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1. Introduction

The research reported here is prompted by the debate in monetary economics regarding

Friedman’s [1969] provocative suggestion that an optimal monetary policy should generate

negative seignorage. While Friedman does not necessarily equate optimality of a policy

with ex ante Pareto efficiency of equilibrium under the policy, subsequent research has

made this identification.

This debate has focused on whether a rate of negative seignorage as extreme as rec-

ommended by Friedman would be compatible with existence of an equilibrium (cf. Hellwig

[1982] and Bewley [1983]), and on whether the opportunity for self-insurance that is Fried-

man’s grounds for his recommendation is overshadowed by the loss of some insurance that

inflation implicitly provides (cf. Levine [1991])1 or the suboptimal incentives for agents on

both sides of a market to expend effort in a search for trading partners (cf. Shi [1995]). How-

ever, the various critics of Friedman’s proposal seem to share an implicit assumption that

one should look for an efficient monetary mechanism, rather than looking for an efficient

mechanism within the potentially broader class of mechanisms that fit the environmental

constraints that the use of money suggests must exist.

Our work stands in contrast to this tradition of ignoring nonmonetary mechanisms. We

admit such mechanisms, and study what features an economic environment might possess,

such that it would be Pareto efficient for the exchange of goods in that environment to

be conducted on spot markets where those goods trade for money. We prove a conjecture

that is essentially due to Bewley [1980, 1983].2 Spot trading using money that pays zero

interest is nearly efficient when there is only a single good (or a composite commodity)

at each date and state of the world; random shocks are idiosyncratic, privately observed,

and temporary; markets are competitive; and the agents are very patient. (When agents

1There is a small body of literature on the potential beneficial effect of social insurance that expansionary
monetary policy can provide. Levine [1991] and Kehoe, Levine and Woodford [1992] study two-state
Markov equilibrium in an environment where two types of agents switch their preferences stochastically
and equilibrium distribution of money balances is degenerate. Deviatov and Wallace [2001] study the
issue in a search theoretic model of money where money is indivisible and agents can hold at most two
units of it. Molico [1997] and Edmond [2002] provide numerical examples of expansionary monetary policy
dominating other policies, the former in a random-matching model of money, and the latter in an over-
lapping generation setting with money-in-utility-function.

2In [1980], Bewley conjectures that full risk sharing is achieved in the limit if a gross interest rate
virtually as high as the inverse of agents’ discount factor is paid, regardless of what value the discount
factor has. In [1983], he shows that setting the interest rate virtually at that level generally precludes
equilibrium from existing, but that the interest rate on money can be set arbitrarily close to the inverse of
the discount factor as the discount factor approaches unity.
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are patient, zero interest on money is close to the Friedman rule.) This result is a close

analogue, for trade using outside, fiat money, of a recent characterization by Levine and

Zame [2002] of environments in which spot trade using inside money, in the form of one-

period debt payable in a commodity, is nearly Pareto efficient.

Bewley’s results, and his discussion of them, also make it clear that monetary spot

trading does not achieve full insurance if traders are impatient and risk averse. We sharpen

Bewley’s negative observation here.

Bewley’s negative observation is put in perspective by the research of Atkeson and Lucas

[1992], who characterize the symmetric, Pareto efficient long-term contract in an environ-

ment closely similar to Bewley’s. That contract, which achieves an upper bound of what

any economic institution in Bewley’s environment could achieve, falls short of full insur-

ance. If the question to be resolved is whether or not (or in what circumstances) monetary

spot trading is an efficient economic institution, then the relevant comparison would seem

to be between the equilibrium allocations of Bewley’s sequence of spot markets, on the one

hand, and Atkeson and Lucas’ contract on the other.3 Nevertheless this comparison, like

Bewley’s, indicates that monetary spot trading is inefficient. That is, Atkeson and Lucas’

contractual allocation cannot be implemented by monetary spot trading.

Kocherlakota [2002] suggests that even Atkeson and Lucas’ allocation may not be the

most appropriate candidate for comparison with Bewley’s equilibrium allocation. Kocher-

lakota argues that monetary spot trade has two features that would make it obviously

inefficient in many economic environments, and he concludes that the equilibrium alloca-

tion of monetary spot trading should be compared with the equilibrium allocation of an

efficient mechanism in an environment where constraints impose the two limitations on all

mechanisms. One of the two features is almost complete anonymity, in the sense that

each agent must be treated on the basis of his current characteristics and behavior and

a one-dimensional summary statistic of his past characteristics and behavior. The other

feature is the ability of an agent at any time to consume his own endowment without inter-

ference or nonpecuniary punishment. This second feature entails that a mechanism cannot

induce agents to behave efficiently by threatening them with lower-than-autarky levels of

expected discounted utility otherwise. Both Levine and Zame’s spot-trading allocation

with inside money and also Atkeson and Lucas’ contractual allocation can be implemented

3Mas Colell and Vives [1993] show that Atkeson and Lucas’ contractual allocation can be implemented
by a mechanism, that is, by a game form that has feasible outcomes at all out-of-equilibrium message
profiles, as well as in equilibrium.
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subject to the constraint on dimensionality of information or memory. However, neither

of those allocations can be implemented without using nonpecuniary punishments for en-

forcement, since both allocations involve some agents being in date-event situations where

their expected discounted utility falls below the autarkic level. Kocherlakota shows that a

random-matching environment resembling those of Shi [1995] and Trejos and Wright [1995]

constrains a feasible mechanism to possess both features of monetary spot trading, but that

nevertheless there is a mechanism with an equilibrium allocation that Pareto dominates

monetary spot trading ex ante.

We study monetary spot trading in an environment that combines the constraints rep-

resented in the two bodies of research that we have just discussed. First, each agent’s

preferences among net trades in the current spot market and his current endowment are

private information (as in Bewley, Levine and Zame, and Atkeson and Lucas). Second,

agents can consume their own endowments without restriction or nonpecuniary punish-

ment (as in Kocherlakota). Because an agent’s characteristics are assumed to be private, a

feasible mechanism cannot condition the agent’s treatment directly on those characteristics

as the mechanism formulated by Kocherlakota does. Despite this constraint, we construct

an example of a Bewley environment in which a nonmonetary mechanism provides a strictly

higher level of ex ante expected discounted utility than is provided by a monetary mech-

anism that does not involve continuous policy intervention by the monetary authority or

planner. We also construct an example of an environment in which an expansionary mon-

etary mechanism is Pareto superior to a laissez-faire or contractionary mechanism.

2. The environment

The economy is an infinite horizon exchange economy. Time is discrete and denoted by

t = 0, 1, 2, . . .. There is a continuum (I, I, µ) with measure 1 of infinite-lived agents. At

each date, there is a single perishable good with which agents are endowed, and that they

trade and consume.

