
Heterogeneity and the Dynamics of Technology
Adoption

Stephen Ryan∗and Catherine Tucker†

October 6, 2006

Abstract

This paper analyzes the role of heterogeneity and forward-looking expectations in
the diffusion of network technologies. Using a detailed dataset on the adoption of a new
videoconferencing technology within a firm, we estimate a structural model of tech-
nology adoption and communications choice. We allow for heterogeneity in network
benefits and adoption costs across agents. We find that ignoring heterogeneity in the
interplay between adoption costs and network effects will underpredict the size of the
steady-state network size by almost 50 percent. We develop a new “simulated sequence
estimator” to measure the extent to which agents seek diversity in their calling behav-
ior, and characterize the patterns of communication as a function of geography, job
function, and rank within the firm. We find that agents have significant welfare gains
from having access to a diverse network, and that a policy of strategically targeting
the right subtype for initial adoption can lead to a faster-growing and larger network
than a policy of uncoordinated or diffuse adoption.
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1 Introduction

Technological improvements lie at the heart of economic growth, and understanding the

diffusion of innovation is a centrally important question in economics. In his pioneering

work on the diffusion of hybrid corn technology, Griliches (1957) poses three questions which

still resonate today: What factors drive the timing of adoption of new technologies? What

determines their rates of diffusion? And finally, what factors govern the long-run level of

adoption? Griliches, along with other early empirical and theoretical work such as Mansfield

(1961) and Rogers (1962), attempted to answer these questions by explaining differences in

diffusion curves as arising from heterogeneity in user characteristics, such as profitability,

cost, and competitive pressure. Foundational work by Katz and Shapiro (1985) and Far-

rell and Saloner (1985) greatly extended this literature by identifying a completely different

mechanism driving the diffusion of a broad class of technologies. In these “network technolo-

gies,” canonical examples of which are telephones, fax machines, and the Internet, an agent’s

payoff from the technology explicitly depends on having other agents adopt the technology

as well. For these technologies, equilibrium expectations over how the network will evolve

in the future are crucial to understanding Griliches’ three questions.

In this paper, we bridge and extend these two literatures. We build on earlier work

by constructing a fully dynamic, utility-based model of technology adoption and use. We

examine how heterogeneity, as expressed by differences in adoption costs, network effects,

and tastes for a diverse network, affects network technology diffusion and use. We apply

our model of forward-looking heterogeneous agents to detailed data on the introduction of

a videoconferencing technology in a large multinational bank. Our approach allows us to

quantify the effects of three dimensions of individual heterogeneity on network evolution

and use, and permits analysis of two common policies for jump-starting network technology

diffusion. In doing so, we are able to provide answers to Griliches’ three questions from a
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utility-based framework. Our research strategy consists of three sequential steps.

First, we construct a fully dynamic model of network technology adoption and use. The

model addresses two interrelated activities: how the network evolves over time, and how

agents in the network use it. Agents vary in their fixed costs of adopting the network

technology, and weigh the expected present value of joining the network today against the

opportunity costs of either never adopting or of waiting to adopt in future periods. We char-

acterize their adoption timing as an optimal waiting problem. After an agent has adopted

the technology, they then can choose how to use it. We model the sequence of network

interactions as a function of two forces: differences in utility each agent receives from inter-

acting with others; and a taste for “dynamic diversification,” or the desire to interact with

different types of people over time. This heterogeneity allows us to explicitly model choices

to interact with different users both initially and over time. This model allows us to capture

how diversity in the characteristics of network subscribers affects agents’ motivations for

adoption.

Second, we use extensive data on the diffusion and use of a videoconferencing technology

within a large multinational investment bank to estimate the parameters of our model.

We have detailed data on all 2,112 potential adopters in the firm, from the time that the

technology was first offered for installation up to the network’s steady state three and half

years later. Our data also encompasses all of the 463,806 videoconferencing calls made during

that time, which allows us to estimate a rich model of calling preferences for 64 different

types of individuals in the firm. The technology deployment was unusually clean from a

modeling standpoint, as the bank took a laissez-faire approach to spreading the technology

throughout the firm. Employees were able to get the technology installed upon request at no

cost to themselves, but were not otherwise compelled to adopt it. This process falls naturally

within the confines of our modeling framework, as otherwise we would have to model the

firm’s adoption policies.

3



The structural empirical literature on network effects has been static in nature. For

example, Rysman (2004)’s work on two-sided markets evaluates cross-sectional yellow pages

data, while Ackerberg and Gowrisankaran (2006)’s assumption of free exit enables them to

analyze the diffusion of electronic payments as a repeated static game. This orientation

towards static models has been driven by three practical challenges. First, in technology

adoption models with network effects, the researcher must confront the issue of multiple

equilibria. Both Ackerberg and Gowrisankaran (2006) and Rysman (2004) tackle this by

computing which out of a limited set of equilibria are selected. It is also theoretically

possible to not limit the set of potential equilibria, and explicitly model the equilibrium

selection process, as in Bajari, Hong, and Ryan (2006). However, this approach requires

the computation of all equilibria to a system, which can take a prohibitive amount of time.

This is due to the second difficulty, which is the size of the state space. In the present

application, for example, the state space consists of an indicator function for each agent

denoting their adoption status. The number of possible combinations of these variables is

22112, or approximately 10602. It is clear that is this an impossibly large set of points to

enumerate, let alone compute equilibria over. However, by using the two-step techniques

described by Bajari, Benkard, and Levin (2006), we circumvent the problem of multiple

equilibria and the curse of dimensionality which beset estimation of dynamic technology

adoption games.1

The last difficulty is that in any research on network effects, identification is a key chal-

lenge. This means that earlier empirical work has focused on documenting causal network

effects, see for example Gowrisankaran and Stavins (2004). In this paper we take a differ-

ent approach. Rather than trying to explicitly estimate a causal network effect, instead we

1Our results also contribute to a new literature which explicitly addresses issues of dynamics in technology
adoption. One example is Schmidt-Dengler (2005)’s research on dynamic technology adoption timing in the
presence of pre-emption effects. Einav (2004) also studies the introduction of new products from the firm’s
perspective and shows that dynamic estimation can reveal inefficiencies in timing.
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structurally model the entire system of inter-related demand over time. This means that our

estimates encompass all drivers of inter-dependent demand. These drivers include informa-

tional spillovers, employee coordination and herding as well as causal network effects. This

agnosticism resembles modeling approaches such as Bass (1969), which allows for multiple

mechanisms by which users’ influence each others’ adoption.

Another challenge we face that has not been tackled by the previous network literature

is how to model network usage after adoption. Existing discrete choice models are not

appropriate for modeling an employee’s sequential and interrelated choices governing which

other employee to call over a given period. We propose a new “simulated sequence estimator”

to deal with the twin challenges of predicting how many calls an agent will make and whom

they will call.

Our primary finding is that heterogeneity is important at all three levels that we specify.

Employees in the firm have very different tastes for using the system, depending on their

location, job function, and rank. We find the pattern that, all else equal, each given subtype

in the firm is more likely to call someone similar in the firm. However, allowing for dynamic

diversification in tastes implies that this taste decreases in the number of times a call is

made. Employees therefore have significant positive welfare gains from having access to a

diverse network where there are employees of many types for them to call. This interaction

is critical to understanding the evolution of the network, as our agents perceive equally-sized

homogenous and diverse networks very differently. Our specification without heterogeneity

underpredicts the extent of adoption of the technology by 50 percent and obviously does a

very poor job of matching adoption rates across different types. These findings echo Tucker

(2006b)’s previous empirical research using this data, which documents how network effects

vary in size with both formal and informal influence in a firm.

Our results also shed substantial light on how communication in the firm operates across

geography, job function, and rank. There is a burgeoning literature examining the role of
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hierarchies and communication in firms, e.g. Garicano and Hubbard (2003) and Garicano

(2000). While we find evidence that communication in the hierarchy is more likely between

similar ranks in the firm, we observe communication across all regions, functions, and ranks.

The complexity of the system of communication we uncover suggests that the highly stylized

models of communication networks prevalent in the theoretical literature, need elaboration

to be capable of reproducing our results.

Third, we use our parameters to simulate how two different technology adoption policies

focused on initial adoption could affect the evolution and use of the network over time. These

policies represent potential marketing approaches that a firm or network operator can use

to avoid sub-optimal diffusion for their technology. Under the first policy, the firm targets

one type of agent as the initial set of technology adopters. The rationale for this policy

experiment is that firms commonly roll out a new technology in a specific workgroup, for

example among all the IT staff, before allowing wider adoption throughout the organization.

