

xj
i − f j (θ)




2

where σj is an estimate of the variance of the measurement error for the variable

j. We estimate σ2
j as the variance of the residual in a regression where we pull

all the households of a given type, and include dummies for each province-year

combination. Table 4 displays statistics for Nj across provinces and variables, as

well as the values used for σj.

Table 4: Weights used in the estimation

log(M/c) log(W/M) log(n) log(M/M)
Households with ATM

Standard dev. (σj) 0.78 0.72 0.76 0.97
Mean number of obs.

per province-year(Nj) 32.2 18.0 28.9 27.1
Households without ATM

Standard dev. (σj) 0.73 0.80 0.87 1.01
Mean number of obs.

per province-year(Nj) 26.3 20.3 18.6 20.9

Notes: There is a total of 103 provinces and 6 years.

The estimation criterion assumes that the variables are affected by measurement

error, a recurrent feature of survey data. For instance, measurement error in con-

sumption has been documented in this data set by Battistin, Miniaci and Weber

(2003). An illustration of the extent of the measurement error can be derived by

assuming that the data should satisfy the identity for the cash flows:

c = n W − πM
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which holds in a large class of models, as derived in Appendix E. Figure 11 reports

a histogram of n (W/c) − π (M/c) for each type of households. In the absence of

measurement error, all the mass should be located at 1. It is clear that the data

deviate from this value for many households. 8 At least for households with an

ATM card, we view the histogram as well approximated by a normal distribution

(in log scale).

Figure 11: Measurement error
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While not strictly necessary, we add the assumption that the errors εj
j are nor-

mally distributed. Under the assumption that the measurement error is normally

distributed the estimator coincide with the maximum likelihood estimator.

We also present estimates using an objective where we allow the variance of the

xj′s to be non-diagonal. In this case the objective function is:

F (θ, x) = [ x̄− f (θ)] ′ Ω−1 [ x̄− f (θ)]

8Besides classical measurement error, which is probably important in this type of survey, there
is also the issue of whether households have an alternatively source of cash. An example of such as
source occurs if households are paid in cash. This will imply that they do require fewer withdrawals
to finance the same flow of consumption, or alternatively, that they effectively have more trips per
periods.
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where f (θ) = (f 1 (θ) , ..., f 4 (θ)) , x̄ = (x̄1, ..., x̄4) with x̄j =
(

1
Nj

∑Nj

i=1 xj
i

)
and

Ω = T Σ T ′ where Σ is the var-cov matrix of the xj and T = diag
(√

N j
)

.

7.1 Identification

In this section we discuss the features of the data that identifies our parameters.

We argue with our date set we can identify (p, b) and test the model, but that the

type of information that we have does not allow to identify f.

Let us consider first the version of the model with f = 0. As a first step

we study how to select the parameters to match M/c and n only, as opposed to

(M/c, n, W/M, M/M). To simplify the exposition here, assume that inflation is

zero, so that π = 0. For the BT model, i.e. for p = 0, we have

W = m∗, c = m∗ n, and M = m∗ (1/2)

which implies

M/c = (1/2) / n .

Hence, if the data were generated by the BT model, M/c and n would have to satisfy

this equation. Now consider the average cash balances generated by a policy like

the one of the model of Section 4 with zero inflation, i.e. with f = π = 0, for an

given value of p. We have:

M/c =
1

p
[n m∗/c− 1] and n =

p

1− exp (−pm∗/c)
(61)

or, solving for M/c as a function of n :

M/c = ξ (n, p) ≡ 1

p

[
−n

p
log

(
1− p

n

)
− 1

]
.
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For a given p,the M/c = ξ (n, p) , and n are the pairs that are consistent with a cash

management policy of replenishing cash to some value m∗ either when the balances

reach zero, or when there is chance meeting with an intermediary and suffices to

finance a consumption flow c. Notice first that setting p = 0 in this equation we

obtain BT, i.e.

