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1 Introduction

A vast literature documents an increase in wage inequality in the American economy over the 1970’s and

1980’s (see, for example, Levy and Murnane, 1992). This increase in wage inequality has occurred both

within and between education-experience groups.

Increased variability is not the same as increased uncertainty. The goal of this paper is to understand

how much of the recent increase in inequality is due to an increase in heterogeneity or sorting that is

predictable to the agents but not known to the observing economist and how much is due to uncertainty.

We establish that any explanation for the recent rise in wage inequality has to recognize that individuals

possess an array of abilities and not just a single skill, that the joint distribution of these abilities has

changed over time along with the prices of the vector of abilities, and that increasing uncertainty at the

agent level is an important fact of recent economic life.

The Gorman-Lancaster model of earnings is a useful framework for thinking about these issues.1 It
∗This research was supported by NIH R01-HD043411. Cunha is grateful to Rob Dugger, the Committee on Economic

Development, PAES project, America’s Promise and the Claudio Haddad Dissertation Fund at the University of Chicago.
This research is an outgrowth of the work reported in Cunha, Heckman, and Navarro (2005).
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writes earnings at schooling level s at time t, Ys,t as

Ys,t = Xβs,t + θαs,t + εs,t.

We suppress the subscripts for individual i. Let X and θ be the observed and unobserved skills of an

agent (X and θ may be vectors); βs,t, αs,t the prices of these skills in market s; and εs,t unmeasured

factors, known by the individual, or some forms of productivity shocks, unknown by the individual before

its realization. In versions of the Gorman-Lancaster model of earnings, agents pick their sector s based on

utility maximization.2

The analysis of Juhn, Murphy, and Pierce (1993) can be fit in this framework. It links the increase

in wage inequality to technological progress. The authors claim that as technology advances, the demand

for skill has grown at a faster pace than its supply, causing skill prices to increase and the wage gap

between skilled and unskilled workers to widen.3 To arrive at this conclusion, they interpret quantiles of

the distribution of the residuals in log wage equations as quantiles of the distribution of ability and interpret

the rise in inequality as a rise in unobserved skill prices. This is possible in the Gorman-Lancaster model

if the following conditions hold for Ys,t interpreted as log earnings: 1) there is one, and only one, type

of unobserved ability (θ is a scalar); 2) the distribution of this ability across individuals is invariant over

time (θ is a time-invariant random variable); 3) there are no unanticipated shocks in earnings so that the

economy is described by a deterministic environment (εs,t = 0); and 4) the price of θ is the same for all

schooling levels (αs,t = αt). The error term is θαt, and since θ is invariant, αt can be identified up to scale.

If θ varies with t, it is not possible to distinguish changing variances of θ from changing αt without using

further information.

In this paper, we use further information to distinguish changes in αt from changes in the variance of

θ. We compare the life cycle earnings of individuals born between 1941 and 1952 to those born between

1957 and 1964. We test and reject the hypothesis that there is only one component of unobserved ability.

In the recent period, θ is a vector of dimension six. This finding is consistent with the empirical evidence

presented in a large body of literature that shows that abilities are multiple in nature.4 These abilities

2See for example Heckman and Sedlacek (1985) or Taber (2001).
3See Tinbergen (1975) for an early analysis of the race between demand and supply.
4See, for example, Heckman and Rubinstein (2001), Carneiro and Heckman (2003), Heckman, Stixrud, and Urzua (2006)

and Gould (2002).
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may be combined in different quantities to produce the same wage outcome. For example, an individual

with low stocks of cognitive ability but a persistent personality can be more successful than a smart person

with no motivation. Hence, the assumption of a one-to-one mapping from quantiles of the distribution of

wage residuals to quantiles of the distribution of abilities is not supported by the data.

We reject the hypothesis that the distribution of unobserved abilities has remained fixed over time. Our

findings are consistent with evidence by Gottschalk and Moffitt (1994), who show a substantial increase

in the variance of the θ when they compare earnings in the period 1970—1978 with earnings in the period

1979—1987. This could be due to an increase in the price of the skill or an increase in the variance of θ.

We show how to separate the increase in αs,t from increases in the variance of θ over time.

We demonstrate that an increase in microeconomic uncertainty plays an important role in explaining the

increase in wage inequality. Again, our findings are consistent with the analysis of Gottschalk and Moffitt

(1994), who document an increase in “earnings instability”̀ (the εs,t), demonstrating that the variance of

temporary shocks rose considerably from the period 1970—1978 to the period 1979—1987. We use choices

to estimate the information set of the agents at the age college enrollment decisions are made. As they

age, agents learn about components of θ and the εs,t. We show that the stochastic process that fits the

unforecastable components in labor income has changed across cohorts and that, as a result, uncertainty,

or earnings instability, or turbulence, have increased substantially.5

We model schooling and earnings equations jointly to identify the information set of agents at the

time college going decisions are made. Modelling schooling choices is not just an econometric exercise

to correct for selection in earnings. Schooling choices are the source of information that allows us to

separate what is known and acted on by individuals at the time schooling choices are made–which we

call heterogeneity–from what is not known–which we call uncertainty.

This paper is in six parts. Part 2 presents the model. Part 3 presents the econometrics and the empirical

results. Part 4 relates our framework to previous models in the literature. Part 5 discusses a more general

framework. Part 6 concludes.
5See Ljungqvist and Sargent (2004), who discuss the rise of turbulence in the recent economy.
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2 The Model

We estimate the information set of the agents. We identify this information set by analyzing both the

choices and the outcomes associated with choices made by the individuals.

2.1 Earnings Equations

To motivate our econometric procedures, we start by describing the earnings equations for t = 1, . . . , T ,

which are life cycle outcomes over horizon T . We assume that (Y0,t, Y1,t), t = 1, . . . , T , have finite means

and can be expressed in terms of conditioning variables X in the following manner:

Y0,t = Xβ0,t + U0,t (1)

Y1,t = Xβ1,t + U1,t, t = 1, . . . , T . (2)

The error terms Us,t are assured to satisfy E (Us,t | X) = 0, s = 0, 1.

2.2 Choice Equations

We assume that agents make schooling choices based on expected present value income maximization given

information set I. We discuss this assumption in section 5. Write the index I of present values as

I = E

"
TX
t=1

µ
1

1 + ρ

¶t−1
(Y1,t − Y0,t)− C

¯̄̄̄
¯ I
#
, (3)

where C is the cost of attending college. We denote by Z and UC the observable and unobservable

determinants of costs, respectively. We assume that costs can be written as

C = Zγ + UC . (4)

If we define μI(X,Z) =
PT

t=1

³
1
1+ρ

´t−1
X
¡
β1,t − β0,t

¢
− Zγ and UI =

PT
t=1

³
1
1+ρ

´t−1
(U1,t − U0,t) − UC,

and substitute (1), (2), and (4) into (3) we obtain

I = E [μI(X,Z) + UI | I] . (5)
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More generally, we define UI as the error in the choice equation and it may or may not include U1,t, U0,t,

or UC, depending on what is in the agent’s information set. Similarly, μI(X,Z) may only be based on

expectations of future X and Z at the time schooling decisions are made. The schooling decision of agents

is

S = 1 [I ≥ 0] . (6)

2.3 Test Score Equations

Aside from earnings and choice equations, we also estimate a set of cognitive test score equations. LetMk,

k = 1, 2, . . . ,K, denote the agent’s score on the kth test. Assume that the Mk have finite means and can

be expressed in terms of conditioning variables XM . Write

Mk = XMβMk + UM
k . (7)

The test equations are introduced here because we expect both the decision to attend college and realized

earnings to depend on the cognitive skills that the agent has at the time of the schooling choice.

2.4 Heterogeneity and Uncertainty

Consider college earnings in period t, Y1,t. It is only observed for the agents who choose to attend college

(S = 1). Consequently, from a standard selection argument, from observational data we can only identify

the cross-sectional mean college earnings conditional on explanatory variables X and S = 1:

E [Y1,t|X,S = 1] = Xβ1,t +E (U1,t|X,S = 1) .

Assume that X,Z, UC ∈ I. The event S = 1 corresponds to the event

E [UI | I] ≥ −μI(X,Z).
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Consequently, because E [Y1,t|X,S = 1] = E [Y1,t|X,E [UI | I] ≥ −μI(X,Z)], it follows that

E [Y1,t|X,E [UI | I] ≥ −μI(X,Z)] = Xβ1,t +E (U1,t|X,E [UI | I] ≥ −μI(X,Z)) .

To extract the information known to agents, we separate UI into two components. The first component,

E [UI | I] , is used by the agent to make schooling choices. This expectation is determined by the elements

in the information set of the agent which influence their schooling decision. The second component,

UI − E [UI | I] , does not affect selection into schooling because it is not known to the agent at the time

schooling decisions are made.

Under the assumption that UC ∈ I we can write

UI − E [UI | I] =
TX
t=1

µ
1

1 + ρ

¶t−1
(U1,t −E [U1,t| I]) +

TX
t=1

µ
1

1 + ρ

¶t−1
(U0,t −E [U0,t| I]) .

Clearly (Us,t −E [Us,t| I]) affects realized earnings. To determine the unobservable components that are

in the information set of the agent we need to determine which specification of the information set I

better characterizes the dependence between schooling choices and future earnings. We can determine the

components that are not in the information set of the agent by varying the specification of (Us,t −E [Us,t| I])

while keeping I fixed, so we can get the best possible fit of the cross-section distribution of Ys,t. In the

next section we describe how we use factor models to represent both E [Us,t| I] and (Us,t −E [Us,t| I]) in

a framework convenient for testing.