Agents’ endowments and preferences fluctuate. For a generic agent i, his date-t state

θit is a sequence of independent, identically distributed random variables taking values in

a finite state space Θ.4 Each θit has distribution π on Θ. Each agent’s state follows his

4Bewley [1980, 1983] and Levine and Zame [2002] model each agent’s shocks as Markovian, and study
price-taking equilibrium in an economy with finitely many traders. Bewley assumes time is infinite in the
past as well as the future, which avoids there being an initial condition and ensures existence of a stationary
equilibrium. Levine and Zame study an equilibrium that is not stationary in general. In the markovian
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own independent process. We assume that the realization of the sequence of profiles of

individual agents’ states 〈{θit}i∈I〉∞t=0 is an i.i.d. process of random variables with distribu-

tion π defined on (I, I, µ), almost surely with respect to the probability space on which

the random states of all agents are defined.5 To make explicit the mathematical structure

just described, we denote this probability space by (Ω,B, P ). That is, for every i and t,

θit: Ω → Θ; and for every n ∈ N and every 1–1 mapping f : {0, . . . , n} → I × N and every

mapping g: {0, . . . , n} → Θ, P (
⋂

m≤n{ω|θf(m)(ω) = g(m)}) = Πm≤nπ({g(m)}). The formal

statement of our assumption is that, for every ω in an event B ∈ B with P (B) = 1, for ev-

ery n ∈ N and every 1–1 mapping f : {0, . . . , n} → N and every mapping g: {0, . . . , n} → Θ,

µ(
⋂

m≤n({i|θif(m)(ω) = g(m)}) = Πm≤nπ({g(m)}).
At each date, an agent with state θ ∈ Θ receives endowment e(θ) and enjoys period

utility u(c, θ) if he consumes c units of good. The endowment good is perishable. E[e(θ)] >

0. The consumption set at each date, and on each sample path, is the set [0,∞) of

nonnegative real numbers. The bounded function u:R+ × Θ → [0, b] is weakly increasing,

continuous, and concave in c. It is assumed that, when u(c, θ) is regarded as a function of

c, it has a positive, finite supergradient at e(θ).6 Agents maximize the discounted expected

utility of their future consumption streams, with common discount factor β.

Agents exchange endowments according to a trading mechanism that must be feasible

with respect to some informational constraints in the environment. Competitive trading

using money can be implemented by a mechanism that meets these constraints. First we

discuss the constraints and define a trading mechanism in general terms, and then we will

specify the mechanism that implements competitive monetary trade.

Each agent i privately learns his own realization of θit at date t. Each agent i delivers

a quantity zit ∈ R+ of the endowment good to a resource pool at the planner’s disposition

and also sends a message mit ∈ R to the planner. The planner maintains a one-dimensional

summary statistic (that is, a real number) wit regarding i’s history, as will be described

fully below. The planner uses the summary statistics and messages of all agents and the

amounts contributed by all agents to update the summary statistic of each agent i and

to reallocate a quantity yit of the endowment good from the resource pool to i. Agent i

consumes cit = e(θit)−zit +yit. The quantities wit, mit, zit, yit, cit, and wi(t+1) are observed

case, the stationary joint distribution of money balances and individual shocks is statistically dependent.
Since we will treat the initial distribution of money balances as part of the mechanism, and since we confine
attention to stationary equilibrium, we must restrict attention to i.i.d. shock processes.

5This assumption is not a theorem of probability, but it is a logically consistent extension of probability
theory. Cf. Green, [1994].

6That is, for some g > 0, ∀c ∈ R+ u(c, θ) ≤ u(e(θ), θ) + g(c− e(θ)).
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by agent i and the planner, but not by the other agents.

The planner’s limited memory and the agents’ inability to observe or communicate with

one another are important features of the environment. The planner is not able to recall

the entire history of his dealings with agent i prior to date t, but only the one-dimensional

statistic wit. Because the agents are ignorant of other’s histories, states and reports, which

are reflected in the planner’s decisions, in principle an agent might draw inferences about

other agents from observing the planner’s decisions. Although the stationarity and “law-of-

large-numbers” assumptions regarding the particular environment studied here make such

inference uninformative, for logical clarity we will not suppress past decisions of the planner

as arguments of an agent’s decision rule.

Another feature that we emphasize heavily (following Kocherlakota [2002]) is the plan-

ner’s limited enforcement power. The planner cannot impose any nonpecuniary penalty

on an agent for sending or failing to send a particular message, or for not following an

instruction given in the planner’s message. The worst that the planner can do is to give

the agent nothing in the current period when the endowment pool is reallocated, and then

update the agent’s summary statistic to a value that encodes the fact that the prohibited

message has been sent or that the instruction has been flouted, and then to treat the agent

ungenerously in the future as a result of the summary statistic having that unfavorable

value. In particular, the worst outcome that the planner can impose on an agent is au-

tarky. (The planner would impose autarky on agent i by setting yit = 0 for the current and

all future t. Faced with this planner’s policy, i would optimally set zit = 0 for all future t.)

We will denote the set of profiles of summary statistics of all agents by F , the set of

profiles of agents’ contributions to the resource pool by P , and the set of profiles of agents’

messages to the planner by G. Formally, let F be the set of measurable functions from I to

R, let P be the set of nonnegative-valued functions in F , and let G = F .7 If f ∈ F , then we

use fi to denote f(i), and so forth with elements of other spaces of functions on I. A trading

mechanism consists of an initial w0 ∈ F and time-indexed sequences of updating rules W =

〈Wt: F×G×P → F 〉t∈N and reallocation rules Y = 〈Yt: F×G×P → P 〉t∈N. We assume that

the planner is able to assign w0 according to any distribution in a way that is independent

of all θit considered as a random variables defined on (I, I, µ), almost surely with respect

to (Ω,B, P ).8 If wt ∈ F , mt ∈ G, and zt ∈ P , are the profiles of agents’ summary statistics,

7An agent can report a real number to the planner. Alternatively, if R is mapped onto Θ, then the
mapping provides a semantics by which an agent can report his current state.

8Formally, we require that the planner observes a uniformly distributed r.v. U : I → [0, 1] such that,
for every ω in an event B ∈ B with P (B) = 1, the following condition holds. For every probability
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messages, and endowment contributions at date t; and if wt+1 ∈ F and yt ∈ P are the

profiles of the planner’s updated summary statistics for the agents and reallocations of

endowment to them; then wt+1 = Wt(wt, mt, zt), and yt = Yt(wt,mt, zt). The reallocation

rule Yt must satisfy the materials-balance condition that
∫

I
Yit(wt,mt, zt) dµ ≤ ∫

I
zit dµ.

