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Abstract

We propose a method for estimating static games of incomplete information. A

static game is a generalization of a discrete choice model, such as a multinomial logit

or probit, which allows the actions of a group of agents to be interdependent. Unlike

most earlier work, the method we propose is semiparametric and does not require the

covariates to lie in a discrete set. While the estimator we propose is quite flexible, we

demonstrate that in many cases it can be implemented using a simple two-stage least

squares procedure in a standard statistical package. We also propose an algorithm for

simulating the model which finds all equilibria to the game. As an application of our

estimator, we study recommendations for high technology stocks between 1998-2003.

We find that strategic motives, typically ignored in the empirical literature, appear to

be an important consideration in the recommendations submitted by equity analysts.

1The application in this paper is based on an earlier draft, by Bajari and Krainer “An Empirical Model of

Stock Analysts’ Recommendations: Market Fundamentals, Conflicts of Interest, and Peer Effects.” Bajari

and Hong would like to thank the National Science Foundation for genereous research support. The views

expressed in this paper are those of the authors and not necessarily those of the Federal Reserve System.
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1 Introduction

Game theory is one of the most commonly applied tools in economic theory, with substan-

tive applications in all major fields in economics. In some fields, particularly industrial

organization, game theory has not only transformed the analysis of market interactions,

but also serves as an important basis for policy recommendations. Given the importance

of gaming in economic theory, it is not surprising that the empirical analysis of games has

been the focus of a recent literature in econometrics and industrial organization.

In much of the literature, a discrete game is modeled much like a standard discrete choice

problem, such as the multinomial logit. An agent’s utility is often assumed to be a linear

function of covariates and a random preference shock. However, unlike a discrete choice

model, utility is also allowed to depend on the actions of other agents. A discrete game

strictly generalizes a standard random utility model, but does not impose the often strong

assumption that agents act in isolation. Early attempts at the econometric analysis of

such games included Vuong and Bjorn (1984) and Bresnahan and Reiss (1990,1991). Other

recent examples include Aradillas-Lopez (2005), Ho (2005), Ishii (2005), Pakes, Porter, Ho

and Ishii (2005), Rysman (2004), Seim (2004), Sweeting (2004) and Tamer (2003).

An important insight in the recent literature is that it is often most straightforward to

estimate discrete games in two steps. For examples see Aguirregabiria and Mira (2003),

Bajari, Benkard and Levin (2004), Pakes, Ostrovsky and Berry (2004) and Pesendorfer and

Schmidt-Dengler (2004). In a first step, the economist estimates the reduced forms implied

by the model. This often boils down to using standard econometric methods to estimate the

probability that one, out of a finite number of possible choices, is observed conditional on

the relevant covariates. In the second step, the economist estimates a single agent random

utility model, including as controls the equilibrium beliefs about the behavior of others from

the first step.

In this paper, we propose an estimator that can be applied to static games of strategic

interaction. Like the two-step approach discussed above, we estimate the reduced form

choice probabilities in a first stage in order to simplify the estimation of the model. The

approach that we propose, however, differs from earlier work in four ways. First, much of

the earlier literature on two step estimation considered fully dynamic games. This made
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it difficult for researchers unfamiliar with dynamic programming to understand how to

estimate a game. Also, we note that to date, almost all empirical applications of discrete

games have been static. Therefore, proposing methods for static games is of practical

importance for many researchers.

Second, the approach that we propose can be done nonparametrically or semiparamet-

rically. Much of the earlier literature on two-step estimation of games considered the case

where the set of regressors was discrete or the first stage was a correctly specified para-

metric model. In this paper, we allow for continuous covariates and a fully nonparametric

first stage. We establish two useful properties of this estimator. First, as in Bajari and

Hong (2005), despite the fact the first stage is nonparametric and might converge at a slow

rate, the structural parameters estimated in the second stage have normal asymptotics and

converge at a rate proportional to the square root of the sample size. This follows from

arguments based on Newey (1994). Second, we demonstrate in many cases our model can

be estimated, with correct standard errors, using a two stage least squares procedure in a

standard statistical package like STATA. We hope that the simplicity of this approach will

make the estimation of these models accessible to a larger audience of researchers.

Third, we consider the problem of identification in games with continuous state variables.

Our results, as in Bajari and Hong (2005), show that a sufficient condition for identification

is to exclude payoff relevant covariates for a particular player i from the utilities of the

other players. For instance, in an entry model, if the productivity shock of firm i influences

its own entry decision, but only indirectly influences the entry decisions of other players,

then our results imply that the model is identified. An alternative identification strategy

is to search for events that change which equilibrium to the game is played, but otherwise

do not influence payoffs. Our results can be interpreted as standard rank conditions for an

appropriately defined linear system. We note that Pesendorfer and Schmidt-Dengler (2004)

demonstrate that exclusion restrictions are sufficient for identification in a particular set

of entry games with discrete states. Sweeting (2004) demonstrates that multiplicity of

equilibrium can assist with identification in a symmetric location game.

Finally, we consider the problem of simulating the model, which is required to study

predictions of the model such as counterfactuals. It is widely known that models of the
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form that we consider can generate multiple solutions. However, outside of certain specific

examples (e.g., those studied in Sweeting (2004)), it is not possible to analytically derive all

of the solutions of the model or even determine the number of possible solutions. Therefore,

we propose an algorithm that can compute all of the equilibrium to the model. This algo-

rithm uses the “all solutions homotopy”, which is available in standard numerical libraries

such as hompack. Therefore, we can use this to find the entire set of equilibrium actions

at our estimated parameter values. We discuss the potential uses of this algorithm in our

application.

As an application of our methods, we model the determination of stock recommenda-

tions (e.g. strong buy, buy, hold, sell) issued by equity analysts for high technology stocks

listed in the NASDAQ 100 between 1998 and 2003. The determination of recommendations

during this time period is of particular interest in the wake of the sharp stock price declines

for technology firms in 2000. Not only did recommended stocks vastly underperform the

market as a whole during this period, but highly-publicized allegations of conflicts of in-

terest have called into question whether analysts were more concerned with helping their

firms win investment banking business than with producing accurate assessments of the

prospects for the firms under scrutiny. While there is a fairly large literature in finance on

recommendations, we are not aware of any papers that formally consider the simultaneity

of recommendations due to strategic motives.

In our model, recommendations submitted by analysts depend on four factors. First,

recommendations must depend on fundamentals and commonly shared expectations about

the future profitability of the firm. These expectations will be embedded in the stock price.

Second, analysts are heterogeneous, both in terms of talent and perhaps in terms of access

to information. We try to capture an individual analyst’s private belief about the stock by

looking at the difference between the quarterly earnings forecast submitted by the analyst

(or the analyst’s brokerage firm) and the distribution of forecasts from other firms. Mindful

of the large number of inquiries into possible conflicts of interest among research analysts, we

include as a third factor a dummy variable for an investment banking relationship between

the firm and the analyst’s employer.

Finally, we consider the influence of peers on the recommendation decision. Peer effects
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can impact the recommendation in different ways. Individual analysts have incentive to

condition their recommendation on the recommendations of their peers, because even if their

recommendations turn out to be unprofitable ex-post, performance evaluation is typically

a comparison against the performance of peers. More subtly, recommendations are relative

rankings of firms and are not easily quantifiable (or verifiable) objects. As such, ratings

scales usually reflect conventions and norms. The phenomenon is similar to the college

professor’s problem of assigning grades. If a professor were to award the average student

with a C while other faculty give a B+ to the average student, the professor might incorrectly

signal his views of student performance. Even while there is heterogeneity in how individual

professors feel about grading, most conform to norms if only to communicate clearly with

students (and their potential employers) about their performance. Similarly, analysts might

have an incentive to benchmark their recommendations against perceived industry norms.

The paper is organized as follows. In section 2 we outline the general economic environ-

ment. For purposes of exposition, we develop many of the key formulae within the context

of a simple entry model. In section 3 we discuss the problem of nonparametric identifi-

cation. In section 4 we show how to derive nonparametric and semiparametric estimates

of the structural parameters for our class of models. Section 5 describes the all solutions

homotopy algorithm for simulating the model. Section 6 contains the empirical application

to equity analyst recommendations. Section 7 concludes the paper.

2 The model

In the model, there are a finite number of players, i = 1, ..., n and each player simultaneously

chooses an action ai ∈ {0, 1, . . . ,K} out of a finite set. We restrict players to have the same

set of actions for notational simplicity. However, all of our results will generalize to the case

where all players have different finite sets of actions. Let A = {0, 1, . . . ,K}n denote the

vector of possible actions for all players and let a = (a1, ..., an) denote a generic element

of A. As is common in the literature, we shall let a−i = (a1, ...ai−1, ai+1, ..., an) denote a

vector of strategies for all players excluding player i. We will abstract from mixed strategies

since in our model, with probability one each player will have a unique best response.

Let si ∈ Si denote the state variable for player i. Let S = ΠiSi and let s = (s1, ..., sn) ∈
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S denote a vector of state variables for all n players. We will assume that s is common

knowledge to all players in the game and in our econometric analysis, we will assume that s

is observable to the econometrician. The state variable is assumed to be a real valued vector,

but Si is not required to be a finite set. Much of the previous literature assumes that the

state variables in a discrete games lie in a discrete set. While this assumption simplifies

the econometric analaysis of the estimator and identification, it is a strong assumption that

may not be satisfied in many applications.

For each agent, there are also K + 1 state variables which we label as εi(ai) which are

private information to each agent. These state variables are distributed i.i.d. across agents

and actions. Let εi denote the 1 × (K + 1) vector of the individual εi(ai). The density of

εi(ai) will be denoted as f(εi(ai)), however, we shall sometimes abuse notation and denote

the density for εi = (εi(0), ..., εi(K)) as f(εi).

The period utility function for player i is:

ui(a, s, εi; θ) = Πi(ai, a−i, s; θ) + εi(ai). (1)

The utility function in our model is similar to a standard random utility model such as a

multinomial logit. Each player i receives a stochastic preference shock, εi(ai), for each pos-

sible action ai. In many applications, this will be drawn from an extreme value distribution

as in the logit model. In the literature, the preference shock is alternatively interpreted

as an unobserved state variable (see Rust (1994)). Utility also depends on the vector of

state variables s and actions a through Πi(ai, a−i, s; θ). For example, in the literature, this

part of utility is frequently parameterized as a simple linear function of actions and states.

Unlike a standard discrete choice model, however, note that the actions a−i of other players

in the game enter into i’s utility. A standard discrete choice model typically assumes that

agents i act in isolation in the sense that a−i is omitted from the utility function. In many

applications, this is an implausible assumption.

In this model, player i’s decision rule is a function ai = δi(s, εi). Note that i’s decision

does not depend on the ε−i since these shocks are private information to the other −i players

in the game and hence unobservable to i. Define σi(ai|s) as:

σi(ai = k|s) =
∫

1 {δi(s, εi) = k} f(εi)dεi. (2)
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In the above expression, 1 {δi(s, εi) = k} is the indicator function that player ı́’s action is k

given the vector of state variable (s, εi). Therefore, σi(ai = k|s) is the probability that i

chooses action k conditional on the state variables s that are public information. We will

define the distribution of a given s as σ(a|s) = Πn
i=1σ(ai|s).

Next define πi(ai, s, εi; θ) as:

πi(ai, s, εi; θ) =
∑
a−i

Πi(ai, a−i, s; θ)σ−i(a−i|s) + εi(ai) (3)

where σ−i(a−i|s) = Πj 6=iσj(aj |s). (4)

In (3), πi(ai, s, εi; θ) is player i’s expected utility from choosing ai when the vector of param-

eters is θ. Since i does not know the private information shocks, εj for the other players, i’s

beliefs about their actions are given by σ−i(a−i|s). The term
∑

a−i
Πi(ai, a−i, s, θ)σ−i(a−i|s)

is the expected value of Πi(ai, a−i, s; θ), marginalizing out the strategies of the other players

using σ−i(a−i|s). The structure of payoffs in (3) is quite similar to standard random utility

models, except that the probability distribution over other agent’s actions enter into the

formula for agent i’s utility. Note that if the error term has an atomless distribution, then

player i’s optimal action is unique with probability one. This is an extremely convenient

property and eliminates the need to consider mixed strategies as in a standard normal form

game.

We also define the deterministic part of the expected payoff as

Πi (ai, s; θ) =
∑
a−i

Πi(ai, a−i, s, θ)σ−i(a−i|s). (5)

It follows immediately then that the optimal action for player i satisfies:

σi(ai|s) = Prob {εi|Πi(ai, s; θ) + εi(ai) > Πi(aj , s; θ) + εi(aj) for j 6= i.} (6)

2.1 A Simple Example.

For expositional clarity, it is worthwhile to consider a simple example of a discrete game.

Perhaps the most commonly studied example of a discrete game in the literature is a static
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entry game (see Bresnahan and Reiss (1990,1991), Berry (1992), Tamer (2002), Ciliberto

and Tamer (2003), and Manuszak and Cohen (2004)). In the empirical analysis of entry

games, the economist typically has data on a cross section of markets and observes whether

a particular firm, i chooses to enter a particular market. In Berry (1992) and Ciliberto and

Tamer (2003), for example, the firms are major U.S. airlines such as American, United and

Northwest and the markets are large, metropolitan airports. The state variables, si might

include the population in the metropolitan area surrounding the airport and measures of an

airline’s operating costs. Let ai = 1 denote the decision to enter a particular market and

ai = 0 denote the decision not to enter the market. In many applications, Πi(ai, a−i, s; θ)

is assumed to be a linear function, e.g.:

Πi(ai, a−i, s) =
{s′ · β + δ

∑
j 6=i

1 {aj = 1} if ai = 1

0 if ai = 0
(7)

In equation (7), the mean utility from not entering is set equal to zero.2 The term δ

measures the influence of j’s choice on i’s entry decision. If profits decrease from having

another firm enter the market then δ < 0. The parameters β measure the impact of the

state variables on Πi(ai, a−i, s).

The random error terms εi(ai) are thought to capture shocks to the profitability of entry

that are private information to firm i. Suppose that the error terms are distributed exteme

value. Then, utility maximization by firm i implies that:

σi(ai = 1|s) =

exp(s′ · β + δ
∑
j 6=i

σj(aj = 1|s))

1 + exp(s′ · β + δ
∑
j 6=i

σj(aj = 1|s))
for i = 1, ..., n (8)

In the system of equations above, applying the formula in equation (5) implies that Πi (ai, s; θ) =

s′ · β + δ
∑
j 6=i

σj(aj = 1|s). Since the error terms are distributed extreme value, equation (6)

implies that the choice probabilities, σi(ai = 1|s) take a form similar to a single agent
2We formally discuss this normalization in our section on identification.
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multinomial logit model. We note in passing that it can easily be shown using Brouwer’s

fixed point theorem an equilibrium to this model exists for any finite s (see McKelvy and

Palfrey (1995)).