2.5 Factor Models

To demonstrate our approach to determining the elements in the information set of the agent, we start

by considering the test score equations. We break the error term UM
k in the test score equations into two

components. The first component is a factor, θ1, that is common across all test score equations. The second

component is uniquely attached to test score equation k, εMk . In this notation, we can write equation (7)

as

Mk = XMβMk + αM
1 θ1 + εM1 . (8)

Following the psychometric literature, the factor θ1 is a latent cognitive ability which potentially affects
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all test scores. We assume that θ1 is independent of XM and εMk . The ε
M
k are mutually independent and

independent of θ. Modelling test scores in this fashion allows them to be noisy measures of cognitive skill.

2.5.1 Earnings and Choice Equations

We decompose the error terms in the earnings equations into three components. The first component is

the cognitive factor θ1. The second component is a “productivity” factor θ2 which affects earnings and

schooling choices, but not test scores. In our empirical work, we fit models with as many as six factors,

but for expositional simplicity, in this section we use a two factor model. The third component is the

idiosyncratic error term which affects only the period-t, schooling-s earnings equation, εs,t. We rewrite

equations (1) and (2) as

Y0,t = Xβ0,t + α1,0,tθ1 + α2,0,tθ2 + ε0,t (9)

and

Y1,t = Xβ1,t + α1,1,tθ1 + α2,1,tθ2 + ε1,t. (10)

We assume that factor θj is independent from X, εs,t, and θl for l 6= j and for all s, t. The εc,t, c = 0, 1

and t = 1, . . . , T , are mutually independent.

The cost equation is decomposed like the earnings equations, so that (4) can be rewritten as

C = Zγ + α1,Cθ1 + α2,Cθ2 + εC. (11)

Given the specifications with the factors in (9), (10), and (11), we can rewrite the schooling choice

equation as

I = E

⎡⎢⎢⎣
PT

t=1

³
1
1+ρ

´t−1
i

X
¡
β1,t − β0,t

¢
− Zγ + θ1

∙PT
t=1

³
1
1+ρ

´t−1
(α1,1,t − α1,0,t)− α1,C

¸
+θ2

∙PT
t=1

³
1
1+ρ

´t−1
(α2,1,t − α2,0,t)− α2,C

¸
+
PT

t=1

³
1
1+ρ

´t−1
(ε1,t − ε0,t)− εC

¯̄̄̄
¯̄̄̄ I
⎤⎥⎥⎦ . (12)

We assume that for all subscripts the ε’s are mutually independent and independent of the X, Z, and

(θ1, θ2).
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2.6 The Estimation of the Components in the Information Set

We now show how to determine the unobservable components of the information set I of the agent at the

age schooling choices are made by exploiting the structure of factor models. Assume that X,Z, and εC are

in the information set I. To economize notation, define

αk,I =
TX
t=1

µ
1

1 + ρ

¶t−1
(αk,1,t − αk,0,t)− αk,C for k = 1, 2. (13)

Suppose that we propose that {θ1, θ2} ⊂ I, but εs,t /∈ I. Given the definitions of α1,I , α2,I and μI(X,Z),

if the null hypothesis is true, the index governing schooling choices is

I = μI(X,Z) + α1,Iθ1 + α2,Iθ2 + εC. (14)

Suppose for the sake of argument that we know both μI(X,Z) and βs,t for all s and t. From discrete choice

analysis we can essentially determine I up to scale.6 The econometric literature shows that for purposes

of studying identification, it does no harm to assume we know I. Given observations on X and Z we can

obtain from the data the covariance between the terms I − μI(X,Z) and Y1,1 − Xβ1,1. Under the null

hypothesis {θ1, θ2} ⊂ I, this covariance is

Cov
¡
I − μI(X,Z), Y1,1 −Xβ1,1)

¢
= α1,Iα1,1,1σ

2
θ1
+ α2,Iα2,1,1σ

2
θ2
. (15)

We can test the null {θ1, θ2} ⊂ I against many different alternative hypotheses. To fix ideas, consider

the alternative assumption that proposes θ1 ∈ I, but θ2 /∈ I and that E [θ2| I] = 0. If the alternative is

valid, the expected present value of schooling (12) can be written as

I = μI(X,Z) + α1,Iθ1 + εC . (16)

In this case, the covariance between the terms I − μI(X,Z) and Y1,1 −Xβ1,1 is

Cov
¡
I − μI(X,Z), Y1,1 −Xβ1,1)

¢
= α1,Iα1,1,1σ

2
θ1
, (17)

6See, e.g., Matzkin (1992).
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and the difference between the school index generated by the null and the alternative hypothesis is the term

α2,Iα2,1,1σ
2
θ2
that appears in (15) but not in (17). We can characterize these tests by defining parameters

∆θ1 and ∆θ2 such that

Cov (I − μI(X,Z), Y1,1 − μ1(X))−∆θ1α1,Iα1,1,1σ
2
θ1 −∆θ2α2,Iα2,1,1σ

2
θ2 = 0.

Agents know and act on the information contained in factors 1 and 2, so that {θ1, θ2} ⊂ I, if we reject the

hypothesis that both ∆θ1 = 0 and ∆θ2 = 0.

It remains to be shown that we can actually identify all of the parameters of the model, in particular, the

function μI(X,Z), the parameters β and α in the test and earnings equations, the distribution of the factors,

Fθ, as well as the distribution of idiosyncratic components Fε in the test, earnings and cost equations.

Carneiro, Hansen, and Heckman (2003) present formal proofs of semi-parametric identification of this

approach. An appendix discusses an intuitive explanation of identification using normality. Normality is

not required to secure identification, and our estimates are not based on normality assumptions.

3 Empirical Results

In order to study the evolution of labor earnings risk in the U.S. economy we compare two distinct samples.

The first sample consists of white males born between 1957 and 1964. We obtain information on them from

NLSY/1979 data pooled from their birth cohort counterparts from the PSID data. The second sample

consists of white males born between 1941 and 1952 who are surveyed from the NLS/1966 combined with

their birth cohort counterparts from the PSID data. We pool the surveys to increase sample sizes. In what

follows, we refer to the samples as NLSY/1979 and NLS/1966, respectively.

Following our theoretical analysis, we consider only two schooling choices: high school and college

graduation. We use s = 0 to denote those who stop their schooling at high school and s = 1 to denote

those who go to college.

The Web Data Appendix Tables 1 and 2 present descriptive statistics of the NLS/1966 and NLSY/1979

samples, respectively. In both samples, college graduates have higher test scores, fewer siblings and parents

with higher levels of education. In the NLSY/1979, college graduates are more likely to live in locations
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where the tuition for four-year college is lower. This is not true for the college graduates in NLS/19667.

In our empirical analysis we consider labor income from ages 22 to 41. Web Data Appendix Tables

3 and 4 show mean and standard deviations for earnings in high school and college for NLSY/1979 and

NLS/1966, respectively8. In both data sets, college graduates start off with lower mean labor income than

high-school graduates. The overtaking age in both data sets is 26. The standard error of earnings tends

to increase with age for high school and college graduates in both data sets.

In both data sets, we observe cognitive test scores, which are the left-hand side variables in the mea-

surement system for cognitive ability (M in the notation of section 2). For the NLSY/1979 we use five

components of the ASVAB test battery: arithmetic reasoning, word knowledge, paragraph comprehension,

math knowledge and coding speed. We dedicate the first factor (θ1) to this test system, and exclude the

others from it. This justifies our interpretation of θ1 as ability.

In the NLS/1966, there are many different achievement tests, but we use the two most commonly

reported ones: the OTIS/BETA/GAMMA and the California Test of Mental Maturity (CTMM). One

problem with the NLS/1966 sample is that there are no respondents for whom we observe scores from at

least two distinct tests. That is, for each respondent we observe at most one test score. We supplement

the information from these test scores by considering other proxies for cognitive achievement. These are

the tests on “knowledge of the world of work.”

There are three different tests. The first is a question regarding occupation. The respondent is asked

about the duties of a given profession, say draftsman. For this specific example, there are three possible

answers: (a) makes scale drawings of products or equipment for engineering or manufacturing purposes,

(b) mixes and serves drinks in a bar or tavern, (c) pushes or pulls a cart in a factory or warehouse. The

second test asks the level of education associated with each occupation mentioned in the first test. The

third test is an earnings comparison test. Specifically, it asks the respondent who he/she believes makes

more in a year, for pairs of occupations.

In Web Data Appendix Table 5 we show that even after controlling for parental education, number of

siblings, urban residence at age 14, and dummies for year of birth, the “knowledge of the world of work”

test scores are correlated with the cognitive test scores. The correlation with OTIS/BETA/GAMMA and

7See Web Data Appendix for details on the construction of the tuition variables used in this paper.
8Earnings figures are adjusted for inflation using the CPI and we take the year 2000 as the base year.
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CTMM is stronger for the occupation and education tests than for the earnings-comparison test.

We model the test score j, Mj, as

Mj = XMβMj + θ1α
M
j + εMj . (18)

The covariates XM include family background variables, year of birth dummies, and characteristics of the

individuals at the time of the test.9 To set the scale of θ1, we normalize αM
1 = 1.

One of the advantages of using factor models instead of the test score itself is that factor models allow

for test scores to be noisy measures of cognitive skills. Another advantage is that this method does not

require the observation of test scores for all individuals. This is important because full samples exhibit

different earnings characteristics than incomplete samples. Web Data Appendix Table 6 and Web Data

Appendix Figures 1 through 4 compare the time series of the means and standard errors of earnings in the

full NLSY/1979 sample and the NLSY/1979 subsample with observed test scores. While mean earnings

are the same in both samples, the standard error seems to be more volatile in the subsample with observed

test scores than in the full sample. Web Data Appendix Table 7 and Web Data Appendix Figures 5

through 9 show the same comparison for the NLS/1966, but now the conclusion is different. Mean high-

school earnings from age 35 to 41 tend to be higher in the subsample with observed test scores than in

the full sample. The same seems to be true for the time series for the standard error of college earnings.