Agent i’s strategy consists of time-indexed sequences of functions M = 〈Mit〉t∈N and

Z = 〈Zit〉t∈N that specify i’s message and the quantity of the endowment good that he

delivers, respectively, at date t. Agent i has full recall of his own history, including the

histories of his states, the values of the summary statistic that the planner has assigned him,

and his endowment-good deliveries and messages to the planner. Because i can recursively

reconstruct his past deliveries and messages from the other data, those past actions do

not have to be explicit arguments of his current decision functions. We can thus represent

Mit: (R×Θ)t+1 → R and Zit: (R×Θ)t+1 → R+. That is, mit = Mit(wi0, θi0, . . . , wit, θit) and

zit = Zit(wi0, θi0, . . . , wit, θit). There is a feasibility constraint that i cannot deliver more

than his endowment, that is, Zit(wi0, θi0, . . . , wit, θit) ≤ e(θit).

Now we represent a competitive trading arrangement using a constant nominal stock of

fiat money as such a mechanism. We suppose that agents hold money as account balances

rather than as physical inventories of a fiat object. Indeed, an agent’s money wealth

(that is, the amount of money in his account) is the summary statistic that the planner

will initially assign and subsequently update. We require that
∫

I
|wi0|dµ < ∞. At every

date t, the planner essentially operates a spot market according to the rules of a Shapley-

Shubik [1977] trading game. The planner interprets each agent’s message as a bid to spend

money to acquire other traders’ endowment, disregarding messages that are negative or that

exceed the sender’s balance. That is, the planner considers m̃it = max(0, min(mit, wit)) to

be the money bid of agent i. These money bids and the agents’ contributions zit determine

the spot price pt =
∫

I
m̃it dµ/

∫
I
zit dµ. The planner redistributes m̃it/pt quantity of the

endowment pool to each trader i and adds ptzit− m̃it to the wealth wit of agent i. That is,

if we represent the profile of m̃it by defining B: F × G → P according to ∀i Bi(w,m) =

max(0, min(mi, wi)), then

Yit(wt,mt, zt) = Bi(wt, mt)

∫
I
zit dµ∫

I
Bi(wt,mt) dµ

(1)

measure ψ on R, interval [a, b] ⊆ [0, 1], n ∈ N, and every mapping f : {0, . . . , n} → N and every mapping
g: {0, . . . , n} → Θ, µ({i|a ≤ U(i) ≤ b} ∩ ⋂

m≤n({i|θif(m)(ω) = g(m)}) = (b − a)Πm≤nπ({g(m)}). Then,
given an arbitrary measure ψ on R that the planner wants to make the distribution of w0 and letting f be
the c.d.f. of ψ, he can define wi0 = min{x|U(i) ≤ f(x)}.
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Wit(wt,mt, zt) = wit + zit

∫
I
Bi(wt,mt) dµ∫

I
zit dµ

−Bi(wt,mt). (2)

We call a mechanism of this form a laissez-faire monetary mechanism, since the planner

does not pay interest on money nor tax money nor adjust the nominal money stock after

date 0, but merely operates a market on which the agents trade competitively. Note that

the specifications of Y and W just given are part of the definition of the class of laissez-faire

monetary mechanisms. That is, laissez-faire monetary mechanisms differ from one another

only in how the initial summary statistics (that is, agents’ initial money balances) wi0 are

assigned.

We call a monetary mechanism stationary expansionary (resp. stationary contrac-

tionary) if there is a τ > 0 (resp. τ < 0),

Wit(wt,mt, zt) = τQ + (1− τ)
(
wit + zit

∫
I
Bi(wt,mt) dµ∫

I
zit dµ

−Bi(wt,mt)
)

(3)

where Q =
∫

I
wit dµ is the aggregate money balance in the economy. That is, with a

stationary expansionary mechanism, an agent’s summary statistics is updated as if his

after-trade money holdings is inflated at a constant rate τ , and the seignorage is distributed

as a lump-sum transfer. In contrast, with a contractionary monetary mechanism, an agent’s

summary statistics is updated as if he receives interest payment on his money holdings at

a rate τ which is financed by a lump-sum tax on the population.

3. Definition of equilibrium

We focus on symmetric equilibrium, in which all agents use the same strategy (M,Z).

(That is, M and Z are infinite sequences of functions with the domains and ranges specified

above. Agents may take different actions from one another because their individual states

are distinct points of the domains of these decision functions.) A competitive equilibrium is

represented by a strategy that each trader is assumed to follow. A strategy is an equilibrium

strategy if each agent acts optimally by following it, when he takes it as parametric that

the other traders will follow the strategy.

It is well known that such an equilibrium can be characterized by dynamic programming.

Consider a mechanism (w0,W, Y ), where each of W and Y is a time-indexed sequence of

functions. Consider a strategy (M,Z), where each of M and Z is a time-indexed sequence

of functions, and consider the value function of a trader i participating in the mechanism,
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who takes it as parametric that the other traders will all follow (M, Z). Let wt be the

profile of all agents’ summary statistics at the beginning of date t. For j 6= i, define mjt =

Mjt(wj0, θj0, . . . , wjt, θjt) and zjt = Zjt(wj0, θj0, . . . , wjt, θjt). Then define m∗(m) to be the

message profile that results from i sending message m while every other agent j sends the

message mjt specified by strategy M . Formally, define m∗:R→ G by [m∗(m)](i) = m and

∀j 6= i [m∗(m)](j) = mjt and define z∗:R→ P by [z∗(z)](i) = z and ∀j 6= i [z∗(z)](j) =

zjt. Now the value function V ∗
t :R× F → R of i at t can be defined as

V ∗
t (wit, wt) = E

[
max
z,m

{
u(e(θ)− z + [Yit(wt,m

∗(m), z∗(z))], θ)

+βV ∗
t+1(Wit(wt, m

∗(m), z∗(z)),Wt(wt,m
∗(m), z∗(z)))

}]
. (4)

The expectation on the right side is taken with respect to the measure π on Θ. Standard

reasoning about the fixed point of a contraction mapping establishes that the sequence

V ∗
0 , V ∗

1 , . . . is uniquely defined. The initial profile of summary statistics w0, the statistic-

updating rules Wt, and a strategy (M, Z) determine a sequence of summary statistics wt.

The strategy (M,Z) is an equilibrium strategy if, for all t and for all w in the range of wt,

Z and M specify the optimizing values of z and m in the expression on the right side of

the value function.

For an equilibrium strategy (M, Z), define the value function sequence of the equilibrium

by Vt(wit) = V ∗
t (wit, wt). In particular, in the case of a monetary mechanism with stationary

policy τ , Yt and Wt are defined in terms of the price

pt =

∫
I
Mit(wi0, θi0, . . . , wit, θit) dµ∫

I
Zit(wi0, θi0, . . . , wit, θit) dµ

.