We shall exploit the convenient representation of equilibrium in equation (8) in our

econometric analysis. Suppose that the econometrician observes t = 1, ..., T repetitions of

the game. Let ai,t denote the entry decision of firm i in repetition t and let the value of the

state variables be equal to st. By observing entry behavior in a large number of markets,

the econometrician could form a a consistent estimate σ̂i(ai = 1|s) of σi(ai = 1|s) for

i = 1, ..., n. In an application, this simply boils down to flexibly estimating the probability

that a binary response, ai is equal to one conditional on a given set of covariates. This

could be done using any one of a number of standard techniques.

We let L(β, δ) denote the psueodo likelihood function defined as:

L(β, δ) =
T∏
t=1

n∏
i=1


exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))

1+exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))


1{ai,t=1}1−

exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))

1+exp(s′·β+δ

∑
j 6=i

σ̂j(aj=1|s))


1{ai,t=0}

Given first stage estimates of σ̂i(ai = 1|s), we could then estimate the structural parameters of

the payoff, β and δ by maximzing the above psuedo-likelihood function. There are two attractive

features of this strategy. The first is that it not demanding computationally. First stage estimates

of choice probabilities could be done using a strategy as simple as a linear probability model. The

computational burden of the second stage is also light since we only need to estimate a logit model.

A second attractive feature is that it allows us to view a game as a generalization of a standard

discrete choice model. Thus, techniques from the voluminous econometric literature on discrete

choice models can be imported into the study of strategic interaction. While the example considered

above is simple, it nonetheless illustrates many of the key ideas that will be essential in what follows.

We can also see a key problem with identification in the simple example above. Both the first

stage estimates σ̂i(ai = 1|s) and the term s′ · β depend on the vector of state variables s. This

suggests that we will suffer from a colinearity problem in order to seperately identify the effects of

β and δ on the observed choices. The standard solution to this type of problem in many settings

is to impose an exclusion restriction. Suppose, for instance, a firm specific productivity shock is

included in s. In most oligopoly models, absent technology spillovers, the productivity shocks of

firms −i would not directly enter into firm i’s profits. These shocks only enter indirectly through

the endogeneously determined actions of firms −i, e.g. price, quantity or entry decisions. Therefore,

if we exclude the productivity shocks of other firms from the term s′ · β, we would no longer suffer
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from a colinearity problem. While this idea is quite simple, as we shall discover in the next section,

similar restrictions are required to identify more general models.

3 Nonparametric Identification

In this section, we consider the problem of identifying the deterministic part of payoffs, without mak-

ing particular assumptions about its functional form (e.g. that it is a linear index as in the previous

example). In the context of nonparametric identification, we let θ be completely nonparametric and

write Πi (ai, a−i, s) instead of Πi (ai, a−i, s; θ).

Definition We will say that Πi (ai, a−i, s) is identified if Πi (ai, a−i, s) 6= Π′
i (ai, a−i, s) for some

i = 1, ..., n implies that for the corresponding equilibrium choice probabilities σi(ai = 1|s) 6=
σ′i(ai = 1|s) for some i = 1, ..., n.

Formally, identification requires that different values of the primitives generate different choice prob-

abilites. If this condition is not satisfied, then it will be impossible for us to uniquely recover the

structural parameters Πi (ai, a−i, s) (for i = 1, ..., n) from knowledge of the observed choice proba-

bilities, σi(ai = 1|s).
It is well known that even in a single agent problem, it is not possible to nonparametrically

identify both Πi (ai, a−i, s) and the joint distribution of the error terms F (εi). To take the simplest

possible example, consider a simple binary response model and assume that the error terms are

normally distributed, as in the probit model. Let σi(ai = 1|s) denote the probability that the

response is equal to one in the data conditional on s. Define Πi(ai = 0|s) = 0 and Πi(ai = 0|s) =

F−1(σi(ai = 1|s)) where F−1 denotes the normal cdf. It can easily be verified that this definition of

Πi perfectly rationalizes any set of choice probabilities σi(ai = 1|s). Since our model is not identified

without a parameteric assumption on the error term in even a simple probit model, assumptions at

least as strong will be required in the more general set up that we consider here. In Bajari, Hong and

Ryan (2005) we demonstrate that when we allow for nonparametric Πi (ai, a−i, s) an independence

assumption is required to identify our model in even single agent problems. In what follows, we will

typically impose the assumption that the error terms are distributed i.i.d. extreme value since both

an independence and parametric form assumption on the error terms are required for identification.

Based on the discussion above, we shall impose the following assumption in order to identify the

model.

A1 The error terms εi(ai) are distributed i.i.d. across actions ai and agents i. Furthermore, the

parametric form of the distribution F comes from a known family.
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Analogous to the notation in the previous section, define Πi(k, s) =
∑
a−i

Πi(ai = k, a−i, s, θ)σ−i(a−i|s).
It is straightforward to show that the equilibrium in this model must satisfy:

δi(s, εi) = k if and only if Πi(k, s) + εi(k) > Πi(k′, s) + εi(k′) for all k′ 6= k. (9)

That is, action k is chosen if and only if the deterministic expected payoff and error term associated

with action k is greater than the analogous varlues of k′ 6= k. An implication of (9) is that the

equilibrium choice probabilities σi(a|s) must satisfy:

σi(ai|s) = Pr {εi(ai) + Πi(ai, s)−Πi(0, s) > εi(k) + Πi(k, s)−Πi(0, s),∀k = 0, . . . ,K, k 6= ai} (10)

Equation (10) is a simple consequence of (9) where we can subtract Πi(0, s) from both sides fo the

inequality.

Suppose we generate εi(ai) from an extreme value distribution as in the logit model. Then (10)

implies that:

σi(ai|s) =
exp(Πi(ai, s)−Πi(0, s))∑K
k=0 exp(Πi(k, s)−Πi(0, s))

(11)

A key insight due to Hotz and Miller (1993) is that equation (11) implies that the equilibrium

choice probabilities, σi(ai|s), have a one to one relationship to the “choice specific value functions”,

Πi(ai, s)−Πi(0, s). To see why, note that taking logarithms of boths sides of (11) implies that for

any k, k′:

log (σi(k|s))− log (σi(k′|s)) = Πi(k, s)−Πi(k′, s).

The one to one mapping between choice probabilities and choice specific value functions holds

more generally than in just the logit model. It is obvious that we should expect it in any model

where the distribution of εi has full support. We let Γ : {0, ...,K} × S → [0, 1] denote the map in

general from choice specific value functions to choice probabilities, i.e.

(σi(0|s), ..., σi(K|s)) = Γi (Πi(1, s)−Πi(0, s), ...,Πi(K, s)−Πi(0, s)) . (12)

We will denote the inverse mapping by Γ−1:

(Πi(1, s)−Πi(0, s), ...,Πi(K, s)−Πi(0, s)) = Γ−1
i (σi(0|s), ..., σi(K|s)) . (13)

The above analysis implies that we can invert the equilibrium choice probabilities to nonpara-

metrically recover Πi(1, s)−Πi(0, s), ...,Πi(K, s)−Πi(0, s). However, the above analysis implies that

we will not be able to seperately identify Πi(1, s) and Πi(0, s), we can only identify the difference

between these two terms. Therefore, we shall impose the following assumption:
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A2 For all i and all a−i and s, Πi(ai = 0, a−i, s) = 0.

The above assumption is similar to the “outside good” assumption in a single agent model where

the mean utility from a particular choice is set equal to zero. In the context of our entry model, this

assumption is satisfied if the profit from not entering the market is equal to zero regardless of the

actions of other agents. Just as in the single agent model, there are alternative normalizations that

we could use to identify the Πi(ai, a−i, s) just as in a single agent model. However, for expositional

simplicity we shall restrict attention to the normalization A2.

Given assumption A2 and knowlege of the equilibrium choice probabilities, sigmai(ai|s), we can

then apply the mapping in (13) to recover Πi(ai, s) for all i, ai and s. Recall that the definition of

Πi(ai, s) implies that:

Πi(ai, s) =
∑
a−i

σ−i(a−i|s)Πi(ai, a−i, s),∀i = 1, . . . , n, ai = 1, . . . ,K. (14)

Even if we know the values of Πi(ai, s) and σ−i(a−i|s) in the above equation, it is not possible to

uniquely determine the values of Πi(ai, a−i, s) are not identified. To see why, hold the state vector

s fixed, determining the utilities of all agents involves solving for n ×K × (K + 1)n−1 unknowns.

That is, there are n agents, for each action k = 1, ...,K, utility depends on the (K + 1)n−1 possible

actions of the other agents. However, the left hand side of (14) only contains information about

n×(K+1) scalars holding s fixed. It is clearly not possible to invert this system in order to identify

Πi(ai, a−i, s) for all i, all k = 1, ....,K and all a−i ∈ A−i. Related nonidentification results have

been found by Bresnahan and Reiss (1991,1992) and Pesendorfer and Schmidt-Dengler (2003) in the

context of dynamic games with discrete state spaces.

Obviously, there must be cross equation restrictions across either i or k in order to identify

the system. An obvious way to identify the system is to impose exclusion restrictions. Partition

s = (si, s−i), and suppose Πi(ai, a−i, s) = Πi(ai, a−i, si) depends only on the subvector si. An

example of this might be in an entry model. In this type of model the state is usually a vector of

productivity shocks. While we might expect the profit of firm i to depend on the entry decisions of

other agents, it should not depend on the productivity shocks of other agents. See Bajari, Hong and

Ryan (2004) for other examples of possible exclusion restrictions that can be used in applications.

If such an exclusion restriction is possible, we can then write

Πi(ai, s−i, si) =
∑
a−i

σ−i(a−i|s−i, si)Πi(ai, a−i, si). (15)

Clearly, a sufficient identification condition is that for each si, there exists (K + 1)n−1 points in the

support of the conditional distribution of s−i given si, such that this system of equations form by
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these (K + 1)n−1 points given si is invertible. In other words, Let s1−i, . . . , s
(K+1)n−1

−i denote these

points, then identification requires that the matrix[
σ(a−i|sj−i, si), a−i = 1, . . . , (K + 1)n−1, j = 1, . . . , (K + 1)n−1

]
be nonsingular and invertible. Note that this assumption will be satisfied as long as s−i contains a

continuously distributed variable with Πi(ai, a−i, si) sufficient variability.

Theorem 1 Suppose that A1 and A2 hold. Also suppose that for each si, there exists (K + 1)n−1

points in the support of the conditional distribution of s−i given si so that (15) is invertible. Then

the latent utilities Πi(ai, a−i, si) are identified.

Another approach to identification is to exploit the multiplicity of equilbrium. Suppose that

there is some state variable z which shifts which equilibrium to the game is played, but otherwise

does not enter into the payoffs. Then we can write the payoffs are σi(ai|s, z) but the utilities do

not directly depend on the variable z. We shall give a detailed example of such a variable in our

application which is due to the intervention in the market by a regulator which we interpret as

shifting the equilibrium to the game but not directly entering payoffs. This generates varation in

the right hand size of (15) which allows us to check similar rank conditions. We note that Sweeting

(2005) has also pointed out that the multiplicity of equilibrium can help in identifying a special case

of the model above.

4 Estimation

In the previous section, we demonstrated that there is a nonparametric inversion between choice

probabilities and the choice specific value functions, Π(ai, s). Furthermore, we demonstrated that

the structural parameters of our model are identified if appropriate exclusion restrictions are made

on payoffs. In this section, we exploit this inversion to construct nonparametric and semiparametric

estimates of our structural parameters.

Step 1: Estimation of Choice Probabilities. Suppose the economist has access to data

on t = 1, . . . , T repetitions of the game. For each repetition, the economist observes the actions

and state variables for each agent (ai,t, si,t). In the first step we form an estimate σ̂i(k|s) of σi(k|s)
using sieve series expansions ( see Newey (1990) and Ai and Chen (2003)). We note, however, that

we could alternatively estimate the first stage using other nonparametric regression methods such

as kernel smoothing or local polynomial regressions.
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Let {ql(s), l = 1, 2, . . . } denote a sequence of known basis functions that can approximate a real

valued measurable function of s arbitrarily well for a sufficiently large value of l. The sieve could be

formed using splines, Fourier Series or orthogonal polynomials. We let the basis become increasingly

flexible as the number of repetitions of the game T becomes large. Let κ(T ) denote the number of

basis functions to be used when the sample size is T. We shall assume that κ(T ) →∞, κ(T )/T → 0

at an appropriate rate to be specified below. Denote the 1× κ(T ) vector of basis functions as

qκ(T )(s) = (q1(s), . . . , qκ(T )(s)), (16)

and its collection into a regressor data matrix as

QT = (qκ(T )(s1), . . . , qκ(T )(sT ).

One potential sieve estimator for σ̂i(k|s), k = 1, . . . ,K is a linear probability model, i.e.:

σ̂i(k|s) =
T∑
t=1

1(ait = k)qκ(T )(st)(Q′
TQT )−1qκ(T )(s). (17)

Equation (17) is the standard formula for a linear probability model where the regressors are the

sieve functions κ(T ) in equation (16). We note that in the presence of continuous state variables,

the sieve estimator σ̂i(k|s) will converge to the true σi(k|s) at a nonparametric rate which is slower

than
√
T .

Second Step: Inversion In our second step, we take as given our estimates σ̂i(k|s) of the

equilibrium choice probabilities. We then form an estimate of the expected deterministic utility

functions, Π̂i(k, st)− Π̂i(0, st) for k = 1, ...,K and t = 1, ..., T . This can be done by evaluating (13)

using σ̂i(k|s) in place of σi(k|s). That is:(
Π̂i(1, st)− Π̂i(0, st), ...Π̂i(K, st)− Π̂i(0, st)

)
= Γ−1

i (σ̂i(0|st), ..., σ̂i(K|st)) (18)

In the specific case of the logit model, this inversion would simply be:

Π̂i(k, st)− Π̂i(0, st) = log (σ̂i(k|st))− log (σ̂i(0|st)) (19)

In an alternative model, such as one with normal shocks, we would need to solve a nonlinear system.