Although there are no differences in mean college earnings, the standard errors diverge in the distinct

samples, and they are much higher in the full-sample than in the subsample with observed test scores (see

Web Data Appendix Figure 8). Web Data Appendix Tables 8-10 compare the serial correlation matrices

for NLSY/1979 in high-school, college and overall sample, respectively. Parallel information for NLS/1966

survey is reported in Web Data Appendix Tables 11-13. Although there are few differences in the pattern

of serial correlation when one compares the full sample with the subsample with observed test scores, the

information contained in the subsample with observed test scores alone would not suffice to compute all

the cells in the correlation matrix.
9In both NLSY/1979 and NLS/1966 we include mother’s education, father’s education, number of siblings, urban residence

at age 14, dummies for year of birth of the individuals, and an intercept. In the NLSY/1979 sample we also control for the
fact that the test taker is enrolled at school and the highest grade completed at the time of the test. In the NLS/1966 all of
the respondents were enrolled at school at the time of the test (in fact, the test score is obtained in a survey from schools). We
don’t know the highest grade completed at the time of the test for the NLS/1966 sample. See Herriott and Kohen (undated,
found in our Web Data Appendix) for an analysis of the test scores in NLS/1966.
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For the NLSY/1979, a six factor model fits the data best:

Ys,t = Xβs,t + θ1α1,s,t + θ2α2,s,t + θ3α3,s,t + θ4α4,s,t + θ5α5,s,t + θ6α6,s,t + εs,t, t = 1, . . . , T ∗, s = 0, 1, (19)

where t = 1 corresponds to age 22 and T ∗ is age 41. For the NLS/1966, only a five factor model is required

to fit the data. The identification of the model requires the normalization of some of the factor loadings.

Table 1A shows the factor loading normalizations imposed in the NLSY/1979; the same information for

the NLS/1966 is found in Table 1B. In both samples, the covariates X are urban residence at age 14,

dummies for year of birth of the individual, and an intercept.

The cost function C is

C = Zγ + θ1α1,C + θ2α2,C + θ3α3,C + θ4α4,C + θ5α5,C + θ6α6,C + εC . (20)

The covariates Z are urban residence at age 14; dummies for year of birth; an intercept; and variables that

affect the costs of going to college but do not affect outcomes Ys,t, such as mother’s education, father’s

education, number of siblings, and local tuition. Because we only have earnings data into the early 40’s

for both samples, the truncated discounted earnings after the 40’s are absorbed into the definition of C.

Each factor θk, is generated by a mixture of Jk normal distributions,

θk ∼
JkX
j=1

pk,jφ
¡
θk | μk,j, τk,j

¢
,

where φ
¡
η | μj, τ j

¢
is a normal density for η with mean μj and variance τ j and

JkP
j=1

pk,j = 1, and pk,j > 0.

Ferguson (1983) shows that mixtures of normals with a large number of components approximate any

distribution of θk arbitrarily well in the c1 norm. The εs,t are also assumed to be generated by mixtures

of normals. We estimate the model using Markov Chain Monte Carlo methods as described in Carneiro,

Hansen, and Heckman (2003). For all factors, a three-component model (Jk = 3, k = 1, . . . , 6) is adequate.

For all εs,t we use a four-component model.10

10Additional components do not improve the goodness of fit of the model to the data.
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3.1 How the model fits the data

The model fits the data well. Figures 1A and 1B plot the densities of earnings in the overall sample for

the NLSY/1979 and NLS/1966, respectively. In Figures 2A and 2B we show the comparison of actual

versus model prediction for high school earnings at age 31, for both NLSY/1979 and NLS/1966 samples.

Similarly, in Figures 3A and 3B we plot the actual versus the predicted densities of college earnings at age

31.11 When we perform formal tests of equality of predicted versus actual densities, we pass these tests for

most of the ages. The model fits the NLS/1966 data marginally better than it fits the NLSY/1979 data.

We also conduct χ2 goodness-of-fit tests for the earnings correlation matrices. In Table 1, we show

that the six factor model can fit the correlation matrix for the NLSY/1979 sample. We can not reject the

equality of actual and predicted correlation matrix for the NLS/1966 model when we use our five factor

model. However, a five factor model would not be able to replicate the earnings correlation matrix for the

NLSY/1979. Consequently, in what follows, we work with a six factor model for the NLSY/1979 and a

five factor model for NLS/1966.

3.2 The Evolution of Joint Distributions and Returns to College

In estimating the distribution of earnings in counterfactual schooling states within a policy regime (e.g., the

distributions of college earnings for people who actually choose to be high school graduates under a partic-

ular tuition policy), one standard approach is to assume that both college and high school distributions are

the same except for an additive constant–the coefficient of a schooling dummy in an earnings regression

possibly conditioned on the covariates. We relax this assumption and identify the joint distribution of

counterfactuals without imposing this condition or related rank invariance conditions.12

We identify both ex ante and ex post joint distributions. Let E (Ys| I) denote the ex ante present

value of lifetime earnings at schooling level s. Suppose that we want to compute the means and covariances

between ex ante college and ex ante high-school earnings conditional on the information set, which we

estimate to be based on three factors as documented below. For this case, the mean present value of

11In the website for the paper we show the same figures for all ages, for the overall, high-school, and college earnings, for
both the NLSY/1979 and NLS/1966. We abstain from reporting them in the paper because there are 120 such figures.
12Abbring and Heckman (2007) discuss alternative assumptions used to identify joint counterfactual distributions.
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earnings is

E (Ys| I) =
T∗X
t=1

Xβs,t + θ1α1,s,t + θ2α2,s,t + θ3α3,s,t

(1 + ρ)t−1
,

where T ∗ is the maximum age at which we observe earnings. To simplify notation, the first age we consider

(22) is denoted t = 1 and the last age we consider (41) is denoted T ∗. Conditional on covariates X, the

covariance between E (Y1| I) and E (Y0| I) is

Cov (E (Y1| I) , E (Y0| I)) = V ar (θ1)

Ã
T∗X
t=1

α1,1,t
(1 + ρ)t−1

!Ã
T∗X
t=1

α1,0,t
(1 + ρ)t−1

!

+ · · ·+ V ar (θ3)

Ã
T∗X
t=1

α3,1,t
(1 + ρ)t−1

!Ã
T∗X
t=1

α3,0,t
(1 + ρ)t−1

!
.

Tables 2A and 2B present the conditional distribution of the present values of ex ante college earnings

given ex ante high school earnings decile by decile for the NLSY/1979 and NLS/1966 samples. If the

dependence across outcomes were perfect and positive, as postulated by Juhn, Murphy, and Pierce (1993),

the diagonal elements would be ‘1’ and the off diagonal elements would be ‘0.’ We estimate positive

dependence between the relative positions of individuals in the two distributions, but the dependence is

not perfect. For example, for the NLSY/1979 sample, 29.95% of the individuals who are in the first decile

of the high school present value of earnings distribution would be in the first decile of the college present

value of earnings distribution. For the NLS/1966 sample, this figure is 70.36%. The comparison of tables

2A and 2B shows that the correlation between ex ante high school and ex ante college present value of

lifetime earnings has become weaker for recent cohorts.

We can also compute the covariance between the present value of ex post college and high-school

earnings conditional on X. This is

Cov (Y1, Y0|X) = V ar (θ1)

Ã
T∗X
t=1

α1,1,t
(1 + ρ)t−1

!Ã
T∗X
t=1

α1,0,t
(1 + ρ)t−1

!

+ · · ·+ V ar (θ6)

Ã
T∗X
t=1

α6,1,t
(1 + ρ)t−1

!Ã
T∗X
t=1

α6,0,t
(1 + ρ)t−1

!
.

In Tables 3A and 3B we show the conditional distribution of the present values of ex post college earnings

given ex post high school earnings. In NLSY/1979, ex post present values of earnings exhibit greater
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correlation than present values of ex ante earnings (the correlation is 0.16 for ex ante and 0.28 for ex

post). On the other hand, in the NLS/1966 sample, ex post earnings exhibit lower correlation than ex

ante earnings (the correlation is 0.91 for ex-ante and 0.62 for ex post). This trend in the correlations of ex

post present values of earnings across schooling states is consistent with the analysis in Gould (2002). We

find no evidence supporting perfect positive dependence or independence in ex ante earnings, nor ex post

earnings.

Knowledge of the joint distributions allow us to compare factual with counterfactual distributions.

Take agents who choose to be high-school graduates. We can compare the density of the present value

of ex post earnings in the high-school sector with those in the college sector for the people who are high-

school graduates. This information is plotted in Figures 4A and 4B for the NLSY/1979 and NLS/1966,

respectively. In both data sets we see that the high-school agents would have higher earnings if they had

chosen to be college graduates. Similarly, for the college graduates, we can compare the actual density

of present value of earnings in the college sector with that in the high-school sector. We display these

densities in Figures 5A and 5B for the NLSY/1979 and NLS/1966, respectively. Again, in both data sets

the densities of high-school present value of earnings is to the left of the college density.

From such distributions we can generate the distribution of rates of return to college. The ex post gross

rate of return R (excluding cost) is

R =
Y1 − Y0

Y0
.

The typical high school student would have returns around 29% to a college education over the whole

life cycle for the NLS/1966 sample and around 31% for the NLSY/1979 sample. For the typical college

graduate this return is around 33% for the NLS/1966 sample and 40% for the NLSY/1979 sample. For

the individuals at the margin, these figures are 31% and 35% for the NLS/1966 and NLSY/1979 samples,

respectively. Returns to college have increased for college graduates and individuals at the margin, but

not so much for the high school graduates.