Utilizing these observations, the value to an agent of having the summary statistic w at

date t is a function Vt:R→ R is defined by

Vt(w) = E
[

max
z∈[0,e(θ)], m∈[0,w]

{
u(e(θ)− z +

m

pt

, θ) + β Vt+1

(
τQ + (1− τ)(w + ptz−m)

)}]
(5)

Restricting m to the interval [0, wt] is justified by the fact that m̃ = wt if m > wt, and

m̃ = 0 if m < 0.

We conclude this section by defining stationary Markov competitive equilibrium of a

monetary mechanism, the existence of which will be investigated in Section 4. Define

the current-date projection mapping γ:
⋃

t∈N(R×Θ)t+1 → R×Θ by γ(w0, θ0, . . . , wt, θt) =

(wt, θt). A sequence 〈Ht: (R×Θ)t+1 → R〉t∈N is stationary Markov if for each t, Ht = H0◦γ.

An equilibrium (M, Z) is a stationary Markov competitive equilibrium if the sequences
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M and Z are stationary Markov and almost surely with respect to (Ω,B, P ), w0 and

w1 are identically distributed random variables on I. These are sufficient conditions for

〈wit, θit, cit〉t∈N to be almost surely a stationary Markov process on I and for the spot price∫
I
m̃it dµ/

∫
I
zit dµ to be constant over time.9

Given any such equilibrium, clearly there is another monetary mechanism for which the

time-invariant price is 1 and the equilibrium allocation is identical to that of the original

mechanism. The new mechanism is obtained simply by dividing wi0 by the equilibrium price

p0, for each trader i. The equilibrium strategy in the mechanism is obtained from that of the

old one by the same normalization. In a stationary Markov competitive equilibrium with

price 1, the definition of equilibrium can be simplified by defining the net trade xt = zt−mt.

Then the Bellman equation can be rewritten as

V (w) = E
[

max
x∈[−w,e(θ)]

{
u(e(θ)− x, θ) + β V

(
τQ + (1− τ)(w + x)

)}]
. (6)

4. Existence of a laissez-faire monetary mechanism having a sta-
tionary Markov competitive equilibrium

In this section we prove that, for any environment satisfying the assumptions in Section

2, there is a laissez-faire monetary mechanism that has a stationary Markov competitive

equilibrium.10 This is done by studying an auxiliary optimization problem of an autarkic

agent who can store the endowment good without depreciation, and by applying informa-

tion about the solution of this problem to construct the equilibrium.

Consider an environment identical to that of Section 2 except in three respects: there

is only one agent rather than a continuum, he receives an endowment of size w0 + e(θ0) at

date 0, and he can store without depreciation the endowment that he has received. Other

aspects of the model are the same. That is, the agent’s endowment and utility are functions

of an i.i.d. process 〈θt〉t∈N taking values in a finite set Θ and having distribution π. He

receives endowment w0 + e(θ0) at date 0 and e(θt) at each date t > 0. The agent chooses

9Note that the function sequences W and Y of a laissez-faire monetary mechanism are stationary
Markov. The definition of stationary equilibrium given here is the appropriate definition, in view of this
fact. An example of a monetary mechanism that is not itself stationary Markov is one in which each agent
receive a so-called “helicopter drop,” that is, a fixed amount of newly created fiat money, proportional
to the current aggregate nominal money stock, in each period. The mechanism is not stationary Markov
because the amount received, which grows geometrically, is a time-dependent, additively separable term of
W . The appropriate definition of stationary Markov equilibrium for this mechanism would focus on time
invariance of the distribution of agents’ real balances, rather than of their nominal balances.

10The proof can be easily extended to the case of stationary expansionary monetary mechanism.
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date-0 consumption c0 from [0, w0 + e(θ0)] and, for t > 0, chooses date-t consumption ct

from [0, wt + e(θt)] (where wt = wt−1 + e(θt−1)− ct−1) as a function of previous history. He

maximizes expected discounted utility E[
∑

t∈N βtu(ct, θt)], and his utility function u(c, θ) is

bounded, and strictly increasing and concave in c.

Standard dynamic programming results (cf. Lucas and Stokey [1989]) provide the fol-

lowing information.

Lemma 1. For the auxiliary problem, there is a decision function C:R+ × Θ → R+

such that the agent’s optimal choice at every date t is that ct = C(wt, θt). There is a strictly

concave, increasing value function V :R+ → [0, b/(1− β)] such that, for all w and θ,

C(w, θ) = arg max
c∈[0,w+e(θ)]

[u(c, θ) + βV (w + e(θ)− c)] (7)

and V (w) = E[u(C(w, θ), θ)+βV (w+e(θ)−C(w, θ))]. There is a probability measure ψ on

R+ such that 〈(wt, θt)〉θ∈N is a Markov process that has stationary transition probabilities

and that converges weakly to a stationary asymptotic distribution such that the marginal

distribution of w is ψ.

For this specific optimization problem, Lemma 1 can be sharpened by showing that ψ

has bounded support.

Lemma 2. For the stationary asymptotic marginal distribution ψ of Lemma 1, there

exists w̄ ∈ R+ such that ψ([0, w̄]) = 1.

Proof. Since V is concave, for every w ∈ R+, there is a supergradient gw ∈ R+ satisfying,

for all x ∈ R+, V (x) ≤ V (w) + (x − w)gw. Setting x = 0 and noting that 0 ≤ V (0) ≤
V (w) ≤ b/(1− β), the supergradient inequality yields gw ≤ b/(w(1− β)). For each θ ∈ Θ,

consider u(c, θ) as a function of c and let hθ ∈ R+ be a supergradient of the function at

e(θ). If w̄ > βb/((1 − β) minθ∈Θ hθ), then equation (7) implies that C(w, θ) > e(θ) for

all w ≥ w̄ and for all θ. Thus wt > w̄ implies that wt+1 < wt. Equation (7) also shows,

in conjunction with the fact (established in Rockafellar [1970], Theorem 24.3) that every

selection from the superdifferential of a continuous concave function is nonincreasing, that

wt ≤ w̄ implies wt+1 ≤ w̄. That is, wt first decreases monotonically to a level not exceeding

w̄ if w0 > w̄, and then does not escape from the interval [0, w̄]. Therefore, since ψ is the

marginal of a stationary distribution, ψ([0, w̄]) = 1.

Now we apply this information regarding solution of the auxiliary problem to specifying

a laissez-faire monetary mechanism that has a stationary Markov competitive equilibrium.
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Proposition 1. In an environment such as has been described in Section 2, and where

the utility function u is strictly concave in c for each θ, there is a laissez-faire monetary

mechanism that has a stationary Markov competitive equilibrium.