ξ (n, 0) = (1/2) / n

Second, notice that this function is defined only for n ≥ p. Furthermore, note that

for p > 0 (see Appendix G for details):

∂ξ

∂n
=

(
1

p

)2 [
log

(
n

n− p

)
− p

n− p

]
≤ 0

∂2ξ

∂n2
=

(
1

p

)2
p

(n− p)2

p

n
> 0

∂ξ

∂p
=

1

p2

n

p

[
2 log

(
1− p

n

)
+ 1 +

p/n

1− p/n

]
> 0

Consider plotting the target value of the data on the (n, M/c) plane. For a given

M/c, there is a minimum n that the model can generate, namely the value (1/2) / (M/c) . Given

that ∂ξ/∂p > 0, any value of n smaller than the one implied by the BT model can-

not be made consistent with our model, regardless of the values for the rest of the

parameters. By the same reason, any value of n higher than (1/2) / (M/c) can be

accommodated by an appropriate choice of p. This is quite intuitive: relative to the

BT model, our model can generate a larger number of withdrawals for the same

M/c if the agent meets an intermediary often enough, i.e. if p is large enough. On

the other hand there is a minimum number of expected chance meetings, namely

p = 0.

The previous discussion, show that p is identified. Specifically, fix a province-

year-type of household combination, with its corresponding values for the averages

of M/c and n, then solving M/c = ξ (n, p ) for p gives an estimate of p. Then, taking
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this value of p, M/c and n for this province-year-type of household combination, we

use (20) to find the corresponding m∗/c as follows:

m∗/c =
p M/c + 1

n
.

Finally, we use (92) to find the value of β ≡ b/ (cR) that rationalizes this choice. In

particular, we specialize the expression in Appendix H to the case of π = f = 0 to

obtain:

β ≡ b

cR
=

(
1

(r + p)2

)
(exp ((r + p) m∗/c)− [1 + (r + p) (m∗/c)] ) (62)

(see the appendix G for details). To understand this expression, consider two pairs

(M/c, n) , both pairs in the locus defined by ξ (·, p) for a given value of p. The

pair with higher M/c and lower n corresponds to a higher value of β. This is quite

intuitive: agents will economize on trips to the financial intermediary if β is high,

i.e. if these trips are expensive relative to the opportunity cost of cash. Hence, data

on M/c and n identify p and β. Using data on R for this province-year, we can

estimate b/c.

Figure 12 plots the function ξ (·, p) for several values of p, as well as the average

value of M/c and n for all households of a given type (i.e. with and without ATM

cards) for each province-year in our data. Notice that 46 percent of province-year

pairs for households without an ATM card are below the ξ (·, 0) line, so no param-

eters in our model can rationalize those choices. The corresponding value for those

with an ATM card is only 3.5 percent of the pairs. The values of p required to ratio-

nalize the average choice for most province-year pairs for those households without

ATM cards are in the range p = 0 to p = 20. The corresponding range for those with

ATM cards is between p = 5 and p = 60. Inspecting this figure we can also see that

the observations for households with ATM cards are to the south-east of those for

54



households without ATM cards. Equivalently, we can see that for the same value

of p, the observations that correspond to households with ATM tend to have lower

values of β.

Figure 12: Theory vs. data
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Now we turn to the analysis of the ratio of the average withdrawal to the average

cash balances, W/M . As in the previous case, consider an agent that follows an

arbitrary policy of replenishing her cash to a return level m∗, either as her cash

balances gets to zero, or at the time of chance meeting with the intermediary. Again,

to simplify consider the case of π = 0. Using the expression for for W/M (22), and

replacing m∗ from (61) we can define the function ζ as follows

W

M
= ζ (n, p) ≡

[
1

p/n
+

1

log (1− p/n)

]−1

− p

n
(63)

for n ≥ p, and p ≥ 0 (see appendix G for details). After some algebra one can show
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that

ζ (n, 0) = 2, ζ (n, n) = 0,

∂ζ (n; p)

∂p
< 0 and

∂ζ (n; p)

∂n
> 0

Notice that the ratio W/M is a function only of the ratio p/n.The interpretation of

this is clear: for p = 0 we have W/M = 2, as in the BT model. This is the highest

value that can can be achieved of the ratio W/M. As p increases for a fixed n, the

replenishing level of cash m∗/c must be smaller, and hence the average withdrawal

becomes smaller relative the average cash holdings M/c. Indeed, as n converges to

p – a case where almost all the withdrawals are due to chance meetings with the

intermediary–, then W/M goes to zero.