In the second policy the firm adopts a uniform adoption strategy, where the technology is

spread equally across various types in the initial period. This type of policy can be more

effective when agents value being able to communicate with a wide variety of other agents.

Comparing these two policies to the baseline case of decentralized adoption will allow us

to evaluate the extent to which heterogeneity in agent behavior and characteristics must

be accounted for in crafting an optimal policy for jump-starting the diffusion of a network

technology.

Reflecting the complex interplay between heterogeneity in network effects among employ-

ees in the firm and heterogeneity in adoption costs, we find that the policy with targeted

interventions dominates the uniform adoption policy. The network that is seeded with one

subtype grows faster and stays larger, by almost 20 percent, in the long run. Targeting

should be used towards a subtype of employee that has high adoption costs, but also large

network effects on the adoption decisions of others. By inducing them to enter early, a
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targeting policy changes other employees’ expectations about how the network will evolve.

This leads to slightly more calls per adopter, and significantly higher overall welfare.

The paper is organized as follows. Section 2 describes the technology and data used in

this study. Section 3 lays out a dynamic model of technology adoption choice and subsequent

interaction choice. Section 4 discusses our estimation strategy. Section 5 discusses the results

of our estimation. Section 6 reports results from a policy experiment to test two alternative

technology adoption policies.

2 Data and Technology

2.1 Technology

Installing videoconferencing can improve the effectiveness of internal firm communication, by

adding visual communication cues to the audio communication cues provided by telephones.2

Older videoconferencing systems failed because they were based on rarely-used videoconfer-

encing rooms. This research studies a new videoconferencing technology attached to an

employee’s workstation. The end-point technology consists of three elements: videoconfer-

encing software; a media compressor; and a camera fixed on top of the computer’s monitor.

Using the language of Farrell and Saloner (1985), the videoconferencing technology has a

“network use” and a “stand-alone use.” The network use is television-quality videoconfer-

encing calls. The stand-alone use is watching TV on a desktop computer. In this paper we

explicitly abstract from the stand-alone use and focus on the network use, since this is of

more general interest.

The videoconferencing technology can only be used for internal communication within

the firm. This makes it attractive for empirical studies, because there are comprehensive

2The advantages of visual communication cues are documented in technical literature such as Marlow
(1992).
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data on all potential adopters.

2.2 Firm Setting

We study adoption within a single multinational bank. After the bank chose this techno-

logical standard to conduct internal videoconferencing, it invested in an extensive network

architecture. We study this particular bank because an existing relationship with the video-

conferencing technology manufacturer meant that they adopted a laissez-faire policy towards

the distribution of this video-messaging technology within the firm. The bank publicized the

technology to employees and each employee decided if and when to order a videoconferencing

unit from an external sales representative. The video-messaging firm had excess capacity

in this period, and through our conversations with them and the bank, we uncovered no

evidence of supply constraints restricting adoption. Though such explicitly decentralized

adoption is unusual, it is not unusual for companies to install software or ICT equipment for

employees and then leave it to the employee’s discretion whether or not they use it.

The bank made employees eligible to adopt the technology if they held a position of

Associate or higher (85 percent of full time employees). The videoconferencing supplier had

excess capacity, so capacity constraints did not affect the timing of employee installation

decisions.

This decentralization focuses analysis on the private benefits to installation for employees,

as opposed to firm-level productivity benefits. Studies such as Lazear (2000) discuss how

firms find it hard to monitor and reward improved communication. Information asymmetries

mean that employees’ installation benefits may be small relative to firm-level benefits from

the videoconferencing system. We cannot quantify these firm-level productivity benefits.
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2.3 Data

There are complete personnel records for each employee in the bank in March 2004. Through-

out our data there were around 2000 employees employed. Entry and exit was around 300

employees, and we exclude employees who left the firm from our data. Data are available

for both those employees who adopted videoconferencing and those who did not. The bank

was divided up into different divisions. To reduce the number of “types” of employees in

our study, we focus on the largest division of the bank and exclude observations on the

Credit Analysis and Finance divisions. Employees were divided up into a hierarchy of As-

sociates, Vice-Presidents, Directors and Managing Directors. Employees are also divided by

the function they performed in the firm: Administration, Research, Sales or Trading. Last,

employees are located in 4 broad geographical locations: the US, the UK, Europe and the

Rest of the World (mainly Asia). This 4 region x 4 function x 4 title structure gives us a

set of 64 broad categories of employees for our empirical analysis. Figure 1 shows the dis-

tribution of employees across the firm organized by the 64 broad categories of types. Figure

2 shows the percentage of each of these groups that adopted, where adoption is defined as

whether or not that employee ever used the technology for any purpose.

A call database recorded each of 2.4 million calls made using videoconferencing technology

from January 2001 to August 2004, within the bank. The call database has two types of call

data. For two-way videoconferencing calls, the database records who made the call, to whom

they made it, when they made it and how long it lasted. For one-way TV calls, the database

records who made the call, to which TV channel, when and for how long. We excluded from

our call data: TV-watching calls, calls which involved the Finance/Credit-Analysis division,

calls which had multiple participants, calls made by employees who left the firm and calls

that did not go through or ended in error. Of the original 2.4 million calls, we used 463,806.

Figures 3, 4 and 5 illustrate that though on average calls were made most frequently between

employees of similar types, there was a great deal of cross-type calling.

9



3 Theoretical Model

In this section, we construct a theoretical model of the initial adoption decision and subse-

quent calling decisions of an agent. This model consists of three elements: The state space,

the transition rules over this state space and agents’ per-period payoff given the state space.

3.1 State Space and Timing

Our state space consists of the set of agents in the model, their characteristics, and their

adoption decisions at a given time. Each element sit of the state space st is a vector encoding

the adoption decision and observable characteristics of each agent in the firm. In contrast

to the previous literature on dynamic games in technology adoption, in which agents are

identical, here agents are endowed with a geographic region, a job function, and a title

which describes that agent’s relative rank in the firm. We assume that these characteristics

are exogenous and do not vary over time.

The state space evolves in discrete time, and there is no bound to number of periods that

the network can be active. We further simplify by assuming that all agents share the same

discount factor, 0 < β < 1, when evaluating future payoffs. We assume that the relevant

period of time is one month, although we relax this assumption in our specification tests

below. We also assume that agents are able to fully use the network in the period in which

they adopt the technology.

3.2 Per-Period Payoffs: A Model of Communications Choice

Agents adopt videoconferencing technology to communicate with other agents in the net-

work. The per-period payoff for each agent in the model is the payoff they receive from the

video-messages they make to other agents, relative to the outside communication option. To

capture the benefits of these interactions, we propose a model which generalizes the stan-

10



dard discrete-choice utility maximization framework from a single choice to a sequence of

interdependent choices. The objective of each agent in the network is to find the sequence

of calls which maximizes overall utility.

We denote the ordered sequence of calls of agent i by Ω, where the kth call in the sequence

is Ωk. We use Ω1:k to refer to the first k calls in the sequence. We will refer to the number

of calls in the sequence by K = |Ω|. We suppress the dependence of Ω on i and t wherever

possible for expositional clarity. Conditional on being the kth call in agent i’s sequence, the

utility of calling agent j is given by:

Uijk = f(xi, xj, xixj) + g(Ω1:k) + εijk. (1)

As in Jackson and Wolinsky (1996)’s model of network formation, the utility for each call

depends on not only the caller’s and receiver’s characteristics, but also the interaction of

these characteristics (the link “synergy”). This allows us to evaluate the extent to which

callers seek diversity by calling agents with different characteristics than their own.

The second term in the utility specification, g(Ω1:k), reflects the second source of benefits

from heterogeneity in usage. An agent may value the ability to make calls to people with

a range of characteristics, as opposed to just repeatedly interacting with the agent who

gave the highest initial call utility. For example, the second call an agent makes may be

motivated by the need to acquire information that augments the information gathered in

the first call. If an agent uses communication for information gathering, they will not

necessarily benefit from speaking to the same person twice. Alternatively, the agent may

have satisfied their information-gathering needs with the first call, and has moved on in

the second call to processing another task with different informational requirements. We

call this desire for diversity within a calling sequence “dynamic diversification”. The term

g(Ω1:k) captures these effects by allowing the marginal utility of calling agent j to depend
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arbitrarily on all previous calls. This step builds on a growing literature on the estimation

of state-dependent discrete choice models in the marketing literature. Typically the state-

dependence is expressed as habit formation or variety-seeking, and the current choice is a

probabilistic function of the purchase history. For example, Chintagunta (1999) presents an

empirical framework based on the hazard model for dealing with variety-seeking in customer

shopping behavior in scanner panel data.