Proof. This mechanism is specified by distributing w0 according to the stationary marginal

distribution ψ in the solution of the auxiliary problem. Clearly ψ has finite mean, since

µ is a finite measure and ψ has bounded support by Lemma 2. The agents’ stationary

strategy is defined in terms of the decision function C of Lemma 1. Specifically for every

agent i, Mit(wi0, θi0, . . . wit, θit) = max(0, C(wit, θit) − e(θit) and Zit(wi0, θi0, . . . wit, θit) =

max(0, e(θit)−C(wit, θit)). By induction on t, the joint distribution of wt and θt (as random

variables on (I, I, µ)) is the same as the stationary distribution of w and θ in the auxiliary

problem.11 Thus, by stationarity of that distribution, the equilibrium price pt is 1 and the

distribution of wt+1 is also ψ. Since pt = 1 for all t almost surely, the decision problem of

an agent in this equilibrium is isomorphic to the agents’ decision problem in the auxiliary

problem. Thus M and Z are an equilibrium strategy because C is the optimal strategy in

the auxiliary problem.

Two points are worth mentioning. First, we impose strict concavity of u in Lemma

1 and Proposition 1 so that the optimal strategy C given in equation (7) is continuous

and the asymptotic distribution ψ is stationary (cf. Lucas and Stokey [1989]). Second,

autarky is obviously also an equilibrium of this mechanism. We do not know whether or

not there are multiple non-autarkic equilibrium. But given the way that the equilibrium is

constructed, it Pareto dominates all other equilibrium ex ante.

5. Equilibrium of a laissez-faire monetary mechanism is nearly
efficient if agents are sufficiently patient

In this section we show that stationary Markov competitive equilibrium of a laissez-

faire monetary mechanism is nearly ex ante Pareto efficient in an environment of sufficiently

patient traders. To do so, consider a family of environments that are identical in all respects

except for the value β of the agents’ discount factor. We will show that, as β approaches 1,

the equilibria constructed in the proof of Proposition 1—in which each trader’s optimization

problem is isomorphic to that of an autarkic agent whose endowment is perfectly storable—

are nearly efficient.

11This assertion holds almost surely with respect to (Ω,B, P ).
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The concept of near efficiency that we study is a variant of Debreu’s [1951] coefficient

of resource utilization. A mechanism in an environment is δ-efficient, for δ ∈ (0, 1], if it

has an equilibrium allocation that all agents would weakly prefer ex ante to the full-risk-

sharing allocation of the environment in which the endowment of the actual environment

is shrunken to any scalar replica of proportion smaller than δ.

Formally, fix a stochastic process θ, endowment function e, and utility function u satis-

fying the requirements of Proposition 1, so that stationary Markov competitive equilibrium

is assured to exist. For β ∈ (0, 1) and δ ∈ (0, 1], define Eβδ to be the environment with

stochastic process θ in which all agents’ preferences are characterized by utility function

u and discount factor β, and in which each trader i receives endowment δe(θit) at date

t. Let rδ: Θ → R+ be a mapping such that E[rδ(θ) − δe(θ)] = 0 and also such that

there is a common supergradient of {u(rδ(θ), θ)}θ∈Θ.12 The allocation implied by rδ is the

complete risk sharing allocation in economy Eβδ, for every β. For every β and δ, define

Uδ =
∑

θ∈Θ π(θ)u(rδ(θ), θ). Uδ/(1 − β) is the ex ante expected discounted utility of con-

sumption in a full-risk-sharing allocation of environment Eβδ. Note that the consumption

levels rδ(θ) and the expected utility Uδ per period do not depend on β. By the assumption of

Proposition 1 that each u(c, θ) is strictly concave in c, δ < ε implies that ∀θ rδ(θ) < rε(θ).

Thus, because a strictly concave, increasing function on R+ is strictly increasing, δ < ε

implies that Uδ < Uε. Define Vβ to be the ex ante expected value of consumption in the

stationary Markov competitive equilibrium of the laissez-faire monetary mechanism con-

structed in the proof of Proposition 1. (That is, Vβ = EψV (w0), where V is the value

function for the auxiliary problem of Lemma 1 with discount factor β.) Then the laissez-

faire monetary mechanism in environment Eβ1 is δ-efficient if δ = sup{ε|Vβ ≥ Uε/(1− β)}.
Proposition 2. For any δ < 1, there is a β < 1 such that the laissez-faire monetary

mechanism is an δ-efficient mechanism of the environments with discount factors in [β, 1).

Proof. We set ε = (1 + δ)/2, and we construct a strategy that asymptotically provides

the full-risk-sharing allocation in Eβε. The expected discounted utility that this strategy

yields is a lower bound for Vβ, which is the expected discounted utility that an agent’s

optimal strategy yields. We prove the proposition by using the strategy to show that, for

sufficiently large β, the lower bound is sufficiently close to Uε/(1−β) that Vβ ≥ Uδ/(1−β).

As in the proof of Lemma 2, we define the strategy in terms of the consumption func-

12If u′(rδ(θ), θ) exists for each t, then the condition that this derivative has the same value for all θ is
equivalent.
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tion that it implies. Define Γ:R+ × Θ → R+ by Γ(w, θ) = min(w + e(θ), rε(θ)). That

is, the agent attempts to replicate the consumption that he would enjoy in the full-risk-

sharing allocation in Eβε, subject to the constraint that the laissez-faire monetary mech-

anism in the actual economy Eβ1 places on his choice. The strategy for agent i implied

by this consumption function is that M∗
t (wi0, θi0, . . . .wit, θit) = max(0, Γ(wit, θit) − e(θit))

and Z∗
t (wi0, θi0, . . . .wit, θit) = max(0, e(θit) − Γ(wit, θit)). The wealth-updating rule of the

laissez-faire monetary mechanism entails that wi(t+1)−wit = (1−ε)e(θit)+εe(θit)−Γ(wit, θit).

Define vit = (1−ε)(e(θit)−E[e(θit)])+εe(θit)−rε(θit). Note that 〈vit〉t∈N is i.i.d., E[vit] = 0,

and wi(t+1)−wit ≥ vit +(1− ε)E[e(θit)]. Applying a law of the iterated logarithm (Breiman

[1968],Theorem 13.25) to the sums
∑

τ<t(−viτ ) establishes that limt→∞ wit = ∞ almost

surely. Therefore, almost surely ∃τ ∀t≥τ Γ(wit, θit) = rε(θit).

There is a number ϕ > 0 such that Uε − ϕb > Uδ. By the preceding argument, there is

date τ such that P ({ω|∀t≥τ Γ(wit, θit) = rε(θit)}) > 1− ϕ/2.