In what follows, we shall impose A2 so that Π̂i(0, s) = Π̂i(0, a−i, s) = 0 for all a−i.
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Third Step: Recovering The Structural Parameters In the first step we recovered an

estimate of σ̂i(ai, s) and in the second step we recovered an estimate of the choice specific value

function Π̂i(k, s). In our third step, we use the empirical analogue of (14) to form an estimate of

Π(ai, a−i, si). We shall assume that we have made a sufficient number of exclusion restrictions, as

discussed in the previous section, so that the model is identified. For a given value of si, for a given

a = (ai, a−i), we estimate Πi (ai, a−i, si) by minimizing the following weighted least square function

Πi (ai, a−i, si), which are taken to be a vector of coefficients:

T∑
t=1

Π̂i(ai, s−it, si)−
∑
a−i

σ̂−i (a−i|s−it, si)Πi (ai, a−i, si)

2

w (t, si) , (20)

where the nonparametric weights w (t, si) can take a variety of forms. For example,

w (t, si) = k

(
sit − si
h

)
/

T∑
τ=1

k

(
siτ − si

h

)
(21)

uses kernel weights, and other local weights are also possible. The identification condition in the pre-

vious section ensures that the regressor matrix in this weighted least square regression is nonsingular

asymptotically.

4.1 A Linear Model of Utility

The nonparametric estimation procedure described in the previous section follows the identification

arguments closely and offers the advantage of flexibility and robustness against misspecification.

However, without a huge amount of data nonparametric estimation methods can be subject to severe

curve of dimensionality when we intend to control for a large dimension of state variables s. Also,

in small samples, different implementations of nonparametric procedures may lead to drastically

different point estimates. Therefore in the following we consider a semiparametric estimation where

the deterministic utility components Πi (ai, a−i, s) are specified to be a linear function of a finite

dimensional parameter vector θ. This is the typical econometric specification that is commonly used

in the empirical literature. In this section we describe a straightforward estimation and inference

procedure for this model.

The deterministic part of the utility is assumed to take the form of

Πi (ai, a−i, si) = Φi (ai, a−i, si)
′
θ. (22)

In the above expression, the deterministic part of utility is a linear combination of a vector of basis

functions, Φi (ai, a−i, si). For instance, we might let utility be a linear index as in our simple entry
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game example of the previous section. Alternatively, we might choose Φi (ai, a−i, si) to be a standard

flexible functional form, such as a high order polynomial, spline function or orthogonal polynomial.

The estimator we discuss below can easily be generalized to allow for the possibility that θ enters the

utility nonlinearly. However, the exposition of the properties of the estimator is facilitated by the

linearity assumption. Also, most applications of discrete choice models and discrete games usually

are linear in the structural parameters of interest.

This linearity assumption implies that the choice specific value function, given ai and s, takes

the convenient form:

Πi (ai, s) = E [Πi (ai, a−i, si) |s, ai] = Φi (ai, s)
′
θ. (23)

where Φi (ai, s) is defined as:

Φi (ai, s) = E [Φi (ai, a−i, si) |ai, s] (24)

=
∑
a−i

Φi (ai, a−i, si)
∏
j 6=i σ(aj = kj |s).

Arguing as in Section 2, it follows that if the error terms are distributed extreme value, the

equilibrium choice probabilities must satisfy:

σi (ai|s) =
exp

(
Φi (ai, s)

′
θ
)

1 +
∑K
k=1 exp

(
Φi (k, s)

′
θ
) . (25)

More generally, if the error terms are not distributed extreme value, it may not be possible to

express the equilibrium choice probabilities in closed form as above. However, equation (6) implies

that each σi (ai|s) depends on σj (aj |s) , j 6= i through (24). We denote this mapping as:

σi (ai|s) = Γi,ai
(s, σj (k|s) , j 6= i, k = 1, . . . ,K) . (26)

If we define σ (s) to be the stacked vector of choice probabilities σi (k|s) for all k = 1, . . . ,K, i =

1, . . . , n, then we can collect (26) into a fixed point mapping:

σ (s) = Γ (σ (s)) . (27)

To emphasize the dependence on the parameter θ, we can also write

σ (s; θ) = Γ (s, θ;σ (s; θ)) . (28)

4.2 Semiparametric Estimation.
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Step 1: Estimation of Choice Probabilities. The simple semiparametric procedure we

propose proceeds in two steps. We begin by forming a nonparametric estimate of the choice proba-

bilities, σ̂i (k|s). We will do this like above using a sieve approach, however, one could alternatively

use kernels or a local polynomial method.

σ̂i (k|s) = qκ(T )(s)′ (Q′
TQT )−1

T∑
τ=1

qκ(T )(sτ )1 (ai = k) . (29)

Given our estimates of the choice probabilities, we can then estimate Φi (k, s) correspondingly by

Φ̂i (k, s) =
∑
a−i

Φi (ai = k, a−i, si)
∏
j 6=i

σ̂(aj |s) (30)

For instance, take the example presented in (7). In this example, Πi(ai = 1, a−i, s) = (s,
∑
j 6=i 1{aj =

1}) · (β, δ) where “ ·” denotes an inner product. Thus, in the above formual, Φ′
i(ai = 1, a−i) =

(s,
∑
j 6=i 1{aj = 1}) and θ = (β, δ). Then, given our first stage estimates of the choice probabilities,

Φ̂′(ai = 1, a−i) = (s,
∑
j 6=i 1{aj = 1}σj(aj |s)).

Then for each parameter value θ, we can evaluate the empirical analogue of (28). For example,

in the multinomial logit case,

σi

(
ai|s, Φ̂, θ

)
=

exp
(
Φ̂i (ai, s)

′
θ
)

1 +
∑K
k=1 exp

(
Φ̂i (k, s)

′
θ
) (31)

Step 2: Parameter Estimation. In the second stage a variety of estimators can be used to

recover the value of θ. Most of these estimators can be written as GMM estimators with a properly

defined set of instruments. To describe the second stage, define yikt = 1 if ait = k and yikt = 0

otherwise, for k = 0, . . . ,K. Define yit = (yi1t, . . . , yiKt) and the vector

σi

(
st, Φ̂, θ

)
=
(
σi

(
k|st, Φ̂, θ

)
, k = 1, . . . ,K

)
(32)

Furthermore, collect yit, i = 1, . . . , n into a long vector yt with n×K elements, and similarly collect

σi

(
st, Φ̂, θ

)
, i = 1, . . . , n into a long vector σ

(
st, Φ̂, θ

)
with corresponding n×K elements. Then

for any dimension dim (θ)× (nK) matrix of instruments Â (st), a GMM estimator θ̂ can be defined

by solving the sample equations:

1
T

T∑
t=1

Â (st)
(
yt − σ

(
st, Φ̂, θ̂

))
= 0. (33)
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The instrument matrix Â (st) may be known as A (st), may be estimated in the first stage (such as

two-step optimally weighted GMM), or may be estimated simultaneously (such as pseudo MLE). For

example, with a pseudo MLE method, θ̂ is defined by maximizing the pseudo likelihood function,

which can be written as the following because of the independent error terms across agents:

T∑
t=1

n∑
i=1

[
K∑
k=1

yikt log σi
(
k|st, Φ̂, θ

)
+

(
1−

K∑
k=1

yikt

)
log

(
1−

K∑
k=1

σi

(
k|st, Φ̂, θ

))]
. (34)

In the following we let σ̂ikt (θ) = σi

(
k|st, Φ̂, θ

)
. The first order condition for the “pseudo” MLE

estimator is then given by

T∑
t=1

n∑
i=1

K∑
k=1

[
yikt − σ̂ikt (θ)

σ̂ikt (θ)
+

∑K
j=1 (yijt − σ̂ijt (θ))

1−
∑K
j=1 σ̂ijt (θ)

]
∂

∂θ
σi

(
k|st, Φ̂, θ̂

)
, (35)

In term of expressing it as an instrumental variable estimator, this corresponds to (33) with Â (st)

equal to the ∂
∂θσ

(
st, Φ̂, θ̂

)
× Ŵ (st, θ), where Ŵ (st, θ) is the nK × nK diagonal matrix, such that

the ith diagonal block, for i = 1, . . . , n, is given by
1

σ̂i1t(θ)
0 0

0
. . . 0

0 0 1
σ̂iKt(θ)

+


1

σ̂i0t(θ)

...
1

σ̂i0t(θ)

 [1 · · · 1] , (36)

where σ̂i0t (θ) = 1 −
∑K
j=1 σ̂ijt (θ). If we define W (st, θ) in analog to Ŵ (st, θ), except with

Φ̂ replaced by the true unknown Φ in each σ̂ikt (θ), then it is easy to verify that W (st, θ0) =

V ar (yt − σ (st,Φ, θ0) |st)−1, where the ith diagonal block of the block diagonal matrix V ar (yt − σ (st,Φ, θ0) |st)
is given by 

σi1t 0 0

0
. . . 0

0 0 σiKt

−


σi1t
...

σiKt

 [σi1t · · ·σiKt] . (37)

It is well known that the estimation errors in Â (st) will not affect the asymptotic distribution of

θ̂ defined by (33), regardless of whether Â (st) is estimated in a preliminary step or is estimated

simultaneously with θ̂. Therefore, the asymptotic distribution of the pseudo MLE is the same as

that of an infeasible GMM IV estimator with an instrument matrix A(st) which is given by

∂

∂θ
σ (st,Φ0, θ0)×W (st, θ0) (38)
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Here note that in terms of (28)

∂

∂θ
σ (st,Φ0, θ0) =

∂

∂θ1
Γ (st, θ1, σ (st; θ2))

∣∣∣∣
θ1=θ2=θ

(39)

Therefore, assuming all Φ are known, the MLE corresponds to the effecient choice of instruments

Â (st) in (33), under the efficiency framework of [7]. Therefore, next we will focus on deriving the

large sample properties of θ̂ defined by (33) where A(st) is known.

The estimator that we consider falls within the class of semiparametric estimators considered

by Newey (1994). A somewhat surprising conclusion is that even though the first stage is estimated

nonparametrically and can be expected to converge at a rate slower than
√
T , the structural param-

eters will be asymptotically normal and will converge at a rate of
√
T . Moreover, under appropriate

regularity conditions, the second stage asymptotic variance will be independent of the particular

choice of nonparametric method used to estimate the first stage (e.g. sieve or kernel). As a practical

matter, these results justify the use of the bootstrap to calculate standard errors for our model.

In the appendix, we derive the following result, applying the general framework developed by

[5]. Under appropriate regularity conditions, the asymptotic distribution of θ̂ defined in 33 satisfies

the following:

√
T
(
θ̂ − θ

)
d−→ N

(
0, G−1ΩG−1′

)
,

where

G = EA (st)
∂

∂θ
σ (st,Φ0, θ0) , (40)

and Ω is defined such that

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
d−→ N (0,Ω) . (41)

In the appendix, we also compare the asymptotic variance of alternative estimators.

4.3 Linear Probability Model

Next, we demonstrate that in many cases it is possible to estimate our model using a simple two stage

least squares method. While the formal econometrics in this section are quite straightforward, we

believe that this observation is useful for researchers. Much of the previous literature on estimating

games has concentrated on the case of fully dynamic models and required an understanding of

dynamic programming. In this section, we demonstrate that the methods in their simplest version

only require invoking the ivreg command in STATA.
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To simplify notation, we will focus on a binary choice model in the following. The extension

to multinomial models is straightforward. Therefore consider a special case of (1) where K = 1,

Πi (0, a−i, s) = εi (0) ≡ 0, θ, Φi (1, a−i, s; θ) = Φ1
i (si)

′
β + Φ1

i (a−i, s)
′
γ so that

ui (1, a−i, s; θ) = Φ1
i (si)

′
β + Φ2

i (a−i, s)
′
γ + εi (1) ,

and εi (1) is uniformly distributed on the interval (−1, 0). The decision rule of agent i is such that

action 1 is chosen if and only if

E [ui (1, a−i, s; θ) |s] = Φ1
i (si)

′
β + E

[
Φ2
i (a−i, s) |s

]′
γ + εi (1) > 0.

Because of the uniform distribution assumption of εi (1), this implies that

P (ai = 1|s) = Φ1
i (si)

′
β + E

[
Φ2
i (a−i, s) |s

]′
γ,

which can be written as

ai = Φ1
i (si)

′
β + E

[
Φ2
i (a−i, s) |s

]′
γ + ηit (1) , (42)

such that E (ηit (1) |st) = 0.

In this model Φ1
i (si) and Φ2

i (a−i, s) are known functions, but β and γ are unknown parame-

ters. E
[
Φ2
i (a−i, s) |s

]
needs to be estimated nonparametrically. As before, this can be consistently

estimated by a linear least square regression with a sufficiently large number of sieve approximating

functions in the first step:

Ê
[
Φ2
i (a−i, s) |s

]
= qκ(T ) (s)′ (Q′

TQT )−1
T∑
τ=1

qκ(T ) (sτ ) Φ2
i (a−iτ , sτ ) .

In the second step, a linear regression is used to estimate β and γ:(
β̂, γ̂

)
= arg min

β,γ

T∑
t=1

(
ait − Φ1

i (sit)
′
β − Ê

[
Φ2
i (a−it, st) |st

]′
γ
)2

.

Note that this is precisely a two stage least square estimator. Also note that this is a special case of

(33) where

Âi (st) =

(
Φ1
i (sit)

Ê
[
Φ2
i (a−it, st) |st

] ) ,
and σ

(
st, Φ̂, θ̂

)
= Φ1

i (sit)
′
β + Ê

[
Φ2
i (a−it, st) |st

]′ and yit − σi (st, θ0) = ηit(1).

In the following we will demonstrate that the ivreg procedure with the robust standard error

options in stata will give correct standard errors for this model, when ai is entered as the dependent
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variable, Φ1
i (s) is entered as the exogenous regressor, Φ2

i (a−i, s) is entered as the endogenuous

regressor, and qκ(T ) (s) is used as the set of instruments to instrument for Φ2
i (a−i, s). In other

words, β̂ and γ̂ are computed as

θ̂ =

(
β̂

γ̂

)
= Â−1

T

1
T

T∑
t=1

Âi (st) ait,

where

ÂT =
1
T

T∑
t=1

Âi (st) Âi (st)
′
.

Then it follows from a standard manipulation that

√
T

(
β̂ − β

γ̂ − γ

)
= Â−1

T

1√
T

T∑
t=1

m̂i (st, β, γ) ,

where

m̂i (st, β, γ) = Âi (st)
(
ait − Φ1

i (sit)
′
β − Ê

[
Φ2
i (a−it, st) |st

]′
γ
)
.