Therefore, we evaluate two potential ways a taste for heterogeneity can affect interactions

across a network. The first is a baseline effect. From the beginning, agents may receive

utility from interacting with people who have different characteristics to themselves. The

second effect is dynamic in origin. After interacting with one type of agent, it may become

attractive to interact with another agent who has different characteristics to add diversity

to information received.

The agent’s optimization problem is to find the sequence of calls which maximizes overall

utility:

max
Ω

K=|Ω|∑
k=1

Uijk. (2)

Each agent makes calls until the best marginal call has a negative utility. We assume that

the g(·) function is invariant to the order of previous calls. This assumption rules out

time-specific nonlinearities between any two (or more) calls. This assumption simplifies

the optimization problem in Equation 2, since only the composition, and not the specific

ordering, of a calling sequence matters in evaluating the utility function. If this assumption

is not made, then agents may be strategically forward-looking in their choice of when to time

certain calls. This assumption of time invariance is crucial for our empirical strategy.
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3.3 Transition between States: A Dynamic Model of Technology

Adoption

The second component of our model is the adoption decision of agents currently outside the

network. This governs the transition between adoption states in our model. In each period,

an agent can choose to adopt the technology or not, which we denote by adoptit ∈ {0, 1}.

Agents can use the technology immediately upon adoption. Once agents are in the network,

they cannot divest themselves of the technology. Therefore, if an agent adopts the technology

in one period, they adopt the technology forever. This seems reasonable, given that the

option value of holding the technology is always positive in our model.

When deciding whether to adopt, each agent weighs the costs and benefits. If an agent

adopts, she can expect to use that technology to communicate with others in the network,

both today and in the future. Her payoff function is a function of the state vector, her

adoption decision, her expected communication decisions, her own characteristics, and the

characteristics of everyone else in the network. As in Farrell and Saloner (1985), the benefits

of adopting a network technology consist of both the network benefit, a stream of expected

discounted calling sequence utilities, and the stand-alone benefit, which we denote by Γ. In

our empirical application, the stand-alone benefit is the ability to use the videoconferencing

technology to watch TV.3 Each agent discounts future benefits according to the common

discount factor, β.

The costs to installing this technology for the agent consist of the time spent setting it up

and learning how to use it. The firm bears all monetary costs. To reflect this installation cost,

we assume that adopters have to pay a one-time up-front fixed cost of Fi. We assume that this

cost Fi does not change after the agent has made their initial draw and is private information

to the agent. This private information reflects persistent agent-specific heterogeneity in both

3We also observe agents that “call” themselves; we leave the interpretation of such behavior to the reader.
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learning costs and the technology’s stand-alone benefits.

The stand-alone benefits and adoption costs are not separately identified in the model.

To see this, suppose that there were no network benefits but only stand-alone use benefits.

Then agents will be indifferent to adoption if and only if:

−Fi =
∞∑

t=0

βtΓi =
1

1 − β
Γi.

For any Γi, we can find a Fi such that the agent is indifferent to adoption. Therefore, without

loss of generality, we will assume that Γ = 0.

Given beliefs about the evolution of the network, we can write out the technology adoption

decision as an optimal waiting problem. Intuitively, the agent weighs the benefits of adoption

now against the opportunity costs of doing so. The opportunity costs here encompass both

the outside option and waiting to adopt in a future period.

Denote the expected discounted present value of using the network after adopting t

periods in the future by EVt(s), where all expectations are taken with respect to the current

period. An agent will adopt today if and only if the following inequality is satisfied:

EV0(s0) − Fi ≥ max
{

0, max
t>0

βt (EVt(st) − Fi)
}

. (3)

The agent compares the benefits to adopting today against the best alternative, which is

either the outside option or waiting to adopt until a period in the future. We have explicitly

written the best future expected value, EVt(st), as a function of st to emphasize that the

agent is making predictions about the future evolution of the network. This expectation

raises two important dynamic considerations. First, the agent may have a high draw on Fi,

which gives an incentive to wait for the installed base st to be larger to cover the fixed costs. A

second countervailing effect is that agents anticipate that their adoption now may spur other

agents to adopt in future periods. Such forward-looking sequential behavior may help reduce
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the coordination failure in technology adoption, as pointed out by Farrell and Saloner (1985).

This second effect has a wide range of potential outcomes, from nudging inframarginal non-

adopters a little bit closer towards adoption without visible effect, to generating an entire

cascade of adoptions in future periods. The agents in our model balance these two effects

against each other and the payoff of the outside option, when making an optimal choice

about whether to enter in the current period.

4 Estimation

Computational limitations imposed by the burden of explicitly computing the equilibrium

to the theoretical model prevent a straight likelihood approach. Therefore, our empirical

strategy follows the approach of Bajari, Benkard, and Levin (2006), who advocate a two-step

approach for estimating dynamic games. In the first step, we recover reduced-form policy

functions which describe the equilibrium strategies followed by each agent as a function of

the state vector. In the second step, we project these functions onto an underlying dynamic

model of technology adoption choice and usage. In this manner, we recover consistent

estimates of the underlying parameters which govern the process of network evolution and

utilization.

There are two separate policy functions in the first stage. The first reduced form ad-

dresses the question of how the network will be used by agents who have already adopted

the technology. This function describes how many videoconferencing calls these agents will

make, and to whom, as a function of the network’s characteristics. We propose a new “sim-

ulated sequence estimator,” to capture the relevant aspects of the calling decision, explicitly

accounting for both the length and composition of the sequence of videoconferencing calls.

The second reduced form estimates the factors that measure the propensity to join the

network, given the number and composition of current users.
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Throughout our estimation, we focus on region-function-title subtypes rather than indi-

viduals. The reasoning for this is two-fold: first, estimating pair-specific connection param-

eters will quickly exhaust the degrees of freedom in our data set. Second, since we never

observe divestment and there is insufficient variation in the calling patterns among agents in

the network at the individual level, we will at best be able to estimate one-sided parameter

boundaries. While recent econometric work has shown how to estimate these unbounded

parameters, we cannot calculate counterfactuals. For these reasons, we focus on subtype-

specific policy functions instead of individual-level functions. We denote the set of these

subtypes by M . Given our four regions, four functions, and four titles, we have a total of 64

subtypes.

4.1 Simulated Sequence Estimator

We estimate a reduced-form policy function to capture how agents use the network once

they adopt the videoconferencing technology, using our simulated sequence estimator. For

a given calling sequence, Ω, of length K, the simulated sequence estimator splits the calling

sequence problem into two parts by exploiting the following identity:

Pr(Ω, K) = Pr(Ω|K)Pr(K). (4)

We can then separate the estimation of the composition of the calling sequence from the

length of the sequence.4 After taking logarithms in Equation 4, we obtain:

ln Pr(Ω, K) = ln Pr(Ω|K) + ln Pr(K). (5)

4For a related idea in a dynamic optimization context, see Hendel and Nevo (2005).
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The simulated sequence estimator first estimates the composition of the call and then es-

timates the parameters which determine the number of calls. While the composition of

the calling sequence is nonparametrically identified, for computational ease we assume that

the utility of agent i making the k-th call in the sequence to agent j is determined by the

following equation:

Uijk = θ̂1xj + θ̂2xixj + g(Ω1:k; θ̂3) + εijk, (6)

ε is a distributed Type-I extreme value. The g(·) functions capture the change in utility

across various subtypes as a function of previous calls in the sequence Ω1:k. We assume that

g(·) takes the following functional form:

g(Ω1:k; θ̂3) =
M∑

m=1

exp(θ̂3m)ηm − k, (7)

where ηm is the count of the number of previous calls in the current sequence to type m. In

this specification, previous calls to each type m generates constant disutility of calling that

same type again. To see this, note that the marginal disutility of calling a certain type enters

in differentially across receiver types. Differences in θ3m shift the marginal utility of calling a

type the agent has called in the past. This marginal difference grows linearly in the number

of previous calls. It is this variation in marginal utility across the calls within a sequence

that generates dynamic diversification. We normalize the coefficient on k, the linear utility

penalty of making multiple calls, to be equal to −1. This is a standard normalization in

discrete choice models, as the parameters are only identified up to scale and location. The

assumption that the agent will make calls until the best marginal call gives negative utility

serves as the location normalization.