Let D = {ω|∀t≥τ Γ(wit, θit) = rε(θit)}. Then, for t ≥ τ ,

E[u(Γ(wit, θit))] =

∫

D

u(rε(θit)) dP +

∫

Ω\D
u(Γ(wit, θit)) dP

≥
∫

D

u(rε(θit)) dP +

∫

Ω\D
[u(rε(θit))− b] dP

= E[u(rε(θit))]− bP (Ω\D)

> Uε − (ϕ/2)b.

Therefore Vβ ≥ E[
∑

t≥τ βtu(Γ(wit, θit))] > βτ (Uε − (ϕ/2)b)/(1 − β), so Vβ > Uδ/(1 − β) if

β ≥ [(Uε − ϕb)/(Uε − (ϕ/2)b)]1/τ .

6. When agents are impatient

The approximate efficiency of laissez-faire policy with very patient agents does not

preclude other policy or mechanism from being even better. The potential efficiency loss

might be large when agents are impatient. In this section, we study two examples of a

specialization of the environment discussed above. The first one shows that the equilibrium

of the laissez-faire monetary mechanism is not an efficient allocation subject to the material

balance and incentive constraints. Specifically, the mechanism can be modified by adding

an insurance arrangement that intuitively is nonmonetary, and that provides agents with

a higher level of expected discounted utility ex ante. The second example shows that
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the equilibrium of a expansionary monetary mechanism is efficient while a laissez-faire or

contractionary monetary mechanism is not. It remains as a question whether in some

environment a nonmonetary mechanism dominates any monetary mechanism.

6.1. An example where a nonmonetary mechanism Pareto dominates a laissez-faire mone-

tary mechanism

Consider an environment where agents’ marginal utility fluctuates between high (state

h) and low (state l) over time, Θ = {h, l} ⊆ R+ and 0 < l < h, but they all receive a

constant endowment e(θ) ≡ e for all θ ∈ Θ every period. For agent i, θit is i.i.d. with

a Bernoulli(1/2), that is, the probability of θit = h is 1/2 for all t ≥ 0. Agents have a

satiation level of consumption ζ each period, e < ζ ≤ 2e. An agent with an individual

state θ derives period utility

u(c, θ) = θ min{c, ζ} (8)

from consuming c units of endowment.13

Given that preference shocks are independent across agents, and each agent’s preference

shock follows a Bernoulli process, at each period, half of the population have high marginal

utility and the other half have low marginal utility. The first-best outcome (efficient allo-

cation subject only to material balance constraint) in this environment is to have agents

with high marginal utility consume up to satiation level ζ, and agents with low marginal

utility consume the rest e − (ζ − e) units of endowment per person. Hence, the first-best

welfare level is given by

Wfirst-best =
1

1− β

[h

2
ζ +

l

2
(e− (ζ − e))

]
. (9)

At autarky, an agent consumes his own endowment every day. The corresponding welfare

is

Wautarky =
1

1− β

h + l

2
e. (10)

In this environment, consider a laissez-faire monetary mechanism where the trading

price is normalized to 1. That is, for any t ≥ 0, any profiles of agents’ summary statistics

13In this specification, the utility function is not strictly concave and the agent is satiated at consumption
level ζ. These simplifying assumptions are not crucial to the results derived here. We could define u(c, θ) =
θ min{c, ζ} + f(c), where f :R+ → R+ is a strictly concave, increasing function having very small right
derivative at 0, and our arguments would remain sound. The utility function so defined would be strictly
concave and increasing in consumption in every state.

14



wt ∈ F , messages mt ∈ G, and endowment contributions zt ∈ P , for any agent i,

Yit(wt, zt,mt) = max(0, min(mit, wit)) (11)

Wit(wt, zt,mt) = wit + zit −mit (12)

We are going to show that for some parameter values, there is a stationary equilibrium

of the mechanism at which agents accumulate only up to S = ζ − e units of money. The

equilibrium strategy is as follows. When an agent’s marginal utility is high (θit = h), he

spends up to S units of money if he can afford to get as close to satiation level ζ as possible.

When his marginal utility is low (θit = l), he spends S units of money if he has at least 2S

units; keeps S units and spends the rest if his money balance is between S and 2S; and

sells S −wit units of endowment to get his end-of-period money balance to S if he has less

than S units of money. That is,

Zit(wi0, θi0, . . . , wit, θit) =

{
S − wit if θit = l, wit < S
0 otherwise

(13)

Mit(wi0, θi0, . . . , wit, θit) =





S if θit = h, wit ≥ S
wit wit < S
S if θit = l, wit ≥ 2S
wit − S S ≤ wit < 2S
0 wit < S

(14)

At this equilibrium, agents’ money balances are shuffling back and forth between zero

and S units. No one holds any other quantity of money. (If they do, they will get back to

zero or S in finite time.) That is, the support of the money balance distribution for this

potential equilibrium is {0, S}. Given that θit follows a Bernoulli process for each agent,

µ(h, 0) = µ(h, S) = µ(l, 0) = µ(l, S) =
1

4
. (15)

The corresponding value function is then

V (0) =
1

2
(h e + βV (0)) +

1

2
(l(2e− ζ) + βV (S)) (16)

V (S) =
1

2
(h ζ + βV (0)) +

1

2
(l e + βV (S)) (17)

for w ∈ (0, S),

V (w) =
1

2
(h(e + w) + βV (0)) +

1

2
(l(2e− ζ + w) + βV (S)) (18)
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for w ∈ (S, 2S],

V (w) =
1

2
(h ζ + βV (w + e− ζ)) +

1

2
(l(2e− ζ + w) + βV (S)) (19)

and for w > 2S,

V (w) =
1

2
(h ζ + βV (w + e− ζ)) +

1

2
(l ζ + βV (w + e− ζ)). (20)

The value function on the support V (0) and V (S) can be solved from (16) and (17),

V (0) =
1

4(1− β)

[
2l(2e− ζ) + 2h e + β(h + l)(ζ − e)

]
(21)

V (S) =
1

4(1− β)

[
2h ζ + 2l e− β(h + l)(ζ − e)

]
. (22)

Given (21) and (22), the value function off the equilibrium support can be computed using

equations (18), (19), and (20). It is easy to show that the value function is piecewise linear,

continuous, and strictly increasing, and that its restriction to the set of integer multiples

of S = ζ − e, {0, S, 2S, . . .} is strictly concave on that lattice.

Given the value function, we can now verify that, under certain condition, the conjec-

tured equilibrium strategy (M,Z) given in equation (13) and (14) is indeed optimal.

Proposition 3. The strategy (M, Z) is optimal if

β2

4− 2β − β2
≤ l

h
≤ β

2− β
. (23)

The proof is in the appendix. Condition (23) is derived from an agent’s incentive

regarding trade and consumption when current marginal utility is low. The first half of the

condition guarantees that an agent does not sell more endowment when his money balance

is S since the marginal value of holding more money above S is below that of consuming

today l. The second half of the condition ensures that an agent sells his endowment when

his money balance is below S because the marginal value of postponing consumption to

some future date is higher than that of consuming today l.

