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Abstract

I study the optimal taxation of labor and capital in a dynamic economy subject to
government expenditure and technology shocks. Unlike representative-agent Ramsey
models, workers are heterogenous and lump-sum taxation is not ruled out. I consider
two tax scenarios: (a) linear taxation, with a lump-sum intercept; and (b) nonlinear-
Mirrleesian taxation. When taxes are linear, I derive a partial-equivalence result with
Ramsey settings that provides a reinterpretation of such analyses. I find conditions for
perfect tax smoothing of labor-income taxes and zero capital taxation. Implications
that contrast with Ramsey are derived for public-debt management, for the nature of
the time-inconsistency problem and for the viability of replicating complete markets
without state-contingent bonds. Shifts in the distribution of skills provide a novel
source for variations in tax rates. For the nonlinear tax scenario, I show that taxation
based on income averages is optimal.
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Chiappori and Robert Lucas. I am grateful for helpful comments and suggestions from Manuel Amador,
Marios Angeletos, Robert Barro, Paco Buera, Emmanuel Farhi, Narayana Kocherlakota, Mike Golosov and
Pierre Yared. Pablo Kurlat provided invaluable research assistance as well as influential suggestions. I thank
Emily Gallagher for excellent editing assistence. The hospitality of the Federal Reserve Bank of Minneapolis
during my visit there is greatly appreciated. The views expressed herein are those of the author and not
necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

1

mailto:iwerning@mit.edu


1 Introduction

How should a government set and adjust taxes on labor and capital over time in the face of

shocks to government expenditure and aggregate productivity? Ramsey optimal tax theory

offers two important insights into this question: taxes on labor income should be smoothed

(Barro, 1979; Lucas and Stokey, 1983; Kingston, 1991; Zhu, 1992), while taxes on capital

should be set to zero (Chamley, 1986; Judd, 1985).

This paper addresses an important shortcoming in interpreting these cornerstone results.

The standard Ramsey approach adopts a representative-agent framework; then, to avoid

a first-best outcome, lump-sum taxes—or any combination of tax instruments that may

replicate them—are simply ruled out. Societies may have good reasons for avoiding complete

reliance on lump-sum taxes, but none of these are captured by a representative-agent Ramsey

framework. Although the first-best allocation is ruled out, an arbitrary second-best problem

is set in its place. What confidence can we have that tax recommendations obtained this

way accurately evaluate the trade-offs faced by society? If, for unspecified reasons, lump-sum

taxes are presumed undesirable, yet still highly desirable within the model, how can we be

sure that tax prescriptions derived are not, for the same unspecified reasons, also socially

undesirable?

In contrast, distributional concerns provide a natural rationale for distortionary taxation

(Mirrlees, 1971; Sheshinski, 1972). For instance, when workers differ in their labor produc-

tivity, and this trait is not observable—or if, for some other reason, taxes simply cannot be

conditioned upon them—then almost all first-best allocations are unattainable. A trade-off

emerges between redistribution and efficiency, providing a foundation for distortionary taxes.

In its favor, one virtue of the more ad-hoc Ramsey approach has been its tractability for

the study of rich dynamic stochastic general equilibrium models, such as those common in

the growth and business-cycle literatures. In contrast, most research incorporating hetero-

geneity works with relatively stylized environments. What is missing is a framework in which

distortionary taxes arise naturally that is tractable within rich dynamic environments. With

this in mind, this paper reexamines optimal taxation in dynamic economies close to those

used by representative-agent Ramsey models—such as Chari, Christiano, and Kehoe (1994)

and others—while modeling distributional concerns explicitly and allowing for a richer tax

structure.

The model economy is inhabited by workers that differ in the productivity of their work

effort. Technology is neoclassical, with capital and labor services combining to produce a

single good that can be consumed or invested. The economy is subject to fluctuations in

government expenditures and technology. I consider two scenarios for the set of available
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tax instruments: (i) taxation is linear, allowing for an arbitrary lump-sum tax intercept

in the schedule; and (ii) no arbitrary constraints are imposed except for the asymmetry of

information of workers’ skills, as in Mirrlees’s nonlinear-taxation model.

In the first scenario, the labor-income tax schedule can be summarized at any moment by

two numbers: the intercept or lump-sum tax, Tt, and the slope or marginal tax rate, τt. This

simple tax structure is enough to incorporate the essential missing instrument in Ramsey

models: the lump-sum tax. For the special case in which all workers share the same skill, the

lump-sum tax can be used to attain the first-best allocation. However, with skill inequality

a positive tax rate is generally preferable, since more productive, richer workers then bear

a heavier tax burden and alleviate that of less productive, poorer workers.1 Restrictions

on lump-sum taxation are hard to justify, so heterogeneity seems essential to motivate tax

distortions.2

Optimal policy can be fully characterized for two preference specifications. For separable

and isoelastic utility, I show that the tax rate on capital income should be zero and that

perfect tax smoothing is optimal: labor-income tax rates are constant over time and un-

responsive to either government expenditure or technology shocks. The government uses a

combination of debt and lump-sum taxation to smooth out its financing needs. With hetero-

geneous workers and a lump-sum tax, it is distributional concerns that determine the optimal

tax rate. Since the desired level of redistribution is pinned down by the constant distribution

of relative skills across workers, a constant tax rate is optimal. I also characterize policy

for the class of utility functions consistent with balanced-growth (used by Chari, Christiano,

and Kehoe (1994) and others) and provide closed-form expressions for the sensitivity of the

tax rate to shocks. Although tax rates are not perfectly constant in this case, my analysis

suggests that the results with separable-isoelastic utility provide a useful benchmark.

As a methodological by-product of the analysis, I uncover a partial-equivalence result

between my model and the representative-agent Ramsey framework that can be used as a

foundation or reinterpretation for the latter. The result states that both frameworks lead to

the same first-order optimality conditions and tax rate rules, except in the very first period.

This provides a useful connection with a large body of previous theoretical and quantitative

work based on the representative-agent Ramsey framework.

Turning to the nonlinear Mirrleesian tax scenario, I find that, when the disutility of work

is isoelastic, workers should face different marginal tax rates, but that these should remain

1Sheshinski (1972) and Hellwig (1986) study optimal linear taxation in a static setting, focusing on finding
conditions for the optimal tax rate to be strictly positive.

2Most countries are best described as having a negative lump-sum intercept in the schedule due to income-
tax deductions or transfers from welfare programs. In my model, a negative lump-sum tax is optimal with
enough inequality or concern for the poor.
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perfectly constant over time and unresponsive to shocks. To the best of my knowledge,

this is the first tax-smoothing result with nonlinear taxation in a dynamic economy with

aggregate uncertainty. Previous work focuses on static settings or dynamics settings with

idiosyncratic uncertainty, instead of aggregate uncertainty. Implementing this nonlinear form

of tax smoothing suggests a role for taxation based on lifetime earnings or income averaging.

Indeed, I prove that such a tax scheme fully implements any constrained-efficient allocation.

Vickery (1947) was an early proponent of income-tax averaging rules, although his reasons

were different, having to do primarily with considerations of horizontal equity.

In both the linear and the nonlinear case, my model has several implications that contrast

with Ramsey analyses. First, the model attributes a crucial role in the determination of

tax rates to the skill distribution. To bring this to the forefront, I extend the model and

consider shocks to the distribution of relative skills. Tax rates do respond to these shocks—

typically rising when inequality rises—while remaining invariant to government expenditure

and technology shocks. This extension highlights a source for tax fluctuations that cannot

be addressed by a representative-agent model.

Second, the implications for public-debt management differ dramatically. Ramsey models

break Ricardian equivalence by ruling out lump-sum taxes, and public debt becomes crucial

for the government to smooth tax rates over time. In contrast, here Ricardian equivalence

reemerges: the government can smooth tax rates using any mix of debt and lump-sum

tax financing. I briefly speculate on a variation, based on imperfect participation in asset

markets, that makes debt-management policy determinate.

Third, the source of time-inconsistency problems is different from that in Ramsey models.

These models stress the desirability of initial capital levies, as they mimic the missing lump-

sum taxes. This leads to a time-inconsistency problem since capital should eventually not be

taxed, but it is always desirable to tax it in the short run. In contrast, with heterogeneous

agents and lump-sum taxation, the optimum may be time consistent in some special cases.

More generally, a time-inconsistency problem may arise but I show that it depends on the

distribution of wealth across workers and on its evolution over time.

Finally, Ramsey analyses have stressed that complete-market allocations can be repli-

cated without using state-contingent bonds by exploiting state-contingent capital taxation

(Kingston, 1991; Zhu, 1992; Chari, Christiano, and Kehoe, 1994). I show how this logic relies

heavily on a representative-agent framework and generally fails with heterogeneous workers.3

Throughout the paper, I focus on innate differences across workers and distributional

concerns as the motives for distortive taxation. Although I allow for idiosyncratic skill

3Similar remarks apply to replication schemes based on inflations that devalue nominal claims held by
the private sector.
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uncertainty in Figure 5, I assume that asset markets are complete, which provides workers

with insurance opportunities against such shocks. This contrasts with another line of work

that attributes an important role in the insurance of idiosyncratic shocks to skills to taxation,

by assuming that the market cannot provide such arrangements (Golosov, Kocherlakota, and

Tsyvinski, 2003; Albanesi and Sleet, 2006; Farhi and Werning, 2005). While adding imperfect

insurance against privately-observed idiosyncratic shocks is an interesting step for future

work, there are at least three reasons to first focus on the distributional motive for taxation.

First, although no consensus exists, heterogeneity appears to be a major contributor in

the observed variations of lifetime earnings: most studies place its contribution above 50

percent, with some as high as 90 percent.4 Moreover, since no attempt is made to discern

idiosyncratic shocks that are publicly observable from those that are not, these numbers

potentially overstate the contribution of idiosyncratic risk that is uninsurable. Second, ex-

ante heterogeneity provides a clearer role for government policy: it is less clear what the role

of insurance markets versus government taxation should be in providing insurance against

idiosyncratic shocks. Third, to date, models with privately-observed idiosyncratic shocks

are not tractable enough for the purposes of the present study. In particular, optimal labor-

income tax rates have only been characterized for simple skill processes that also abstract

from a fully dynamic economy subject to aggregate shocks.

Section 2 introduces the model environment. Section 3 defines and characterizes the

linear tax problem. Section 4 derives tax smoothing and capital taxation results for two

common preference specifications; the partial-equivalence result with Ramsey is also dis-

cussed there. Section 5 extends the model to incorporate shocks to the distribution of

skills. Three implications that contrast with the Ramsey case are discussed in Section 6.