The parametric assumption on the error term generates the logit probability of observing
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a call from agent i to agent j as the kth call of a sequence:

Pr(Ωijk; st, θ̂) =
exp(Uijk(θ̂))∑

j′∈st
exp(Uij′k(θ̂))

. (8)

Note that the outside option does not enter the probability of a call as it usually does in dis-

crete choice models, as we are conditioning on the length of the sequence. Computationally,

the estimation proceeds by finding parameters to maximize the probability of observing each

call in the sequence in that order. The ordering of the sequence is valuable in identifying the

parameters of the decay functions, as the conditional probability of each call in the sequence

depends on the order of the calls made before it. Specifically, the relative frequency with

which we observe two calls to the same subtype in a given sequence contains statistical in-

formation about the magnitude of the decay function for that subtype. So while the overall

utility of a given call sequence is invariant to the ordering of the calls in that sequence, we

can exploit variation in relative frequencies of given runs of calls to more precisely identify

the decay functions.

Equation 6 does not contain own-characteristics. They drop out of the conditional calling

probability, as they enter equally into all the calls that agent i could make. Since there is

no variation in these parameters within the calling sequence of a given length, we cannot

identify these characteristics. However, as discussed below, these parameters will be central

to the second step of the simulated sequence estimator, where we use them to recover the

type-specific average number of calls.

The second step in the simulated sequence estimator is to find parameters which govern

the length of the sequences. To solve for these parameters, we use a simulated method

of moments approach. As mentioned above, the own-type utility parameters drop out of

the conditional utility function. This is what allows us to separate the estimation into two

steps. Though theoretically it is straightforward to jointly estimate these two steps, the
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computational burden of doing so means that we estimate the two steps separately: The

second step requires thousands of simulated sequence draws for each guess of the parameter

vector. We correct the standard errors through a two-step bootstrap. Given the calling

parameters from step one, we generate a large number of calling sequences. Each sequence

is computed for a given network by assigning simulated utilities to each potential receiver in

the network. The agent then compares among these utilities and calls the receiver with the

highest utility. This process stops when the highest utility is dominated by the outside option,

which is normalized to be equal to zero. This process is inherently stochastic, however, as the

vector of shocks in the receiver utilities can generate variance in the length of the simulated

calling sequence. As a first step in recovering the parameters entering an agent of subtype

m’s own-characteristics, θ̂4, we compute the expected sequence length:

K̂m =
1

Ns

Ns∑
j

Kjm(θ̂4),

where Ns is the number of simulations used to form the expectation. We then form the

following estimator:

Q̂(θ̂4) =
1

T

T∑
t=1

(
1

Mt

Mt∑
m=1

(
1

Nmt

Nmt∑
imt=1

( ̂Km(θ4) − Ωimt

)2
))

. (9)

To be clear, Nmt is the number of agents of subtype m who are in the network at time t,

Mt is the set of subtypes at time t, and T is the time of the final observation. Intuitively,

we are matching the expected length of each subtype against the expected length for that

subtype, which is a function of the unknown parameters and the composition of the network

in each period. Identification follows from the fact that these parameters increase the utility

level of each call uniformly across all calls. Therefore we can identify type-specific own-

characteristic parameters by matching the variation in the expected sequence length for
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each subtype against the predicted sequence length.

4.2 Estimating the Adoption Decision

The second policy function that we recover from the data governs the choice of videoconfer-

encing technology adoption. Our goal is simply to estimate the probability that an agent of

a given subtype will adopt the technology in a given period, conditional on the extant com-

position of the network. One natural interpretation of an agent’s reaction to the composition

of the network is that it results from a network effect. A wide variety of behaviors, however,

could explain a positive reaction to others’ adoption decisions. This includes information

diffusion, improved technical support or emulation of other employees. Therefore, though

we refer to the reaction of an agent as a network effect, it is important to be clear that

this is a convenient term for a wide variety of behaviors and we do not explicitly identify

a causal mechanism. Causal identification of network effects for this data has been studied

in detail in other research. Tucker (2006a) and Tucker (2006b) use the videoconferencing

technology’s stand-alone use of TV-watching as an exogenous shifter for measuring causal

network effects in adoption. Though the focus of these papers are different they suggest that

it is reasonable to think that just under half of the correlation in adoption should be thought

of as a strictly causal network effect, where users adopt because another users’ adoption

allows communication. Our model encompasses many reasons employee’s demand may be

interrelated because we do not interpret any of our parameters causally.

The optimal approach in such a setting is to simply count the number of times that an

agent of a subtype adopts the technology given every combination of the network. The data,

however, preclude such an approach, as the majority of network states are never observed.

Instead we adapt a simple parametric framework that follows our modeling assumptions.

We have assumed that the fixed cost of adoption is agent-specific private information

that does not change over time. The distribution of fixed costs varies across subtypes and
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is uniform within subtypes. We recover the adoption policy for agent i of subtype m as a

function of the network at time t using a probit function:

Pr(adoptim = 1|st) = Φ(λ̂m, st),

where Φ(·) is the standard normal cumulative distribution function. Note that the λ̂m

varies for each m, so we will recover different policy functions for each agent subtype. We

represent the state of the network at time t by including counts of every subtype currently in

the network as explanatory variables. We assume that these counts enter in linearly with the

same marginal parameters for all subtypes. It would be desirable to not have to assume that

the addition of a given subtype to the network has the same marginal effect on adoption,

holding utility constant across subtypes. There is, however, not enough variation in the data

to allow us to relax this assumption. We take adoptit = 1 as the first time an employee either

makes or receives a videoconferencing call. Since many employee actions are measured and

rewarded on a monthly basis, we use a month as our time-frame for adoption. We include the

stand-alone use of TV-watching as an explanatory variable in our adoption policy functions

as well. This helps to control for heterogeneity in the stand-alone benefit. We assume that

the utility from TV-watching is identical across agents in the same region, and varies across

time. The variable TVrt is measured by the percentage of adopters who watch TV in that

region in that period. Controlling for TV in this manner allows us to focus our analysis in

the rest of the paper on the video-conferencing use of this technology, and abstract away

from a highly idiosyncratic feature of this technology suite.

4.3 Estimating the Fixed Costs of Adoption

Once we have policy functions governing the adoption decisions of agents outside the network

and the calling decisions of agents on the inside, we have enough information to simulate
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the evolution of the network and assign payoffs to any given agent who has adopted the

technology.

As an illustration of how this works, consider the empty network. For each potential

adopter of the videoconferencing technology, we draw a uniform random number on the

interval [0, 1], check to see if this is lower than the value returned by the probit function

governing that adoption decision, and update the network in the next period accordingly.

Looping over all the potential adopters in each period, we mimic the evolution of the network

as it occurred in the data.

In addition, for each state of the network we can simulate the volume and pattern of

all calls made in a given period using our call policy parameters. We simulate the process

described in Equation 6, drawing shocks appropriately, and generate calling sequences. By

simulating this sequence many times for a given agent, we form a consistent estimate of the

expected utility of using the network in that period. Performing this calculation for a large

number of periods in the future, discounting properly, will give us a consistent estimate of

the discounted present value of using the network to an agent who adopts in the first period.

This is exactly the logic that we will use to form estimates of the fixed costs of adoption.

An agent weighs the expected discounted present value of joining the network in the

present period against the best alternative. The outside option gives a payoff of zero in this

period, but this may be the best choice at a given time since the network continues to grow,

which in turn increases future utility. The agent computes the expected value of waiting to

adopt across all future periods, and finds the period that yields the highest expected utility.

If the utility of waiting is higher than the utility of joining at once, then the agent finds it

optimal to wait.

To illustrate these incentives at work, suppose that there is one agent who is given the

option to join the empty network one period before her peers. If this agent joins immediately,

she will have no one to talk to, although she may find some benefit from watching TV and
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may induce additional agents to join in the next period, increasing her continuation value.

However, it is also possible that these benefits are swamped by the fixed costs of joining in

the current period, relative to the alternative of waiting one period to join with everyone

else.

To recover the fixed costs of adoption for each agent subtype, we exploit the structure of

this optimal waiting problem. The empirical component has two parts. First, discounting

means that the current value of adoption is higher than any other period:

EV0 ≥ max
{
βEV1, β

2EV2, . . . ,
}

.

In this case, the only reason that agent i of subtype m would not adopt is if the draw on fixed

costs outweighs the benefits of adopting. The probability of this happening is a function of

the distribution of the fixed costs:

Pr(adoptim = 1) = Pr(EV0 − Fi > 0)

= Pr(EV0 > Fi)

= CDF (EV0; µ, σ2).