As in the previous case, given target values of W/M and n in the data we can

use ζ to solve for the corresponding p. Then, using the values of (W/M p, n) we can

find a value of (b/c) /R to rationalize the choice of W/M. To see how, notice that

given W/M, M/c, and p/n, we can find the value of m∗/c using

W

M
=

m∗/c
M/c

− p

n

With the values of (m∗/c, p) we can find the unique value of β = (b/c) /R that

rationalize this choice, using (62). Thus, data on W/M and n identifies p.

Figure 13 plots the function ζ (n, p) for several values of p, as well as the average

values of n and W/M for the different province-year-household type type combina-

tions for our data set. We note that about 3 percent of the year province pairs of

households with an ATM cards have W/M above 2, while for those without ATM

card the corresponding value is 15 percent. In this this case, as opposed to the

experiment displayed in Figure 11, no data on the average consumption flow c is

56



used, thus it may be that these smallest percentages are due to larger measurement

error on c. The implied values of p needed to rationalize these data are similar to

the ones found using the information of M/c and n displayed in Figure 12. Also the

implied values of β that corresponds to the same p tend to be smaller for households

with an ATM card since the observations are to the south-east.

Figure 13: Theory vs. data
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Finally we discuss the ratio between the average cash at withdrawals and the

unconditional average cash: M/M . In (24) we have derived that:

p = n (M/M) .

We use this equation as a way to estimate p. If M is zero, then p must be zero,

as it is in the model with no randomness, such as the BT model –even if there are
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some ”free” withdrawals. Hence, the fact that, as Table 1 indicates M/M > 0 is

an indication that our model requires p > 0. We can readily use this equation to

estimate p since we have data on both n and (M/M) . According to this formula

a large value of p is consistent with either a large value of cash at withdrawals,

M/M, or a large number of total withdrawals, n. Also, for a fixed p, different

combination of n and M/M that give the same produce are due to differences in

β = (b/c) /R. If β is high, then agents economize in the number of withdrawals

n and keep larger cash balances.

Figure 14 plots for each province/year type the average logarithm of M/M and

n, as well as lines corresponding different hypothetical values of p. The fraction of

province-years where M/M > 1, is less than 3 percent for both households with

and without ATMs. The ranges of values of p needed to rationalize the choices of

households with and without ATM across the province-years is similar than the ones

in the previous two figures. Also, as in the previous two figures, for the same p the

observations corresponding to households with ATM correspond to lower values of

β –they are to the south-east of those without ATM cards.

We have discussed how data on either of the pairs (M/c, n) , (W/M, n) or

(M/M, n) identify p and β. Of course, if the model has generated the data, the

three ways of estimating (p, β) should yield the same values. In other words, the

model is overidentified. We will use this idea to report how well the model fits the

data, or more formally, to test for the overidentifying restrictions. For instance, the

model with π = 0 implies the following relationship between M/M and W/M :

W

M
=

[
1

(M/M)
+

1

log (1− (M/M))

]−1

− (M/M) (64)

which is obtained by replacing p/n = M/M into W/M = ζ (1, p/n) . This function

is decreasing, reflecting that W/M is decreasing in p and M/M is increasing in p.
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Figure 14: Theory vs. data
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Indeed for p close to zero, the model tends to BT so M/M has to be close to zero

and W/M has to be close to 2, and for p very large, W/M is close to zero and

M/M is close to one. Figure 15 plots this theoretical relationship as well as the pair

of W/M and M/M for different province year, all in logs. Different points on the

theoretical curve defined by the function (64) correspond to different values of p.