The nonlinear-Mirrleesian tax problem is analyzed in Section 7; taxation based on income

averaging is also discussed there. Section 8 concludes.

2 The Dynamic Economy

The economy is populated by a continuum of infinitely-lived workers divided into a finite

number of types i ∈ I of relative size πi. Preferences for workers of type i ∈ I are given by

the utility function
∞∑

t=0

βt
E[U i(ct, Lt)]. (1)

4Using a model, Keane and Wolpin (1997) estimate the contribution of heterogeneity to be 90 percent. In
their statistical analysis, Storesletten, Telmer, and Yaron (2004) attribute about 50 percent to heterogeneity.
Hugget, Ventura, and Yaron (2006) reach intermediate conclusions.
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where ct ≥ 0 is consumption, and Lt ≥ 0 is labor in efficiency units. The leading case is

when the sole source of heterogeneity is differences in productivity: workers of type i have

relative skill θi, normalized so that
∑

i∈I θ
iπi = 1, and everyone shares some underlying

utility function U(c, n) over consumption c and work time n, so that the implied utility

function over consumption and effective labor units is U i(c, L) = U(c, L/θi).

Importantly, workers know their own type i ∈ I, but this information is not publicly

observable. As a result, the government cannot levy the sort of discriminatory lump-sum

taxes which condition on the worker’s type i ∈ I that are needed to achieve any first-best

allocation. Equivalently, one can simply assume that taxes cannot be conditioned on a

worker’s type, instead of using private information as a motivation for this assumption.

Uncertainty is captured by a publicly observed state st ∈ S in period t, where S is some

finite set; let Pr(st) denote the probability of any history st = (s0, s1, . . . , st). An alloca-

tion specifies consumption, labor and capital in every period, after every history: {ci(st),

Li(st), K(st)}; aggregates are denoted by c(st) ≡
∑

i∈I c
i(st)πi and L(st) ≡

∑
i∈I L

i(st)πi.

Production combines labor with capital using a constant-returns-to-scale technology; capital

depreciates at rate δ. The resource constraints are

c(st) +K(st) + gt(st) ≤ F
(
L(st), K(st−1), st, t

)
+ (1 − δ)K(st−1) (2)

for all st and t = 0, 1, . . . Both government expenditures and the production function are

allowed to depend on the history st (to capture the impact of uncertainty) and the time

period t (to capture growth or other deterministic changes).

3 Linear and Proportional Taxation

I start with the case where the tax schedule is linear in labor income τ(st)wt(s
t)Li(st)+T (st)

in each period. The natural case is where the lump-sum tax T (st) is not restricted, but, for

completeness and to relate my results to the standard Ramsey case, I also consider the

proportional tax case where T (st) is constrained to zero. The government taxes capital

income at rate κ(st). Taxes on initial wealth are also allowed. Consumption taxes are

superfluous and can be ignored without loss in generality.

3.1 Competitive Equilibria with Taxes

Markets are assumed to be competitive and complete, as in Lucas and Stokey (1983), Chari,

Christiano, and Kehoe (1994), and many others. One interpretation of this envisions govern-

ment debt as a rich set of Arrow-Debreu state-contingent bonds. A less literal interpretation
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is provided by the fact that even with non-contingent debt available assets may span the

necessary payoffs to complete the market.5

Worker Problem. With complete markets each worker type i ∈ I can be seen as facing

a single intertemporal budget constraint:

∑

t,st

p(st)
(
ci(st) +Ki(st)−w(st)(1− τ(st))Li(st)−R(st)Ki(st−1)

)
≤ (1− κB(s0))B

i(s0)− T.

Here p(st) represents the Arrow-Debreu price of consumption in period t after history st,

normalized so that p(s0) = 1; the real wage is w(st); and R(st) ≡ 1 + (1 − κ(st))(r(st) − δ)

is the after-tax gross rate of return on capital, where r(st) is the rental rate of capital;

T ≡
∑

t,st p(st)T (st) is the present value of the lump-sum components of taxes; finally,

Bi(s0) represents some given initial holdings of short-term government bonds, which are

taxed at rate κB(s0) ∈ [0, 1].6

Ruling out arbitrage opportunities requires

p(st) =
∑

st+1

p(st+1)R(st+1), (3)

simplifying the budget constraint to

∑

t,st

p(st)
(
ci(st) − w(st)(1 − τ(st))Li(st)

)
≤ R(s0)K

i
0 + (1 − κB(s0))B

i(s0) − T. (4)

Firms. Each period, firms maximize profits F (L,K, st, t) − r(st)K − w(st)L over L and

K, leading to the first-order conditions:

r(st) = FK(L(st), K(st−1), st, t), (5)

w(st) = FL(L(st), K(st−1), st, t). (6)

5For example, Angeletos (2002) and Buera and Nicolini (2004) show that a portfolio of riskless bonds
of various maturities may be used to this end. Nevertheless, in this paper I adopt the complete-market
assumption not for its realism, but for its simplicity and to focus on the extension of Ramsey models to
heterogeneity and lump-sum taxation. Recent work featuring incomplete markets include Aiyagari, Marcet,
Sargent, and Seppälä (2002), Werning (2005) and Farhi (2005).

6The single intertemporal budget constraint is equivalent to the sequence of budget constraints

ci(st)+Ki(st)+
∑

st+1

p(st, st+1)

p(st)
B(st, st+1) ≤

(
1−τ(st)

)
w(st)Li(st)−T (st)+R(st)Ki(st−1)+(1−κB(st))B(st)

for all t = 0, 1, . . . and histories st, as well as the no-Ponzi condition limt→∞

∑
st p(st)B(st) = 0.
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Since the production function has constant returns to scale, profits are zero in equilibrium.

Government Budget Constraint. With complete markets the government can be seen

as facing a single intertemporal budget constraint

(1 − κB(s0))
∑

i∈I

Bi(s0) +
∑

t,st

p(st)g(st)

≤ T +
∑

t,st

p(st)
(
τ(st)w(st)L(st) + κ(st)(r(st) − δ)K(st−1)

)
. (7)

A version of Walras’ law applies: the government budget constraint (7) holds with equality

when the resource constraints (2) and the workers’ budget constraints (4) hold with equality.

Definition 1. A competitive equilibrium is a sequence of taxes {T (st), τ(st), κ(st)}, prices

{p(st), r(st), w(st)}, and nonnegative quantities {ci(st), Li(st), K(st)}, such that: (i) work-

ers maximize utility: consumption and labor choices {ci(st), Li(st)} maximize (1) subject to

the budget constraint (4) taking prices and taxes that satisfy (3) as given; (ii) firms maximize

profits: the first-order conditions (5) and (6) hold; (iii) the government’s budget constraint

(7) holds; and (iv) markets clear: the resource constraints (2) hold for all periods t and

histories st.

3.2 A Simple Characterization

I now characterize the set of aggregate allocations that are sustainable by an equilibrium for

some sequence of prices and taxes. This leads to a primal approach, which formulates the

planning problem directly in terms of the aggregate allocation, dropping taxes and prices. It

generalizes the method popularized by Lucas and Stokey (1983) within the representative-

agent Ramsey model, to a setting with heterogeneity and lump-sum taxation.

With linear taxation, all workers face the same after-tax prices for consumption, {p(st)},

and labor, {−p(st)w(st)(1 − τ(st))}; as a result, marginal rates of substitution are equated

across workers. Thus, any equilibrium delivers an efficient assignment of individual con-

sumption and labor {ci(st), Li(st)} given the allocation for aggregates {c(st), L(st)}; in other

words, all inefficiencies due to distortive taxation are confined to the determination of ag-

gregates {c(st), L(st)}.

Formally, for any equilibrium there exist “market” weights ϕ ≡ {ϕi}, with ϕi ≥ 0 and the

normalization that
∑

i∈I ϕ
iπi = 1, so that individual assignments solve the static subproblem

Um(c, L;ϕ) ≡ max
{ci,Li}

∑

i∈I

ϕiU i(ci, Li)πi subject to
∑

i∈I

ciπi = c and
∑

i∈I

Liπi = L. (8)
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(where the superscript m stands for “market”). Letting

hi(c, L;ϕ) =
(
hi,c(c, L;ϕ), hi,L(c, L;ϕ)

)

be the solution to this problem for worker type i ∈ I, an equilibrium must satisfy

(
ci(st), Li(st)

)
= hi

(
c(st), L(st);ϕ

)
(9)

for some market weights ϕ.

Equilibrium after-tax prices can be computed as if the economy were populated by a

fictitious representative-agent with the utility function Um(c, L;ϕ):

w(st)
(
1 − τ(st)

)
=

−Um
L

(
c(st), L(st);ϕ

)

Um
c

(
c(st), L(st);ϕ

) , (10)

p(st)

p(s0)
= βt U

m
c

(
c(st), L(st);ϕ

)

Um
c

(
c(s0), L(s0);ϕ

) Pr(st). (11)

The envelope condition for the static subproblem (8) is Um
c (c, L;ϕ) = ϕiU i

c(h
i(c, L;ϕ)) and

Um
L (c, L;ϕ) = ϕiU i

L(hi(c, L;ϕ)), so that equations (10) and (11) hold with U i in place of Um,

and workers’ marginal rates of substitution are equated to after-tax prices.

In equilibrium, each worker’s budget constraint (4) must hold with equality. Using equa-

tions (10) and (11) to substitute out prices and taxes gives the implementability conditions

∑

t,st

βt
(
Um

c

(
c(st), L(st);ϕ

)
hi,c
(
c(st), L(st);ϕ

)

+ Um
L

(
c(st), L(st);ϕ

)
hi,L
(
c(st), L(st);ϕ

))
Pr(st)

= Um
c

(
c(s0), L(s0);ϕ

)(
R0k

i
0 + (1 − κB(s0))B

i(s0) − T
)

(12)

for all i ∈ I. These constraints (12) are expressed entirely in terms of the aggregate allocation

{c(st), L(st)} and the market weights ϕ.

Summing up, a competitive equilibrium implies that its aggregate allocation {c(st), L(st)}

must satisfy the resource constraints (2) and the implementability conditions (12) for some

market weights ϕ. The converse is also true.