The asymptotic variance is then a special case of section (C). We will use a slightly different notation

here to facilitate comparison with 2SLS. In particular, it follows from [6] that

1√
T

T∑
t=1

m̂i (st, β, γ) =
1√
T

T∑
t=1

mi (st, β, γ) + op (1) ,

where mi (st, β, γ) = Ai (st) (ηit (1)− vit (1) γ) , and

vit (1) = Φ2
i (a−it, st)− E

[
Φ2
i (a−it, st) |st

]
.

The asymptotic distribution of the 2SLS estimator is then given by, letting A = EAi (st)Ai (st)
′:

√
T
(
θ̂ − θ

)
d−→ N

0,A−1EAi (st)V ar
(
ηit (1)− vit (1)′ γ|st

)︸ ︷︷ ︸
Σ(st)

Ai (st)A−1

 .

To obtain a consistent estimate of this asymptotic variance matrix, both A and Σ (st) needs to be

estimated. A can be estimated by AT . The key in estimating Σ (st) is to estimate ηit (1) − vit (1)

consistently. This can be estimated by

eit =ait − Φ1
i (sit)

′
β̂ − Φ2

i (a−it, st)
′
γ̂

=ait − Φ1
i (sit)

′
β̂ − E

[
Φ2
i (a−it, st) |st

]′
γ̂ −

(
Φ2
i (a−it, st)− E

[
Φ2
i (a−it, st) |st

])′
γ̂.
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Then EAi (st) Σ (st)Ai (st)
′ can be consistently estimated by

1
T

T∑
t=1

Âi (st) eite′itÂi (st)
′
.

Now note that this is precisely how Stata ivreg calculates robust standard errors for 2SLS estimators.

5 Fixed effect model of unobserved heterogeneity

5.1 Nonparametric identification

Unobserved heterogeneity can be a potentially important source of misspecification if it is not ac-

counted for in the model. Specifically, we can introduce fixed effects as a method of controlling

for unobserved heterogeneity into our model. For each market t = 1, . . . , T , all the players in that

market observe a market specific profit shifter αt that is not observed by the econometrician. We

will assume that αt is an unknown but smooth function of the state variables st = (st1, . . . , stn) in

that market, which we will denote as α (st). In other words, the mean period utility function in (1)

for player i in market t is now modified to

Πi(ait, a−it, st; θ) = α (ai, st) + Π̃i(ait, a−it, sit; θ). (43)

In the following we may omit the market specific subscript and simply denote this as

Πi(ai, a−i, s; θ) = α (ai, s) + Π̃i(ai, a−i, si; θ).

Under the normalization assumption that Πi (0, a−i, s) ≡ 0 for all i = 1, . . . , n, our previous

results show that, as in (14), the expected utilities given each i’s information (the left hand side of

the following equation) are nonparametrically identified, ∀i = 1, . . . , n, ai = 1, . . . ,K:

Πi(ai, s) =
∑
a−i

σ−i(a−i|s)Πi(ai, a−i, s)

= α (ai, s) +
∑
a−i

σ−i(a−i|s)Π̃i(ai, a−i, si). (44)

Obviously, since α (ai, s) is unknown but is the same function across all market participants, they

can be difference out by looking at the difference of Πi (k, s) and Πj (k, s) between different players

i and j. This allows us to identify some aspect of all the pairwise differences Π̃i(ai, a−i, si) and

Π̃j(aj , a−j , sj) between all the possible pairs i, j of players. By differencing (44) between i and j

one obtains

Πi (k, s)−Πj (k, s) =
∑
a−i

σ−i (a−i|s) Π̃i(ai, a−i, si)−
∑
a−j

σ−j (a−j |s) Π̃j(aj , a−j , sj)
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Here we can treat Π̃i(ai, a−i, si) and Π̃j(aj , a−j , sj) as coefficients, and σ−i (a−i|s) and σ−j (a−j |s)
as regressors in a linear regression. As long as for given values of si, sj , there are sufficient varia-

tions in the remaining state variables s−ij to generate sufficient variation in the regressor matrix

σ−i (a−i|s) and σ−j (a−j |s), the coefficients Π̃i(ai, a−i, si) and Π̃j(aj , a−j , sj) can be nonparametri-

cally identified.

More specific assumptions on Π̃j(aj , a−j , sj), such as symmetry assumptions or parametric as-

sumptions, can provide more transparent identification arguments. Symmetry: If the mean payoff

functions are symmetric between any two given players i and j, then the choice set of competitors

a−i and a−j are identical and can be commonly denoted as a−ij ≡ a−i = a−j . In this case, for each

given k = 1, . . . ,K, one can difference (44) between i and j to obtain

Πi (k, s)−Πj (k, s) =
∑
a−ij

σ−ij (a−ij |s)
[
Π̃ij(k, a−ij , si)− Π̃ij(k, a−ij , sj)

]
.

Therefore can trace out the above difference in the mean utility function for all the possible pairs

si and sj . In particular, by moving si and sj close to each other this identifies the derivative of the

entire function Π̃ij(k, a−ij , sij) and hence identifies the entire function up to a constant term.

5.2 Parametric mean utilities

Alternative estimation strategies are available under the parametric specification of the mean util-

ity function given in (22), which is now modified to apply to the individual heterogenous payoff

component:

Π̃i (ai, a−i, si) = Φi (ai, a−i, si)
′
θ. (45)

In this case one can estimate the parameters θ using a panel data rank estimation type procedure

([4]) or a conditional logit estimator in the case of a multinomial logit model. Note that while a

semiparametric rank estimator is free of distribution assumptions of the error terms, to compute a

simulated equilibrium give a prespecified set of fixed effects one still needs to impose a distribution

assumption on the error terms. In the following we will focus on models with binary action choices

such as entry games, where either ait = 1 or ait = 0.

5.2.1 Conditional Logit Estimation

If the error terms are specified to form a multinomial choice model as in (11), one can form a

conditional logit likelihood function ([2]):

logL =
T∑
t=1

(
log

[
exp

(
θ′

n∑
i=1

aitΦ̂i (1, sit)

)]
− log

[ ∑
dt∈Bt

exp

(
θ′

n∑
i=1

ditΦ̂i (1, sit)

)])
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where Bt ≡ {dt :
∑n
i=1 dit =

∑n
i=1 ait} is the set of actions that give rise to the same number of

entrants as observed in the data. In other words, the likelihood is formulated conditional on the

number of entrants. One can follow similar steps as in previous derivations to prove consistency and

demonstrate asymptotic normality of this semipametric conditional logit estimator where Φ̂i (1, sit)

is estimated in the first stage nonparametrically.

5.2.2 Rank Estimation

A rank estimator can be formulated as minimizing over θ the objective function
T∑
t=1

n∑
i=1

∑
j 6=i

1 (ait > ajt) ρ−

((
Φ̂i (1, sit)− Φ̂j (1, sjt)

)′
θ

)
.

In the above ρ− (x) is a penalty function that penalizes the negative part of x. One could use a

constant penalty function

ρ− (x) = 1 (x < 0)

which is also used in [4]). Alternatively one can also use a quadratic penalty function

ρ− (x) = 1 (x < 0)x2.

to smooth out the objective function with respect to the parameter θ.

6 Computing Models with Multiple Equilibria.

In the previous sections, we have either assumed that the model has a unique equilibrium (which can

be the case, for example, for a linear probability interaction model), or that only a single equilibrium

outcome out of several possible multiple equilibria is being observed in the data set. However, in

many static game models, multiple equilibria are possible. The importance of multiple equilibria

in empirical research is emphasized by many authors, including [1] and [8]. In the rest of this

manuscript we present a method for estimating parametric models of interactions in the presence of

possible multiple equilibria.

In the previous sections we have considered a model with known distribution F (εi) of the

error terms and a parametric model for the mean utility functions Πi (ai, a−i, θ). At every possible

parameter value θ, given the known distribution F (εi), equations (10), (12) and (14) defined a fixed

point mapping in the conditional choice probabilities:

σi(ai|s) = Γi

(∑
−i

σa−i (a−i|s) [Πi (k, a−i, s; θ)−Πi (0, a−i, s; θ) , k = 1, . . . ,K]

)
. (46)
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For example, under the linear mean utility specification (5), this system of fixed point mappings in

the choice probabilities takes the form of

σi(ai|s) = Γi

∑
a−i

σ−i(a−i|s)Φi(ai, a−i, s)′θ, ai = 1, . . . ,K

 , i = 1, . . . , n. (47)

In previous sections, we have assumed that either there is a unique solution to this system of

fixed mapping with K × n equations and K × n unknown variables

σi (ai|s) ,∀ai = 1, . . . ,K, i = 1, . . . , n,

or that only one particular fixed point of this system gets realized in the observed data. However,

this system of fixed point mapping can potentially have multiple solutions, leading to the possibility

of multiple equilibria.

In the following of this section, we will first give a brief introduction to the use of Homotopy

methods for finding multiple solutions to a system of nonlinear equations. Secondly, we will discuss

how the Homotopy method of nonlinear equation solving can be used to compute multiple equilibria

for our model of static interactions. In the next section, we will describe an innovative estimation

method that we develop for estimating the parameters in static interaction models with multiple

equilibria.

6.1 The Homotopy method

The Homotopy continuation method (which be simply be referred to as the Homotopy method in

the rest of the paper) is a well known generic algorithm for looking for a fixed point to a system

of nonlinear equations. Based on the particular nonlinear system of equations to be solved, a well

designed Homotopy system is capable of finding multiple solutions of the nonlinear system, and

in some cases, all solutions of these nonlinear systems. A concise and clear introduction to the

Homotopy method can be found in the book by [11]. Algorithms for implementing the homotopy

method can be found in several papers including [9] and [3].

Our goal is to find, for all possible parameter values and realized state variables s, the solutions

for the fixed point system (28):

σ − Γ (σ) = 0,

where we have used σ = σ (s) to simply the dependence of choice probabilities on the state variables.

A homotopy is a linear mapping between the two topological spaces of functions of the form

H (σ, τ) = τG (σ) + (1− τ) (σ − Γ (σ)) , τ ∈ [0, 1] , (48)
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where each of H (σ, τ) and G (σ) are vectors of functions with n×K component functions:

Hi,ai (σ, τ) and Gi,ai(σ) for i = 1, . . . , n and ai = 1, . . . ,K.

As one can see, for τ = 0 we obtain H (σ, 0) = Γ (σ) and for τ = 1 we get H (σ, 0) = G (σ) so

varying τ from 1 to 0 maps the function G (·) into the function Γ(·). If for each 0 ≤ τ < 1, we can

solve for the nonlinear equations, H (σ, τ) = 0, then by moving along the path in the direction of

τ = 1 to τ = 0, at the end of the path we should be able to reach a solution of the original nonlinear

equations σ − Γ (σ) = 0. This path then constructs a mapping between a solution of the initial

system G (σ) = 0 to a solution of the original nonlinear system σ −G (σ) = 0. Typically G (σ) is a

system of equations that are very easy to solve to obtain all the solutions.

Once a solution σ (1) for the initial system G (σ) = 0 is found, algorithms based on solving

differential equations can be used to trace the path from τ = 1 to τ = 0. At each τ , we denote the

solution along a particular path by σ (τ):

H (σ (τ) , τ) = 0.

By differentiating this homotopy function with respect to τ :

d

dτ
H (σ (τ) , τ) =

∂H

∂τ
+
∂H

∂σ
· ∂σ
∂τ

= 0.

This defines a system of differential equations for σ (τ) with initial condition σ (1) calculated from

the solution of the (easy) initial system G (σ (1)) = 0. A number of computer algorithms that are

available to compute numerical solutions of nonlinear systems of differential equations can then be

used to trace this differential equation system to reach an end point in the path of τ = 1 to τ = 0

in order to obtain a solution σ (0) of the original system σ − Γ (σ) = 0.

A regularity condition is necessary to insure the stability and the proper behavior of the homo-

topy differential equation system.

Condition 1 (Regularity) Let ∇ (τ) denote the Jacobian of the Homotopy functions with respect

to σ at the solution path σ (τ):

∇ (τ) =
∂

∂σ
Re{H (σ, τ)}

∣∣∣∣
σ=σ(τ)

,

where Re{H (σ, τ)} denotes the real component of the homotopy functions. The jacobian σ (τ) has

full rank for almost all τ .

This condition ensures the smoothness and differentiability of the paths. It rules out cases of

bifurcation, branching and infinite spiraling. The mapping between G (σ) and σ − Γ (σ) is called
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a conformal one if the path that links them is free of these complications. If a homotopy system

satisfies the regularity condition, it will either reach a solution or drift off to infinity.

A convenient way of generating a conformal mapping, or a homotopy that satisfies the above

regularity condition, is to extend the original homotopy into the complex space. A homotopy, as

defined in equation (48) is extended to the complex space by allow for the argument σ to take on

complex values, which will result in complex values of the homotopy. When the real and complex

components of σ are considered two different sets of arguments, and the real and complex components

of the output are considered two different sets of components of the homotopy, this defines a real

value homotopy with 2nK inputs and 2nK outputs. If the original homotopy (48) is an analytic

function in the complex space, then the Cauchy-Riemann conditions will ensure that the extended

real-value 2nK × 2nK homotopy system satisfies the regularity condition above.

The all solution homotopy is one where the initial system G (σ) is chosen such that, if we follow

the paths originating from each of the solution from G (σ) = 0, we will reach all solutions of the

original system σ = Γ (σ) at the end of the path. The extension of a real homotopy system into

the complex space is essential to the idea of all-solution homopoty. It is related with the property

of the complex space that conformal mappings in the complex space do not change the algebraic

properties of the sets. 3 The concept of conformal mapping is widely used in complex analysis. It

implies that we can conformally map a function with a complicated set of roots to another function

with a simple set of roots, then the results from an analysis of the function with the simple set of

roots should apply to the function with the complicate set of roots. An all solution homotopy has

to satisfy an additional path finiteness condition:

Condition 2 (Path Finiteness) Define H−1 (τ) to be the set of solutions σ (τ) to the homotopy

system at τ . H−1 (τ) is bounded for all 0 ≤ τ < 1. In other words, for all τ > 0.

lim
||σ||→∞

H (σ, τ) 6= 0.

6.2 Multiple equilibria in static discrete games

As we noted in the previous section, the issue of multiple equilibria in static interaction models

amounts to the issue of computing all the fixed points to the system of equations of choice prob-

abilities defined in equation (46). Note that the argument to the mapping from expected utility

to choice probabilities, Γ (·), is linear in the choice probabilities of competing agents σ−i (a−i|s).
3The conformal mapping is a mapping in the complex space that does not locally change the argument

of a complex number. It is known that if the function is analytic and does not have stationary points then

the associated mapping is conformal.
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Therefore, the question of possible multiplicity of equilibria depends crucially on the functional form

of Γ, which in turn depends exclusively on the assumed joint distribution of the error terms.