Another interesting calculation one can perform given the knowledge of the joint distribution is the

percentage of the individuals who regret their schooling choice, which we report in Table 5. Perhaps not

surprisingly, a higher fraction of the high-school individuals regret not graduating from college (7.5% in

NLSY/1979 and 9.7% in NLS/1966) than the other way around (around 3% of the individuals regret not
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stopping their schooling upon high-school graduation, for both the NLSY/1979 and NLS/1966).

3.3 The Evolution of Uncertainty and Heterogeneity

The valuation or net utility function for schooling choice is

I = E

Ã
T∗X
t=1

Y1,t − Y0,t
(1 + ρ)t−1

¯̄̄̄
¯I
!
−E (C| I) .

Individuals go to college if I > 0. As explained in section 2.6, the correlation between schooling choices

and future information allows us to disentangle heterogeneity from uncertainty. In the NLSY/1979, we

test and do not reject the hypothesis that individuals, at the time they make college going decisions, know

their Z and the factors θ1, θ2, and θ3. However, they do not know the cohort dummies in X and the factors

θ4, θ5, θ6, or εs,t, s = 0, 1, t = 1, . . . , T ∗, at the time they make their educational choices.

For the NLS/1966 we test and do not reject that hypothesis that the individuals know their Z, X, and

the factors θ1, θ2, and θ3. However, they do not know the cohort dummies in X and the factors θ4, θ5, or

εs,t, s = 0, 1, t = 1, . . . , T ∗, at the time they make their educational choices.

Therefore, our first result is that components not in the information sets of the agents at age 18 that

we estimate from schooling choices in the NLSY/1979 and NLS/1966 are different. Next, we explore the

implication of this difference for the increase in uncertainty.

3.3.1 Total Residual Variance and Variance of Unforecastable Component

For the NLSY/1979 the present value of lifetime (i.e., from age 22 (t = 1) to age 41 (T ∗)) realized earnings

in school level s can be written as

Ys =
T∗X
t=1

Ys,t
(1 + ρ)t−1

=
T∗X
t=1

Xβs,t + θ1α1,s,t + θ2α2,s,t + θ3α3,s,t + θ4α4,s,t + θ5α5,s,t + θ6α6,s,t + εs,t

(1 + ρ)t−1
.

We define total residual as the sum of the unobserved (to the econometrician) components,13

Qs =
T∗X
t=1

θ1α1,s,t + θ2α2,s,t + θ3α3,s,t + θ4α4,s,t + θ5α5,s,t + θ6α6,s,t + εs,t
(1 + ρ)t−1

, (21)

13In our empirical analysis we fix ρ = 0.05.
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and note that Qs combines terms that are known and unknown by the agent at the time of the schooling

choice. The total residual variance in schooling level s is by definition V ar (Qs).

The unforecastable component is the sum of the components that are not in the information set of the

agent at the time schooling choices are made. For the NLSY/1979, the unforecastable component is

Ps =
T∗X
t=1

θ4α4,s,t + θ5α5,s,t + θ6α6,s,t + εs,t
(1 + ρ)t−1

. (22)

The variance of the unforecastable component in schooling level s is, by definition, V ar (Ps) . Note that

V ar (Ps) ≤ V ar (Qs).

Table 6A displays the total residual variance and the variance of unforecastable component for each

schooling level for both NLS/1966 (Panel A) and NLSY/1979 (Panel B). Total residual variance in present

value of lifetime college earnings increase from 460.6260 (NLS/1966) to 709.7487 (NLSY/1979). This

implies an increase of almost 55% in the total residual variance. The increase is larger for the present value

of high school earnings: it goes from 284.8089 in NLS/1966 to 507.2910, corresponding to an increase of

almost 80%.

The variance of the unforecastable component has also increased. For college earnings, it is 181.3712

for the NLS/1966 and it becomes 372.3509 for the NLSY/1979. For high school earnings, it is 128.4315

for the NLS/1966 and it becomes 272.3596 for the NLSY/1979. In percentage terms, this implies that the

variance of the unforecastable component increased 105% for college and 112% for high school.

We can also make the same comparisons for the gross returns to college:

R =
T∗X
t=1

Y1,t − Y0,t
(1 + ρ)t−1

.

The total residual in the gross returns to college can be defined as ∆Q = Q1 −Q0,

∆Q =
T∗X
t=1

θ1∆α1,t + θ2∆α2,t + θ3∆α3,t + θ4∆α4,t + θ5∆α5,t + θ6∆α6,t +∆εt
(1 + ρ)t−1

,
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and the unforecastable component in the gross returns to college is defined as ∆P = P1 − P0,

∆P =
T∗X
t=1

θ4∆α4,t + θ5∆α5,t + θ6∆α6,t +∆εt
(1 + ρ)t−1

.

FromTable 6A we see that total residual variance in gross returns to college increased from 351 in NLS/1966

to 906 in NLSY/1979, which implies an increase of around 160%. The variance of the unforecastable

component increased from 327 to 432, or roughly 32%.

These figures show that the increase in the variance of unforecastable components of earnings is a

key element in explaining the increase in total residual variance in high school and college earnings.

Furthermore, both the total residual variance and the variance of unforecastable components have increased

more for low-skill workers (i.e., the high-school graduates) than high-skill workers (i.e., college graduates).

The same exercise can be repeated for the evolution of unobserved heterogeneity. For both the

NLSY/1979 and NLS/1966 the unobserved heterogeneity component is

Hs =
T∗X
t=1

θ1α1,s,t + θ2α2,s,t + θ3α3,s,t
(1 + ρ)t−1

.

We illustrate these findings in Figures 7A and 7B, which plot the density of total residual versus

the density of unforecastable components for high-school earnings. Note that the latter has a much less

dispersed density than the former. Figures 8A and 8B make the same comparison for college earnings.

Finally, Figures 9A and 9B show the corresponding figures for returns. Figure 9B shows that all the

densities of total residual and unforecastable components are very similar.

Table 6B displays the total residual variance and the variance of heterogeneity (or forecastable) com-

ponent for each schooling level for both NLS/1966 (Panel A) and NLSY/1979 (Panel B). Individuals have

become more diverse. For college earnings, the variance of forecastable components is 279 for the NLS/1966

and it is 337 for the NLSY/1979, which corresponds to roughly 21% increase. For high school earnings, it

is 156 for the NLS/1966 and it becomes 234 for the NLSY/1979, which implies an increase of more than

50%. As we document above, there is no selection in returns in the NLS/1966. This can only happen if

agents could not forecast returns well in the 1966 cohort. As a result, most of the variance of unobserv-

able component in returns for that cohort is due to uncertainty and not forecastable heterogeneity. This
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explains the substantial increase in the variance of heterogeneity in the variance of returns to college.

3.3.2 The Variance of the Unforecastable Component by Age

We have shown that the variance of the unforecastable component in the present value of lifetime earnings

has increased for both college and high school graduates. In this section, we show that the increase is not

uniform across all ages. For every age t and schooling level s let Ps,t denote the unforecastable component

in school level s age t earnings. Our estimated information, together with the identifying normalizations

displayed in Table 1, imply that the unforecastable components for ages 22 through 25 are given by

Ps,t =
εs,t

(1− ρ)t−1
for t = 1, . . . , 4, (23)

and for ages 26 through 41,

Ps,t =
θ4α4,s,t + θ5α5,s,t + θ6α6,s,t + εs,t

(1 + ρ)t−1
for t = 5, . . . , T ∗. (24)

Figure 10 shows that the variance of unforecastable components in high school earnings in NLS/1966 and

NLSY/1979 are about the same until age 27/28. From age 29 on, the variances diverge. They both increase

with age, but the cohort in NLSY/1979 experiences a faster increase than in NLS/1966. At age 41, the

variance of the unforecastable component in high school earnings NLSY/1979 is almost three times larger

than its counterpart in the NLS/1966 sample.

A similar pattern arises in the variance of the unforecastable component in college earnings. Figure 11

shows that until around age 30, the profiles of the variances are roughly the same for NLSY/1979 and

NLS/1966. From age 31 on, the series diverge, and the variances in the NLSY/1979 sample increase at

a faster rate. At at age 37, the variances of the unforecastable component in NLSY/1979 are more than

twice those in NLS/1966 sample.

We conclude that the variance of unforecastable components began to increase at earlier ages for high-

school graduates. Furthermore, the gradient of the increase was sharper for high-school graduates as

well.
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3.3.3 Persistence of Shocks

Note that given our estimated information set, from (23) and (24) it follows that

Cov (Ps,τ , Ps,t) = 0 if τ or t = 1, . . . , 4.

However, at other ages,

Cov (Ps,τ , Ps,t) 6= 0 if τ and t = 5, . . . , T ∗.

In Web Appendix Tables 1 through 3 we plot the correlation of unforecastable components across ages

26 (t = 5) through 41 (T ∗) for high-school, college, and overall sample, respectively. The correlations of

unforecastable components have increased from the NLS/1966 to NLSY/1979 sample. For example, in the

overall sample, 92 out of 120 total off-diagonal lower triangular elements are greater in the NLSY/1979

matrix than its NLS/1966 counterpart. For the college sample, 101 out of 120 are greater in NLSY/1979

than in the NLS/1966 matrix. In the high-school sample, only 42 out of 120 are greater in the NLSY/1979

than in NLS/1966 sample.

A clearer way to see these results is by plotting the correlogram of these components. Let φ (s, t, k)

denote the correlogram of the unforecastable components of earnings at school level s and age t with

respect to ages k = t+ 1, t+ 2, . . . , T ∗:

φ (s, t, k) =
Cov (Ps,t, Ps,k)

V ar (Ps,t)
.

In Figure 12 we compare φ (s, t, k) for the overall sample from NLS/1966 (gray column) against that

from NLSY/1979 (black column). There is no clear pattern. We arrive at a different conclusion by looking

at schooling-specific correlograms. In Figure 13 we plot the correlogram at age 31 for the high-school

sector. Shocks are more persistent in the NLSY/1979 (black column) than the NLS/1966 sample (gray

column). In Figure 14 we see that for the college sample, again, no clear pattern arises from the data.
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3.3.4 The Evolution of Skill Prices

The Gorman-Lancaster model relates realized earnings with characteristics and the price of characteristics.