The welfare level of this monetary equilibrium is exactly halfway between the welfare

levels of autarky and that of the first-best.

Wmoney =
1

2
V (0) +

1

2
V (S) =

1

1− β

[h + l

2
e +

h− l

4
(ζ − e)

]

=
1

2
(Wautarky +Wfirst-best). (24)
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This equilibrium is not efficient in the sense that a planner can modify the mechanism

slightly in a way that has a Pareto preferred equilibrium allocation to the monetary mecha-

nism. One modification is to have agents with low marginal utility and zero money balance

to give a small ε > 0 amount of their endowment to agents with high marginal utility and

zero money balance, and the rest of the strategy remains the same.

The initial profile of agents’ summary statistics w0 in the modified mechanism is iden-

tical to the initial profile in the monetary mechanism;

Ŷit(wt, zt,mt) = max(0, min(mit, wit)) (25)

Ŵit(wt, zt,mt) =

{
S if zit = S + ε or {wit = S and mit = 0}
0 otherwise

(26)

We show that the following strategy is an equilibrium strategy of the mechanism.

Ẑit(wi0, θi0, . . . , wit, θit) =

{
S + ε if wit = 0 and θit = l;
0 otherwise

(27)

M̂it(wi0, θi0, . . . , wit, θit) =





S if wit = S and θit = h
ε if wit = 0 and θit = h;
0 otherwise

(28)

Proposition 4. Suppose that condition (23) is satisfied. Then, there exists ε̂ such that

l

h
=

β(ζ − e− ε̂)

(2− β)(ζ − e) + (4− β)ε̂
(29)

for any ε ∈ (0, ε̂], (i) the welfare level achieved by adopting strategy (M̂, Ẑ) for mechanism

(Ŷ , Ŵ ), Wε
money, is higher than that of the monetary equilibrium, Wmoney; and (ii) (M̂, Ẑ)

is incentive compatible.

The proof of Proposition 4 is in the appendix. The reason that the monetary allocation

can be improved upon is simple. With a monetary mechanism, the only way an agent

can smooth consumption over time is by accumulating money. When money is run out,

he losses the ability to shift future consumption to today, at which his current marginal

utility is high. If a social planner can reallocate a small amount of endowment from the low

marginal utility agents to those with high marginal utility but no money, welfare should

be improved. Indeed, this can be accomplished by taking some endowment away from the

low-marginal-utility zero-money-balance agents and give it to high-marginal-utility zero-

money-balance agents. By doing so, the value of having both no money and S unit of
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money are increased, but the difference between them is decreased, making it easier for the

incentive constraint to satisfy.

To summarize, this example shows that, in general, a laissez-faire monetary mechanism

fails to be ex ante Pareto efficient within the class of all allocation mechanisms.

6.2. An example where expansionary policy Pareto dominates laissez-faire

Now consider the same environment as in the last example except that the satiation level

ζ > 2e. The first-best outcome in this environment is to have agents with low marginal

utility transfer all endowment to agents with high marginal utility. Moreover, because

utility is linear on [0, ζ], any such transfer that does not exceed state-h traders’ satiation

levels is efficient. We show that under some parameter restriction, such an outcome can

be achieved as an equilibrium of a stationary expansionary monetary mechanism. The

efficiency of expansionary policy in this example is fragile. It depends crucially on the local

risk-neutrality just mentioned. Nevertheless, it is a robust feature (cf. footnote 13) that

this policy is superior to laissez-faire..

Consider a stationary monetary mechanism specified by policy τ and trading price

normalized to 1. That is, for any t ≥ 0, any profiles of agents’ summary statistics wt ∈ F ,

messages mt ∈ G, and endowment contributions zt ∈ P , for any agent i,

Yit(wt, zt,mt) = max(0, min(mit, wit)) (30)

Wit(wt, zt,mt) = τQ + (1− τ)(wit + zit −mit) (31)

where Q =
∫

I
witdµ. We are going to show that the following strategy is an equilibrium

strategy of the mechanism,

Zit(wi0, θi0, . . . , wit, θit) =

{
e if θit = l;
0 otherwise

(32)

Mit(wi0, θi0, . . . , wit, θit) =

{
0 if θit = l
wit otherwise

(33)

That is, an agent spends all his money on consumption when marginal utility is high

(θit = h), and sells all his endowment e when his marginal utility is low (θit = l). Such an

outcome is efficient.

Following this strategy, agents’ money balances (summary statistics) are concentrated

on a set {αn}∞n=0, where αn is an agent’s money balance after n consecutive sales since his
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last purchase,

α0 = τQ (34)

∀n ≥ 1 αn = τQ + (1− τ)(αn−1 + e). (35)

Recursively applying (35), for n ≥ 1,

αn =
1

τ

[
τQ + e(1− τ)− (τQ + e)(1− τ)n+1

]
. (36)

Given that the environment is stationary, and that agents’ taste shock follows a Bernoulli

process, for all n ≥ 0, the measure of agents whose money balances are αn is

µ{wit = αn} =
1

2n+1
. (37)

Then

Q =
∞∑

n=0

αnµ{wit = αn} =
1

τ

[
τQ + e(1− τ)− (τQ + e)

1− τ

1 + τ

]
. (38)

Solving Q from (38), we have

Q = e. (39)

That is, at this equilibrium, aggregate real money balance at any date (which is also

per capita real money balance given that the measure of agent is 1) equals to an agent’s

endowment. By (36) and (38), for τ ∈ (0, 1),

lim
n→∞

αn =
e

τ
. (40)

Given the satiation level ζ, the optimality of strategy for θit = h (spending all money on

consumption) requires that e + αn ≤ ζ for all n ≥ 0. Therefore, a necessary condition for

the optimality of strategy (M, Z) is

e +
e

τ
≤ ζ. (41)

The value function on {αn}∞n=0 is defined as follows. For all n ≥ 0,

V (αn) =
1

2

(
h(e + αn) + βV (α0)

)
+

1

2
V (αn+1). (42)

The solution to this system of equations can be expressed recursively as follows.

V (α0) =
1

1− β

he(1 + τ)

2− β(1− τ)
(43)

∀n ≥ 1 V (αn) = V (αn−1) +
he(1 + τ)(1− τ)n

2− β(1− τ)
. (44)
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By (36), (39) and (44),

V (αn)− V (αn−1)

αn − αn−1

=
he(1 + τ)(1− τ)n

2− β(1− τ)

/ (
e(1 + τ)(1− τ)n

)
=

h

2− β(1− τ)
(45)

which is a constant. Hence, the value function V is affine on [eτ, e/τ) with slope given by

(45).