It is apparent that lots of the province-year pairs are not close to the theoretical

relationship, especially for the case of households with no ATM cards. Indeed the

pairs of W/M and M/M for different province-years are positively correlated in

the data, with correlations of 0.18 and 0.33 for those with ATM and without ATM

cards, respectively. One potential reason for this counterfactual positive correlation

is measurement error in M. Clearly, if there is substantial measurement error in M,

the error ridden quantities W/M and M/M can be positively correlated even if they

59



Figure 15: Theory vs. data
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were generated by a model where the relationship (64) holds.

Considering the case of π > 0 makes the expressions more complex, but, at least

qualitatively, does not change any of the properties discussed above. Moreover,

quantitatively, since the inflation rate in our data set is quite low, the expressions

of the model for π = 0, approximates the relevant range for π > 0 very well. The

estimates obtained below use the inflation rate π that corresponds to each year for

Italy.

7.2 Estimation results

We estimate the f = 0 model for each province-year-type of household and report

statistics of the estimates in Table 5. For each year we use the inflation rate corre-

sponding to the Italian CPI for all provinces and fix the real return r to be 2% per
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year. The first two panels report the mean, median, 95th and 5th percentile of the

estimated values for p and b/c across all province-years. The parameter p is measure

in probability per unit of time, so that 1/p gives the average number of contacts

per year. The parameter b is measure in units of daily cash-consumption. 9 We

also report the mean and median values of the t statistics for these parameters. The

standard errors are computed by solving for the information matrix. The results in

this table confirm the graphical analysis of figures 12-14 discussed in the previous

section: the median estimates of p are just where one will locate them in these fig-

ures. The t-statistics indicates that in average the values are precisely estimated.

The difference between the mean and the median, as well as the 95/05 percentiles

show that, as the figures show, there is a tremendous amount of heterogeneity across

province-years. As expected, this table shows households with ATM cards have a

higher mean and median value of p and correspondingly lower values of b. It is also

the case that 95 percent of the province-year pairs the estimated value of p is higher

for those with ATM, and for 93 percent of the pairs the estimated value of b is

lower. Also the correlation between the estimated values of b for households with

and without ATM across province-year pairs is 0.79. The same statistic for p is

0.37. These patterns are consistent with the hypothesis that households with ATM

cards have access to a more efficient transactions system, and that the efficiency of

the transaction technology in a given province-year is correlated for both ATM and

non-ATM adopters. We find these reassuring since we have estimated the model for

ATM holders and non-holders and for each province-year separately.

The third panel presents statistics that measure the goodness of fit of the model.

We report the mean and median values of the minimized objective function F. Under

the assumption of normal distributed errors, or as an asymptotic result, the mini-

mized objective function is distributed as a χ2
(2). According to the statistic reported

9See Table 1 for estimates of average annual cash-consumption, and ratios of cash-consumption
to consumptio of non-durables and services.
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Table 5: Estimation results for the f = 0 model

Household w/o ATM Household w. ATM
Parameter p

Mean 7.2 23.2
Median 5.7 18.9
95thpercentile 18.3 50.1
5th percentile 1.4 4.9
Mean t-stat 3.3 4.5
Median t-stat 3.1 3.9

Parameter b
Mean 0.04 0.02
Median 0.02 0.005
95th percentile 0.15 0.05
5th percentile 0.002 0.001
Mean t-stat 3.8 4.0
Median t-stat 3.5 3.5

Goodness of fit
Objective function F (θ, x) ∼ χ2(2)

Mean 9.3 14.3
Median 4.1 6.0

Percentage of province-years where:
- F (θ, x) < 4.6∗ 52.9% 44.9%
- Hp. f = 0 is rejected∗∗ 7.1% 35.4%