We use a cumulative distribution function of the fixed costs to capture the cost condition and

assume that this distribution is normally distributed with mean µ and variance σ2. These

parameters are the unknowns that we wish to infer from the agents’ behavior. Note that

we already have an estimate of the term on the left-hand side: Pr(adoptim = 1). This is

exactly the adoption policy function found in the first step. Also, we have computed EV0 by

using our policy functions to simulate the evolution of the network and to assign discounted

present values derived from the usage of that network. The only unknown is the parameters

of the CDF. To obtain estimates of those unknowns we simply match empirical probabilities
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from the policy function to their computer counterparts:

Q̂n(µm, σ2
m) =

Ns∑
i=1

(
Pr(adoptim = 1) − Φ

(
EV0; µm, σ2

m

))2
. (10)

Changes in the way that the probability of joining the network changes traces out the shape

of the underlying distribution of fixed costs. By matching the curvature of this change in

the probability of adoption against the implied model parameters, we uniquely identify the

normal distribution that best fits the data. The same idea can be used to trace out the

entire CDF nonparametrically, if the policy function is estimated flexibly.

The second case that can occur is that a period in the future dominates the expected

value of joining the network immediately. In this case, the only reason that we would observe

an agent i of subtype m joining the network is if the following is true:

EV0 − Fi ≥ βt∗ (EVt∗ − Fi) ,

where t∗ solves the right-hand side in Equation 4.3. Rearranging, we find it is optimal to

enter in this period even when the usage value is higher in the future at a time when:

EV0 − βt∗EVt∗

1 − βt∗
≥ Fi.

Writing this relationship in terms of the CDF of Fi, we obtain:

Pr(adoptim = 1) = Φ

(
EV0 − βt∗EVt∗

1 − βt∗
; µm, σ2

m

)
.

For cases where the expected value of waiting in the future is positive, we set up and solve
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an analogous estimator like that in Equation 10:

Q̂n(µm, σ2
m) =

Ns∑
i=1

(
Pr(adoptim = 1) − Φ

(
EV0 − βt∗EVt∗

1 − βt∗
; µm, σ2

m

))2

. (11)

In our estimation, we simply solve out the expected values of waiting to adopt in future

periods until the value of waiting is dominated by earlier choices or the outside option.

This happens quite quickly given the discount factor and the relative speed with which the

network stabilizes. Once we have these expected values in hand, we solve the right-hand

side of Equation 4.3. If the current period dominates waiting for future periods, we apply

the estimator defined in Equation 10. Otherwise, we match the empirical moments in the

data using the estimator defined in Equation 11. We repeat this process for each subtype

to obtain estimates of the distribution of fixed costs for each different type of agent in the

data.

We use a discount value β equal to 0.9. This high discount factor reflects that risk of

exit for employees in this industry was high - there was annual employee turnover of around

8% in the three and a half year period that we study.

4.4 Selection

One of the attractions of the two-step approach we use is that the first-stage reduced form

policy function, which maps adoption decisions to the state space, automatically reflects

selection. When estimating models over time, selection is an issue. In later periods, if an

agent has not adopted, it seems likely that they received a high fixed cost draw. Since

we do not observe divestment of the technology, standard panel data techniques do not

allow estimation of individual-level fixed effects. By contrast, our inclusion of state space

polynomials in our reduced form policy function explicitly controls for selection.
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4.5 Multiple Equilibria

One of the concerns of the network effects literature has been dealing with the potential for

multiple equilibria in outcomes. One advantage of our empirical approach is that we recover

the equilibrium actually played in the data. Furthermore, since there is only one network, we

can be assured that the equilibrium that we estimate from the data is the only equilibrium

being played. To our knowledge, this is unique among applications of the BBL framework,

as we do not have to confront the possibility of multiple equilibria across markets, as in

Ryan (2006). In the counterfactual policy evaluations below we have to assume that the

same equilibrium is played in those simulations, since we have no facility for calculating even

one equilibrium to our game, much less the entire set of all equilibria.

4.6 Monte Carlo Evidence

To see how good our estimation approach is at recovering the underlying parameters of our

model, we ran a simple Monte Carlo experiment. The results, along with the true parameters,

are shown in Tables 1 to 4. The Monte Carlo evidence suggests that our estimator precisely

estimates the calling parameters, even including the decay rates. The constant is less well-

identified, but in all case the true parameter is contained in statistically-significant 95%

confidence intervals, with only the constant exhibiting bias in the small sample.

5 Results

This section reports the results of our estimation. There are two main sets of results. The

first are the calling parameters which capture the per-period payoffs from adoption. The

second are the fixed costs, which determine adoption decisions and the transition between

states in our model.
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5.1 Call Utilities

We use observations on 463,806 calls from February 2001 to August 2004 to estimate the

utility parameters in Equation 6. Tables 5 through 7 display the results of our estimates.

In general, in a static setting, agents prefer to call other agents with similar characteristics.

Employees in Asia prefer to call other employees in Asia, and employees in the US prefer to

call other US-based employees. By contrast, in the UK employees prefer calling employees in

Europe to calling other UK-based employees. We speculate, therefore, that the propensity to

call within-regions could be influenced by time zones. Employees’ work hours in the US and

Asia barely overlap, but the work hours of British and European employees overlap greatly.

Employees on average exhibit a preference for calling employees in similar functions to

themselves. In all cases an employee prefers to communicate with someone within their own

functional group than outside it. Given the perception that the research, sales and trading

functions should support each other in a banking environment, it is striking that all such

employees prefer to call administrators rather than anyone in one of their sister functions.

This might reflect the fact that the videoconferencing is an internal firm technology, and that

employee compensation is based on the ability to sell, research and trade financial products

for outside clients, rather than communicating information to each other.

The estimates on preferences for calling across the hierarchy suggest that this technology

is being used to pass information within a rung of the hierarchy rather than transmitting

information up or down it. Associates are most likely to call each other and become decreas-

ingly likely to call with the number of rungs the receiver is above them. Managing Directors

are similarly most likely to call each other and less likely to call employees further down the

ladder of command. These results augur against the technology being used successfully for

monitoring.

The results for the parameter θ̂3 which captures the role of the dynamic decay rates are

displayed in Table 8. Our estimates of θ̂3 in Equation (6) suggest that dynamic preferences
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for heterogeneity in communication vary across types but are on average relatively small. The

parameters in Table 8 are estimated as negatively-constrained functions, −exp(·), so small

numbers represent large decay rates and large numbers represent smaller decay rates. People

seem satisfied to have fewer repeated interactions with employees in Asia and employees in

sales and trading. The decay rates on titles suggest that employees have similar needs for

repeated interactions with associates, vice presidents and managing directors, but have less

of a need to repeatedly interact with directors. We speculate that this is because a director is

often the highest in the chain of command for a support function in the bank - for example

“Director of Marketing” or “Director of Human Resources”. Regular employees may not

benefit from repeated interactions with the employees who occupy these roles; instead a

single conversation may be sufficient to provide the needed information.

5.2 Fixed Costs of Adoption

Tables 11 through 14 display the results of our fixed cost estimates from estimating Equations

10 and 11. There are a few patterns to highlight. First, out of the four regions, US-based

employees have on average the highest fixed costs of adoption. Second, administrators have

on average a lower fixed cost of adoption than employees in other functions. Finally, there

are within-group differences in fixed costs. For example, Managing Directors appear to have

the lowest fixed costs of adoption in Europe but the highest fixed costs of adoption in the

US.

If we compare these results with the results for calling choices in Tables 5 through 7, we

see that it is not the case that the employees whom most employees preferred to call had

the lowest fixed costs of adoption. Instead, for example in the case of Managing Directors

of Research in the US, this was on average a group whom callers received high utilities from

calling. However, they also had some of the highest fixed adoption costs.
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5.3 Robustness Checks

To examine the sensitivity of our results to timing assumptions we have made, we run several

robustness checks. Our decision to make the relevant calling period one month, starting at

the first day of each month, is somewhat arbitrary. Although several processes in the firm are

scheduled on a monthly basis (e.g. payroll, monthly market forecasts, discussion of economic

indicators), it is reasonable to assume that the relevance of previous calls could be shorter

or longer than a month, and could be unrelated to the first of the month. To address these

issues, we group calls into two additional periods: two weeks and two months. In the two

week samples, calls are split within each month depending on whether they take place before

or after the 15th day. By comparing estimates across the two week periods we can examine

the sensitivity of our estimates to our assumptions about when calling sequences “reset” and

start over.