Interestingly, if we are content with the linear probability model where Γ is a linear function of the

individual choice probabilities, then the equilibrium will be guaranteed to be unique and the issue

of multiple equlibiria is not relevant. Γ is a linear function of the individual choice probabilities

if the underlying utility functions depend linear on the indicator function of whether individual

competitors make a particular choice or not. For example, this would be the case if the profit of

entering a market depends on the total number of competitors who also enter the market. On the

other hand, if we have nonlinear interactions of the individual choice probabitilities in the linear

probability model, or if the joint distribution of the error term in the multinomial choice model is

specified such that Γi is a polynomial function for each i = 1, . . . , n, then all the equilibria can be

found by choosing a homotopy system where the initial system of equation

Gi,ai (σ) , i = 1, . . . , n and ai = 1, . . . ,K.

takes the following simple polynomial form:

Gi,ai(σ) = σi (ai)
qi,ai − 1 = 0 for i = 1, . . . , n and ai = 1, . . . ,K, (49)

where qi,ai
is an integer that exceeds the degree of the polynomial of Γi,ai

as a function of σ−i (a−i).

This results in a homotopy mapping

Hi,ai
(σ, τ) = τ{σi (ai)qi,ai − 1}+ (1− τ) (σi (ai)− Γi,ai

(σ)) , τ ∈ [0, 1]. (50)

For τ = 0 the system (48) coincides with the original system while for τ = 1 it is equal to the

’simple’ system (49).

It is elementary knowledge that there are exactly qi,ai
complex roots to Gi,ai

(σ) that are evenly

distributed on the unit circle. It is known that nondegenerate polynomial functions are analytic and

the regularity condition of the resulting homotopy system is automatically satisfied. The particular

choice of qi,ai also ensures the path finiteness property of the homotopy system (c.f. [11]).

While a polynomial model for Γ (·) is convenient for calculating multiple equilibria, it is rarely

used in practice because it is not clear what parametric utility specification will give rise a polynomial

choice probability function. The most popular multinomial choice probability function is probably

the multinomial logit, which is well known to derive from i.i.d. extreme value distributions in the

unobserved component of the latent utilities. The logit choice model is given in (25). Our analysis

in the following will consist of three steps. First we will establish that this model has a finite number

of equilibria represented by real solutions to (25). Secondly, we will shown that letting the degree
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of polynomial homotopy increase to infinity at an appropriate rate, we will be able to find all the

equilibria for the multinomial logit choice model (25) using the homotopy method. We prove it by

first verifying that the homotopy mapping is regular in the complex space when the discontinuity

points of the original function are isolated, and then providing a method to make homotopy work

in the small vicinity of discontinuity points.

It is not difficult to show that the fixed point system (25) has a finite number of solutions in

the real line. To see this, note that in general, this function is clearly continuous and infinitely

differentiable with nonsingular derivatives. In particular, it is easy to verify this condition for the

multinomial logit and probit models that are commonly used in practice. Consider a compact ball

BR in RnK with radius larger than 1. By Sard’s theorem the set of its irregular values has measure

zero. In particular, it can be verified by differentiation through the implicit function theorem that

zero is its regular value. This implies that the submanifold of σ satisfying σ = Γ (σ) is compact as

a closed subset of this ball BR. Thus it contains a finite number of points. This verifies that the

set of solutions in BR in finite. It is also obvious that all the solutions must satisfy 0 ≤ σi (ai) ≤ 1

because of the choice probability functional form. Therefore there can not be solutions outside BR.

While we have just shown that there are in general a finite number of multiple equilibria, to

compute these equilibria we need to make use of an all solution homotopy system. In particular,

we choose to use the all solution homotopy defined in (50). In the following we will show that

there exists an homotopy system of the form of (50) with a sufficiently high orders of the initial

system qi,ai ’s, such that we will find all the solution to the original system of choice probabilities.

As described in the previous subsection, verifying the validity of the all solution homotopy requires

checking the regularity condition and the path finiteness condition, which in terms require extension

of the real homotopy system into the complex space. Verifying these condions require us to specify

the particular functional form of the joint distribution of the error terms in the latent utilities. In

the following we will focus on the multinomial logit case which is the most widely used discrete

choice model in the empirical literature.

The following Theorem 2 and Theorem 2 formally state this result. In the statement of the

theorems, σ = {σr, σi} denotes more generally a vector of the real part and the imaginary part of

complex numbers which extend the real choice probabilities we considered early into the complex

space. Theorem 1 first establishes the regularity properties of the homotopy outside the imaginary

subspace.

Theorem 2 Define the sets H−1 = {(σr, σi, τ) | H(σr, σi, τ) = 0} amd

H−1(τ) = {(σr, σi) | H(σ, τ) = 0} for σr ∈ RnK , and σi ∈ RnK .
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Note that H is a homotopy of dimension R2nK that include both real and imaginary parts separately.

Also define, for any small ε, ℘ε = ∪i,ai
{|σr,i,ai

| ≤ ε} to be the area around the imaginary axis. Then:

1) The set H−1 ∩ {R2nK \ ℘ε × [0, 1]} consists of closed disjoint paths.

2) For any τ ∈ (0, 1] there exists a bounded set such that H−1(τ) ∩ R2nK \ ℘ε is in that set.

3) For (σr, σi, τ) ∈ H−1∩{R2nK\℘ε×[0, 1]} the homotopy system allows parametrization H(σr(s), σi(s), τ(s)) =

0. Moreover, τ(s) is a monotone function.

Remark: Theorem 2 establishes the regularity and path finiteness conditions for the homotopy

(50) for the multinomial logit model in areas that are not close to the pure imaginary subspace in

the complex domain CnK . The homotopy system can become irregular along the pure imaginary

subspace, because the denominator in the system can approach zero and the system will become

nonanalytic in the case. However, the next theorem shows that there exists a sequence q such

that homotopies with initial system of order q will have paths that stay away from the imaginary

subspace. Homotopies with these orders will be able to trace out all the solutions of the original

multinomial logit system.

Theorem 3 For given τ one can pick the power qi,ai of the initial function (49) such that the

homotopy system is regular and path finite given some sequence of converging polyhedra ℘ε, ε→ 0.

Theorem 3 implies that if we continue to increase the power qi,ai of the initial system (49) of

the homotopy, we will eventually be able to find all the solutions to the original multinomial logit

system. This also implies, however, we might lose solutions when we continue to increase qi,ai
. But

Theorem 3 does imply that for sufficiently large qi,ai , no new solutions will be added for larger

powers. In the monte carlo simulation that we will report in the next section, we do find this to be

the case.

6.3 Monte Carlo Analysis

We perform several monte-Carlo simulations for an entry game with a small number of potential

entrants. Player’s payoff functions for each player i were constructed as linear functions of the

indicator of the rival’s entry (ai = 1), market covariates and a random term:

Ui(ai = 1, a−i) = θ1 − θ2

∑
j 6=i

1(aj = 1)

+ θ3x1 + θ4x2 + εi(a), i = 1, . . . , n. (51)
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The payoff of staying out is equal to Ui(ai = 0, a−i) = εi(a), where the εi (a) have i.i.d extreme value

distributions across both a and i. The coefficients in the modela are interpreted as: θ1 is the fixed

benefit of entry, θ2 is the loss of utility when one other player enters, θ3, θ4 are the sensitivities of

the benefit of entry to market covariates.

The game can be solved to obtain ex-ante probabbilities of entry in the market. The solution to

this problem is given by:

Pi =
eθ1−θ2(

∑
j 6=i Pj)+θ3x1+θ4x2

1 + eθ1−θ2(
∑

j 6=i Pj)+θ3x1+θ4x2
, i = 1, . . . , n. (52)

Here Pi is the ex-ante probability of entry for the player i, Pi = p (ai = 1|x).
Both coefficients of the model and market covariates were taken from independent Monte-Carlo

draws. The parameters of generated random variables are presented in the table below.

Table 1: Characteristics of the parameters

Parameter Mean Variance Distribution

θ1 2.45 1 Normal

θ2 5.0 1 Normal

θ3 1.0 1 Normal

θ4 -1.0 1 Normal

x1 1.0 0.33 Uniform

x2 1.0 0.33 Uniform

The means and variances of parameter values and market covariates were chosen so to have a

fair percentage of cases with more then one equilibrium.

For the games with 3,4 and 5 players 400 independent parameter combinations for every player

were taken. The modification of HOMPACK algorithm was run to solve for all equilibria in each

game.

Throughout the Monte-Carlo runs both coefficients and covariates x1 and x2 were changing. So,

basically every equilibrium was calculated for a specific set of parameters.

Summary statistics for the results of computations are presented below.

It is possible to see that in the constructed games the players have approximately same average

parameters in every type of game. This agrees with the symmetric form of underlying data generating

process for the coefficients and market covariates.
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Characteristics of the estimates

n = 3

Parameter Mean Std Dev Max Min

# of equilibria 1.513 1.035 7 1

P1 0.369 0.364 0.999 0.000

P2 0.357 0.367 0.995 0.000

P3 0.364 0.346 0.993 0.003

n = 4

# of equilibria 1.285 0.682 4 1

P1 0.280 0.328 0.980 0

P2 0.236 0.316 0.980 0

P3 0.276 0.341 1.000 0

P4 0.297 0.345 0.990 0

n = 5

# of equilibria 1.126 0.475 4 1

P1 0.102 0.198 0.96 0

P2 0.146 .260 0.98 0

P3 0.315 .343 0.99 0

P4 0.336 0.375 0.98 0

P5 0.315 0.349 0.98 0
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7 Application to stock market analysts’ recommendations

and peer effects

Many of the ideas developed in this paper can be applied to the problem of analyzing the behavior

of equity market analysts and the stock recommendations that they issue. Clearly, the set of rec-

ommendations on a stock can be viewed as the outcome of a game. Analysts make choices among a

different set of actions, such as whether to recommend the buying or the selling of a stock. Analysts

probably have different information about a given company’s prospects, and it is well-understood in

the profession that these information asymmetries exist. Most importantly, payoffs to the individual

analyst depend, to a large extent, on the actions taken by competitor analysts. Accurate forecasts

and recommendations are highly valued, of course. But the penalty for issuing a poor recommenda-

tion depends on whether competitor analysts also made the same poor recommendation.

There has been a revival of interest on the determinants of analyst recommendations as re-

searchers have tried to explain the remarkable behavior of the analysts in the run-up and subsequent

collapse of the NASDAQ in 2000. 4 The focus in this paper is on the recommendations generated for

firms in the high tech sector, which includes the firms most affected by the excitement surrounding

the development of e-commerce and the spread of the Internet. Given the great uncertainty sur-

rounding the demand for new products and new business models, the late 1990’s would seem to have

been the perfect environment for equity analysts to add value. Yet analyst recommendations were

not particularly helpful or profitable during this period. For example, the analysts were extremely

slow to downgrade stocks, even as it was apparent that the market had substantially revised its

expectations about the technology sector’s earnings potential. Barber, Lehavey, McNichols, and

Trueman (2001) show that the least recommended stocks earned an average abnormal return of 13%

in 2000-2001, while the most highly recommended stocks earned average abnormal returns of -7%.

Observations like this have led commentators to wonder whether the analysts had ulterior motives

for keeping their recommendations unjustifiably optimistic, such as the pressure to win investment

banking business. Allegedly, this conflict of interest took the form of analysts keeping recommen-

dations on stocks high in order to appease firms, who would then reward the analyst’s company

by granting it underwriting business or other investment advisory fees.5 Indeed, these suspicions

4See for example Barber, Lehavey, McNichols, and Trueman (2001) and Chan, Karceski, and Lakonishok

(2003). Research prior to the NASDAQ collapse includes Womack (1996), Lin and McNichols (1998), and

Michaely and Womack (1999).
5In 1998, Goldman Sachs estimated that Jack Grubman, a prominent telecommunications industry an-

alyst, would bring in $100 to $150 million in investment banking fees. This estimate was based on the

fees generated by 32 of the stocks he covered that also had banking relationships with Citigroup, including
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came to a head when New York State Attorney General Elliot Spitzer launched an investigation into

conflicts of interest in the securities research business.

In this application we develop an empirical model of the recommendations generated by stock

analysts from the framework outlined in section 1. We quantify the relative importance of four

factors influencing the production of recommendations in a sample of high technology stocks during

the time period between 1998 and 2003.

First, recommendations must depend on expectations about the future profitability of a firm.

There should be some systematic component to these expectations common across all analysts and

investors that will be embedded in the current stock price.

Second, analysts are heterogeneous, both in terms of talent and perhaps in terms of access to

information. We try to capture an individual analyst’s private belief about the stock by looking

at the difference between the quarterly earnings forecast submitted by the analyst (or the analyst’s

brokerage firm) and the distribution of forecasts from other firms.

Mindful of the large number of inquiries into possible conflicts of interest among research ana-

lysts, we include as a third factor a dummy variable for an investment banking relationship between

the firm and the analyst’s employer.

Finally, we consider the influence of peers on the recommendation decision. Peer effects can

impact the recommendation in different ways. Individual analysts have incentive to condition their

recommendation on the recommendations of their peers, because even if their recommendations

turn out to be unprofitable ex-post, performance evaluation is typically a comparison against the

performance of peers. More subtly, recommendations are relative rankings of firms and are not easily

quantifiable (or verifiable) objects. As such, ratings scales usually reflect conventions and norms.

The phenomenon is similar to the college professor’s problem of assigning grades. If a professor were

to award the average student with a C while other faculty give a B+ to the average student, the

professor might incorrectly signal his views of student performance. Even while there is heterogeneity

in how individual professors feel about grading, most conform to norms if only to communicate clearly

with students (and their potential employers) about their performance. Similarly, analysts have an

incentive to benchmark their recommendations against perceived industry norms.

7.1 Data

Our data consist of the set of recommendations on firms that made up the NASDAQ 100 index as of

year-end 2001. The recommendations were collected from Thomson Firstcall. Firstcall is one of the

most comprehensive historical data sources for analysts’ recommendations and earnings forecasts,

WorldCom, Global Crossing and Winstar Communications. (Wall Street Journal, October 11, 2002).
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containing real-time recommendations and forecasts from hundreds of analysts. It is common for

analysts to rate firms on a 5 point scale, with 1 denoting the best recommendation and 5 denoting

the worst. When this is not the case, Firstcall converts the recommendations to the 5 point scale

(see Table 1).