Proposition 1. An aggregate allocation {c(st), L(st), K(st)} can be supported by a com-

petitive equilibrium if and only if the resource constraints (2) hold and there exist market

weights ϕ and a lump-sum tax T so that the implementability conditions (12) hold for all

i ∈ I. Individual allocations can then be computed using equation (9), prices and taxes can

computed using equations (3), (5), (6), (10) and (11).
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3.3 Planning Problem

Applying Proposition 1, the set of all competitive equilibria defines a set U of attainable

lifetime utilities {ui} such that ui =
∑

t,st βtU i
(
hi(c(st), L(st);ϕ)

)
Pr(st), the resource con-

straints (2) are satisfied and the implementability conditions (12) hold for all i ∈ I. The

optimal tax problem is to reach the northeastern frontier of this set: maximize uj subject

to un ≥ ūn for n 6= j and {ui} ∈ U , for any feasible lower bounds {ūn} ∈ U . The necessary

first-order conditions can be derived by considering the weighted sum of utilities

∑

t,st,i∈I

βtλiU i
(
hi(c(st), L(st);ϕ)

)
Pr(st)πi, (13)

where the Pareto weights λi ≥ 0 are re-scaled versions of the multipliers on the ui ≥ ūi

constraints, normalized so that
∑

i∈I λ
iπi = 1. The analysis that follows only exploits first-

order necessary conditions, and does not presume convexity of the planning problem, or of

U , in any way.7

The planning problem is over aggregate variables {c(st), L(st), K(st)}, market weights

ϕ, and the lump-sum tax T (whenever not restricted to zero). In the special case with

no inequality and the restriction that lump-sum taxation be zero, T = 0, the problem is

identical to the primal approach in the representative-agent Ramsey model (see Lucas and

Stokey (1983), Chari, Christiano, and Kehoe (1994), Atkeson, Chari, and Kehoe (1999)).

For the general case, the analysis shows that one can retain the tractability of an aggregate

formulation even when worker heterogeneity and lump-sum taxation are present.8

The choice over market weights ϕ is key in determining the level of tax rates. For

instance, more equal weights imply a more equal consumption allocation, which requires a

more equal after-tax income, which, in turn, requires higher tax rates. If the optimal market

weights {ϕi} happen to equal the Pareto weights {λi}, then optimal tax rates are zero; this

corresponds to the unique point on the utility frontier U where the government is entirely

financed by lump-sum taxation. Anywhere else on the frontier, the two sets of weights do

not coincide, and distortionary taxes are employed.

7In general the planning problem and the set of utilities U may not be convex, so one cannot claim that
every point on the frontier is characterized by maximizing some weighted sum of utilities such as (13) (the
converse statement is true). Instead, expression (13) is simply a stepping stone to the full Lagrangian in (14)
below that can be used to obtain the necessary first-order conditions for any frontier point even when U is
non-convex. Thus, convexity of the planning problem, or of U , is not needed in any way.

8Chari and Kehoe (1999) adopt a different, but related, primal approach. They study long-run capital
taxation in a deterministic setting allowing for agent heterogeneity, but not lump-sum taxation. Their for-
mulation maximizes over individual allocations and imposes that marginal rates of substitution be equalized
across agents as additional constraints on the planning problem. The aggregate formulation pursued here
reduces the dimensionality of the problem, by solving for individual allocations in terms of aggregates and
market weights ψ.
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The analysis does not presume any desired direction for redistribution, so that any point

on the frontier of U is characterized; in other words, no assumptions are required on the

Pareto weights {λi}. However, one special case that deserves mention is the Utilitarian

specification with λi = 1, where redistribution from rich to poor is desirable. In this case,

the planning problem can be reinterpreted as one of optimal insurance behind the “veil of

ignorance”: the objective in (13) interpreted as the expected utility before skill types i ∈ I

are realized with probabilities {πi}.

3.4 Optimal Tax Rates

It is useful to set up the Lagrangian that incorporates the implementability conditions (12)

with multipliers {µiπi}

∑

t,st

βtW
(
c(st), L(st);ϕ, µ

)
Pr(st)

− Um
c

(
c(s0), L(s0);ϕ

)∑

i∈I

µi
(
R0k

i
0 + (1 − κB(s0))B

i(s0) − T
)
πi (14)

where µ ≡ {µi} and the pseudo-utility function W (c, L;ϕ, µ) is defined by

W (c, L;ϕ, µ) ≡
∑

i∈I

πi
(
λiU i

(
hi(c, L;ϕ)

)

+ µi
(
Um

c

(
c, L;ϕ

)
hi,c
(
c, L;ϕ

)
+ Um

L

(
c, L;ϕ

)
hi,L
(
c, L;ϕ

)))
.

First-Order conditions. Except for the initial period term, everything is conveniently

summarized by the pseudo-utility function W (c, L;ϕ, µ). The first-order conditions for t ≥ 1

are

FL

(
L(st), K(st−1), st, t

)
=

−WL

(
c(st), L(st);ϕ, µ

)

Wc

(
c(st), L(st);ϕ, µ

) , (15)

Wc

(
c(st), L(st);ϕ, µ

)
= β

∑

st+1

Wc

(
c(st+1), L(st+1);ϕ, µ

)
R∗(st+1) Pr(st+1 | s

t), (16)

where R∗(st) ≡ FK

(
L(st), K(st−1), st, t

)
+ 1 − δ is the marginal social return to capital.

When a lump-sum tax is available, the first-order condition with respect to T implies

∑

i∈I

µiπi = 0, (17)
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so that the term involving T always vanishes in (14). The first-order conditions with respect

to the market weights ϕ will not be needed in what follows, so I omit them.

Optimal Tax Rates. Dividing equation (10) by (15) and using equation (6) for w(st)

gives τ(st) = τ ∗
(
c(st), L(st);ϕ, µ

)
for t ≥ 1, where

τ ∗(c, L;ϕ, µ) ≡ 1 −
Um

L (c, L;ϕ)

WL(c, L;ϕ, µ)

Wc(c, L;ϕ, µ)

Um
c (c, L;ϕ)

. (18)

The labor-income tax rate is a function of current aggregate consumption and labor only.

Using equilibrium prices (11) in the no-arbitrage condition (3) gives

Um
c

(
c(st), L(st);ϕ, µ

)
= β

∑

st+1

Um
c

(
c(st+1), L(st+1);ϕ, µ

)
R(st+1) Pr(st+1 | s

t) (19)

In general, there are several R(st+1) that ensure that equations (16) and (19) are compatible.

One choice that suits our purposes is

R(st+1) = R∗(st+1) ·
Um

c (c(st), L(st);ϕ, µ)

Wc(c(st), L(st);ϕ, µ)
·
Wc(c(s

t+1), L(st+1);ϕ, µ)

Um
c (c(st+1), L(st+1);ϕ, µ)

(20)

For example, if the ratio Wc(c, L;ϕ, µ)/Um
c (c, L;ϕ, µ) is constant, then the capital tax can

be set to zero so that R(st+1) = R∗(st+1) for t ≥ 1. This formula reveals a version of the

celebrated Chamley-Judd result: if the economy settles down to a deterministic steady state,

with c(st+1) = c(st) and L(st+1) = L(st), then the tax on capital income can be set to zero

and R(st+1) = R∗(st+1).9

The form of the Lagrangian (14) as a discounted sum of the pseudo-utility function W

and the tax-rate formulas (18) and (20) provide a first methodological link with the primal

approach often used in representative-agent Ramsey analyses (see e.g., Chari, Christiano,

and Kehoe (1994) and Atkeson, Chari, and Kehoe (1999)). That is, the derivation applies

with or without either worker heterogeneity or a lump-sum tax. Subsection 4.3 provides an

even tighter connection for two common preference specifications.

3.5 Initial Taxation

I allow unrestricted initial wealth taxation as my benchmark, requiring only that gross

returns on capital and bonds not be negative. Tighter restrictions on initial wealth taxation

9In different ways, Chamley (1986), Judd (1985) and Chari and Kehoe (1999) consider heterogeneous
agents, but not lump-sum taxation, in long-run capital-taxation results.
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are hard to justify because, as is well known, a combination of consumption and labor-income

taxes can replicate their effect. That is, ignoring consumption taxes, as I have done here, is

without loss in generality if and only if initial wealth taxation is unrestricted.

The first-order condition for κ0, corresponding to that for R0 ∈ [0,∞), gives

∑

i∈I

µiki
0π

i = 0 or R0 = 0. (21)

Similarly, the first-order condition for κB(s0) ∈ (−∞, 1] gives

∑

i∈I

µiBi(s0)π
i = 0 or κB(s0) = 1. (22)

Together conditions (21) and (22) imply that the first-order conditions (15) and (16) derived

for t ≥ 1 also apply now for t = 0, extending the conclusion for tax rates to τ(s0) and κ(s1).

In some cases initial wealth taxation is unnecessary. If all workers start with the same

capital holdings, so that Ki
0 is independent of i ∈ I, then the effect of the initial capital levy

κ0 is equivalent to a lump-sum tax. If a lump-sum tax is already available then equation (21)

is implied by (17) and any κ0 is optimal; in particular a zero tax κ0 = 0 is optimal. Similarly,

if initial bond holdings are equal, so that Bi(s0) is independent of i ∈ I, then κB(s0) = 0 is

optimal. Equality of wealth corresponds to the canonical optimal-taxation scenario where

skill differences are the primordial source of all heterogeneity.

In contrast, in representative-agent Ramsey analyses, just as the lump-sum tax is arbi-

trarily ruled-out, restrictions on the taxation of consumption and initial wealth are imposed.

If some taxation of initial wealth is permitted, it is always optimal to use initial levies on cap-

ital and bonds κ0 and κB(s0) (or consumption taxes) to the full extent allowable to imitate

the missing lump-sum tax. With ad hoc restrictions initial wealth R0K
i
0 +(1−κB(s0))B

i(s0)

does not drop out of the first-order conditions for c(s0) and L(s0), which are thus different

from (15) and (16), leading to different conditions for initial tax rates τ(s0) and κ(s1).

4 Two Cases Solved

It is now straightforward to apply the general analysis and formulas laid out in the previous

section to any particular case of interest by simply computing the Um and W functions. In

this section, I explore heterogeneity arising from skill differences and consider two classes

of utility functions: (i) a separable and isoelastic specification; and (ii) a non-separable

balanced-growth specification. The last subsection discusses the partial-equivalence result

with the representative-agent Ramsey model.
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4.1 Separable Isoelastic Utility: Perfect Tax Smoothing

I first consider the case where the underlying utility function is separable and isoelastic:

U i(c, L) = u(c) − v(L/θi) where u(c) ≡
c1−σ

1 − σ
and v(n) ≡ α

nγ

γ
, (23)

with σ, α > 0 and γ > 1.