N. prov-year estimates 563 593

Notes: The table reports summary statistics for the estimates of (p, b, f) obtained from each of
the 618 province-year where estimation was possible. All the lines except one (see note ∗∗) report
statistics obtained from a model where the parameter f is equal to zero for all province years.
- ∗ The statistics on this line report the percentage of province-year estimates where the overiden-
tifying restriction test is not rejected at the 10 per cent confidence level.
- ∗∗ The statistics on this line are based on a comparison between the likelihood for the restricted
model (f = 0) with the likelihood for a model where f is allowed to vary across province-years.
The number reported is the percentage of province-year estimates where the null hypothesis of
f = 0 is rejected by a likelihood ratio test at the 5% confidence level.

in the third line of this panel, in roughly half of the province-years the minimized

objective function is smaller than the critical value corresponding to a 10% prob-

ability confidence level, i.e. the model is not rejected in about half of the cases,

which is consistent with the information displayed in Figure 15 at the end of last

section. We consider that the fit of the model is reasonable, given how simple it is.
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As explained at the end of the previous section, the rejection of the model happens

for two reasons: either there are no parameters for which the model can fit some of

the observations (say W/M > 2 ) or the parameters needed to match one variable

differ from the ones needed to match another variable (say, for instance, M = 0,

which implies p = 0 and W/M < 1,which requires p > 0). The rejections are due to

each of these two reasons about half of the time.

Finally we examine the extent to which imposing the constraint that f =

0 diminishes the ability of the model to fit the data. To do so we reestimate the

model letting f vary across province years, and compare the fit of the restricted

(f = 0) with the unrestricted model using a likelihood ratio test. The last line of

the panel reports the percentage of province-years pairs where the null hypothesis

of f = 0 is rejected at a 5% confidence level. From this we conclude that while there

is some improvement in the fit of the model by letting f > 0, this improvement is

not that large.

In Appendix I we report the estimate of two variations of the model with f >

0. In one case, we fixed f at a positive value equal across all province years. In

the other case, we let f vary across province-years. We argue that while there an

improvement in the fit for a relatively small fraction of province-years of letting

f > 0, as documented in the last line of Table 5, the variables in our data set does

not contains the type of information that will allow us to identify the parameter f .

Indeed, as documented in Tables 9 and 10 in Appendix I, when we let f > 0 and

estimate the model for each province-year, the average as well as median t-statistic

of the parameters (p, b, f) are very low, and the average correlation between the

estimates is extremely high. Additionally, there is a extremely high variability in

the estimated parameters across province-years. In the case where f is fixed at

the same value for all province-years, the average t-statistic are higher, but the

estimated parameters still vary considerably across province-years. We conclude
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that the information in our data set does not allows to estimate p, b and f with

a reasonable degree of precision. As we explained when we introduced the model

with f > 0, the reason to consider that model is to eliminate the extremely small

withdrawals that the model with f = 0 implies. Hence, what will be helpful to

estimate f is information on the minimum size of withdrawals, or some other feature

of the withdrawal distribution.

In Table 6 we compute correlations of the estimates of p and b with indicators that

measure the density of financial intermediaries. We have the following indicators

that vary across province and years: number of Bank Branches per resident, as well

as per square mile, and number of ATM per resident. We interpret these indicators

as measures of the ease to which a household can withdraw money from her banking

account, and hence we expect the estimated probability p to be positively correlated

with these indicators, and the cost b to be negatively correlated with them. Strictly

speaking the measure of ATM should not be relevant for household without an

ATM card, but we include all correlations because these indicators may be crude

proxies for the general degree of development of the financial system. We find that

the estimated costs b are negatively correlated with these measures, and that the

estimated p are positively correlated, but the latter correlation is small and very

noisy.