We have 12,719 recommendations from analysts at 185 brokerage firms over this time period (see

Table 2). The dependent variable in our data set is a recommendation submitted between January

of 1998 and June of 2003 for a firm in the NASDAQ 100. The data set was formed by merging

the earnings and recommendations files from Firstcall. In a given quarter, for a given stock, we

merge a quarterly earnings forecast with a recommendation from the same brokerage.6 This will

allow us to determine if analysts that are more optimistic than the consensus tend to give higher

recommendations. In the Firstcall data, quarterly earnings forecasts are frequently made more than

a year in advance. In order to have a consistent time frame, we limit analysis to forecasts that were

made within the quarter that the forecast applies.7 Note that not every recommendation can be

paired with an earnings forecast made within the contemporaneous quarter. Recommendations that

could not be paired with an earnings forecast were dropped from the results that we report. However,

qualitatively similar results were found for a data set where this censoring was not performed. We

choose not to report these results in the interests of brevity. The variables in our data include:

• REC- Recommendation from 1-5 for a stock listed in the NASDAQ 100 recorded by I/B/E/S.

• QUARTER- Quarter during which the recommendation was submitted.

• STOCK-Name of the stock for which the recommendation applies.

• BROKERAGE-The brokerage employing the analyst.

• EPS-Earnings per share forecast submitted by the analyst’s brokerage associated with the

recommendation. Submitted during the same quarter as the recommendation.

• AEPS-Average of the earnings per share forecasts submitted for that quarter.

• RELATION-A dummy variable that is one if the analyst’s brokerage engages in investment

banking business with the company to which the recommendation applies.

6When there were multiple recommendations by the same analyst within a quarter, we chose to use the

last recommendation in the results that we report.
7We chose to merge the brokerage field, instead of the analysts field, because the names and codes in the

analysts field were not recorded consistently across IBES data sets for recommendations. It was possible to

merge at the level of the brokerage.
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• IBANK-A dummy variable that is equal to one if the brokerage does any investment banking

business with stocks in the NASDAQ 100.

• SPITDUM-A dummy variable that is equal to one after the quarter starting in June of 2001.

Based on a comprehensive search of Wall Street Journal articles, this is when Elliot Spitzer

began making very public criticisms of industry practices.

• SBANK-the share of analysts that issued recommendations for a particular stock during a

particular quarter where IBANK was one.

The investment banking relationship was identified from several different sources. First, we

checked form 424 filings in the SEC’s database for information on the lead underwriters and syndicate

members of debt issues. When available, we used SEC form S-1 for information on financial advisors

in mergers. We also gathered information on underwriters of seasoned equity issues from Securities

Data Corporation’s Platinum database. To be sure, transaction advisory services (mergers), and

debt and equity issuance are not the only services that investment banks provide. However, these

sources contribute the most to total profitability of the investment banking side of a brokerage firm.

The average recommendation in our data set is 2.2, which is approximately a buy recommenda-

tion (see Table 2). The mean value of RELATION is 0.035. The mean value of IBANK is 0.81. That

is, 3.5 percent of the analyst-company pairs in our data set were identified as having a potential con-

flict of interest due to some kind of investment banking activity for the stock in question. Eighty-one

percent of the recommendations in our data were generated by firms engaging in investment banking

with some firm list in the NASDAQ 100. Both of these variables are potentially useful measures

of potential conflict of interest. The variable RELATION is more direct, since it indicates that the

brokerage is engaged in investment banking with the company during the quarter the recommen-

dation was issued. However, brokerages might view any company it is giving a recommendation

to as a potential client, particularly in the NASDAQ 100, where many of the companies generated

considerable investment banking fees.

The variable earnings was formed by merging the recommendations and earnings files in Firstcall.

In a given quarter, for a given stock, we merge the quarterly earnings forecast with the recommenda-

tion from the same brokerage. This allows us to determine if analysts that are more or less optimistic

than the consensus tend to give higher recommendations. In the Firstcall data, quarterly earnings

forecasts are frequently made more than a year in advance. In order to have a consistent time frame,

we limit analysis to forecasts that were made within the quarter for which the forecast applies. We

chose to merge the brokerage field, instead of the analysts field, because the names and codes in the

analysts field were not recorded consistently across Firstcall data sets for recommendations. It was
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possible to merge at the level of the brokerage. Note that not every recommendation can be paired

with an earnings forecast made in the contemporaneous quarter.

7.2 Empirical model

An observation is a recommendation submitted for a particular stock during a specific quarter. We

will let t = 1, ..., T denote a quarter, s = 1, ..., S a stock and and i = 1, ..., I an analyst. We

will denote a particular recommendation by ri,s,t. The recommendation can take on integer values

between 1 and 5, where 1 is the highest recommendation and 5 the lowest. Since the dependent

variable can be naturally ranked from highest to lowest, we will assume that the utilities come from

an ordered probit. Let x(i, s, t) denote a set of covariates that influence the recommendation for

analyst i for stock s during quarter t. Let x(s, t) denote a vector of (x(i, s, t)) of payoff relevant

covariates that enter into the utility of all the analysts who submit a recommendation for stock s

during quarter q. Let z(s, t) denote a set of covariates that shift the equilibrium, but which do not

influence payoffs.

Define the utility or payoff to analyst i for a recommendation on stock s in quarter t to be,

yi,s,t = β′x(i, s, t) + ηE(r|x(s, t), z(s, t)) + εi,s,t (53)

In equation (53), the term E(r|x(s, t), z(s, t)) is the expected recommendation for stock s during

quarter t and εi,s,t is a normal error term. Thus, conforming to the expected actions of peers enters

into an individual analyst’s utility. If we were to assume that the error term is normally distributed,

then the model would become the familiar ordered probit, where the probability that a particular

recommendation is observed is determined as follows:
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P (r = 1) = Φ(−β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (54)

P (r = 2) = Φ(µ1 − β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (55)

− Φ(−β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (56)

P (r = 3) = Φ(µ2 − β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (57)

− Φ(µ1 − β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (58)

P (r = 4) = Φ(µ3 − β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (59)

− Φ(µ2 − β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (60)

P (r = 5) = 1− Φ(µ3 − β′x(i, s, t)− ηE(r|x(s, t), z(s, t))) (61)

In equations (53)-(61), the likelihood that determines the probability that the recommendation is r

depends on the latent estimated covariates β and η along with the cut points µ1 − µ3.

7.3 Exclusion restrictions and identification

The analysis of the previous section suggests that identification depends crucially on having appro-

priate exclusion restrictions. First, we need covariates that influence the payoffs of one particular

agent, but not other agents. In our analysis, the covariates will include broker fixed effects and

covariates that reflect broker-specific levels of investment banking activity. This assumption would

imply, for instance, that the amount of investment banking done by Merrill Lynch should not directly

influence the recommendations submitted by analysts working for Goldman Sachs. We believe that

this is a reasonable assumption.

Second, identification can be achieved by using covariates z(s, t) that influence the selection of

equilibrium, but which do not directly enter into payoffs. The first set of covariates is based on the

actions of market regulators. Beginning in June of 2001, the State Attorney General of New York,

Elliot Spitzer, began to question business practices in this industry. Spitzer criticized investment

banks for issuing a large fraction of strong buy and buy recommendations, but few hold or sell

recommendations. The descriptive analysis in the earlier section suggests that this intervention by

the regulator encouraged the industry to focus on an equilibrium where more “sell” and “hold”

recommendations were issued. We divide time into pre and post “Spitzer” eras with the mid point

being the quarter starting in June 2001. Based on coverage in the Wall Street Journal, we believe

this is an appropriate starting point for the very vocal and public criticism of the industry by

the regulator. Therefore, a first instrument is this dummy variable marking the timing of this
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regulatory regime shift. We believe that the actions of Spitzer helped to shift the equilibrium to a

more conservative set of recommendations. It is plausible to argue that SPITDUM can be excluded

from payoffs. The analysts could scarcely be accused of conflicts of interest for recommendations

issued at this time because there was very little investment banking work being done after June of

2001 due to the downturn high technology markets.

The variable SPITDUM only displays time-series variation. We will interact SPITDUM with

SBANK in order to get cross sectional variation in the instrument as well. This would be an

appropriate instrument if the criticism of the regulators had more impact for stocks where a larger

proportion of the analysts were affiliated with brokerages that had traditionally done investment

banking work with high technology firms.

A second set of variables that could enter z include average recommendations for the stock

submitted in previous quarters. As we can see from Table 3, there were no holds or sell recom-

mendations issued by analysts in the first quarter of 2000 in our data set. If an individual analyst

were to deviate from this practice, he might run the risk of miscommunicating to investors his views

about the relative desirability of stock s. Therefore, we include behavior in the most recent period

since this will communicate information about the norm. Normally, we would be concerned that

this instrument is itself arguably endogenous. However, we note that we can control for time and

stock effects since we have a panel data set. Also, since we also have access to the instruments based

on the actions of the regulator, we can check the robustness of our results both with and without

using lagged behavior as an instrument.

7.4 Results

7.4.1 Fundamentals

The first question that we ask is the extent to which recommendations were determined by publicly

observable information about the stocks. In our data, these fundamentals correspond to time fixed

effects, stock fixed effects and the difference between an individual analyst’s beliefs about earnings

and beliefs in the market as whole. In Table 4, we run an ordered probit to explore these questions.

The variable %DEV is the percentage deviation of an analyst’s recommendation from the average

recommendation and ABS. DEV is the algebraic difference. In both cases, a more optimistic earn-

ings forecast has the anticipated sign, but is not significant at conventional levels in any of the

specifications that we have tried. On the other hand, quarterly and stock fixed effects are almost

all statistically significant (not reported in this Table). If quarter and stock fixed effects proxy for

publicly available information about the stock, then this information is considerably more important

than measures of an individual analyst’s optimism. We note, however, that there could be other
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interpretations of these variables.

In Table 5, we report the estimated quarterly fixed effects and compare these estimates to the

NASDAQ Index and NASDAQ 100. The quarterly effects are labeled qdum2-qdum22 for the 2nd

quarter (1998.Q2) through the 22nd quarter (2003.Q2) of our data set. Several points emerge. First,

the quarterly effects are typically significant. Second, the quarterly effects are highly correlated with

the NASDAQ index and with the QQQ. We take these results as evidence that the quarterly effects

can reasonably be interpreted as reflecting publicly observed information about the the firms that is

embedded in the share prices as opposed to some other latent effects. The movement in share prices

can explain most of the movement in the recommendations in the previous tables. In Table 6, we

regress the quarterly dummies on these indexes. We find that the indexes are statistically significant

at conventional levels and that the measures of goodness of fit are quite high.

7.4.2 Conflicts of Interest

In Table 7 we run an ordered logit model of recommendations as a function of our conflict of interest

measures. The coefficient on RELATION indicates that potential conflicts of interest are statistically

significant at conventional levels, except for the third column where quarterly and stock fixed effects

are included, and the fourth column where the full set of fixed effects are included along with the more

inclusive IBANK variable. The coefficient sign on RELATION is also consistent with our a priori

beliefs that conflicts of interest could lead to issuing more favorable recommendations. Consistent

with the work of prior researchers and market regulators, these results do suggest that a potential

conflict of interest exists when a brokerage engaged in investment banking business with a company

that quarter. However, these results must be interpreted with some caution. Since brokerage firms

are expected to cover companies with whom they have significant investment banking business, the

firms have an incentive to select brokerages that already view them favorably. It would be hard

to imagine that a rational manager would want to hire an investment banking firm that views her

company in an unfavorable manner.

Interestingly, we note (column 4 of table 7) that when we include the IBANK variable denoting

that the brokerage firm has investment banking relationships with at least one firm in the index, the

coefficient is positive and significant. Evidently, analysts at general investment banking firm tend to

issue slightly more conservative recommendations. This is consistent with a view of the world that

companies tended to select investment banking firms that were more favorably disposed towards

them. Alternatively, our results could be interpreted as suffering from a bias due to some omitted

variable.

Our results suggest that even though investment banking relationships may generate potential
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conflicts of interest for equity analysts, the magnitude of the effects recommendations may be small

in practice. Notice that measures of the goodness of fit are very low when only investment banking

is included. Also, the marginal effects of engaging in investment banking are small. In our data,

the expected recommendation is -0.08 when we allow for quarterly fixed effects, but not stock

fixed effects. This finding is not consistent with the prosecutors belief that “unbiased” research,

separate from investment banking, will generate recommendations less tainted by potential conflicts

of interest. However, the behavior of analysts after large settlements have been paid and significant

damage has been done to their brokerage’s reputation, in some cases, may be more conservative.

7.4.3 Peer Effects

The final question we consider is whether there are peer effects in submitting recommendations.

We do this by using the two stage procedure described in the previous section. First, we flexibly

model the expectations of individual analysts about the recommendations that will be submitted

by other analysts. We begin by regressing the average recommendation submitted for a particular

stock within a given quarter on the following covariates:

1. time dummies

2. stock dummies

3. SBANK- the fraction of analysts that have IBANK equal to one

4. SPITDUM- a dummy for whether the quarter follows the quarter in which Elliot Spitzer began

publicly questioning the research quality of Wall Street analysts

5. ESHIFT-the interaction of spitdum and sbank

6. LAG-the lagged value of the average recommendation for the stock

In our analysis, we will assume that variables 4-6 above are valid exclusion restrictions in the

sense that they shift the equilibrium that is played in the market, but do not directly enter into an

analyst’s utility function. The excluded variables are significant in this first stage regression. We

will let IVBELIEF denote the fitted value of the regression. We will suppose that the fitted value

of the regression corresponds to their beliefs.

In all of the specifications that we examine in Table 8, peer effects seem to be important. An

individual analyst will raise his recommendation proportionally to the recommendation that he

expects from other analysts. This is intuitive. A given recommendation does not make senses in

isolation, but only relative to the recommendations of other analysts. If no one else in the market is
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issuing recommendations of “market underperform” or “sell”, an individual analysts may give the

wrong signal by issuing such a recommendation even if he believes the recommendation is literally

true.

It is worth noting that the results for our measure of peer effects are not only statistically

significant, but peer effects also explain the results quite well compared to the other covariates.

The Pseudo-R2 using only the fitted values from the first stage is virtually the same as in the

specifications including time and stock fixed effects. The other variables are not significant in our

final column and do not increase measures of goodness of fit. We obtain nearly identical results

when the first stage is done with a sieve estimator formed by using splines (Table 9). The estimated

coefficients on IVBELIEF range from roughly 1.8 to 2.3 in both tables, depending primarily on the

covariates included in the second stage. The fit of the ordered logits in Tables 8 and 9 changes little

when the fixed effects are included as covariates.