With these preferences, individual consumption and labor are proportional to their ag-

gregates: ci = hi,c(c, L) = ωi
cc and Li = hi,L(c, L) = ωi

LL with ωi
c = (ϕi)1/σ/

(∑
i∈I(ϕ

i)1/σπi
)

and ωi
L = (θi)

γ

γ−1ϕ
−1

γ−1/
(∑

i∈I(θ
i)

γ

γ−1ϕ
1

γ−1πi
)
. Moreover, the functions Um and W inherit the

separable and isoelastic form of the utility function:

Um(c, L) = u(c) − Φ v(L) and W (c, L) = Φuu(c) − ΦvΦ v(L),

where Φ =
∑

i∈I(ω
i
L)γπi,

Φu =
∑

i∈I

u′(ωi
c)ω

i
c(λ

i − (1 − σ)µi)πi and Φv =
∑

i∈I

u′(ωi
c)ω

i
L(λi − γµi)πi. (24)

Note that, whenever Φv/Φu 6= 1, the functions Um(c, L) and W (c, L) put different weight

on consumption versus labor. Applying formula (18) gives

τ ∗(c, L) = τ̄ ≡ 1 −
Φu

Φv

= 1 −

∑
i∈I u

′(ωi
c)ω

i
c(λ

i − (1 − σ)µi)πi

∑
i∈I u

′(ωi
c)ω

i
L(λi − γµi)πi

, (25)

so that labor-income tax rates are constant over time and across histories, τ(st) = τ̄ ; Sec-

tion 5 explores this formula for the tax rate further. Note that, although the tax rate remains

constant across realizations of uncertainty, the stochastic processes for government expendi-

ture and technology itself does generally affect the optimal constant level τ̄ . In other words,

the tax rate is not necessarily invariant to comparative-static exercises on these processes.

Finally, since Wc(c, L) = ΦuU
m
c (c, L), equation (20) implies that the tax on capital can be

set to zero.10

Proposition 2. When preferences are separable and isoelastic as in (23): (a) perfect tax

smoothing is optimal: τ(st) = τ̄ given by equation (25); and (b) zero capital tax rates κ(st) =

0 for t ≥ 1 are optimal. These results hold with or without a lump-sum tax.

My model nests the representative-agent Ramsey case, which obtains by setting θi = 1 for

10The isoelastic specification for the disutility of labor is not needed for this last result: a zero capital tax
is optimal as long as utility is separable and isoelastic in consumption c1−σ/(1−σ)−v(n) for any v function.
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all i ∈ I and restricting the lump-sum tax to zero. Applied to this special case, Proposition 2

echoes Kingston’s (1991) and Zhu’s (1992) representative-agent Ramsey results.

One intuition for the optimality of zero capital taxes is based on the well-known uniform

taxation principles due to Diamond and Mirrlees (1971): since preferences in (23) are ho-

mothetic over consumption paths and separable from labor, consumption at different dates

should be taxed uniformly, which is equivalent to a zero capital tax.

The intuition for the tax-smoothing result is best conveyed by the natural case that

allows for lump-sum taxation. Distortionary taxation is a then redistribution mechanism:

a positive tax rate makes high-skilled, rich workers pay more taxes than low-skilled, poor

workers. The optimal tax rate at any point in time balances distributional concerns against

efficiency. Tax smoothing emerges because the determinants of inequality are constant over

time and invariant to government expenditure or aggregate technology shocks.

In representative-agent settings, tax-smoothing results are often explained by the follow-

ing informal argument: in order to minimize the total cost from distortions it is optimal

to equate the marginal cost of distortions over time, which requires equating taxes over

time (Barro, 1979). The result derived here refines this intuition: at any point in time, the

marginal cost from distortions should be equated to the marginal benefit from redistribu-

tion. If the latter is constant over time and invariant to shocks, then the marginal cost from

distortions should be equated over time, implying the same for the tax rate.

When lump-sum taxes are ruled out the only difference is that the overall level of taxation

is, by necessity, driven by budgetary needs, instead of by distributional concerns. However,

the timing of taxes is still affected by distributional concerns. Tax-smoothing is optimal

because the skill distribution is constant over time and invariant to shocks.

Some Extensions. I now provide some extensions that do not affect the conclusions for

optimal taxes. Proposition 2 still applies if the utility function is generalized to

∑

t,st

βt

(
χu

t (s
t) · u

(
ci(st)

)
− χv

t (s
t) · v

(Li(st)

θi

))
Pr(st), (26)

The functions χu
t (s

t) and χv
t (s

t) capture shocks to the marginal rate of substitution be-

tween consumption and labor through χv
t (s

t)/χu
t (s

t), equivalent to the “wedges” empha-

sized in the business-cycle literature (e.g., Chari, Kehoe, and McGrattan (2006)). They

also affects the intertemporal marginal rate of substitution, or stochastic discount factor,(
χu

t (s
t+1)/χu

t (s
t)
)
βu′
(
c(st+1)

)
/u′
(
c(st)

)
, which determines asset pricing. Thus, the ratio

χu
t (s

t+1)/χu
t (s

t) could be used to ensure that the model is consistent with asset-returns data.

Although government expenditures do not enter the production function explicitly, the
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history of states st is allowed to affect it in a general way. This implicitly captures any effect

that the history gt(st) ≡
(
g0(s0), g1(s

1), . . . , gt(s
t)
)

of government expenditures—which, after

all, is simply a function of the history of states st—may have on production possibilities.

For example, the stock of public infrastructure, a function of current and past government

investments, may affect private production possibilities. By the same reasoning, all the

results extend to the case where government expenditures are valued according to the utility

function χu
t (g

t, st)u(cit(s
t))−χv

t (g
t, st)v(ni

t(s
t))+χt(g

t, st). The additive term χt(g
t, st) plays

no role, while the multiplicative factors in the utility function (26) already implicitly capture

government expenditures (since, again, gt(st) is a function of st).11 Finally, if government

expenditures are endogenous then the problem studied here is the taxation subproblem that

takes as given the solution g∗t (s
t) for government expenditures.

Lastly, the assumption that labor types are perfectly substitutable can be relaxed. One

can show that Proposition 2 holds as long as labor is weakly separable from capital so that

production is given by F (k(st−1), g({Li(st)}), st, t) for any aggregator function g({Li}) that

is homogeneous of degree one.

4.2 Balanced Growth Preferences

When utility is not isoelastic or is nonseparable optimal tax rates do change over time and

do respond to shocks. However, I now argue that the previous result provides a useful

benchmark by considering the balanced-growth specification chosen by Chari, Christiano,

and Kehoe (1994) for their quantitative Ramsey analysis:

U i(c, L) ≡ U(c, L/θi) where U(c, n) ≡
1

1 − σ

(
cα(1 − n)1−α)

)1−σ
for σ 6= 1, (27)

and U(c, n) = α log(c) + (1 − α) log(1 − n) for σ = 1.

With these preferences, individual consumption and leisure are proportional to their

aggregates: ci(st) = hi,c(c, L) = ωi
cc(s

t) and 1−Li(st)/θi = 1−hi,L(c, L)/θi = ωi
L(1−L(st)),

for some fixed weights {ωi
c, ω

i
L} determined by ϕ; it follows that Um(c, L) is proportional to

U(c, L). Also,

W (c, L) = ΦUU(c, L) + ΦUL
UL(c, L), (28)

for some constants ΦU and ΦUL
determined by ϕ and µ. Formula (18) implies

τ ∗(L) =
1

(1 − L)ΦU/ΦUL
+ σ(1 − α) + α

, (29)

11The argument can be generalized to make government expenditure a vector: some elements may primarily
affect production while others affect utility.

16



0 1 2 3 4 5 6
−.15

−.10

−.05

    0

 .05

 .10

 .15

σ

L 
τ′

(L
)

 

 

τ=35%

τ=20%

τ=45%

Figure 1: Sensitivity of Labor-Income Tax Rate with Respect to Labor for Balanced Growth
Preferences

so that the tax rate only depends on current labor L. Using equation (20) and (29) gives

R(st+1)

R∗(st+1)
=

1 − L(st)

1 − L(st+1)
·
τ ∗(L(st+1))

−1
− 1

τ ∗(L(st))−1 − 1
. (30)

For the logarithmic utility case with σ = 1 equations (29) and (30) imply that R(st+1) =

R∗(st+1), the tax on capital is zero, κ(st+1) = 0. For other values of σ, these equations reveal

that κ(st+1) takes on both signs, and the magnitude of its fluctuations around zero depends

on the magnitude of changes in labor from one period to the next.

Proposition 3. With balanced-growth preferences as in (27) the optimal labor-income tax

rate is a function of current labor τ ∗(L) given by equation (29) and its sensitivity is

Lτ ∗′(L) = −
L

1 − L
τ ∗(L)

(
1 − τ ∗(L)(σ(1 − α) + α)

)
. (31)

It is optimal to set the capital-income tax rate to fluctuate around zero so that the after tax

rate of return on capital is given by equation (30).

Proof. Equation (31) follows by differentiating τ ∗(L) in equation (29) with respect to labor

L and using equation (29) to substitute out the ratio ΦU/ΦUL
for the tax rate τ ∗(L).

The semi-elasticity Lτ ∗′(L) provides an estimate of the magnitude of likely variations in

tax rates

τ(st) − τ(L̄) ≈ L̄τ ′(L̄) ·
L(st) − L̄

L̄
⇒ Std

(
τ(st)

)
≈ L̄τ ∗′(L̄) · Std

(
L(st)/L̄

)
,
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for some average value of labor L̄.

To get a sense of the magnitudes, consider an example. Suppose a tax rate of τ(L̄) = .35,

L̄ = .23 and that utility is logarithmic (σ = 1), then a 1 percent increase in labor changes

the tax rate by L̄τ ′(L̄) ≈ −.074 of a percentage point, so that the tax rate drops from 35

percent to 34.936 percent. Figure 1 plots Lτ ∗′(L) as a function of σ using α = .25 and

L̄ = .23 (as in Chari, Christiano, and Kehoe’s (1994) calibration) for three values the tax

rate τ(L) = .20, .35 and .45. For the magnitude of business-cycle fluctuations in labor,

these calculations suggest small movements in optimal tax rates. Indeed, Chari, Christiano,

and Kehoe (1994) found minuscule variations for a calibrated representative-agent Ramsey

model—equation (31) explains their findings and extends them to the case with heterogeneity

and lump-sum taxation. Finally, as Figure 1 illustrates, condition (31) implies that perfect

tax-smoothing may hold.