Recall our discussion in Section 7.1 were we explained that our model identifies

the cost of a withdrawal b/c relative to the interest rate R, i.e. it identifies β ≡
(b/c/) R. Of course, given data on R one can use the estimated β to back up the

corresponding b/c, as we have done. In Table 7 we regress the estimated β against

the log of the average level of cash consumption for that province year, the level of

interest rate, and a measure of density of financial intermediaries. We want to answer

two questions with this regression. The first question is to want extent the relative

cost varies because of variations of interest rates. In one extreme, if the variation of
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Table 6: Correlations between the estimates and financial development indices

Household with ATM
p b b · p2 Vu(0)

Bank-branch per 1,000 head 0.07 -0.35∗∗ -0.17∗∗ -0.26∗∗

Bank-branch per sq. mile 0.06 -0.14∗∗ -0.04 -0.17∗∗

ATM per 1,000 head 0.09∗ -0.53∗∗ -0.26∗∗ -0.52∗∗

Household with No ATM
p b b · p2 Vu(0)

Bank-branch per 1,000 head 0.10 -0.37∗∗ -0.23∗∗ -0.28∗∗

Bank-branch per sq. mile 0.11∗∗ -0.21∗∗ -0.08 -0.19∗∗

ATM per 1,000 head 0.15∗∗ -0.55∗∗ -0.30∗∗ -0.52∗∗

Notes: Correlation coefficient between the estimated values of (p, b, b·p2, Vu(0)) and empirical
diffusion measures of bank branches or ATM terminals. All variables are measured in logs.
The sample size is 593 for HH w. ATM and 563 for HH without ATM. One or two asterisks
indicate that the correlation coefficient p-value, computed assuming that the estimates are
independent, is smaller than 5 or 1 per cent, respectively.

b will be independent of interest rates, we will obtain an elasticity of β with respect

to R equal to −1 in this regression. Table shows a significant, negative, but small

interest rate elasticity of β for households with and ATM card, and a very small,

positive, but not significant elasticity for those without an ATM card. Hence, we find

that b/c is systematically related to interest rates, a fact for which we have no good

explanation for. The second question is to evaluate our assumption that the cost b

is proportional to cash consumption c, which was used to be able to aggregate data

across households up to the province level. To better understand this regression,

assume that for each province year all the households have the same level of cash

consumption. In this case, this regression can be used as a way to estimate the form

of the cost b/c. A coefficient on log of cash consumption of −1 will indicate that

the cost is fixed, independent of the level of cash consumption. The estimated value

that we obtain is very close to −1, which calls into question our assumption that

the cost is proportional to c. We leave further investigation of this issue for future

work.
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Table 7: Estimated (b/c)/R vs. consumption, interest rates and technology

Dependent variable: β ≡ log((b/c)/R)
Household w. ATM Household wo. ATM

Log(interest rate) -0.11 0.04
(t-stat) (-3.4) (1.6)

Log(cash consumption) -0.94 -0.90
(t-stat) (-6.5) (-7.2)

Density of fin. intermediary∗ -22.2 -23.7
(t-stat) (-3.6) (-4.1)

R2 0.09 0.12
Number of observations 593 587

Notes: All regressions include a constant.
-∗ Number of bank branches (ATM terminals) per square mile for households without (with)
ATM.

We use our estimates of p, b for households with and without ATM cards to

estimate the implied benefits of owing an ATM card. To estimate this benefit in a

given province year we subtract from the cost of financing the consumption stream

c implied by the estimated parameters for households without an ATM card the

cost implied by the estimated parameters of those that own ATM cards. Recall that

these cost are given by the value function Vu and that we have shown in Proposition

3 that Vut (0) = m∗
t R/r + bt, where the subindex t denote the household type, i.e.

t = 1 with and t = 0 without an ATM card. As explained in Proposition 2, m∗ is a

known function of the estimated parameter values. Hence, we define the benefit of

owning an ATM card as:

Vu0 (0)− Vu1 (0) = [m∗
0 R/r + b0]− [m∗

1 R/r + b1]

Figure 16 plots Vu1 vs. Vu0, where it can be seen that for 97.5 percent of the province-

years this benefit is estimated to be positive. We remark that our estimates of the

parameters for households with and without ATM are done independently, and hence

we think that the finding that the estimated benefit is positive for most province
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years provides additional support for the model.