With estimates of the model’s key parameters in hand, it is possible to simulate the model and

find the set of equilibria to the analyst recommendation game. In keeping with the static nature

of our analysis, we solve for all possible equilibra at two points in time: the first just prior to the

regulatory regime change in 2000.Q1, and then again in 2003.Q1 after the Spitzer inquiry was well-

underway. These results are based on a simplified case of a 2-player game (see the appendix for

details on the computation procedure).

Evidently, the pre-Spitzer era was characterized by two different equilibria (see Tables 1 and 2

in the appendix and Figures 1 and 2 below). In the post-Spitzer era, there was only one equilibrium,

given our estimated parameter values reported in the ordered logit specification in Table 8.

8 Conclusion

In this paper we propose a method for estimating static games of incomplete information. The

method we propose is semiparametric and does not require the covariates to lie in a discrete set.

Perhaps most importantly, the method is both flexible and easy to implement using standard sta-

tistical packages. We also introduce an algorithm for computing all equilibria to a game, which is

useful for policy simulations using the estimated model.

We apply these methods to the problem of determining the factors that govern the assignment

of stock recommendations by equity analysts for a set of high tech stocks between 1998 and 2003.

Two factors seem to be most important for explaining the production of stock recommendations.

First, publicly observable information about the stocks under recommendation, as reflected in our

time and quarter dummies, plays a large role in explaining the distribution of recommendations. As
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we saw in Table 4.3, these variables explained a large fraction of the variation in the data and were

highly correlated with market indexes such as the NASDAQ or QQQ. Simply put, recommendations

improved in 1999-2000 as the stock market rose. The second and most important factor for ex-

plaining recommendations is the peer group effect. Individual analysts raise their recommendations

proportionally to the recommendations they expect from their peers. Investment banking relation-

ships are shown to be statistically significant in the recommendations regressions, but the economic

effect of the investment banking relationship is estimated to be small, and the variable does not add

much to the total fit of the model.
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A Proof for Theorem 2

Before we set out to prove the theorem we need to introduce some notations. Collapse the indexation

for i = 1, . . . , n and ai = 1, . . . ,K to a single index j = 1, . . . , nK. In other words, each j represents

a (i, ai) pair. First we will rewrite the expression (47) for the case of multinomial choice probability

as:

σj =
exp (Pj(σ))

1 +
∑
k∈Ii

exp (Pk(σ))
, (62)

where Ii = {(i, ai) , ai = 1, . . . ,K} is the set of all indices j = (i, ai) that corresponds to the set of

strategies available to player i, and Pj (σ) is the expected utility associated with player i for playing

ai when j = (i, ai):

Pj (σ) = Pi,ai
(σ) =

∑
a−i

σ−i (a−i|s) Φi (ai, a−i, s)
′
θ,

which is in general a polynomial function in σj . Let P(·) denote the vector-function of polynomials

of size nK × 1 that collects all the elements Pj(·) for j = 1, . . . , nK. Let Q be the product of

the degrees of the polynomial over all elements of the vector P(·). In other words, Q =
∏nK
j=1Qj

where Qj is the degree of polynomial Pj(·). For each complex argument ξ ∈ CnK the system of

polynomials has Q solutions has exactly Q solutions. Because of this, for each ξ ∈ CnK we can find

Q vectors σ∗ such that P(σ∗) = ξ. Let us denote each particular vector σ∗ by P−1
(k)(ξ).

The complex-valued vector P(·) of dimension nK×1 can be transformed into a real-valued vector

of dimension 2nK × 1 by considering separately real and complex part of vector P(·). Because of

the polynomial property, each P−1
(k) (ξ) is a continuously differentiable function of ξ for almost all

ξ. It is possible that for some range of the argument ξ, two (or more) solution paths P−1
(k) (ξ) and

P−1
(k′) (ξ) for k 6= k′ might coincide with each other. In this case we will relabel the paths k so that

the merged paths to replicated to create a total Q of smooth solution paths P−1
(k) (ξ).
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The following analysis will apply to each individual branch P−1
(k) (ξ), which we will just denote by

P−1 (ξ) without explicit reference to the path indice k. For j = 1, . . . , nK introduce the following

notations: ξj = xj + iyj , ρj = ‖ξj‖, ϕj = arctan
(
yj

xj

)
. Then a homotopy system can be constructed

for (62) as:

H1j(ξ, τ) = {ρqj cos(qϕj)− 1}τ + (1− τ)
{
Re{P−1(ξ)}−

− e2xj +exj cos(yj)+
∑

k 6=j e
xj+xk cos(yj−yk)

1+
∑

k∈Ii
e2xk+2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k 6=l e

xk+xl cos(yl−yk)

}
and

H2j(ξ, τ) = {ρqj sin(qϕj)− 1}τ + (1− τ)
{
Im{P−1(ξ)}−

− exj sin(yj)+
∑

k 6=j e
xk+xj sin(yj−yk)

1+
∑

k∈Ii
e2xk+2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k 6=l e

xk+xl cos(yl−yk)

}
If the system P(·) is polynomial, P−1 (ξ) is smooth and has a Jacobian of full rank for almost

all ξ. Therefore, we can locally linearize it so that P−1(ξ) ≈ Λξ + C. The homotopy system can

then be written as:

H1j(ξ, τ) = {ρqj cos(qϕj)− 1}τ + (1− τ)
{
Λjxj−

− e2xj +exj cos(yj)+
∑

k 6=j e
xj+xk cos(yj−yk)

1+
∑

k∈Ii
e2xk+2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k 6=l e

xk+xl cos(yl−yk)

}
(63)

and

H2j(ξ, τ) = {ρqj sin(qϕj)− 1}τ + (1− τ)
{
Λjyj−

− exj sin(yj)+
∑

k 6=j e
xk+xj sin(yj−yk)

1+
∑

k∈Ii
e2xk+2

∑
k∈Ii

exk cos(yk)+
∑

l∈Ii

∑
k 6=l e

xk+xl cos(yl−yk)

}
(64)

where Λj is the jth row of the nK × nK matrix Λ. Without loss of generality we will let C = 0 in

subsequent analysis for the sake of brevity because all the results will hold for any other given C.

To simplify notation we will denote:

Θi(x, y) =
∑
k∈Ii

e2xk + 2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k 6=l

exk+xl cos(yl − yk)

Now given some index k ∈ {1, . . . , Q}, we consider the solutions of the system {H(x, y, τ)} = 0 for

all possible real values of the vectors of x and y.

Now we set out to prove the statements of Theorem 2. First we will prove statement (2). Define

ρ = ‖ξ‖ to be the euclidean norm of the entire nK×1 vector ξ. We need to prove that there will not

be a sequence of solutions along a path where ρ→∞. We will show this by contradiction. Consider
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a path where ρ→∞. Choose the component j of the homotopy system for which ρqj cos(q ϕj) →∞
at the fastest rate among all the possible indexes j where ρj →∞. 8

Consider the real part of the homotopy function, H1j(·, ·, ·). The equation H1j(x, y, τ) = 0 is

equivalent to the equation H1j(x,y,τ)

τ(ρq
j cos(q ϕj)−1) = 0 for ρj > 1. The last equation can be rewritten as:

1 +
(1− τ)

τ
(
ρqj cos(q ϕj)− 1

) {Λjx−
e2xj + exj cos(yj) +

∑
k 6=j e

xj+xk cos(yj − yk)
1 + Θi(x, y)

}
= 0. (65)

We will show that the second term in the curly bracket of the previous equation is uniformly

bounded from above in absolute terms:∣∣∣∣e2xj + exj cos(yj) +
∑
k 6=j e

xj+xk cos(yj − yk)
1 + Θi(x, y)

∣∣∣∣ ≤ C and for a constant C, (66)

where the constant C can depend on ε. Therefore the term in the curly bracket in the homotopy (65)

will grow at most at a linear rate |x| ≤ Cρj . On the other hand, denominator τ
(
ρqj cos (qϕj)− 1

)
outside the curly bracket grows at a much faster polynomial rate for large q. Hence the second term

in (65) is close to 0 for large q for large values of ξ, and equation (65) can not have a sequence of

solutions that tends to infinity.

In other words, there exists R0 > 0 such that for any ξ = (x, y) outside ℘ε with ‖ξ‖ ≥ R0 and

any τ ∈ (0, 1] we have that H1(x, y, τ) 6= 0, that is, homotopy system does not have solutions. This

implies that

H−1(τ) ∩ ℘ε ⊂ BτR0
= {(x, y, τ) ∈ R2nK \ ℘ε × (0, 1] ∩ ‖ξ‖ < R0}.

This proves the second statement 2).

Finally, we will prove both statements 1) and 3) of Theorem 2. Again we consider the above

homotopy system on the compact set BτR0
. The homotopy function is analytic in this set so Cauchy

- Riehmann theorem holds. This implies that

∂H1j

∂xk
=
∂H2j

∂yk
and

∂H1j

∂yk
= −∂H2j

∂xk
, for all j, k = 1, . . . , 2nK.

8In case when instead of ρq
j cos(q ϕj)→∞ we have that ρq

j sin(q ϕj)→∞, the proof can be appropriately

modified by considering the imaginary part of the j-th element of the homotopy system without any further

changes. The logic of the proof can be seen to hold as long as there is a slower growing element of x or y. In

case when all components of x and y grow at the same rate to infinity in such a way that the second terms

inside the curly brackets of (63) and (64) explode to infinity, one can take a Laurent expansion around the

values of yk’s such that the denominators are close to zero. Then one can see that these terms in (63) and

(64) explode to infinity at quadratic and linear rates in 1/(y− y∗), respectively. Therefore (63) and (64) can

not both be zero simultaneously for large x and y.
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This means that if the Jacobian is considered:

Ji =

(
∂H1j

∂x′
∂H1j

∂y′
∂H1j

∂τ
∂H2j

∂x′
∂H2j

∂y′
∂H2j

∂τ

)
,

then it contains at least one 2 × 2 submatrix with nonegative determinant
[
∂H1j

∂xk

]2
+
[
∂H1j

∂yk

]2
.

Calculating the derivatives directly due to the fact that ε < ρ < R0 this determinant is strictly

positive for all (x, y, τ) ∈ BτR0
. Therefore, the implicit function theorem verifies that the pair (x, y)

can be locally parameterized by τ . Moreover, this representation is locally unique and continuous.

This proves the first statement. The same arguments above, which show that the determinant is

positively almost everywhere, also immediately implies the third statement. 2

Proof of equation (66):

We are to bound the left hand side of equation (66) by a given constant. First of all we can

bound the denominator from below by

‖1 + Θi(x, y)‖ ≥

∥∥∥∥∥1 +
∑
k∈Ii

e2xk

∥∥∥∥∥−
∥∥∥∥∥∥2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k 6=l

exk+xl cos(yl − yk)

∥∥∥∥∥∥ ,
as ‖a+ b‖ ≥ ‖a‖ − ‖b‖. Then we can continue to bound:

‖1 + Θi(x, y)‖ ≥ 1 +
∑
k∈Ii

e2xk − 2
∑
k∈Ii

exk −
∑
l∈Ii

∑
k 6=l e

xk+xl . (67)

The last expression was obtained taking into account the fact that

max
yk, k∈Ii

‖2
∑
k∈Ii

exk cos(yk) +
∑
l∈Ii

∑
k 6=l

exk+xl cos(yl − yk)‖

is attained at the point cos(yk) ≡ cos(yk − yl) = 1,∀k, l ∈ Ii.
For the same reason, we can bound the numerator from above by∥∥∥e2xj + exj cos(yj) +

∑
k 6=j e

xj+xk cos(yj − yk)
∥∥∥ ≤ e2xj + ‖exj cos(yj)

+
∑
k 6=j e

xj+xk cos(yj − yk)
∥∥∥ ≤ e2xj + exj +

∑
k 6=j e

xj+xk .

Recall that j - th component was assumed to be the fastest growing x component as ρ → ∞.

Then from equation (67) for some small but positive constant ψ we can write:

‖1 + Θi(x, y)‖ ≥ 1 + ψe2xj

Collecting terms we have that:

‖e2xj +exj cos(yj)+
∑

k 6=j e
xj+xk cos(yj−yk)‖

‖1+Θi(x,y)‖ ≤ 1+e2xj +exj +
∑

k 6=j e
xj+xk

1+ψe2xj
.
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which is clearly uniformly bounded from above by a large constant.

The same arguments can be used by looking at the imaginary part of the homotopy system when

there exists a yj that converges to infinity at the fastest rate. 2

B Proof for Theorem 3

For the clarify of exposition we will first present the proof in the case of two strategies for each player.

Then we will discuss the modifications that are needed when there are more than two strategies for

each player. Consider the two strategy case first. In this case we can rewrite the homopoty system

(63) and (64) as

H1j(ξ, τ) = {ρqj cos(qϕj)− 1}τ + (1− τ)
{

Λjxj − e2xj +exj cos(yj)

1+e2xj +2exj cos(yj)

}
,

and

H2j(ξ, τ) = {ρqj sin(qϕj)− 1}τ + (1− τ)
{

Λjyj − exj sin(yj)

1+e2xi+2exj cos(yj)

}
.

We need to check the presence of solutions in the small vicinity of the imaginary axis. Now

consider positive increments of xj such that xj is equal to some small value ε. If we linear the above

homotopy system around xj = 0, we can approximate them linearly by

H1j =τqεyq−1
j − (1− τ)ε

2
1

1 + cos(yj)
− 1 + τ

2
+ λjj(1− τ)ε+

∑
k 6=j

λjkxk(1− τ)

H2j =τyqj + (1− τ)
∑
k

λjkyk −
1− τ

2
sin(yj)

1 + cos(yj)
− τ

(68)

where λjj is the j, jth element of the Λ matrix.

One can see that these two functions are continuous everywhere except for the set of points

{yj = π + 2πk, k ∈ Z} where cos (yj) = −1.

We will prove that for appropriate large values of q this system has no solutions in the vicinity

of this set. First of all note that if we take a second order expansion of 1 + cos (yj) around some

y∗j = π + 2πk we can approximate 1 + cos (yj) ≈ 1
2

(
yj − y∗j

)2. Then we can further linearize these

two equations in (68) to:

H1j =τqεy∗ q−1
j − λjj(1− τ)ε+

∑
k 6=j

λkjxk(1− τ)− 1 + τ

2
− (1− τ)ε

(yj − y∗j )2

H2j =τy∗ qj + (1− τ)λjjy∗j −
∑
k 6=j

λkjyk(1− τ)− τ + (1− τ)
1

(yi − y∗i )

(69)
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where we have also used sin (yj) ≈ −
(
yj − y∗j

)
.