We first estimated the calling model on each of the three period lengths. We then evalu-

ated the log likelihood at each of those three parameter vectors on one month of data. The

likelihoods are reported in Table 9. We perform a likelihood ratio test, which is asymptoti-

cally distributed χ2 with 57 degrees of freedom. The critical values are equal to 75.62, 84.73,

and 95.75 at the ten percent, one percent, and one-tenth of a percent levels, respectively.

The test statistics when restricting the parameters to be from the two-week data and the

two-month data are 21.0 and 35.0, respectively. Therefore, we fail to reject the hypothesis

that the parameters are equal at all three levels of significance.

6 Policy Experiment

Carr (2003) documents that the typical company spends 3.7 percent of its revenues on IT. A

challenge for managers is to ensure that their employees actually use the firm’s technology

investment to its full advantage. The videoconferencing context that we study is unusual
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because adoption decisions were decentralized to employees. A far more common challenge

facing IT managers is how to get employees to start using a costly technology which has

already been installed for them. The focus of our policy experiments, therefore, is how best

to encourage actual interactions using a new IT technology. Consequently, in our discussion,

we interpret “adoption” in our data as the equivalent of the more general idea of “activation”,

the active usage of a new technology by an employee.

As discussed by Liebowitz and Margolis (1994), network owners can prevent coordination

failure if they offer targeted incentives to reflect the network benefits to network participants

brought by new adopters. In the presence of network effects which are heterogenous in

interactions, however, the optimal policy is more complex, because each potential network

entrant should be compensated for the varying positive network effects they have for a

large set of different users. Since firms rarely engage in personalized subsidies and the

information burden of an optimal policy would be large, we evaluate two possible “rule of

thumb” technology management policies: a targeted policy where a single subtype joins the

network, and a uniform policy where a few agents from every subtype join the network.

The intuition here is that the firm will install the physical hardware and provide whatever

training is necessary to overcome the fixed costs of adoption for a selected set of agents under

each policy.

The first policy we consider is where the firm picks one subtype to adopt/test the technol-

ogy first. This resembles the way that many firms roll out new IT technologies. IT managers

usually pick this initial seed from employees who are similar by virtue of their operational

similarity and location. Therefore we conduct a policy experiment where the starting net-

work is seeded with all 112 research associates located in the United States. This group

constitutes the single largest subtype within the firm, and may be considered a natural place

to seed the network, as agents in the United States generally have high adoption costs.

The second policy takes a diffuse approach to adoption. Here the firm spreads 112
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installations across the entire set of subtypes. The idea here is that diversity increases the

value of the network, and seeding the initial network with a broad range of types may most

efficiently jump-start the growth of the network. Given there are 64 subtypes, there are 16

groups which start with only one agent. We choose the last 16 types, which correspond to

all subtypes located in the United States.

In each counterfactual simulation, we start by seeding the initial network in accordance

with the desired policy. Starting at time zero, the network is then simulated forward for

fifty months. This amount of time is sufficient to allow the network to achieve the steady

state where it is no longer growing at a significant rate. Also, the discounted present value of

utility of months more than 50 periods from now is essentially zero for the discount rate of 0.9

that we use. To simulate the evolution of the network, we draw uniform random variables for

each potential adopter, and check these against each agent’s corresponding subtype-specific

policy function. If the policy function indicates that the agent will join the network, we draw

a sunk entry cost from the associated truncated normal distribution. After determining the

evolution of the network in that period, we then calculate the sum of expected utilities for

all agents in the network. This calculation is greatly simplified by the fact that it is possible

to do this on a subtype basis, rather than agent by agent. The results of the two policy

experiments and a baseline comparison against the empty starting network are shown in

Table 10. Figures 6 and 7 contrast the results graphically for the total adoption and average

utility.

The first result concerns the average number of phone calls. Across each specification, the

undiscounted average number of calls in each month is roughly similar, with slightly higher

amounts in the baseline and targeted policy than in the uniform policy. This is somewhat

surprising, given that the starting network for the uniform policy is much larger than the

baseline case.

The maximum number of adopters is considerably higher in the targeted case than in
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the baseline or uniform cases. This occurs because the adoption of that group is considered

particularly valuable to the overall network. Conversely, the maximum number of adopters

in the baseline case is just 4% lower than the uniform case. This difference reflects the

difference in network evolution paths that the three policies take. The results for the uniform

policy suggest that a broad-based adoption process may be highly inefficient, as some agent

subtypes are inefficiently forced to join the network.

We calculate the expected discounted monthly utility for each subtype across the three

policies. We report the mean utility for the population of agents, and also report utilities

by quartiles. The uniform policy improves over the baseline case, but only marginally. We

have assumed the agents who start out in the initial seeding network have paid no fixed

costs, while those in the baseline case have. If utility were monetized, it is possible that the

costs to the firm are dominated by the alternative of just allowing agents to pay their own

adoption costs. Accounting for these costs reinforces the idea that decentralized adoption

allows for the efficient agents to join the network through a process of self-selection.

The case is significantly different for the targeted policy. In this case, there is an increase

of over 8.5% in present discounted utility for the mean type. This increase is also reflected

across the other quartiles of the utility distribution. If the objectives of the firm are positively

related to the utility of the agents, then this policy can have a significantly positive effect

from the firm’s perspective. In addition the utility gains appear to shift the utilities equally

across subtypes in the firm, even in the targeted case. This is not necessarily intuitive, as it

could have been the case that a targeted case would lead to more dispersion in the utility

levels across subtypes, whereas the simulations actually show a small decrease in relative

dispersion.

The last two panels in the table illustrate inter-temporal differences in adoption rates and

network usage. We assume that, everything else being equal, the firm would prefer to have

a given number of phone calls or agents in the network sooner rather than later. We report
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the discounted sums of users who have adopted the network in a month and the number of

calls they have made, using two contrasting potential monthly discount rates for the firm.

The differences are quite stark: the uniform policy makes marginal improvements over the

baseline case, while the targeted policy dominates along both dimensions. When β = 0.9,

user counts increase by 57% and calls increase by 64%. In an investment bank where the

opportunity cost of time is high, these results suggest that the dominating policy is to target

a specific group for initial adoption.

6.1 Homogeneity and Heterogeneity Comparison

A central emphasis of this paper is that it is important to allow for heterogeneity in network

effects when modeling technology adoption, especially in a dynamic setting. To demonstrate

this, we also repeated the estimation procedure described in Section 4, but this time with

a first stage policy function which allowed only homogeneity in network effects. In other

words, adoption was constrained to be a non-linear function of the number of other adopters

in the network, as opposed to being a non-linear function of the number and types of the

other adopters in the network.

Figure 8 displays the results when we force network effect to be homogenous, an assump-

tion which has been prevalent in the previous literature. There are two things that are clear

when comparing Figure 8 with Figure 6. Unsurprisingly, if you model network effects as

homogenous there is very little variation in the predicted adoption outcomes of using a tar-

geted or a uniform adoption seeding policy. Second, an assumption of homogenous network

effects leads predicted adoption over time to be far lower than predicted adoption under a

heterogenous network effects model. These patterns in predicted adoption are echoed for the

results for utility from calling displayed in Figure 9. A comparison of the original predictions

of calling utility with the heterogenous network effects in Figure 7 shows that the predicted

calling utility is smaller if the model assumes homogenous network effects.
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This under-prediction is due to the failure of a homogenous model to reflect the interplay

between heterogeneity in adoption costs and heterogeneity in network effects. Put simply,

in the data, the subtypes of employees who have the lowest fixed adoption costs also have

the largest network effects on the adoption decisions of others. By modeling just the average

network effect and the average fixed cost, a model which assumes homogeneity misses this

crucial kick start to adoption in the network, and the effect this has on later adoption

decisions.