Corollary. If for some level of labor L̄ the labor-income tax rate is such that

τ ∗(L̄) =
1

σ(1 − α) + α

or τ ∗(L̄) = 0, then the labor-income tax rate is constant τ(L) = τ(L̄) for all L, and perfect

tax-smoothing τ(st) = τ(L̄) is optimal.

4.3 Equivalence with Ramsey

The previous analysis actually uncovers a partial-equivalence result between the general

model, with heterogeneity and lump-sum taxation, and the representative-agent Ramsey

model that rules out lump-sum taxes. This equivalence can be used as a foundation or

reinterpretation for some aspects of Ramsey analyses.

The point is that for both preference classes the difference between the functions W (c, L)

and Um(c, L), which determines tax rates, is indexed by a one-dimensional variable: for

the separable-isoelastic case it is the ratio Φu/Φv, while for the balanced-growth case it is

ΦU/ΦUL
. Whatever the primitives are—the skill distribution, the initial capital and debt

distribution, the availability of lump-sum taxation or initial wealth levies, etc.—it all comes

down to the value of this ratio. In particular, the model with heterogeneous workers and

lump-sum taxation and the representative-agent Ramsey model which rules out lump-sum

taxation, both deliver for same tax rates for t ≥ 1, if their ratios coincide. Only differences

in the first period remain, due to the different assumptions regarding restrictions on initial

wealth taxation (see the discussion in Subsection 3.5).

Another way to see this, which provides a closer link to the Ramsey methodology, is that
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for both preference classes one can show that W (c, L) is proportional to

Um(c, L) + µ̂
(
Um

c (c, L) · c+ Um
L (c, L) · L

)
.

This expression is equivalent to that of W (c, L) for a representative-agent Ramsey economy

with preferences Um(c, L). The scalar µ̂ is a transformation of the ratios discussed above,

and provides an equivalent metric of the difference between W and Um.

Proposition 4. Assume that preferences are either separable and isoelastic as in (23), or

are of the balanced-growth class (27). Optimal tax rates can be expressed as a function of the

allocation as in equations (18) and (20) that belong to a class indexed by a one-dimensional

parameter µ̂ that summarizes the model’s primitives. In particular, this is true for both the

model with heterogeneity and lump-sum taxation and the representative-agent Ramsey model

that rules out lump-sum taxation.

In the full model, with skill inequality and lump-sum taxation, an important determinant

of µ̂ is the degree of skill inequality, or the desire for redistribution captured by the Pareto

weights λ. For example, a higher weight on low-skilled workers leads to a higher µ̂, implying

higher tax rates and higher transfers −T . In the representative-agent Ramsey model an

important determinant of µ̂ is the initial level of debt B(s0). Indeed, all feasible values of µ̂

can be spanned by varying initial debt B(s0). The first-best is attained if B(s0) is sufficiently

negative, while more indebted governments set higher tax rates to finance the servicing of

the debt.

Suppose one solves the planning problem for an economy with heterogeneous workers and

a lump-sum tax. Among other things, this yields a pseudo-utility function Um(c, L) and a tax

policy expressed as a function of the allocation. Now, consider solving a representative-agent

economy where preferences are given by the Um(c, L) obtained from the previous exercise,

with the same specification of uncertainty and technology and some initial level of debt.12

Then there exists some initial level of debt for which the tax policy that comes out of both

exercises is identical. Moreover, the first-order conditions characterizing the allocation are

also identical.

This provides a connection between initial debt B(s0) in the representative-agent Ram-

sey model and the chosen level of transfers −T in the model with heterogeneous agents

and lump-sum taxation. Interestingly, Chari, Christiano, and Kehoe (1994) calibrate their

representative-agent Ramsey economy with a fictitiously high level of debt to capture the

12Recall that with balanced-growth preferences Um was equivalent to U , up to an irrelevant constant of
proportionality. With separable-isoelastic preferences, Um places a different weight than U on the disutility
of labor.
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important transfers present in the U.S. tax system (around 12 percent of gross national

product in 1985), but absent in their model. The present discussion provides a justification

for such a shortcut.

The equivalence result is useful to reinterpret previous theoretical and quantitative work

using the representative-agent Ramsey framework. For example, the simulated dynamics for

the optimal allocation and tax rates reported in Chari, Christiano, and Kehoe (1994), using

a representative-agent Ramsey model, can be directly adjudicated to my model, with skill

heterogeneity and lump sum taxation. On the other hand, things are different regarding

initial capital taxation, time-inconsistency of policy and debt management. I discuss these

issues in Section 6.

5 Shocks to the Distribution of Skills

To bring out the importance of distributional concerns in determining the optimal tax rate,

I now extend the model to allow skills to vary over time or with the state of the economy:

θi
t(st) for a worker of type i ∈ I. This can capture, for example, increases in inequality

that do not change the ranking of worker types, as well as idiosyncratic shocks to skills that

affect workers’ rankings without necessarily affecting the cross-sectional distribution of skills.

These changes in the distribution may be the result of shocks (for example, if inequality rises

during recessions) or deterministic trends (such as the rise of wage inequality in the United

States during the 1980s).

Fortunately, the general analysis from Section 3 is virtually unaffected by this extension.

The only difference is that utility U i(c, L; st, t) = U
(
c, L/θi

t(st)
)

now depends on the state st

and the period t, which induces the same in the functions hi, Um and W . With this small

change, all the results and formulas from Section 3 extend directly.

For the rest of this section, to focus on the impact on tax rates from changes in the

distribution, I adopt the separable-isoelastic utility specification (23). The functions Um

and W are now:

Um(c, L; st, t) = u(c) − Φt(st) v(L) and W (c, L) = Φuu(c) − Φv,t(st)Φt(st) v(L)

for some coefficients Φu, Φv,t(st) and Φt(st), as in (24) and depend on the state st and the

period t solely through their effect on the distribution of skills {θi
t(st)}. Applying a version

of formula (18) gives

τ(st) = τ̄t(st) ≡ 1 −
Φu

Φv,t(st)
= 1 −

∑
i∈I u

′(ωi
c)ω

i
c (λi − (1 − σ)µi)πi

∑
i∈I u

′(ωi
c)ω

i
L,t(st) (λi − γµi)πi

, (32)
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where ωi
c = (ϕi)1/σ/

(∑
i∈I(ϕ

i)1/σπi
)

and

ωi
L,t(st) ≡

(ωi
c)

−σ
γ−1 (θi

t(st))
γ

γ−1

∑
i∈I(ω

i
c)

−σ
γ−1 (θi

t(st))
γ

γ−1 πi
, (33)

The share of labor ωi
L,t(st) varies only the skill distribution {θt(st)}.

Proposition 5. With shocks to the distribution of skill and preferences given by (23): (a)

the optimal tax rate on labor income is τ(st) = τ̄t(st) given by equation (32) which varies

only with the distribution of skills {θi
t(st)}i∈I ; and (b) a zero capital tax rate κ(st) = 0 is

optimal for t ≥ 1. These results hold with or without a lump-sum tax T .

The tax rate is unresponsive to shocks affecting government expenditures or aggregate

technology. That movements in the distribution of relative skills are the only source for

tax rate fluctuations underscores the point made earlier that distributional concerns are a

crucial determinant of the level of labor-income tax rates. Indeed, as discussed above, when

a lump-sum tax is available, distributional concerns are the main determinant of the overall

level of tax rates. Proposition 5 generalizes this comparative-static notion by showing that

fluctuations in the distribution of skills also lead to fluctuating tax rates over time.

To see the link between inequality and taxes more clearly, consider the case where a

lump-sum tax is available. Using the first-order condition (17), equation (32) becomes

τ̄t(st) = 1 −
Ẽ[λiu′(ωi

c)] + c̃ov
(
ωi

c, u
′(ωi

c)(λ
i − (1 − σ)µi)

)

Ẽ[λiu′(ωi
c)] + c̃ov

(
ωi

L(st), u′(ωi
c)(λ

i − γµi)
) , (34)

where Ẽ[xi] ≡
∑

i∈I x
iπi and c̃ov(xi, yi) ≡ Ẽ[xiyi] − Ẽ[xi]Ẽ[yi] are special expectations and

covariance operators that add across worker types i using population fractions {πi} as prob-

abilities. This version of the tax-smoothing formula highlights the central role that the

dispersion in labor income across workers can play. To be concrete, suppose that (as in the

example below) the second term in the denominator’s covariance, u′(ωi
c)(λ

i − γµi), increases

with the worker’s skill type i. Suppose further that the share of labor earnings, ωi
L(st), is

also increasing in the worker’s skill type. The denominator’s covariance is then positive,

and a rise in the dispersion of labor increases the covariance, making the tax rate rise. The

greater the dispersion in labor income, the more effective the tax as a redistributive device.

Recall the intuition that, with a lump-sum tax, the marginal cost from distortions should

equal the marginal benefit from increased redistribution in each period. As long as the skill

distribution does not vary, the marginal benefit from redistribution is unchanging so that the

marginal cost from distortions should be equated over time, leading to a constant tax rate.
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However, when the distribution of skills does shift, the marginal benefit from redistribution

shifts with it, and the marginal cost from distortions should not be equated over time. As a

result, the optimal tax rate responds to shifts in the skill distribution.

Tax rates vary with the distribution of skills even without the lump-sum tax. Although

in this case distributional concerns cannot affect the overall level of tax rates, they can shape

their timing.

An Example. To illustrate some features of the tax rate’s dependence on the relative skill

distribution I turn to an example. I adopt the Brock-Mirman specification: with logarithmic

utility from consumption (σ = 1), Cobb-Douglas production function and full depreciation

δ = 1. This permits an almost-closed-form solution (see Appendix A for details). The

example abstracts from government expenditure and technology shocks to focus on skill-

distribution shocks.

Workers are split into two equally populated types, I = {L,H} with πH = πL = 1/2, with

low and high productivity, θH(st) ≥ 1 ≥ θL (st) = 2−θH(st). The possible values for relative

skills θH(st)/θL(st) live on an equally-spaced grid, with 10 points with the lowest value equal

to 1 (no inequality) and the highest value around 4.8. The state st is a simple Markov chain:

each period it changes with some constant probability, and its new value is drawn with equal

probability from the grid. Finally, the example assumes no initial inequality in financial

wealth and solves the Utilitarian case with equal weights on both groups, λL = λH = 1.13

Figure 2 shows a simulated sample path from the solution. Tax rates only adjust when

the distribution of skills changes, illustrating Proposition 5. The dynamics for capital are

smoother; output and consumption are not shown but behave similarly.