Figure 16: The benefit of ATM cards
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The mean benefit across all province years equals 18 days of cash consumption,

and its median is 9 days of cash consumption. Recall that these are stock measures

of the gains, i.e. these are the gains of having an ATM card forever.

Finally we use our estimates to characterize how close is the cash-management

behavior at the estimated parameter values to the BT benchmark. For this we use

the results of Proposition 11. In Figure 17 we plot in the horizontal axis a range

of values of the normalized cash consumption x = (m∗/c) (r + p) and in vertical

axis we plot the theoretical values that correspond to that x for W/M, M/M and

the interest elasticity of x
(
b̂/r

)
, which is essentially equal to the elasticity of the

aggregate money demand (M/c) . These functions are described in Proposition 11.

We also plot the CDF for the estimated values of x across province-years, one for
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Figure 17: A summary of estimation findings
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those households with ATM cards and one for those without ATM cards. In this

Figure it can be seen that for the median province-year for households without ATM

x is about 0.35 and for those with ATM cards x is about 0.6. Recall that the BT

model corresponds to x = 0, and that for higher x the cash-management behavior

looks more and more different than the one in the BT model. For the median

province-year for households with an ATM card, W/M ∼= 1.3, M/M ∼= 0.5 and the

interest rate elasticity of M/c ∼= 0.42. While these values are different from the ones

implied by the BT model, the difference is not that large, especially for the interest

rate elasticity. Only for values of x that correspond to the tail of the estimated x, we

find elasticities of M/c as low as 0.2.

Table 8 presents statistics on the average value of p and b across provinces for

each year. Our goal with this table is to document the trends in the withdrawal
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Table 8: Time series pattern of estimated model parameters

1993 1995 1998 2000 2002 2004
Households with ATM

p 17 17 20 26 22 34
b 0.05 0.04 0.01 0.005 0.005 0.004
R 6.1 5.2 2.2 1.1 0.8 0.3
b/R 0.77 0.85 0.46 0.47 0.62 1.3
(b/c)p2 0.04 0.04 0.01 0.01 0.01 0.01
(b/c)p2/R 0.62 0.71 0.52 0.88 0.85 4.1

Households without ATM
p 4.8 4.7 7.4 8.3 7.5 8.6
b 0.10 0.09 0.03 0.02 0.01 0.005
R 6.1 5.2 2.2 1.1 0.8 0.3
b/R 1.6 1.7 1.5 1.3 1.4 1.5
(b/c)p2 0.006 0.005 0.005 0.003 0.002 0.001
(b/c)p2/R 0.1 0.1 0.23 0.25 0.22 0.3

Notes: Entries in table are the averages across provinces of the estimated parameter for
each year. For the interest rate R they are the average of the observed values.

technology and the cash-management behavior of households. This table shows

that p has approximately doubled, and that (b/c) has been approximately decreased

10 times. Both type of changes leads to lower money balances. To understand

whether they lead to behavior that is closer or farther away from the one in the BT

model, we use the results of Proposition 11 and compute the time trend of the index

b̂ = (b/c) p2 . Since this index has declined through time, at the same level of interest

rates, the cash-management behavior would have become closer to the one of the

BT model. But since interest rates has declined, then b̂/R,which determines the

actual behavior, has increased. Indeed Table 8 shows that b̂/R has at least tripled

its original value.

Finally, we comment on the absolute value of the parameter b. As Table 5 shows

the average value of b across all province years is 2 per cent and 4 per cent of daily

cash consumption, respectively for households with and without ATM cards. Using
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information from Table 1 these values correspond to approximately about 1 and

0.65 euros (in year 2000 prices). While these numbers are very small they are still

within a reasonable range. As argued above, their absolute value crucially hinges on

a precise measure of the level of the interest rate, especially at the very low interest

rate levels reported at the end of the sample.
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