7 Conclusion

This paper explores how heterogeneity in users’ adoption costs, network effects and tastes

for a diverse network affects how network technologies diffuse. We estimate the first em-

pirical model to combine dynamic technology adoption choice with adopters’ subsequent

interactions. We obtain parameter estimates from a detailed dataset on the adoption and

subsequent usage of a videoconferencing technology in a large investment bank. This dataset

has the advantage that it allows us to study adoption at the micro as opposed to the aggre-

gate level this allows greater understanding of heterogeneity. Our estimates of heterogeneity

in adoption costs, network effects and interactions provide guidelines about rules of thumb

that network operators should use when trying to jump-start growth of their network tech-

nology. In general, to have the biggest impact on the evolution of the network, firms should

jump-start the diffusion of the network by targeting individuals who have high adoption

costs and with whom other users want to interact. We also show that by disregarding the

interplay of heterogeneity in network effects and fixed costs in dynamic models of adoption,

adoption would be under-predicted by 50 percent.
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Figure 1: Distribution of Employees Across Firm
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Table 1: Monte Carlo Results—Caller and Receiver Regions

Variable Actual Mean Median StdDev α = 0.025 α = 0.975

Constant 3.0000 4.0133 4.6322 1.1846 1.0094 4.9342

AsiatoUK 2.3000 2.4506 2.4019 0.4501 1.5372 3.2915
AsiatoEurope 2.4000 2.5452 2.6340 0.5281 1.2618 3.3280
AsiatoUS 2.5000 2.7437 2.7134 0.4629 2.0550 3.6327
UKtoAsia 2.6000 2.5623 2.5774 0.2516 1.9433 3.1785
UKtoUK 2.7000 2.6263 2.6166 0.2662 2.0501 3.0453
UKtoEurope 2.8000 2.8034 2.8061 0.2071 2.4494 3.1001
UKtoUS 2.9000 2.8634 2.8184 0.3336 2.1472 3.5383
EuropetoAsia 3.0000 2.9251 2.8600 0.2537 2.5498 3.5025
EuropetoUK 3.1000 3.0564 3.0635 0.2740 2.3765 3.6628
EuropetoEurope 3.2000 3.1311 3.1263 0.2801 2.6017 3.5899
EuropetoUS 3.3000 3.3143 3.3325 0.2389 2.6932 3.7455
UStoAsia 3.4000 3.3771 3.3734 0.2564 2.8271 3.8506
UStoUK 3.5000 3.5101 3.4904 0.3040 3.0433 4.1931
UStoEurope 3.6000 3.5612 3.5765 0.2377 3.1232 4.0486
UStoUS 3.7000 3.5527 3.5277 0.2504 3.0080 4.1036
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Table 2: Monte Carlo Results—Caller and Receiver Functions

Variable Actual Mean Median StdDev α = 0.025 α = 0.975

AdmintoResearch 3.8000 4.6602 4.1578 1.7681 2.8313 10.2658
AdmintoSales 3.9000 4.6963 4.3894 1.7028 3.1709 10.0637
AdmintoTrading 4.0000 4.9913 4.5655 1.7035 3.2356 10.3027
ResearchtoAdmin 4.1000 4.1057 4.0544 0.2813 3.5606 5.1116
ResearchtoResearch 4.2000 4.2620 4.2427 0.2601 3.8010 4.7657
ResearchtoSales 4.3000 4.0882 4.1378 0.2316 3.4896 4.4939
ResearchtoTrading 4.4000 4.3330 4.3282 0.2365 3.8786 4.8233
SalestoAdmin 4.5000 4.5268 4.5353 0.2502 4.1398 4.9848
SalestoResearch 4.6000 4.4569 4.4223 0.2745 4.0923 5.0474
SalestoSales 4.7000 4.6487 4.5828 0.2965 4.1265 5.1283
SalestoTrading 4.8000 4.7266 4.7060 0.3364 4.0224 5.2424
TradingtoAdmin 4.9000 4.8834 4.8786 0.2126 4.4984 5.2424
TradingtoResearch 5.0000 4.8672 4.8779 0.1879 4.5173 5.1781
TradingtoSales 5.1000 5.0267 5.0382 0.2415 4.5510 5.5406
TradingtoTrading 5.2000 5.1458 5.1685 0.2379 4.5488 5.5492
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Table 3: Monte Carlo Results—Caller and Receivers Titles

Variable Actual Mean Median StdDev α = 0.025 α = 0.975

AssociatetoVP 5.3000 6.5366 7.4483 1.8900 3.4330 9.5059
AssociatetoDirector 5.4000 6.6047 7.5642 1.9292 3.4032 9.4869
AssociatetoMD 5.5000 6.7104 7.5770 1.9174 3.1688 8.9927
VPtoAssociate 5.6000 5.5212 5.4968 0.2640 4.9405 6.0473
VPtoVP 5.7000 5.6720 5.7062 0.3407 5.0849 6.4654
VPtoDirector 5.8000 5.6670 5.6799 0.3132 4.9597 6.2673
VPtoMD 5.9000 5.8639 5.8672 0.2821 5.4253 6.5790
DirectortoAssociate 6.0000 5.9145 5.9341 0.2355 5.3027 6.3437
DirectortoVP 6.1000 5.9923 5.9466 0.2839 5.5386 6.6651
DirectortoDirector 6.2000 6.2086 6.1701 0.2466 5.7096 6.6947
DirectortoMD 6.3000 6.1771 6.1603 0.2787 5.3511 6.6585
MDtoAssociate 6.4000 6.2242 6.1520 0.3208 5.2353 6.6983
MDtoVP 6.5000 6.4336 6.3814 0.2371 6.0233 6.9568
MDtoDirector 6.6000 6.6028 6.6263 0.2392 6.1291 7.1032
MDtoMD 6.7000 6.5975 6.5379 0.2477 6.0032 7.1056
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Table 4: Monte Carlo Results—Decay Rates on Receiver Characteristics

Variable Actual Mean Median StdDev α = 0.025 α = 0.975

decayAsia 1.1000 1.1527 1.1244 0.1143 0.9802 1.3788
decayUK 1.2000 1.2615 1.2636 0.1143 1.0221 1.5192
decayEurope 1.3000 1.3490 1.3627 0.0971 1.0627 1.4777
decayUS 1.4000 1.4774 1.4852 0.1253 1.2271 1.7182
decayAdmin 1.5000 1.6543 1.5870 0.2632 1.3689 2.3487
decayResearch 1.6000 1.7177 1.6422 0.2449 1.4570 2.3589
decaySales 1.7000 1.8323 1.7668 0.2307 1.6127 2.4686
decayTrading 1.8000 1.9198 1.8415 0.2130 1.6913 2.4547
decayAssociate 1.9000 2.0576 2.1790 0.2703 1.5371 2.3426
decayVP 2.0000 2.1610 2.2316 0.2208 1.6604 2.3926
decayDirector 2.1000 2.2636 2.3333 0.2202 1.8128 2.5143
decayMD 2.2000 2.3888 2.4321 0.2293 1.9137 3.0199
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Table 5: Static Interactions of Caller and Receiver Regions on Calling Choice

Variable Mean Median StdDev α = 0.025 α = 0.975

Intercept -1.8559 -1.8497 0.0264 -1.9103 -1.8056

AsiatoUK -1.1954 -1.1960 0.0667 -1.3173 -1.0233
AsiatoEurope -1.1385 -1.1655 0.0930 -1.3015 -0.9363
AsiatoUS -2.8845 -2.8561 0.1008 -3.1261 -2.7558
UKtoAsia -0.3446 -0.3364 0.0685 -0.4543 -0.1915
UKtoUK 0.1446 0.1458 0.0661 0.0188 0.2199
UKtoEurope 0.5669 0.5916 0.0690 0.4307 0.6566
UKtoUS 0.0965 0.1092 0.0604 -0.0152 0.1932
EuropetoAsia -0.9972 -0.9712 0.1316 -1.3195 -0.7980
EuropetoUK 0.5087 0.5095 0.0526 0.3813 0.6323
EuropetoEurope 1.5593 1.5512 0.0459 1.5010 1.6601
EuropetoUS -1.6116 -1.5525 0.1573 -1.9485 -1.4412
UStoAsia -0.8045 -0.7659 0.1226 -1.0548 -0.5599
UStoUK 1.1171 1.1128 0.0452 1.0500 1.2111
UStoEurope 0.1054 0.1129 0.0690 -0.0439 0.2510
UStoUS 2.0642 2.0752 0.0305 2.0217 2.1812
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Table 6: Static Interactions of Caller and Receiver Functions on Calling Choice

Variable Mean Median StdDev α = 0.025 α = 0.975

AdmintoResearch -2.5160 -2.3658 0.3835 -3.9523 -2.3240
AdmintoSales -2.1164 -1.9995 0.2553 -2.8293 -1.9808
AdmintoTrading -2.1659 -2.0696 0.2784 -3.2949 -1.9801
ResearchtoAdmin 0.2430 0.2513 0.0612 0.0838 0.3372
ResearchtoResearch 0.3893 0.3889 0.0730 0.2570 0.4981
ResearchtoSales -0.5220 -0.5148 0.0858 -0.6822 -0.3983
ResearchtoTrading -0.7048 -0.6986 0.0892 -0.8789 -0.5657
SalestoAdmin 0.2218 0.2233 0.0492 0.0989 0.2892
SalestoResearch -0.5510 -0.5476 0.0715 -0.6907 -0.4227
SalestoSales 0.4916 0.4977 0.0465 0.3977 0.5988
SalestoTrading -0.2848 -0.3013 0.0513 -0.4002 -0.1869
TradingtoAdmin 1.1713 1.1851 0.0579 1.0661 1.2655
TradingtoResearch -0.2052 -0.1908 0.0876 -0.4367 -0.0901
TradingtoSales 0.4621 0.4746 0.0716 0.3040 0.5700
TradingtoTrading 1.8229 1.8275 0.0611 1.7178 1.9151
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Table 7: Static Interactions of Caller and Receiver Titles on Calling Choice