Figure 3 shows the optimal relationship between skill inequality θH(st)/θL(st) and the

tax rate τ (st) that holds at any point in time along the equilibrium. Tax rates increase with

the current skill inequality, ranging from −4.2 percent up to 35.7 percent. Figure 4 shows

the allocation for effective labor Li as a function of the state, which is independent of capital

in this Brock-Mirman specification. When the relative skill of the high type increases, the

high type’s effective labor supply increases, while the low type’s decreases.

For the two-type case, formula (34) implies that optimal tax rates are solely a function

of the difference ωH
L −ωL

L. Figures 3 and 4 show that the optimal tax rate increases with this

difference, as expected. For sufficiently low skill-inequality the tax rate may even become

negative. This occurs because the ranking of labor-income flips when θH/θL = 1, so that

13The other parameters are: β = .95; gt(st) = 0; γ = 2; α = 1 and F (L,K) = KρL1−ρ with the share of
capital set to ρ = .4; the probability of not changing states in the Markov chain was chosen near 0.9, but
adjusted so that there was a state with no inequality in labor-income: it came out to be 0.8999119. The
initial state of the economy was taken to be the middle grid point.
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Figure 2: Simulated Sample Path for Inequality, Taxes and Capital

low-skilled workers earn more than high-skilled workers due to an income effect: leisure is

a normal good and low skilled workers are poorer, since their productivity is never higher

but sometimes strictly lower than that of high-skilled workers (this shows up as a lower ωi
c

in equation (33)). A flip in the ranking of earnings changes the sign of the covariance term

in the denominator of formula (34) and can lead to a negative optimal tax rate.

Figures 3 and 4 show that the tax rate is still positive when both types of workers earn

the same labor income, which occurs at the second-lowest state of inequality. Equation (34)

with σ = 1 and λi = 1 confirms that the tax is nonzero whenever ωi
L(st) = 1 for all i ∈ I

as long as there is consumption inequality, so that ωi
c are not all equal to 1. This may

seem counterintuitive: if there is no difference in labor income to redistribute, why tax it?

But if the tax rate were zero, workers would intertemporally substitute work towards these

periods with no inequality, away from periods with positive tax rates. This reallocation of

labor is inefficient—it does not reflect differences in productivity—and a positive tax helps

mitigate it. When the utility from consumption is linear (σ = 0) labor supply in each

period is a function of the current net wage, so there is no intertemporal substitution effect.

Formula (34) confirms that the optimal tax rate is zero in this case whenever there is no

labor-income inequality.14

It is important to recall that the tax changes pictured in these figures represent the equi-

14This follows since µi = λi −
∑

i∈I λ
iπi in this case. Of course, for the problem to be interesting one

requires λi 6= λj for some i, j ∈ I; otherwise there is no reason to redistribute and µi = 0 for all i ∈ I, so
that tax rates are always zero.
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librium response to changes in inequality over time, which is different from a comparative-

static exercise. How do these changes in tax rates along the equilibrium path differ from a

comparative-static exercise which changes some fixed skill distribution? I performed some

numerical simulations and found that the comparison is ambiguous. Whenever the changes

in inequality considered were small enough, the equilibrium path responses to shocks were

smaller than the corresponding comparative-static ones. However, for large enough changes

in inequality the reverse is possible.15

6 Discussion: Three Differences with Ramsey

In this section I discuss some further implications of my model, focusing on three issues that

differ sharply with representative-agent Ramsey settings.

6.1 Capital Taxation and Time Inconsistency

In Ramsey models a striking contrast emerges between long-run and short-run capital tax

prescriptions: eventually capital should go untaxed, but initially it should be taxed heavily.

Time-zero capital levies provide revenues without distortions, mimicking the desired missing

15For example, suppose that σ = 1, λi = 1 and that there are two possibilities: no skill inequality or some
positive skill inequality. Furthermore, suppose the probability of changing states along the equilibrium path
is near 0. Then, when the initial state has no inequality, taxes are zero in both states. In contrast, when the
initial state has positive inequality, taxes are positive there, but can turn negative when the state switches to
no inequality (this is illustrated by the example worked out in the next subsection). Thus, when the initial
state has positive inequality, the change along the equilibrium path is larger than the change obtained from
the comparative-static exercise.
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lump-sum tax.16 This tension, between long-run and short-run tax prescriptions, makes

government policy time inconsistent.

In contrast, time-zero capital levies may be completely irrelevant in the present model.

Indeed, the reason for their irrelevance is precisely what makes them so desirable in Ramsey

models: capital levies that imitate lump-sum taxes bring nothing new to the table when

lump-sum taxes are already directly available. However, as discussed in Subsection 3.5,

capital levies are no longer neutral if initial asset holdings are unequal. For example, consider

a simple two-type case I = {L,H} where higher skilled workers are also wealthier, so that

θL < θH and KL < KH . A tax on initial wealth then acts as an ideal redistributive device,

taking more from the rich, as income taxation does, but without introducing distortions. The

taxation of initial wealth is desirable since it shifts out the frontier of attainable utilities.

In a nutshell, the Ramsey framework is about the need to “redistribute” from the private

to the public sector to finance the latter. Any initial wealth in the hands of the private

sector is best expropriated. In contrast, in the present model the government also needs

resources from the private sector, but the central tension is not getting these resources

without distortions—which can always be accomplished by using the lump-sum tax. Rather,

it is the distributional concern regarding from whom the government is extracting resources.

Instead of redistribution from private to public sector, what is crucial is redistribution within

the private sector.

These differences regarding capital levies affect the issue of time inconsistency of policy.

Indeed, unlike in the representative-agent Ramsey setting, the optimum may, in some cases,

be time consistent. As an example, consider a deterministic economy that finds itself initially

at the steady-state level of capital, given the optimal policy. Suppose further that each

worker owns the same amount of capital, i.e., Ki
0 = Kj

0 . Then, capital levies simply replicate

lump-sum taxes, which are already directly available. As a result, capital levies can be set

to zero. Since the economy is at a steady state, this situation simply repeats itself over time,

implying that the optimal tax policy is time consistent.

This simple example makes the point that when lump-sum taxes are available policy

may be time consistent. However, in general, time inconsistency problems may emerge.

For example, if along the equilibrium more productive workers tend to accumulate more

assets over time, then, ex post, a tax on capital, combined with a reduction of the tax on

labor, may create a Pareto improvement. Hence, optimal policy is not necessarily ex-post

Pareto efficient. The reason is precisely that, ex post, the capital levy no longer imitates

a lump-sum tax: in this example, it falls more heavily on richer, more productive workers.

16To avoid the first-best, most analyses impose arbitrary upper bounds on the capital levy. In contrast,
here a nontrivial tax problem remains without such restrictions.
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That is, the incidence of the capital levy matters. This discussion emphasizes that the

mechanism for time inconsistency is different and that it suggests new issues—regarding the

distribution of assets, and its evolution, within the private sector—that cannot be addressed

by a representative-agent model.

6.2 Debt Management

Since Barro (1979), second-best tax problems have been used to avoid the neutrality results

implied by Ricardian equivalence and determine an optimal debt management policy. Barro

argued that tax rates should be smoothed over time, that taxes should be set with an eye

towards permanent government spending, as opposed to current spending. Government debt

is key to smoothing tax rates, it should be used to buffer any resulting deficits and surpluses.

By allowing state-contingent debt, Lucas and Stokey (1983) extended this argument and

found that tax rates should also be smoothed across states of the world, as well as time. In

both models the solution to the tax problem determines a debt management policy. This is

the case because, with proportional taxation, average and marginal taxes coincide.

However, this tight link between average and marginal tax rates is broken when lump-

sum taxes are available. Ricardian equivalence is recovered, rendering the mix between debt

and lump-sum taxes indeterminate. Indeed, at one extreme, the government could refrain

from using debt altogether and balance its budget each period by using the lump-sum tax.17

However, this does not imply that the asset market is unimportant: even in this case, workers

may need to borrow and save, or to provide insurance to each other; in general, it cannot be

dispensed with.

Simple extensions of the model that overcome Ricardian equivalence may provide a deter-

minate theory of debt management. One possibility is to model some individuals as having

limited participation in asset markets. As an extreme example, suppose that a particular

type of worker i ∈ I lives hand-to-mouth: with no initial assets and no access to asset mar-

kets whatsoever, these workers simply consume, in each period, their entire labor income

net of taxes. The desire to smooth their consumption then pins down the optimal lump-sum

tax, and with it, public debt.18

17A related indeterminacy arises in Bassetto and Kocherlakota (2004) in the context of a model that allows
taxes to be a function of past earnings.

18For the simple case described here, the planner can actually replicate the allocation that is optimal with
full participation in asset markets; whether or not doing so is optimal remains an open question.
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6.3 Can Taxes on Capital Replicate Complete Markets?

In representative-agent Ramsey settings, Zhu (1992) and Chari, Christiano, and Kehoe

(1994) showed that capital taxation can help implement complete-market outcomes, even

if state-contingent bonds are unavailable. Roughly, the argument is based on the fact that

distortionary effects from taxation are determined by some average (namely, the marginal

utility weighted average) of next period’s capital tax rate. Then, the tax rate’s dependence

on next period’s state acts as a state-contingent source of revenue, which can be exploited

to replicate revenue from state-contingent bonds.19

However, these ideas depend heavily on the representative-agent Ramsey framework.

Firstly, they are based on imitating, ex post, a missing lump-sum tax to provide a non-

distortive source of state-contingent revenues. In contrast, when a lump-sum tax is available

it already provides a non-distortive source of state-contingent revenues. Thus, if capital levies

simply replicated lump-sum taxes, as they do in the representative-agent Ramsey case, then

they would be completely irrelevant.

Secondly, with heterogeneous workers both the role of complete markets and the effect of

capital levies when markets are incomplete are more involved. Complete markets are more

than just a source for state-contingent revenue for the government. They also provide insur-

ance between different types of workers. That is, since workers are heterogeneous, in general,

they trade with each other in the asset market. Replicating complete markets requires repli-

cating the transfers between workers obtained from these contractual arrangements. Capital

levies do not simply imitate lump-sum taxes, they also redistribute within the private sector.

While proportional taxes on capital may make up for some of the state-contingent transfers

across workers that are needed, in general, they are too coarse an instrument to do the job.