For schooling level s at age t, we model earnings according to the Gorman-Lancaster model:

Ys,t = Xβs,t + θ1α1,s,t + θ2α2,s,t + θ3α3,s,t + θ4α4,s,t + θ5α5,s,t + θ6α6,s,t + εs,t.

We have established that θ4, θ5, and θ6 are unforecastable components at the time schooling choice. We

have shown how the factor loadings α4,s,t, α5,s,t, and α6,s,t have contributed for the serial correlation matrix

of the uncertain components within each schooling group.14 The factor θ1 is, in fact, known by the agent

at the time of the schooling choice. We identify factor θ1 directly from the cognitive test scores, so we

take this as measures of cognitive skills of the agents. In the Gorman-Lancaster model, the factor loadings

α1,s,t, are in fact cognitive skill prices at schooling level s and age t. In Figure 15 we show that the prices

of the factor θ1 in the high school sector have increased from NLS/1966 to the NLSY/1979. In Figure 16

we show that the prices have increased even more sharply in the college sector. This evidence is consistent

with higher demand for cognitive skills in more recent years.

3.3.5 Accounting for Macro Uncertainty

Our estimates of uncertainty are microeconomic in character. A large literature in macroeconomics docu-

ments that aggregate instability has decreased over the past 30 years. To capture this phenomenon, one

could introduce time dummies into the earnings equation. Given the standard problem of the lack of

identification of individual age, period, and cohort effects, we work with cohort dummies when we form

estimates. We find that variables that capture macro uncertainty (cohort dummies) do not enter the

schooling choice equation. Thus, macro uncertainty is not forecastable by agents at the time schooling

choices are being made. However, realized macro shocks affect earnings outcomes. Macro uncertainty

decreased for later cohorts by 90% (see Table 7). These estimates are consistent with evidence by Gordon

(2005) and others that US business cycle volatility has decreased in recent years.

14Note that under our assumptions we could also calculate the serial correlation matrix across schooling choices.
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4 Models with Sequential Updating of Information

In this paper, we have analyzed one shot models of schooling choice. In truth, schooling is a sequential

decision process made with increasingly richer information sets at later stages of the choice process.

Keane and Wolpin (1997) and Eckstein and Wolpin (1999) pioneered the estimation of dynamic discrete

choice models for analyzing schooling choices. They assume expected income maximization and do not

entertain a range of alternative market structures facing agents.15 In the notation of this paper, they

assume a one (discrete) factor model with factor loadings that are different across different counterfactual

states, but are constant over time (αs,t = αs, s = 1, . . . , S̄, where there are S̄ schooling states).16 At a

point in time, t, εs,t, s = 1, . . . , S̄ are assumed to be multivariate normal random variables. Over time the

εt = (ε1,t, . . . , εs,t) are assumed to be independent and identically distributed. They assume that agents

know θ but not the εt, t = 1, . . . , T . The unobservables are thus equicorrelated over time (age) because

the factor loadings are assumed equal over time and εt is independent and identically distributed over

time. They make parametric normality assumptions in estimating their models. Keane and Wolpin (1997)

impose their discrete factor in the schooling choice and outcome equations rather than testing for whether

or not the factor appears in both sets of equations in all time periods as we do in this paper. In their model,

about 90% of the variance in lifetime returns is predictable at age 16. Our setup allows for more factors

and for testing which factors enter different equations at different time periods. We allow for temporally

persistent shocks.

In an important paper, Taber (2001) estimates a dynamic programming model of schooling choice

with a Gorman-Lancaster model for log earnings and interprets his estimated increasing factor loadings

over time on unobserved ability as evidence for rising skill prices on unobserved factors. His model is

not directly comparable to our model because of his use of logs—rather than levels. The interpretation

of the factor loadings as skill prices is strained with a log dependent variable. He allows for sequential

updating of information, but does not estimate the initial information set of the agents, but rather imposes

it like Keane and Wolpin (1997). Unlike Keane and Wolpin, he tests whether additional serially correlated

information enters the agent baseline information set as the agent ages.

15But see Keane and Wolpin (2001), where credit constraints are explicitly modelled.
16Thus instead of assuming that θ is continuous, as we do, they impose that θ is a discrete-valued random variable that

assumes a finite, known number of values.
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Heckman and Navarro (2006) formulate and identify semiparametric sequential schooling models based

on the factor structures of the sort used in this paper. They present a new semiparametric identification

analysis for this class of models. See Abbring and Heckman (2007) for a discussion of this literature.

5 More General Preferences and Market Settings

To focus on the main ideas, we have used the simple market structure of complete contingent claims

markets, or alternatively, we have assumed risk neutrality. An alternative interpretation is that we use

expected present value income maximization as our schooling choice criterion. What can be identified in

more general environments? In the absence of perfect certainty or perfect risk sharing, preferences and

market environments also determine schooling choices. The separation theorem allowing consumption and

schooling decisions to be analyzed in isolation of each other that we have used in this paper breaks down.

If we postulate information processes a priori, and assume that preferences are known up to some

unknown parameters as in Flavin (1981), Blundell and Preston (1998) and Blundell, Pistaferri, and Preston

(2004), we can identify departures from specified market structures. In work in progress, Cunha and

Heckman (2006) postulate an Aiyagari (1994) — Laitner (1992) economy with one asset and parametric

preferences to identify the information processes in the agent’s information set. They take a parametric

position on preferences and a nonparametric position on the economic environment and the information

set.

An open question, not yet fully resolved in the literature, is how far one can go in nonparametrically

jointly identifying preferences, market structures and information sets.17 Navarro (2005) adds consumption

data to the schooling choice and earnings data to secure identification of risk preference parameters (within

a parametric family) and information sets, and to test among alternative models for market environments.

Alternative assumptions about what analysts know produce different interpretations of the same evidence.

The lack of full insurance interpretation given to the empirical results by Flavin (1981) and Blundell,

Pistaferri, and Preston (2004) may be a consequence of their misspecification of the generating process of

agent information sets.

17This point was first made in the Hicks Lecture at Oxford, April 2004, and is published in Cunha, Heckman, and Navarro
(2005).
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6 Summary and Conclusion

This paper investigates the sources of rising wage inequality the US labor market. We find that increasing

inequality arises from both increasing micro uncertainty and increasing heterogeneity predictable by agents.

The latter could arise from increased sorting. While both components have increased since the late 1960s

but the fraction of the variability due to micro uncertainty has increased. Aggregate uncertainty has

decreased. Thus the recent increase of uncertainty is microeconomic in character.

A Identification of the Model

We provide an intuitive discussion of identification based on the normal case, because together with the

assumption of complete Arrow Debreu markets it allows for closed form solutions. See Carneiro, Hansen,

and Heckman (2003) for proofs of semi-parametric identification of the distributions of the factors θ and

uniquenesses ε.

A.1 Test Scores

To motivate our identification analysis we start by considering the test score equations. It is convenient to

do so because the test scores are available for all agents and are taken by the agent before he makes the

schooling decision. Therefore, we do not have to worry about selection issues when discussing identification

from test score equations. Three assumptions are crucial in securing identification through factor models.

First, the explanatory variables XM are independent from both θ1 and εMk , for k = 1, . . . ,K. Second, the

factor θ1 is independent from εMk , for k = 1, . . . ,K. Third, the uniqueness εMk is independent from εMl for

any k 6= l, for k, l = 1, . . . ,K. The first assumption allows us to conclude that βMk can be consistently

estimated from a simple OLS regression of Mk against XM . Given knowledge of these parameters we can

construct differences Mk −XMβMk and compute the covariances:

Cov
¡
M1 −XMβM1 ,M2 −XMβM2

¢
= αM

1 αM
2 σ2θ1, (25)

Cov
¡
M1 −XMβM1 ,M3 −XMβM3

¢
= αM

1 αM
3 σ2θ1, (26)
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Cov
¡
M2 −XMβM2 ,M3 −XMβM3

¢
= αM

2 αM
3 σ2θ1. (27)

The left-hand side of (25) , (26) , and (27) can be computed straight from the data. The right-hand side

of (25) , (26) , and (27) is implied by the factor model. As is common in the factor literature, we need to

normalize one of the factor loadings. Let αM
1 = 1. If we take the ratio of (27) to (25) we identify αM

3 .

Analogously, the ratio of (27) to (26) allows us to recover αM
2 . Given the normalization of α

M
1 = 1 and

identification of αM
2 , we rescue σ2θ1 from (25). Finally, we can identify the variance of ε

M
k from the variance

ofMk−XMβMk . Because the factor θ1 and uniquenesses εk are independently normally distributed random

variables, we have identified their distribution.

A.2 Earnings and Choice Equations

To establish the identification of the objects of interest in earnings equations requires a little more work

because of the selection problem. It is at this stage of the problem that fixing the discussion on the

normally distributed factors and uniquenesses becomes convenient, as we can use the closed-form solutions

to reduce the identification problem to the identification of a few parameters.

We rely on four important assumptions to secure identification. First, all of the observable explanatory

variables X and Z are independent of the unobservable factors, θ1 and θ2, as well as uniquenesses εs,t for

all s, t. Second, θ1 is independent of θ2. Third, both θ1 and θ2 are independent of εC and εs,t for all s, t.