Variable Mean Median StdDev α = 0.025 α = 0.975

AssocctoVP -0.0147 -0.0190 0.0440 -0.1292 0.0825
AssoctoDirector -0.6394 -0.6266 0.0497 -0.7464 -0.5488
AssoctoMD -0.8381 -0.8325 0.0782 -0.9865 -0.6911
VPtoAssoc 0.3235 0.3191 0.0291 0.2810 0.3792
VPtoVP 0.3361 0.3384 0.0265 0.2793 0.3748
VPtoDirector 0.2590 0.2558 0.0294 0.2106 0.3093
VPtoMD -0.1437 -0.1421 0.0561 -0.2352 -0.0228
DirectortoAssoc -0.1544 -0.1542 0.0529 -0.2409 -0.0292
DirectortoVP 0.4232 0.4356 0.0726 0.3203 0.5289
DirectortoDirector 0.3854 0.3850 0.0606 0.2586 0.4843
DirectortoMD 0.4429 0.4465 0.0496 0.3180 0.5311
MDtoAssoc -0.8562 -0.8619 0.0633 -0.9875 -0.7270
MDtoVP -0.5670 -0.5856 0.0700 -0.6862 -0.4318
MDtoDirector 0.0094 -0.0041 0.0679 -0.1109 0.1407
MDtoMD 0.9614 0.9593 0.0515 0.8683 1.0332
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Table 8: Dynamic Decay Rates by Receiver Characteristic

Variable Mean Median StdDev α = 0.025 α = 0.975

decayAsia -7.7561 -8.3017 1.6317 -9.8410 -4.9448
decayUK -9.9379 -11.8607 3.5149 -14.0998 -4.0073
decayEurope -11.7070 -13.1628 4.4734 -17.6831 -3.8583
decayUS -8.7108 -9.0317 1.5681 -11.0208 -4.8461
decayAdmin -7.7248 -8.1032 2.0515 -10.2060 -3.1607
decayResearch -9.1281 -9.2071 1.4415 -11.1483 -5.2281
decaySales -10.1359 -10.7995 3.1513 -14.3523 -5.4567
decayTrading -11.2336 -11.5360 2.4664 -16.0255 -5.6909
decayAssoc -10.4469 -10.4877 3.1911 -14.9434 -4.4089
decayVP -8.3577 -8.5584 2.6715 -13.6759 -4.1194
decayDirector -9.4891 -10.6652 3.0824 -14.4404 -4.2738
decayMD -9.6324 -9.7235 1.9136 -13.1718 -5.3363
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Table 9: Specification Test: Calling Period Length

Model Negative LLH

One month data with one month parameters 149,575
One month data with two week parameters 149,586
One month data with two month parameters 149,593

The χ2 critical values with 57 degrees of freedom are 75.62, 84.73,
and 95.75 at the ten percent, one percent, and one-tenth of a percent
levels, respectively.
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Table 10: Policy Experiments: Summary of Results

Variable Baseline Targeted Uniform

Average Number of Calls 11.6 11.8 11.5
Maximum number of Adopters 1,303 1,635 1,363
Present Value utility (mean) 589.4 643.4 599.9
Present Value utility (median type) 600.0 652.0 606.0
Present Value utility (25% type) 508.6 546.2 511.5
Present Value utility (75% type) 701.0 760.0 709.8

Discounted Value to Firm with 0.9 Monthly β
Present Discounted Monthly Users 7,485.9 11,805.5 7,686.5
Present Discounted Calls 87,855.5 143,041.6 90,581.8

Discounted Value to Firm with 0.99 Monthly β
Present Discounted Monthly Users 32,478.4 44,479.2 33,643.4
Present Discounted Calls 387,450.8 543,134.7 403,738.6

These counterfactual simulations were conducted by varying the starting configura-
tion of the network. In the baseline case, the network is simulated from the starting
condition of no adopters. In the targeted case, the starting network contains one
entire subtype. In the uniform case, the starting network contains the same number
of initial adopters as in the targeted case spread uniformly over all subtypes. The
last two panels in the table give the present discounted monthly counts of users
and calls. Discounting reflects the difference in the time-value to the firm of having
a given number of adopters or calls today versus some point in the future. Each
policy simulation consists of 50 months.
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Table 11: Fixed Costs by Function and Title for Asia

Subtype Mean StdDev Variance StdDev

Administration
Associate 2.604 0.002 0.567 0.001
Vice President 1.373 0.086 1.189 0.647
Director 2.517 0.002 0.671 0.002
Managing Director 3.164 1.024 3.284 3.220

Research
Associate 3.125 0.001 0.418 0.001
Vice President 3.043 0.002 0.536 0.002
Director 2.965 0.002 0.598 0.001
Managing Director 2.658 0.004 0.801 0.004

Sales
Associate 2.946 0.002 0.540 0.001
Vice President 2.924 0.002 0.597 0.001
Director 2.782 0.002 0.710 0.002
Managing Director 2.445 0.190 1.103 0.408

Trading
Associate 3.031 0.001 0.505 0.001
Vice President 2.979 0.002 0.584 0.001
Director 2.782 0.004 0.732 0.002
Managing Director 2.761 0.199 0.966 0.279
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Table 12: Fixed Costs by Function and Title for United Kingdom

Subtype Mean StdDev Variance StdDev

Administration
Associate 2.699 0.001 0.614 0.002
Vice President 2.642 0.005 0.694 0.005
Director 2.739 0.455 1.146 0.798
Managing Director 2.791 0.562 1.802 1.245

Research
Associate 3.047 0.001 0.655 0.001
Vice President 2.964 0.002 0.762 0.002
Director 2.698 0.008 0.914 0.010
Managing Director 2.719 0.004 0.888 0.004

Sales
Associate 3.006 0.002 0.652 0.001
Vice President 2.995 0.001 0.703 0.003
Director 2.867 0.003 0.791 0.001
Managing Director 2.482 0.003 0.981 0.003

Trading
Associate 3.114 0.003 0.608 0.001
Vice President 3.081 0.002 0.673 0.002
Director 3.002 0.002 0.727 0.001
Managing Director 2.665 0.004 0.907 0.006
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Table 13: Fixed Costs by Function and Title for Europe

Subtype Mean StdDev Variance StdDev

Administration
Associate 2.877 0.002 0.603 0.001
Vice President 3.831 1.225 3.397 3.466
Director 2.586 0.408 2.767 1.833
Managing Director 1.593 0.045 1.195 0.301

Research
Associate 3.105 0.004 0.819 0.002
Vice President 3.567 1.003 2.454 2.412
Director 2.672 0.317 2.483 1.482
Managing Director 1.737 0.026 0.433 0.110

Sales
Associate 3.125 0.001 0.781 0.002
Vice President 2.902 0.019 0.956 0.028
Director 3.329 1.484 2.783 5.820
Managing Director 1.963 0.376 3.221 6.479

Trading
Associate 3.190 0.003 0.764 0.002
Vice President 3.410 0.003 0.692 0.002
Director 3.063 0.289 1.075 0.484
Managing Director 1.920 0.079 1.519 0.609
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Table 14: Fixed Costs by Function and Title for United States

Subtype Mean StdDev Variance StdDev

Administration
Associate 4.382 1.432 2.176 1.815
Vice President 3.277 0.916 1.227 1.467
Director 3.005 1.004 1.581 2.465
Managing Director 4.888 1.350 7.495 5.114

Research
Associate 3.454 0.003 0.562 0.002
Vice President 3.249 0.003 0.762 0.002
Director 3.051 0.030 0.895 0.036
Managing Director 4.904 1.612 6.325 5.169

Sales
Associate 3.282 0.003 0.623 0.002
Vice President 3.215 0.005 0.730 0.002
Director 3.161 0.002 0.767 0.002
Managing Director 3.079 0.003 0.810 0.003

Trading
Associate 3.471 0.003 0.534 0.002
Vice President 3.438 0.003 0.630 0.001
Director 3.395 0.004 0.670 0.001
Managing Director 3.244 0.002 0.771 0.001
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