7 Mirrleesian Taxation: Constrained Efficiency

In this section I treat the Mirrleesian scenario, where no restrictions are placed on tax

instruments—allowing, for example, nonlinear taxation of labor and capital income—so that

the economy achieves efficient allocations that are constrained only by asymmetric informa-

tion. Alternatively, instead of stressing informational frictions, the analysis applies without

modification if one simply assumes that the only restriction on the government is that taxes,

for some reason, cannot depend directly on a worker’s type i ∈ I.

Naturally, tax schemes that implement constrained-efficient allocations are more involved

than the linear taxes considered in previous sections. I first focus on characterizing the

19 A similar idea applies to monetary models regarding the price level, i.e., surprise inflations.
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implicit marginal tax rates implied by these allocations. I then provide a tax scheme based

on income averaging that implements constrained-efficient allocations as part of a competitive

equilibrium.

The contribution here is to study a dynamic economy with aggregate uncertainty and

characterize the response to shocks. In contrast, previous work within a Mirrleesian setting

has studied static models or focused on idiosyncratic uncertainty. The focus on the response

to aggregate fluctuations and uncertainty—an integral part of the Ramsey literature—has

not been explored in a Mirrleesian setting.

7.1 The Planning Problem

I assume the additively-separable utility specification (23), except that the assumption that

the utility function u(c) is isoelastic is no longer required; the assumption that the disutility

function v(n) is isoelastic, on the other hand, is required for the tax-smoothing result derived

below.

I apply the Revelation Principle and consider a direct truth-telling mechanism, where

workers report their skill type and receive an allocation as a function of this report. The

incentive-compatibility constraints ensure that truthful reporting is optimal:

∑

t,st

βt

(
u(ci(st)) − v

(
Li(st)

θi
t(st)

))
Pr(st) ≥

∑

t,st

βt

(
u(cj(st)) − v

(
Lj(st)

θi
t(st)

))
Pr(st) (35)

for all types i ∈ I and reports j ∈ I.

To characterize all Pareto constrained-efficient allocations, consider the planning problem

that maximizes the weighted sum of utilities

∑

t,st,i∈I

βtλi
(
u
(
ci(st)

)
− v

(
Li(st)

)

θi
t(st)

)
Pr(st)πi

subject to the resource constraints (2) and the incentive constraints (35).20

Let the multiplier on the incentive constraint for worker type i ∈ I reporting to be j ∈ I

be ψi,jπi. Exploiting the fact that v(L/θj) = (θi/θj)γv(L/θi), one can write the Lagrangian

20Unlike the case with linear taxes, one can consider the maximization of this objective without loss in
generality, instead of simply using it to derive first-order conditions. This follows because the planning
problem is convex after the following change in variables: from ci(st) and Li(st), to ui(st) = u(ci(st)) and
vi(st) = v(Li(st)). This convexity implies that it is without loss in generality to consider the maximization
of the weighted sum of utilities: varying {λi} traces out the utility frontier and characterizes all Pareto
constrained-efficient allocations.
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that incorporates these constraints as

∑

i,t,st

βt

(
φi

cu
(
ci(st)

)
− φi

L,t(st) v

(
Li(st)

θi
t(st)

))
Pr(st)πi,

where

φi
c ≡ λi +

∑

j

(
ψi,j −

πj

πi

ψj,i

)
and φi

L,t(st) ≡ λi +
∑

j

(
ψi,j −

πj

πi

(
θi

t(st)

θj
t (st)

)γ

ψj,i

)
. (36)

7.2 Tax Smoothing with Nonlinear Taxation

The first-order conditions for consumption, labor and capital are

φi
cu

′
(
ci(st)

)
= η(st), (37)

φi
L,t(st)

1

θi
t(st)

v′
(
Li(st)

θi
t(st)

)
= η(st)FL

(
L(st), K(st−1), st, t

)
, (38)

η(st) = β
∑

st+1

η(st+1)R∗(st+1) Pr(st+1 | s
t), (39)

where βtη(st) Pr(st) is the multiplier on the resource constraint (2) in period t with history st.

Combining the first-order conditions (37) and (39) gives the standard intertemporal con-

sumption Euler equation

u′
(
ci(st)

)
= β

∑

st+1

u′
(
ci(st, st+1)

)
R∗(st, st+1) Pr(st+1 | s

t) for all i ∈ I, (40)

so that, in this sense, saving decisions are not distorted.

Define the implicit marginal tax on labor τ i(st) as the solution to

1

θi
t(st)

v′
(
Li(st)/θi

t(st)
)

u′
(
ci(st)

) = FL

(
L(st), K(st−1), st, t

)(
1 − τ i(st)

)
.

Combining the first-order conditions (37) and (38) gives

τ i(st) = 1 −
φi

c

φi
L,t(st)

≡ τ̄ i
t (st). (41)

Note that φi
L,t(st), defined by (36), depends on period t and state st only through the

effect these may have on the distribution of skills {θi
t(st)}i∈I ; equation (41) implies that this

property is inherited by the marginal tax on labor income.
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Proposition 6. At any constrained-efficient allocation: (a) the intertemporal consumption

Euler equation (40) holds; and (b) each worker type i ∈ I faces an implicit marginal tax on

labor income τ i(st) = τ̄ i
t (st) that depends only on the current skill distribution {θi

t(st)}i∈I .

When the skill distribution is fixed, Proposition 6 provides a benchmark for zero capital

taxation and for perfect tax smoothing in a setting with nonlinear Mirrleesian taxation.21

As in Proposition 2, the marginal tax on labor faced by each worker is then constant across

time and states. However, unlike the linear tax case, different workers face different implicit

marginal tax rates.22 In the next subsection I investigate what these results on implicit

marginal tax rates may imply for explicit tax systems.

7.3 Income Tax Averaging: Implementing Tax Smoothing

To derive properties of constrained-efficient allocations, the last two subsections used the

abstract tool of a direct mechanism, where workers made an initial report on their type

which determined their allocation thereafter. In particular, no markets were involved and

the only choice made by workers was their report. In contrast, in the case of linear taxa-

tion, studied earlier, the tax implementation was an integral part of the analysis, in that

the optimal allocation was derived jointly with a tax policy and market equilibrium that

sustained it. The idea of this subsection is to place the nonlinear Mirrleesian scenario on

equal footing: incorporating markets, prices and an explicit tax system that implements

constrained-efficient allocations.

The results regarding implicit marginal tax rates obtained in the previous subsection

identify properties that explicit tax systems, that do allow workers to make savings and labor

choices at market-determined prices and wages, should have to achieve efficient outcomes.

For the case where the skill distribution is fixed, the results suggest taxation based on

income averages, since this ensures that each worker faces a constant marginal tax, but

allows this marginal tax to vary across workers. I now formalize this idea by proving that

such a tax system implements constrained-efficient allocations, characterized in the previous

subsections, as part of a competitive equilibrium.

The implementation works as follows. The government places a nonlinear tax on the

present value of labor earnings and does not tax capital income. A competitive equilibrium

21Distorting savings would be optimal if there were ensuing privately-observed individual skill shocks
(Diamond and Mirrlees, 1978; Rogerson, 1985; Golosov, Kocherlakota, and Tsyvinski, 2003). Farhi and
Werning (2005) explore the importance, in terms of welfare gains, of distorting savings in such environments.

22As in the linear case, for nonseparable utility or for disutility functions v(n) that are non isoelastic, tax
rates generally do vary over time and with shocks, even with a fixed distribution of skills. An open question
is the whether the magnitude of these changes is significant. It may be possible to obtain estimates of the
sensitivity of tax rates to these shocks, as Section 4.2 did for the linear taxation case.
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in this context is a tax function Ψ, a sequence of prices {p(st), r(st), w(st)} that satisfy the

no arbitrage condition (3), and nonnegative quantities {ci(st), Li(st), K(st)}, such that: (i)

workers maximize utility

∑

t,st

βt

(
u
(
ci(st)

)
− v

(
Li(st)

θi

))
Pr(st) (42)

subject to the budget constraint

∑

t,st

p(st)ci(st) ≤
∑

t,st

p(st)w(st)Li(st) − Ψ

(∑

t,st

p(st)w(st)Li(st)

)
; (43)

(ii) firms maximize profits, so that w(st) and r(st) are given by (5) and (6); (iii) markets

clear, so that the resource constraints (2) hold for all periods t and histories st.

To see why this might work, take any tax function Ψ that is differentiable. Then the

first-order conditions for the problem of a worker of type i ∈ I yield

1

θi

v′
(
Li(st)/θi

)

u′(ci
(
st)
) =

(
1 − Ψ′

(∑

t,st

p(st)w(st)Li(st)

))
w(st)

for all t = 0, 1, . . . and st. Thus, the implicit marginal tax on each worker is constant, but not

necessarily the same across workers (since Ψ may be nonlinear); exactly the property shared

by constrained-efficient allocations. This suggests that an appropriately chosen Ψ might

implement the optimum. In Appendix B, I prove that this is indeed the case: there exists

a tax function Ψ and prices {p(st), w(st), r(st)} that implement the constrained-efficient

allocation as part of a competitive equilibrium.

Proposition 7. Suppose that the skill distribution is constant over time and does not vary

with the state st, i.e., θi
t(st) = θi. Then any constrained-efficient allocation can be im-

plemented by a competitive equilibrium with no tax on capital income and a nonlinear tax

Ψ
(∑

t,st p(st)w(st)Li(st)
)

on the present value of labor income. The tax function Ψ can be

chosen to be continuous and piecewise differentiable.

Variations on this implementation are possible. As an example, Appendix C provides

a sequential variant for a deterministic version of the economy. Instead of taxing workers

once and for all as a function of the present value of future earnings, workers pay taxes in

all periods as a function of past earnings.
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8 Conclusions

The model developed here provides a flexible and tractable framework to address optimal

taxation issues in dynamic economies. Like the representative-agent Ramsey framework,

the model can handle rich dynamic environments; unlike the representative-agent Ramsey

framework, distortive taxes arise naturally from distributional concerns. The analysis pro-

vided a bridge between the Ramsey and Mirrleesian approaches to dynamic issues in optimal

taxation.

Two extensions of the model, not explored here, may be of interest for future work. One

is to relax the assumption that asset markets are complete in favor of some incomplete-

market alternative. Another is to explore overlapping-generations demographics, instead of

the infinitely-lived dynastic framework. Hopefully, the model in this paper may provide a

useful benchmark or starting point for approaching these and other extensions.

Appendix A: Solution Procedure for the Example from

Section 5

For the logarithmic case, i.e., σ = 1, the implementability condition becomes

∑

t,st

βt

(
1 − γ

(
ωi

L,t(st)

θi
t(st)

)γ

v(L
(
st
)
)

)
Pr(st) =

(
ωi

cC0

)−1 (
(1 − κB(s0))B

i(s0) +R0K
i
0 − T

)
.