Fourth, εs,t is independent from εC and εs0,t0 for any pairs s, s0 and t, t0 such that s 6= s0 or t 6= t0. According

to the last three assumptions, all of the the dependence among U0,t, U1,t, and UC is captured through the

factors θ1 and θ2, which, for simplicity, we assume that⎛⎜⎝ θ1

θ2

⎞⎟⎠ ∼ N

⎛⎜⎝
⎛⎜⎝ 0

0

⎞⎟⎠ ,

⎡⎢⎣ σ2θ1 0

0 σ2θ2

⎤⎥⎦
⎞⎟⎠ ,

Because of the loadings α1,s,t, α2,s,t, α1,C , and α2,C the factors θ can affect U0,t, U1,t, and UC differently.

Therefore, by adopting the factor structure we are not imposing, for example, perfect ranking in the sense

that the best in the distribution of earnings in sector s at period t is the best (or the worst) in the

distribution of earnings in sector s0 at period t0. When the schooling choice problem is analyzed under the
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factor model, the joint distribution of the labor earnings Y0,t , Y1,t conditional on X is:

⎡⎢⎣ Y0,t

Y1,t

⎤⎥⎦ | X ∼ N

⎛⎜⎝
⎡⎢⎣ Xβ0,t

Xβ1,t

⎤⎥⎦ ,
⎡⎢⎣ α21,0,tσ

2
θ1
+ α22,0,tσ

2
θ2
+ σ2ε0,t α1,0,tα1,1,tσ

2
θ1
+ α2,0,tα2,1,tσ

2
θ2

α1,0,tα1,1,tσ
2
θ1
+ α2,0,tα2,1,tσ

2
θ2

α21,1,tσ
2
θ1
+ α22,1,tσ

2
θ2
+ σ2ε1,t

⎤⎥⎦
⎞⎟⎠ . (28)

As a result, identification of the joint distribution F (Y0,t, Y1,t | X) reduces to the identification of the

parameters βs,t, αk,s,t, σεs,t , and σ
2
θj
for s = 0, 1; t = 1, . . . , T and j = 1, 2, and k = 1, 2. From the observed

data and the factor structure it follows that

E (Y1,t|X,S = 1) = Xβ1,t + α1,1,tE [θ1|X,S = 1] + α2,1,tE [θ2|X,S = 1] +E [ε1,t|X,S = 1] . (29)

The event S = 1 corresponds to the event I = E

µPT
t=1

³
1
1+ρ

´t−1
(Y1,t − Y0,t)− C

¯̄̄̄
I
¶
≥ 0. At this point

it is convenient to distinguish the role played by the factors θ from the one played by the uniquenesses

εs,t. In tune with our intuitive discussion, we need to have terms that will affect the covariance between

schooling and earnings equations by changing the components of the information set I, which is captured

by the term E (Us,t| I). We also need to have components that will affect earnings while holding constant

the information set I and the covariance between earnings and schooling, which is captured by the term

Us,t − E (Us,t| I). The former role will be played by the factors in the information set of the agent. The

latter will be played by the factors not in the information set of the agents as well as the uniquenesses εs,t.

Consequently, we will construct εs,t so that they satisfy the requirement εs,t /∈ I. As a result, we conclude

that

E

Ã
TX
t=1

µ
1

1 + ρ

¶t−1
(Y1,t − Y0,t)− C

¯̄̄̄
¯I
!
= μI(X,Z) + α1,Iθ1 + α2,Iθ2 − εC.

Let η be the linear combination of three independent normal random variables: η = α1,Iθ1 + α2,Iθ2 − εC.

Then, η ∼ N
¡
0, σ2η

¢
, with σ2η = α21,Iσ

2
θ1
+ α22,Iσ

2
θ2
+ σ2εc and

S = 1⇔ η > −μI(X,Z). (30)

If we replace (30) in (29) and using the fact that εs,t is independent from X,Z, and θ, we can show that

E (Y1,t|X,S = 1) = Xβ1 + α1,1,tE [θ1|X, η > −μI(X,Z)] + α2,1,tE [θ2|X, η > −μI(X,Z)] . (31)
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Second, because θ1, θ2 and η are normal random variables we can use the projection property,

θj =
Cov (θj, η)

V ar (η)
η + νj for j = 1, 2, (32)

where νj is a mean zero, normal random variable independent from η. Because Cov (θ1, η) = σ2θ1α1,I and

Cov (θ2, η) = σ2θ2α2,I it follows that

E [θ1|X, η > −μI(X,Z)] =
σ2θ1α1,I

σ2η
E [η| η > −μI(X,Z)] ,

E [θ2|X, η > −μI(X,Z)] =
σ2θ2α2,I

σ2η
E [η| η > −μI(X,Z)] .

For any standard normal random variable μ, E (μ|μ ≥ −c) = φ(c)
Φ(c)

where φ (.) and Φ (.) are the density and

distribution function of a standard normal random variable. Define, for j = 0, 1, πj,t =
³
α1,j,tα1,Iσ

2
θ1
+α2,j,tα2,Iσ

2
θ2

ση

´
.

These facts together allow us to rewrite (29) as

E (Y1,t| η ≤ −μI(X,Z)) = Xβ1,t + π1,t
φ
³
μI(X,Z)

ση

´
Φ
³
μI(X,Z)

ση

´ . (33)

It is easy to follow the same steps and derive a similar expression for mean observed earnings in sector “0”:

E (Y0,t| η > −μI(X,Z)) = Xβ0,t − π0,t
φ
³
μI(X,Z)

ση

´
Φ
³
μI(X,Z)

ση

´ . (34)

We can apply the two-step procedure proposed in Heckman (1976) to identify β0,t, β1,t, π0,t and π1,t. Given

identification of βs,t for all s and t, we can construct the differences Ys,t−Xβs,t and compute the covariances

Cov
¡
M1 −XMβM1 , Y0,t −Xβ0,t

¢
= α1,0,tσ

2
θ1
, (35)

Cov
¡
M1 −XMβM1 , Y1,t −Xβ1,t

¢
= α1,1,tσ

2
θ1
. (36)

The left-hand side of (35) is available from the data. The right-hand side is implied by the factor model

and its assumptions. We determined σ2θ1 from the analysis of the test scores. So from equations (35) and
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(36) we can recover α1,0,t and α1,1,t for all t. Note that we can also identify the
α1,C
ση

by computing the

covariance:

Cov

µ
M1 −XβM1 ,

I − μI(X,Z)

ση

¶
=

XT

t=1

³
1
1+ρ

´t−1
(α1,1,t − α1,0,t)− α1,C

ση
σ2θ1 . (37)

The argument why α1,C
ση

can be recovered is simple: Using (35) and (36) we can identify α1,1,t and α1,0,t for

all t.The only remaining term to be identified is the ratio α1,C
ση
, which we can from the covariance equation

(37).

Note that if T ≥ 2 then we can also identify the parameters related to factor θ2, such as α2,s,t and σ2θ2 .

To see this, first normalize α2,0,1 = 1 and compute the covariances:

Cov
¡
Y0,1 −Xβ0,1, Y0,2 −Xβ0,2

¢
− α1,0,1α1,0,2σ

2
θ1
= α2,0,2σ

2
θ2
, (38)

Cov

µ
Y0,1 −Xβ0,1,

I − μI(X,Z)

ση

¶
−
α1,0,1σ

2
θ1

PT
t=1 (α1,1,t − α1,0,t − α1,C)

ση
=

σ2θ2
PT

t=1 (α2,1,t − α2,0,t − α2,C)

ση
,

(39)

Cov

µ
Y0,2 −Xβ0,2,

I − μI(X,Z)

ση

¶
−
α1,0,2σ

2
θ1

PT
t=1 (α1,1,t − α1,0,t − α1,C)

ση
=

α2,0,2σ
2
θ2

PT
t=1 (α2,1,t − α2,0,t − α2,C)

ση
.

(40)

On the left-hand side of (38), (39), and (40) are terms that we can compute from the data or have already

identified. If we compute the ratio of (40) to (39) we can recover α2,0,2. From (38) we can recover σ2θ2 . We

now add the covariances from the college earnings:

Cov
¡
Y1,1 −Xβ1,1, Y1,2 −Xβ1,2

¢
− α1,1,1α1,1,2σ

2
θ1
= α2,1,1α2,1,2σ

2
θ2
, (41)

Cov

µ
Y1,1 −Xβ1,1,

I − μI(X,Z)

ση

¶
−
α1,1σ

2
θ1

PT
t=1 (α1,1,t − α1,0,t − α1,C)

ση
=

α2,1,1σ
2
θ2

PT
t=1 (α2,1,t − α2,0,t − α2,C)

ση
,

(42)

Cov

µ
Y1,2 −Xβ1,2,

I − μI(X,Z)

ση

¶
−
α1,1,2σ

2
θ1

PT
t=1 (α1,1,t − α1,0,t − α1,C)

ση
=

α2,1,2σ
2
θ2

PT
t=1 (α2,1,t − α2,0,t − α2,C)

ση
.

(43)

Now, by computing the ratios of (43) to (41) and (42) to (41) we obtain α2,1,2 and α2,1,1 respectively.

Finally, we use the information in V ar (Y0,t|X,S = 0) and V ar (Y1,t|X,S = 1) to compute σ2ε0,t and σ2ε1,t ,
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respectively. Note that we have identified all of the elements that characterize the joint distribution as

specified in (28).
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Let Y denote earnings at age 31 in the overall sample. Here we plot the density 
functions f(y) generated from the data (the solid curve), against that predicted by
the model (the dashed line).
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Figure 1B

Let Y denote earnings at age 31 in the overall sample. Here we plot the density 
functions f(y) generated from the data (the solid curve), against that predicted by
the model (the dashed line).
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Let Y0 denote earnings in high-school sector (S = 0) at age 31. Here we plot the 
density function f(y0|S=0) generated from the data (the solid curve) against that 
predicted by the model (the dashed line).
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Let Y0 denote earnings in high-school sector (S = 0) at age 31. Here we plot the 
density function f(y0|S=0) generated from the data (the solid curve) against that 
predicted by the model (the dashed line).
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Let Y1 denote earnings in the college sector (S = 1) at age 31. Here we plot the density
function f(y1|S=1) generated from the data (the solid curve) against that predicted by 
the model (the dashed line).
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Let Y1 denote earnings in the college sector (S = 1) at age 31. Here we plot the density
function f(y1|S=1) generated from the data (the solid curve) against that predicted by 
the model (the dashed line).