Now we can construct a sequence of homotopies with the order q increasing to infinity at appro-

priate rate such that these homotopies do not have solutions with extraneous solution of |yj | → ∞.

This sequence of q is constructed by letting q = 1 + 1/ε, as ε→ 0. Along this sequence, we will see

below that the solutions yj − y∗j to H1j and H2j will be of different orders of magnitude. Therefore

there can not solutions yj − y∗j that simultaneously satisfy both equations H1j = 0 and H2j = 0.

To see this, consider the first part H1j = 0 of (69). For small ε only the first term τqεy∗ q−1
j =

O
(
y
∗ 1

ε
j

)
and the last term (1−τ)ε

(yj−y∗j )2 dominate. Therefore the solution yj − y∗j has to have the order

of magnitude O
(√

1
ε y

∗− 1
2ε

j

)
. On the other hand, for the second part H2j = 0 of (69). For small

ε only the first term τy∗ qj = O
(
y
∗ 1

ε
j

)
and the last term (1− τ) 1

(yi−y∗i ) dominate. Therefore the

solution yj−y∗j has to have the order of magnitude O
(
y
∗− 1

ε
j

)
which increases to ∞ much slower than

O
(√

1
ε y

∗− 1
2ε

j

)
as ε→∞. Therefore there can be no solution yj to both H1j and H2j simultaneously

for the sequence of q chosen above. This proves that the homotopy is path finite along that sequence

of q.

The considered homotopy function is analytic outside the balls of fixed radius around the mem-

bers of countable set of points {xj = 0, yj = π + 2πk}, k ∈ Z 9. Therefore a monotone smooth

parametrization is available except for the interior of these balls because the determinant of the

Jacobian is strictly positive everywhere else.

This establishes regularity of the homotopy and conludes the proof. 2

Proof of equation (68): We consider each term individually. First of all

ϕ = arctan (y/ε) =
π

2
− arctan (ε/y) ≈ π

2
− ε

y
.

Hence, as long as q is chosen so that qπ/2 is 2kπ + π
2 for some k,

cos (qϕ) = cos (q arctan (y/ε)) ≈ cos

(
q
π

2
− q

ε

y

)
= sin

(
qε

y

)
≈ qε

y
.

Together with ρq ≈ yqj , this gives the first term in H1j .

Secondly, a first order expansion around ε = 0 gives

exj sin(yj)
1 + e2xi + 2exj cos(yj)

≈ 1
2

+
1
2
ε

1
1 + cos (yj)

.

9Moreover, it is possible to check that the homotopy system has no solutions when all arguments are

purely imaginary in case if q is an arbitrary odd number
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Therefore the H1j is proved in (68).

The second part of H2j follows similary, noting that given the choice of q where sin(qϕ) = 1,

and ρqj ≈ yqj , and the first taylor expansion term for exj sin(yj)

1+e2xi+2exj cos(yj)
vanishes.

End of proof for equation (68).

C Semiparametric Variance

To derive Ω, we need to follow [5] and derive the asymptotic linear influence function of the left

hand side of the above relation. For this purpose, note that

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
=

1√
T

T∑
t=1

A (st) (yt − σ (st,Φ0, θ0))−
1√
T

T∑
t=1

A (st)
(
σ
(
st, Φ̂, θ0

)
− σ (st,Φ0, θ0)

)
.

Since Φ̂ depends only on the nonparametric estimates of choice probabilities σ̂j (k|s) , j = 1, . . . , n, k =

1, . . . ,K in (29) through (24), the second part can also be written as

1√
T

T∑
t=1

A (st) (Γ (st, θ0; σ̂ (s))− Γ (st, θ0;σ0 (s))) ,

where σ̂ (s) is the collection of all σ̂j (k|s) for j = 1, . . . , n and k = 1, . . . ,K, and the function Γ (·)
is defined in (28). Then using the semiparametric influence function representation of [6], as long as

Γ (st, θ, σ (s)) is sufficiently smooth in σ (s) and as long as the nonparametric first stage estimates

satisfy certain regularity conditions regarding the choice of the smoothing parameters, we can write

this second part as

1√
T

T∑
t=1

A (st) (Γ (st, θ0; σ̂ (s))− Γ (st, θ0;σ0 (s)))

=
1√
T

T∑
t=1

A (st)
∂

∂σ
Γ (st, θ0;σ0 (s)) (yt − σ (st, θ0)) + op (1) .

In other words, if we write Γσ (s) = ∂
∂σΓ (st, θ0;σ0 (s)), we can write

1√
T

T∑
t=1

A (st)
(
yt − σ

(
st, Φ̂, θ0

))
=

1√
T

T∑
t=1

A (st) (I − Γσ (st)) (yt − σ (st, θ0)) + op (1) .
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Therefore we can derive the asymptotic distribution of the two-step semiparametric θ̂ defined

through (33) as

√
T
(
θ̂ − θ0

)
= − (EA (st) Γθ (st))

−1 1√
T

T∑
t=1

A (st) (I − Γσ (st)) (yt − σ (st, θ0)) + op (1) .

Hence

√
T
(
θ̂ − θ0

)
d−→ N (0,Σ)

where Σ is equal to

E (A (st) Γθ (st))
−1 [

EA (st) (I − Γσ (st))Ω (st) (I − Γσ (st))
′
A (st)

′]
E
(
Γθ (st)

′
A (st)

′)−1
.

In the above, we have defined

Γθ (st) =
∂

∂θ1
Γ (st, θ1, σ (st; θ2))

∣∣∣∣
θ1=θ2=θ0

,

and

Ω (st) = V ar (yt − σ (st, θ0) |st) .

The efficient choice of the instrument matrix (which can be feasibly estimated in preliminary steps

without affecting the asymptotic variance) is then given by

A (st) = Γθ (st)
′ (I − Γσ (st))

−1 Ω (st)
−1 (I − Γσ (st))

−1′
.

With this efficient choice of the instrument matrix, the asymptotic variance of θ̂ becomes(
EΓθ (st)

′ (I − Γσ (st))
−1 Ω (st)

−1 (I − Γσ (st))
−1′ Γθ (st)

)−1

. (70)

C.1 Efficiency Considerations

We present two efficiency results in this section. First of all, we show that with the above efficient

choice of the instrument matrix A (st), the semiparametric two step estimation procedure above is

as efficient as the full maximum likelihood estimator where the fixed point mapping in (28) is solved

for every parameter value θ which is then nested inside maximum likelihood optimization to obtain

choice probabilities as a function of θ. Secondly, we show that estimating σ̂ (st) may even improves

efficiency over the hypothesis case where σ (st) is known and the pseudo MLE in (34) is used to

estimate θ (but using Φ0 instead of Φ̂).
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C.1.1 Efficiency comparison with full maximum likelihood

Consider a full maximum likelihood approach where a fixed point calculation (assuming the solution

is unique) of (28) is nested inside the numerical optimization. For each θ, (28) is solved to obtain

σ (st, θ) as a function of θ, which is then used to form the likelihood function as in (34). Define the

total derivative of (28) as

d

dθ
σ (st, θ0) =

d

dθ
Γ (st, θ, σ (st; θ))

∣∣∣∣
θ=θ0

=Γθ (st) + Γσ (st)
d

dθ
σ (st, θ0)

which can be used to solve for

d

dθ
σ (st, θ0) = (I − Γσ (st))

−1 Γθ (st) . (71)

Following the same logic as the discussions of pseudo MLE after (34), but with the pseudo

log likelihood function replaced by the full maximum likelihood function, it is easy to show that

the asymptotic distribution of the full maximum likelihood estimator, which is the same as an iv

estimator with the instruments chosen optimally, satisfies

√
T
(
θ̂FMLE − θ0

)
d−→ N (0,ΣFMLE)

where

ΣFMLE =
(
E
d

dθ
σ (st, θ0)

′ Ω (s)−1 d

dθ
σ (st, θ0)

′
)−1

.

Using (71), we can also write

ΣFMLE =
[
EΓθ (st)

′ (I − Γσ (st))
−1 Ω (st)

−1 (I − Γσ (st))
−1 Γθ (st)

]−1

.

This is identical to (70) for the asymptotic variance of the two step semiparametric iv estimator

when the instrument matrix is chosen optimally.

C.1.2 Efficiency comparison with infeasible pseudo MLE

Consider an infeasible pseudo MLE, which is similar to (34) except with Φ̂ replaced by the true but

unknown Φ0:

T∑
t=1

n∑
i=1

[
K∑
k=1

yikt log σi (k|st,Φ0, θ) +

(
1−

K∑
k=1

yikt

)
log

(
1−

K∑
k=1

σi (k|st,Φ0, θ)

)]
. (72)
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The asymptotic variance of this estimator is similar to that of ΣFMLE except with d
dθσ (st, θ0)

′

replaced by Γθ (st). In other words,

ΣIPMLE =
[
EΓθ (st)

′ Ω (st)
−1 Γθ (st)

]−1

.

where IPMLE stands for infeasible pseudo MLE.

The relation between ΣFMLE and ΣIPMLE is obviously ambiguous and depends on the response

matrix Γσ (st). It is clear possible that ΣFMLE < ΣIPMLE , in which case estimating Φ̂ may improve

efficiency over the case where Φ0 is known.

D Preliminary results for multiple equilibria

Procedure setup.

In this example we compute equilibria in the example of the game where choice - specific probabilities

are described by the ordered logit model. We consider a case with 2 players in the asymmetric

setup so that, for instance, the choice probabilities for player 1 can be described in terms of choice

probabilities of player 2 and a vector of covariates x1 in the following way:

P11 = Λ
(
µ1 − x′1β − η

5∑
i=1

i P2i

)
P12 = Λ

(
µ2 − x′1β − η

5∑
i=1

i P2i

)
− Λ

(
µ1 − x′1β − η

5∑
i=1

i P2i

)
P13 = Λ

(
µ3 − x′1β − η

5∑
i=1

i P2i

)
− Λ

(
µ2 − x′1β − η

5∑
i=1

i P2i

)
P14 = Λ

(
µ4 − x′1β − η

5∑
i=1

i P2i

)
− Λ

(
µ3 − x′1β − η

5∑
i=1

i P2i

)
Pj5 = 1−

4∑
k=1

Pjk, for j = 1, 2.

(73)

where Λ(·) is the logistic function, the first index stands for the number of player and the second

index stands for the recommendation strategy.

To calculate the equilibria in the game where ex-ante probabilities of choices are described by

the ordered logit model, we take the cutoff points for the ordered logit procedure which are reported

as (2.987521, 4.779925, 7.533645, 8.800422) and use them as values µ1, µ2, µ3 and µ4 to substitute

for the cutoff values in ordered logit in the formula for the ordered estimated in the empirical section

of the paper. We use the results of the regression with quarterly and stock dummies.

According to the setup of the ordered logit model in or case I put stock dummy to its average over

periods as well as %DEV variable. This adds to all the cutoff points. I use 2 quarter; one is quarter
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Table 2: Adjusted cutoff points for choice probabilities.
RELATION = 0 RELATION = 1

Quarter 9 (3.239, 5.0323, 7.7860, 9.0528) (3.2242, 5.0166, 7.7703, 9.0371)

Quarter 21 (2.9655, 4.7579, 7.5116, 8.7784) (2.9499, 4.7423, 7.4960, 8.7628)

9 when NASDAQ is 4,732 which shifts cutoff points by -0.15528; the other quarter is quarter 21 when

NASDAQ is 1,374, which shifts the cutoff points by +0.11905. I consider a case with 2 bidders. For

the RELATION dummy we consider 2 cases: one is when it is 0 for both players and the other when

it is 1 for both players. Asymmetric case shifts the cutoff points by .0156 for one player and symmetric

case when both players have RELATION = 1 shifts cutoff points by .0156 for both players. The

adjusted cutoff points for choice probabilities are formed in the following way. We take values of

%DEV variable at its mean and compute β%DEV · mean(%DEV ) = .048048.0022158 = .000106,

then we compute mean(stock dummy)=-0.09711. We consider then cases with different values of

quarter dummies and RELATION variable. Namely, we take quarter 9 dummy= -0.15528 quarter

21 dummy=0.11905. The total value of x′β is: -0.2523 for quarter 9 with RELATION = 0, -0.2367

for quarter 9 with RELATION = 1, 0.0219 for quarter 21 with RELATION = 0, 0.0375 for

quarter 21 with RELATION = 1. The set of corresponding cutoff values:

We use then the estimated values of η coefficient (fixing it equal to 1.96) to solve the obtained

system of equations for choice probabilities.

Results.

We used HOMPACK package to solve for multiple equilibria in the considered game, namely its

part originally designed to find all roots of the polynomial systems. To do that we modified the

function routine to represent the system, characterizing the ordered logit. The initial system in the

homotopy was wet equal to 80,000. This means that to solve for equilibria the algorithm computed

80,000 paths for the solutions of a system of 16 differential equations formed by real and complex

parts of the choice probability functions for 2 players (so that each player has 4 choice probabilities

and one choice probability id complimentary).

The following results are preliminary as in theory the degree of initial system should go to infinity

to make it possible to isolate all real solutions to the system of choice probabilities10, so there is a

10For example, in our Monte-Carlo experiments for the entry game a characteristic degree of the initial

system was 150,000. A characteristic CPU time to solve for all equilibria in a single game for the 5 player
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Table 3: Computed choice probabilities for choices 1-4.
RELATION = 0 (0.74876E-04; 0.37660E-03; 0.66071E-02; 0.17543E-01)

Quarter 9 (0.21574E-01; 0.95336E-01; 0.55826E-0; 0.20545E-0)

RELATION = 1 (0.16503E-03; 0.82499E-03; 0.14331E-01; 0.37016E-01)

Quarter 9 (0.21124E-01; 0.93580E-01; 0.55573E-0; 0.207916E-0)

RELATION = 0 (0.12220E-03; 0.61102E-03; 0.10656E-01; 0.27896E-01)

Quarter 21

RELATION = 1 (0.12005E-03; 0.60027E-03; 0.10471E-01; 0.27429E-01)

Quarter 21

need in the further increase in the power of the initial system. In the table below we represent the

computation results for the game with symmetric players. No asymmetric equilibria were found, so

we report only the choice probabilities for one player as for the other player they are the same.

As one can see from the table D, 2 equilibria were found for the choice probabilities in quarter

9, while only one was found for quarter 21.

entry game was about 4 hours. Taking into account that the dimensionality in the considered ordered logit

game is 8 for the 2-player case, the characteristic CPU time for the ordered logit case is 8 hours.
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