Equating the lump-sum T and using equation (33) to substitute for ωL
L,t(st) reduces the two

implementability conditions for i = L,H to the single constraint (recall that the example

assumes no inequality in initial wealth, (1 − κB(s0))B
i(s0) +R0K

i
0):

∑

t,st

βt Pr(st)
(
ωL

c − ωH
c

−γ
(
(ωL

c )−1/(γ−1)θL
t (st)

γ/(γ−1) − (ωH
c )−1/(γ−1)θH

t (st)
γ/(γ−1)

)
Φt(st)

−γv(L(st))
)

= 0 (44)

Using equations (33) and (44), the planning problem can be written as (recall that the

example assumes the Utilitarian specification with λi = 1)

max
{ωi

c},L(st),K(st)

∑

t,st

βt
(
log
(
c(st)

)
− dt(st; {ω

i
c}, µ̃)v(L(st)) + κ({ωi

c}, µ̃)
)
Pr(st), (45)
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subject to the resource constraint (2) and ωL
c π

L + ωH
c π

H = 1; here µ̃ is the multiplier on

equation (44), while

dt

(
st; {ω

i
c}, µ̃

)
≡

(
∑

i

πi

(
θi

t(st)

ωi
c

)γ/(γ−1)

+ µ̃γ
(
(ωL

c )−1/(γ−1)θL
t (st)

γ/(γ−1) − (ωH
c )−1/(γ−1)θH

t (st)
γ/(γ−1)

)
)

Φt(st)
−γ

κ
(
{ωi

c}, µ̃
)
≡
∑

i

πi log(ωi
c) + µ̃

(
ωL

c − ωH
c

)
.

For the purpose of optimizing over the aggregates variables K(st), c(st) and L(st), the term

involving κ
(
{ωi

c}, µ̃
)

is simply a constant that can be ignored. Now define

N(st) ≡ L(st)dt

(
st; {ω

i
c}, µ̃

)1/γ
and z(st) ≡ Adt

(
st; {ω

i
c}, µ̃

)(ρ−1)/γ
.

where the production function is the Cobb-Douglas specification F (L,K) = AKρL1−ρ. Using

the resource constraint (2) to substitute consumption c(st) out, reduces the problem of

optimizing over aggregates to

max
N(st),K(st)

∑

t,st

βt
(

log
(
z(st)K(st−1)ρN(st)1−ρ −K(st)

)
− v
(
N(st)

))
Pr(st),

which is exactly the Brock-Mirman problem, with stochastic (pseudo) technology shocks,

z(st), and (pseudo) labor supply N(st). The solution is well known (recalling that the

example sets α = 1):

N(st) = N̄ ≡

(
1 − ρ

1 − ρβ

)1/γ

and Kt+1 = ρβztK
ρ
t N

1−ρ,

aggregate labor is then L(st) = N̄dt(st; {ω
i
c}, µ̃)−1/γ .

Replacing the solution for aggregates into the objective function (45) gives (ignoring the

term involving k0, which does not involve {ωi
c}):

max
{ωi

c}



(

1 +
β

1 − βρ

)∑

t,st

βt
E
[
log
(
z(st)

) ]
+
κ
(
{ωi

c}, µ̃
)

1 − β


 (46)

subject to ωL
c π

L + ωH
c π

H = 1. By substituting out ωH
c = (1 − ωL

c π
L)/πH , this becomes a

one-dimensional optimization problem over ωL
c . For each value of µ̃, the solution to (46)

yields an optimal value for ωL
c (note that both ωi

c and µ̃ enter the definition of z(st)).
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One then has a relation between µ̃ and ωL
c ; the other relation needed to pin down the

solution is given by the implementability condition (44), which can be rewritten as

∑

t,st

βt
(
ωL

c − ωH
c − ψt(st)

)
Pr(st) = 0, (47)

where

ψt(st) ≡ dt

(
st; {ω

i
c}, µ̃

)−1 (
(ωL

c )−1/(γ−1)θL
t (st)

γ/(γ−1) − (ωH
c )−1/(γ−1)θH

t (st)
γ/(γ−1)

)
Φt(st)

−γN̄γ.

Now, for each value of µ̃, equation (47) can be seen as defining the value of ωL
c that is

consistent with the implementability condition (44) (note that ωL
c and µ̃ enter the definition

of ψt(st)).

The optimization in (46) and constraint (47) provide the two conditions that pin down

the solution for µ̃ and ωL
c . The entire allocation can then be computed, and the tax rate is

given by

τ(st) = τ̄t (st) ≡ 1 −
1

(π1 + µ̃γωL
c ) (ωL

L,t(st))/(ωL
c ) + (π2 − µ̃γωH

c ) (ωH
L,t(st))/(ωH

c )
,

which is just an analog of formula (32).

Appendix B: Proof of Proposition 7

Consider any constrained-efficient allocation {ci∗(st), Li∗(st),K∗(st)} with its associated mul-

tipliers {η∗(st)} and {φi∗
c , φ

i∗
L }. The resource constraints (2) hold, so market clearing is

guaranteed. Setting factor prices to their marginal products

w(st) = FL

(
L∗(st), K∗(st−1), st, t

)
and r(st) = FK

(
L∗(st), K∗(st−1), st, t

)
, (48)

ensures firm maximization. Let

p(st) = η∗(st), (49)

so that the no arbitrage condition (3) is then implied by (39). The only requirement for a

competitive equilibrium left to be verified is that the constrained-efficient allocation solves

the worker problem in (42) and (43).

It is useful to split the worker problem in (42) and (43), for any tax function Ψ and

prices {p(st), w(st)}, into two stages. In the second stage, the worker solves the subproblem

of choosing consumption and labor for any given present value of these variables. That is,

34



they maximize (42) over {ci(st), Li(st)} subject to

∑

t,st

p(st)ci(st) = ciPV and
∑

t,st

p(st)w(st)Li(st) = Li
PV .

for some given present-value levels of consumption and labor (ciPV , L
i
PV ); let V i(ciPV , L

i
PV )

denote the maximal utility attained. In the first stage the worker chooses the optimal pair

(ciPV , L
i
PV ) constrained by the budget constraint (43). That is, they solve

max
ci
PV

,Li
PV

V i(ciPV , L
i
PV ) subject to ciPV ≤ Li

PV − Ψ(Li
PV ).

Our goal is to construct a tax function Ψ so that, given the proposed prices, the constrained-

efficient allocation solves these two stages for each worker type i ∈ I.

Equations (37) and (38) hold at the constrained-efficient allocation {ci∗(st), Li∗(st)}.

Given the proposed prices (48) and (49), these are precisely the necessary and sufficient

first-order conditions for the second stage of the worker’s problem with (ci∗PV , L
i∗
PV ) defined

by

ci∗PV ≡
∑

t,st

p(st)ci∗(st) and Li∗
PV ≡

∑

t,st

p(st)w(st)Li∗(st).

Thus, if one can ensure that (ci∗PV , L
i∗
PV ) is chosen in the first stage by type i ∈ I workers,

for some tax function Ψ, then one can guarantee that the constrained-efficient allocation

{ci∗(st), Li∗(st),K∗(st)} is implemented. Turning to this first stage, set the tax function Ψ

so that

Ψ(Li∗
PV ) = Li∗

PV − ci∗PV for all i ∈ I, (50)

and for values L 6= Li∗
PV set Ψ(L) in any way so that Ψ(L) ≥ Ψ(L) where

Ψ(LPV ) ≡ LPV − max
cPV

⋂{
cPV : V i(cPV , LPV ) ≤ V i(ci∗PV , L

i∗
PV )
}
.

That is, take the set of points (cPV , LPV ) that are not preferred by any worker to their

corresponding (ci∗PV , L
i∗
PV ). Then Ψ(L) is constructed from the frontier of this set and rep-

resents the most any worker is willing to pay (in present value) to produce LPV and give

up (ci∗PV , L
i∗
PV ). Equivalently, take the set of indifference curves for V i(ciPV , L

i
PV ) for each

worker type i ∈ I that correspond to (ci∗PV , L
i∗
PV ), write these in terms of cPV as a function of

LPV ; then, Ψ is the lower envelope of these functions. Thus, it is continuous and piecewise

differentiable.
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Take any Ψ such that (50) holds and Ψ(LPV ) ≥ Ψ(LPV ) for LPV 6= Li∗
PV . In particular,

the function Ψ(LPV ) will work. Then, since the original allocation is incentive compatible

and the tax function Ψ(LPV ) only offers each worker further alternatives that are no better,

the pair (ci∗PV , L
i∗
PV ) solves the first stage of the problem of worker of type i ∈ I. Thus,

given the constructed prices and taxes, the constrained-efficient allocation solves the worker

problem in (42) and (43). This completes the proof.

Appendix C: Sequential Implementation Example

Consider a deterministic version of the economy. The implementation builds on that in

Subsection 7.3 except that instead of taxing workers once and for all as a function of the

present value of future earnings, workers pay taxes in all periods as a function of past

earnings. Equivalently, given prices and wages {pt, wt}, taxes Ψt can be written as a function

of effective labor choices. The budget constraint faced by workers is then

∞∑

t=0

ptc
i
t ≤

∞∑

t=0

ptwtL
i
t −

∞∑

t=0

ptΨt(L
i
0, L

i
1, . . . , L

i
t; {pt, wt}). (51)

Now, take any continuous tax function Ψ and equilibrium prices {pt, wt} that implements

a constrained-efficient allocation, as guaranteed by Proposition 7. Then, for tax functions

{Ψt} satisfying

∞∑

t=0

ptΨt(L
i
0, L

i
0, . . . , L

i
t; {pt, wt}) = Ψ

( ∞∑

t=0

ptwtL
i
t

)
for all nonnegative {Li

t}, (52)

the budget constraint (51) is equivalent to the deterministic version of (43) from the previous

implementation; Proposition 7 then implies that workers will choose the constrained-efficient

allocation. For example, setting Ψ0(L
i
0; {pt, wt}) = Ψ(p0w0L

i
0)/p0 and

Ψt(L
i
0, L

i
1, . . . , L

i
t; {pt, wt}) =

1

pt

(
Ψ

( t∑

s=0

pswsL
i
s

)
− Ψ

( t−1∑

s=0

pswsL
i
s

))
for t = 1, . . .

will satisfy condition (52) and ensure the sequential implementation of the constrained-

efficient allocation as part of a competitive equilibrium.
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