Let Y0 denote the present value of earnings from age 22 to 41 in the High School sector
(S = 0).  Let Y1 denote the present value of earnings from age 22 to 41 in the college sector
(S = 1). Here we plot the factual density function f(y0|S=0) (the solid curve) against the
counterfactual density function  f(y1|S=0) (the dashed curve). We use a discount rate of 5%.
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Let Y0 denote the present value of earnings from age 22 to 41 in the High School sector
(S = 0).  Let Y1 denote the present value of earnings from age 22 to 41 in the college sector
(S = 1). Here we plot the factual density function f(y0|S=0) (the solid curve) against the
counterfactual density function  f(y1|S=0) (the dashed curve). We use a discount rate of 5%.
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Let Y0 denote the present value of earnings from age 22 to 41 in the High School sector
(S = 0).  Let Y1 denote the present value of earnings from age 22 to 41 in the college sector
(S = 1). Here we plot the factual density function f(y1|S=1) (the solid curve) against the
counterfactual density function  f(y0|S=1) (the dashed curve). We use a discount rate of 5%.
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Let Y0 denote the present value of earnings from age 22 to 41 in the High School sector
(S = 0).  Let Y1 denote the present value of earnings from age 22 to 41 in the college sector
(S = 1). Here we plot the factual density function f(y1|S=1) (the solid curve) against the
counterfactual density function  f(y0|S=1) (the dashed curve). We use a discount rate of 5%.



Let Y0, Y1 denote the present value of earnings from age 22 to age 41 in the high
school and college sectors, respectively. Define ex post returns to college as the ratio 
R=(Y1-Y0)/Y0.  Let f(r) denote the density function of the ex post returns to college R. 
The solid line is the density of ex post returns to colege for high school graduates, 
that is, f(r|S=0).  The dashed line is the density of ex post returns to college for college 
graduates, that is, f(r|S=1).  
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Let Y0, Y1 denote the present value of earnings from age 22 to age 41 in the high
school and college sectors, respectively. Define ex post returns to college as the ratio 
R=(Y1-Y0)/Y0.  Let f(r) denote the density function of the ex post returns to college R. 
The solid line is the density of ex post returns to colege for high school graduates, 
that is, f(r|S=0).  The dashed line is the density of ex post returns to college for college 
graduates, that is, f(r|S=1).  
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In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of high-school earnings 
from ages 22 to 41 for the NLSY/1979 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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Total Residual
Unforecastable Components

In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of high-school earnings 
from ages 22 to 41 for the NLS/1966 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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The densities of total residual vs unforecastable components

in present value of college earnings for the NLSY/1979 sample
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In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable  components  (the dashed  curve) for the  present  value of  college earnings 
from ages 22 to 41 for the NLSY/1979 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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The densities of total residual vs unforecastable components

in present value of college earnings for the NLS/1966 sample
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In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable  components  (the dashed  curve) for the  present  value of  college earnings 
from ages 22 to 41 for the NLS/1966 sample of white males. The present value of earnings 
is calculated using a 5% interest rate.
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In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of earnings differences 
(or returns to college) for the white males sample of the NLSY/1979 from ages 22 to 41. 
The present value of returns to college is calculated using a 5% interest rate. 
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In this figure we plot the density of total residual (the solid curve) against the density of the
unforecastable components (the dashed curve) for the present value of earnings differences 
(or returns to college) for the white males sample of the NLSY/1979 from ages 22 to 41. 
The present value of returns to college is calculated using a 5% interest rate. 



Figure 10
Evolution of Variance of Unforecastable Components - High School Sector
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4+α5,s,tθ5+α6,s,tθ6+ εs,t. In Figure 10, we compare the variance of Ps,t from NLS/1966 (the solid
curve) with the one from NLSY/1979 (the dashed curve) at different ages of the individuals who are high-school
graduates. We see that until age 27, the estimated variance of Ps,t from NLS/1966 and NLSY/1979 are very
similar, but from age 28 on, the variance of Ps,t from NLSY/1979 is much larger than the counterpart from
NLS/1966.



Figure 11
Evolution of Variance of Unforecastable Components - College Sector
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Figure 1:

For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at
the time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components
at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the NLSY/1979,
Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. In Figure 11, we compare the variance of Ps,t from NLS/1966 (the
solid curve) with the one from NLSY/1979 (the dashed curve) at different ages of the individuals who are college
graduates. We see that until age 30, the estimated variance of Ps,t from NLS/1966 and NLSY/1979 are very
similar, but from age 31 on, the variance of Ps,t from NLSY/1979 is much larger than the counterpart from
NLS/1966.



Figure 12
Correlogram at Age 31: NLS/1966 vs NLSY/1979
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at the
time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components in
sector s and age t at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the
NLSY/1979, Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. Let φ (s, t, k) denote the correlogram at age t :

φ (s, t, k) =
Cov (Ps,t, Ps,k)

V ar (Ps,t)
for k = t, t+ 1, t+ 2, ..., T

In Figure 12, we plot φ (s, t, k) from NLS/1966 (the gray columns) with the one from NLSY/1979 (the black
columns) when the agents are 31 years-old (t = 31) for the overall sample.



Figure 13
Correlogram at Age 31: NLS/1966 vs NLSY/1979

High School Sample
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at the
time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components in
sector s and age t at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the
NLSY/1979, Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. Let φ (s, t, k) denote the correlogram at age t :

φ (s, t, k) =
Cov (Ps,t, Ps,k)

V ar (Ps,t)
for k = t, t+ 1, t+ 2, ..., T

In Figure 13, we plot φ (s, t, k) from NLS/1966 (the gray columns) with the one from NLSY/1979 (the black
columns) when the agents are 31 years-old (t = 31) for the high school sample.



Figure 14
Correlogram at Age 31: NLS/1966 vs NLSY/1979

College Sample

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

31 32 33 34 35 36 37

Age

NLS/1966 NLSY/1979

For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. We test and cannot reject that the agents know the
factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, and εs,t at the time of their schooling choice, for s = 0, 1
and t = 22, ..., 41. For the NLSY/1979 data set, the vector θ contains 6 elements. We test and cannot reject that
the NLSY/1979 respondents know the factors θ1, θ2, and θ3 but they don’t know factors θ4, θ5, θ6 and εs,t at the
time of their schooling choice, for s = 0, 1 and t = 22, ..., 41. Let Ps,t denote the unforecastable components in
sector s and age t at the time of the schooling choice. For the NLS/1966, Ps,t = α4,s,tθ4 + α5,s,tθ5 + εs,t. For the
NLSY/1979, Ps,t = α4,s,tθ4 + α5,s,tθ5 + α6,s,tθ6 + εs,t. Let φ (s, t, k) denote the correlogram at age t :

φ (s, t, k) =
Cov (Ps,t, Ps,k)

V ar (Ps,t)
for k = t, t+ 1, t+ 2, ..., T

In Figure 14, we plot φ (s, t, k) from NLS/1966 (the gray columns) with the one from NLSY/1979 (the black
columns) when the agents are 31 years-old (t = 31) for the college sample.



Figure 15
Evolution of Cognitive Skill Prices - High School Sector
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. For the NLSY/1979 data set, the vector θ contains 6
elements. In both cases, the first factor, θ1, is identified from cognitive tests. According to the Gorman-Lancaster
model of earnings, the loading on the first factor in the earnings equations is the price of cognitive skills. In
Figure 15 we plot the loading on factor θ1 in the high-school earnings equation from ages 22 to 36 for both the
NLS/1966 and NLSY/1979.



Figure 16
Evolution of Cognitive Skill Prices - College Sector
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For each schooling level s, at each age t, we model earnings Ys,t according to:

Ys,t = Xβs,t + θαs,t + εs,t

For the NLS/1966 data set, the vector θ contains 5 elements. For the NLSY/1979 data set, the vector θ contains 6
elements. In both cases, the first factor, θ1, is identified from cognitive tests. According to the Gorman-Lancaster
model of earnings, the loading on the first factor in the earnings equations is the price of cognitive skills. In Figure
16 we plot the loading on factor θ1 in the college earnings equation from ages 22 to 36 for both the NLS/1966
and NLSY/1979.



High School College Overall
NLS/1966 - 5 Factors 15.6968 210.4133 114.8754
NLS/1979 - 6 Factors 70.6451 156.5446 187.5425
NLS/1979 - 5 Factors 64.2682 309.2815 226.2401

Critical Value* 222.0741 222.0741 222.0741
* 95% Confidence

Test of Equality of Predicted versus Actual Correlation 
Matrices of Earnings (from ages 22 to 41)

NLSY/1979 and NLS/1966

Table 1



table 6

High School 1 2 3 4 5 6 7 8 9 10
1 0.2995 0.1685 0.1114 0.0789 0.0570 0.0413 0.0393 0.0431 0.0471 0.1137
2 0.2273 0.2119 0.1597 0.1271 0.0907 0.0678 0.0450 0.0288 0.0180 0.0236
3 0.1532 0.1840 0.1656 0.1472 0.1146 0.0914 0.0642 0.0434 0.0230 0.0132
4 0.1110 0.1368 0.1492 0.1474 0.1418 0.1184 0.0882 0.0588 0.0334 0.0148
5 0.0748 0.1100 0.1244 0.1413 0.1459 0.1403 0.1172 0.0836 0.0462 0.0162
6 0.0494 0.0866 0.1146 0.1204 0.1371 0.1399 0.1283 0.1242 0.0736 0.0258
7 0.0306 0.0582 0.0904 0.1094 0.1264 0.1436 0.1506 0.1430 0.1064 0.0414
8 0.0236 0.0348 0.0531 0.0769 0.0989 0.1252 0.1638 0.1799 0.1676 0.0761
9 0.0264 0.0262 0.0316 0.0459 0.0651 0.0929 0.1308 0.1784 0.2431 0.1594

10 0.0457 0.0182 0.0214 0.0216 0.0321 0.0446 0.0772 0.1176 0.2291 0.3925

College

Table 2A: Ex-Ante Conditional Distributions for the NLSY/1979 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Individual fixes unknown θ at their means, so Information Set={θ1,θ2,θ3}

Corrrelation(YC,YH) = 0.1666

Page 1



High School 1 2 3 4 5 6 7 8 9 10
1 0.7036 0.2155 0.0622 0.0137 0.0035 0.0015 0.0000 0.0000 0.0000 0.0000
2 0.2225 0.3780 0.2475 0.1085 0.0285 0.0110 0.0035 0.0000 0.0005 0.0000
3 0.0500 0.2505 0.2960 0.2320 0.1090 0.0455 0.0120 0.0035 0.0015 0.0000
4 0.0145 0.1005 0.2250 0.2585 0.2150 0.1135 0.0545 0.0135 0.0045 0.0005
5 0.0045 0.0435 0.1055 0.1945 0.2545 0.2135 0.1265 0.0460 0.0105 0.0010
6 0.0010 0.0115 0.0435 0.1190 0.2035 0.2455 0.2100 0.1335 0.0295 0.0030
7 0.0000 0.0030 0.0150 0.0500 0.1190 0.2185 0.2705 0.2095 0.1040 0.0105
8 0.0005 0.0000 0.0055 0.0200 0.0555 0.1085 0.2080 0.3125 0.2460 0.0435
9 0.0000 0.0000 0.0005 0.0035 0.0105 0.0380 0.1045 0.2390 0.3920 0.2120

10 0.0000 0.0000 0.0000 0.0005 0.0010 0.0045 0.0105 0.0425 0.2115 0.7295

College

Table 2B: Ex-Ante Conditional Distributions for the NLS/1966 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Individual fixes unknown θ at their means, so Information Set={θ1,θ2,θ3}

Corrrelation(YC,YH) =  0.9174

Page 1



High School 1 2 3 4 5 6 7 8 9 10
1 0.2118 0.1614 0.1188 0.0932 0.0782 0.0654 0.0532 0.0554 0.0651 0.0974
2 0.1684 0.1777 0.1557 0.1213 0.1038 0.0862 0.0640 0.0516 0.0417 0.0296
3 0.1374 0.1676 0.1464 0.1390 0.1244 0.0954 0.0754 0.0577 0.0333 0.0234
4 0.1080 0.1336 0.1433 0.1378 0.1213 0.1115 0.0980 0.0746 0.0475 0.0243
5 0.0787 0.1105 0.1232 0.1335 0.1345 0.1291 0.1144 0.0862 0.0614 0.0286
6 0.0656 0.1028 0.1149 0.1201 0.1276 0.1330 0.1250 0.0998 0.0823 0.0288
7 0.0548 0.0779 0.0842 0.1097 0.1196 0.1224 0.1410 0.1331 0.1132 0.0441
8 0.0428 0.0507 0.0741 0.0880 0.0994 0.1224 0.1410 0.1585 0.1539 0.0693
9 0.0416 0.0436 0.0474 0.0577 0.0803 0.1001 0.1277 0.1728 0.1939 0.1348

10 0.0386 0.0204 0.0269 0.0292 0.0339 0.0520 0.0704 0.1155 0.1945 0.4186

College

Table 3A: Ex-Post Conditional Distributions for the NLSY/1979 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Information Set={θ1,θ2,θ3,θ4,θ5,θ6}

Corrrelation(YC,YH) = 0.2842

Page 1



High School 1 2 3 4 5 6 7 8 9 10
1 0.4001 0.1813 0.1023 0.0717 0.0611 0.0406 0.0422 0.0306 0.0337 0.0364
2 0.2144 0.2239 0.1663 0.1207 0.0862 0.0676 0.0486 0.0261 0.0256 0.0205
3 0.1286 0.1716 0.1591 0.1496 0.1181 0.0960 0.0695 0.0515 0.0340 0.0220
4 0.0870 0.1426 0.1551 0.1576 0.1386 0.1131 0.0810 0.0650 0.0365 0.0235
5 0.0450 0.0905 0.1390 0.1400 0.1405 0.1395 0.1165 0.0960 0.0625 0.0305
6 0.0350 0.0720 0.1126 0.1196 0.1456 0.1416 0.1306 0.1211 0.0900 0.0320
7 0.0210 0.0600 0.0710 0.1046 0.1201 0.1521 0.1466 0.1531 0.1126 0.0590
8 0.0205 0.0320 0.0455 0.0816 0.0951 0.1261 0.1562 0.1797 0.1667 0.0966
9 0.0180 0.0205 0.0305 0.0430 0.0755 0.0830 0.1476 0.1741 0.2316 0.1761

10 0.0125 0.0115 0.0235 0.0135 0.0225 0.0415 0.0611 0.1041 0.2077 0.5020

College

Table 3B: Ex-Post Conditional Distributions for the NLS/1966 (College Earnings Conditional on High School Earnings)
Pr(di<Yc<di+1 |dj<Yh<dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Information Set={θ1,θ2,θ3,θ4,θ5}

Corrrelation(YC,YH) =  0.6226



Schooling Group Mean Returns Standard Error Mean Returns Standard Error
High School Graduates 0.2937 0.0083 0.3095 0.0113

College Graduates 0.3107 0.0114 0.3994 0.0129
Individuals at the Margin 0.3081 0.0446 0.3511 0.0535

NLS/1966 NLSY/1979
Mean Rates of Return to College by Schooling Group

Table 4



Schooling Group NLS/1966 NLSY/1979
Percentage of High School Graduates who 

Regret Not Graduating from College
0.0966 0.0749

Percentage of College Graduates who Regret 
Graduating from College 0.0337 0.0311

Percentage that Regret Schooling Choices
Table 5



College High School Returns
Total Residual Variance 460.6260 284.8089 351.4026
Variance of Unforecastable Components 181.3712 128.4315 327.3480

College High School Returns
Total Residual Variance 709.7487 507.2910 906.0066
Variance of Unforecastable Components 372.3509 272.3596 432.8733

College High School Returns
Percentage Increase in Total Residual Variance 54.083% 78.116% 157.826%
Percentage Increase in Variance of Unforecastable Components 105.298% 112.066% 32.236%

Panel A: NLS/1966

Panel B: NLSY/1979

Panel C: Percentage Increase

Table 6A
Evolution of Uncertainty



College High School Returns
Total Residual Variance 460.6260 284.8089 351.4026
Variance of Forecastable Components (Heterogeneity) 279.2549 156.3774 24.0546

College High School Returns
Total Residual Variance 709.7487 507.2910 906.0066
Variance of Forecastable Components (Heterogeneity) 337.3978 234.9314 473.1333

College High School Returns
Percentage Increase in Total Residual Variance 54.083% 78.116% 157.826%
Percentage Increase in Variance of Forecastable Components 20.821% 50.234% 1866.914%

Panel A: NLS/1966

Panel B: NLSY/1979

Panel C: Percentage Increase

Table 6B
Evolution of Heterogeneity



Point Estimate Standard Error Point Estimate Standard Error
High School 0.0586 0.0060 0.0069 0.0009

College 0.1193 0.0126 0.0158 0.0021

NLS/1966 NLSY/1979

Table 7

Share of Variance of Business Cycle in Total Variance of Unforecastable 
Components

Figure 1:

Let Ys,t denote the labor income at schooling sector s and age t. Let dk denote the cohort dummy that takes
the value one if the agent was born in year k and zero otherwise. Let X denote the vector of variables containing
a dummy indicating whether the agent lived in the South Region at age 14 and a constant term. Let θj denote
the factor j and αs,t,j denote its factor loading at schooling sector s and age t. Let εs,t denote the uniqueness.
The model is:

Ys,t = Xβs,t +

τ1X
k=τ0

γk,s,tdk + θ1αs,t,1 + θ2αs,t,2 + θ3αs,t,3 + θ4αs,t,4 + θ5αs,t,5 + θ6αs,t,6 + εs,t

The cohort dummies can capture aggregate shocks. Under this interpretation, we test and reject that the agents
know the aggregate shocks at the time of the schooling choice. We test and reject that the agent knows the
uniqueness εs,t and factors θ4,θ5, and θ6 at the time of the schooling choice. Consequently, the total unforecastable
component (aggregate and idiosyncratic components) is given by:

P̃s,t =

τ1X
k=τ0

γk,s,tdk + θ4αs,t,4 + θ5αs,t,5 + θ6αs,t,6 + εs,t

In school sector s lifetime earnings, this component is given by the discounted summation:

Q̃s =
41X

t=22

"Pτ1
k=τ0

γk,s,tdk

(1 + ρ)t−22

#
+

41X
t=22

"
θ4αs,t,4 + θ5αs,t,5 + θ6αs,t,6 + εs,t

(1 + ρ)t−22

#

The variance of the total unforecastable component (aggregate plus idiosyncratic uncertainty) is:
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The share of aggregate uncertainty in the total variance of the unforecastable component, ms, is:

ms =

V ar

µP41
t=22

∙
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(1+ρ)t−22

¸¶
V ar

³
Q̃s

´
In the table, we plot ms for s = high school, college, for both the NLSY/1979 and NLS/1966. For example,
5.86% of the total variance of unforecastable components in high-school lifetime earnings is due to the aggregate
uncertainty in the NLS/1966 sample and 0.7% in the NLSY/1979 sample.