Given the value function, we can verify that the conjectured strategy (M, Z) given in

(32) and (33) as equilibrium strategy.

Proposition 5. Strategy (M, Z) given in (32) and (33) is optimal if the parameters

of the model β, l, h and policy variable τ satisfy the following condition,

e

ζ − e
≤ τ ≤ β(h + l)− 2l

β(h + l)
. (46)

Proof. The first inequality of condition (46) is a restatement of condition (41). We need

only to show the second half of the condition.

When θit = h, strategy (M, Z) specifies the optimal net trade to be x∗ = −wit. This is

optimal if for any ε > 0, and any x ∈ [−wit, e] such that x − ε ∈ [−wit, e], the expected

value of net trade x is lower than that of x− ε, that is,

h(e− x) + βV (τe + (1− τ)(wit + x)) ≤ h(e− x + ε) + βV (τe + (1− τ)(wit + x− ε)). (47)

Given that the value function V is affine with slope h/(2 − β(1 − τ)), this inequality is

equivalent to
βh

2− β(1− τ)
≤ hε

(1− τ)ε
(48)

which always holds. That is, given the first half of condition (46), x∗ = −wit when θit = h

is optimal.

When θit = l, strategy (M, Z) specifies the optimal net trade to be x∗ = e. This is

optimal if for any ε > 0, any x ∈ [−wit, e] such that x + ε ∈ [−wit, e], the expected value

of net trade x is lower than that of x + ε, that is,

l(e− x) + βV (τe + (1− τ)(wit + x)) ≤ l(e− x− ε) + βV (τe + (1− τ)(wit + x + ε)). (49)

This inequality is equivalent to

lε

(1− τ)ε
≤ βh

2− β(1− τ)
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or the second half of condition (46). That is, x∗ = e when θit = l is optimal if the second

half of condition (46) is satisfied.

By Proposition 5, the efficient allocation in this environment is achieved by the equi-

librium of a stationary expansionary monetary mechanism since policy τ > e/(ζ − e) > 0.

Any policy with τ ≤ 0, i.e., laissez-faire or contractionary monetary mechanism, would not

accomplish the task. With an expansionary policy, all agents’ money balances are bounded

by e/τ given that they are constantly inflated away at a rate τ . So “rich” people can never

get too rich to not sell. If τ ≤ 0, however, selling whenever an agent’s marginal utility is

low is no longer an optimal strategy. Let t̂ be the smallest t such that βth < l, so for all

t ≥ t̂, the discounted marginal utility of consumption in state h after t periods is lower than

the marginal utility of consuming in today’s l state. Then when an agent in state l today

has money balances t(ζ − e), t ≥ t̂, he will consume rather than selling his endowment,

contrary to strategy (M, Z) given in (32) and (33), as well as the prescription to achieve

the efficient allocation.

7. Conclusion

We consider a class of environments where there is a stringent restriction on the amount

of information that can be kept regarding the history of each agent, where an agent’s en-

dowment cannot be taken from him forcibly or by threat of nonpecuniary punishment, and

where an agent’s current characteristics are his private information. We suggest that this

class of environments formalizes the assumptions under which, according to previous con-

jectures, spot trade using fiat money can be an exactly or approximately efficient allocation

mechanism if monetary policy is set appropriately. Within this class of environments, we

provide an explicit definition of a monetary mechanism and particularly of a monetary

mechanism governed by laissez-faire policy. We show that a laissez-faire monetary mecha-

nism is nearly efficient, in terms of a criterion in the spirit of Debreu’s coefficient of resource

utilization for ex ante Pareto efficiency, in an environment within our class where agents

are sufficiently patient. We also provide an example that shows that, in an environment

within our class where agents are impatient, an expansionary monetary mechanism can

Pareto dominate any laissez-faire or contractionary monetary mechanism.
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Appendix

The proof of Proposition 3.

Given that the time-invariant price is 1 at an stationary equilibrium, agents choose

optimal strategy (M,Z) is equivalent to choose net trade X = Z−M . For convenience, we

work with net trade here. At each period t, an agent chooses his net trade x after observing

his preference θ, x ∈ [−w, e]. Let U(w, θ; x) be the expected discounted utility of choosing

net trade x, when money balance is w and preference shock is θ,

U(w, θ; x) = θ min{e− x, ζ}+ βV (w + x). (50)

Depending on the value of w and θ, there are four cases to consider.14

The first case is when θ = h and w ≤ S. Since x ≥ −w ≥ −S = e− ζ, e− x ≤ ζ. By

definition (50), U(w, h; x) = h(e− x) + βV (w + x).

dU(w, h; x)

dx
= −h + βV ′(w + x) ≤ −h +

1

2
β(h + l) < 0.

So x∗ = −w.

14When a derivative is taken at a kink in the analysis below, the relevant left or right derivative applies.
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When θ = h and w > S,

dU(w, h; x)

dx
=

{
βV ′(w + x) > 0 if x < −S
−h + βV ′(w + x) ≤ −h + β(h + l)/2 < 0 otherwise

due to V being strictly increasing. Hence, x∗ = −S = e− ζ.

When θ = l and w ≤ 2S,

dU(w, h; x)

dx
=

{
βV ′(w + x) = β(h + l)/2 > 0 if x < −S
−l + βV ′(w + x) otherwise.

When x ≥ −S, there are two more separate cases depending on whether w + x < S.

dU(w, h; x)

dx
= −l + βV ′(w + x)

{
= −l + β(h + l)/2 if − S ≤ x < S − w
≤ −l + β[l + β(h + l)/2]/2 if x ≥ S − w.

The upper expression −l + β(h + l)/2 ≥ 0 if the second inequality of (23) holds. The lower

expression −l + β[l + β(h + l)/2]/2 ≤ 0 if the first inequality of (23) holds. That is, if

condition (23) holds, the objective function U(w, h; x) reaches its peak at S − w, hence

x∗ = S − w.

When θ = l and w > 2S,

dU(w, h; x)

dx
=

{
βV ′(w + x) > 0 if x < −S
−l + βV ′(w + x) ≤ −l + β[l + β(h + l)/2]/2 otherwise

Again, the lower expression −l+β[l+β(h+ l)/2]/2 ≤ 0 if the first inequality of (23) holds.

So, if condition (23) holds, the objective function U(w, h; x) reaches its peak at −S, hence

x∗ = −S = e− ζ.

The solution x∗ in the above four cases corresponds exactly to x∗ = Zit − Mit where

(M, Z) is given in (13) and (14).

The proof of Proposition 4.

If agents adopt strategy (M̂, Ẑ), the corresponding value function V̂ is then

V̂ (0) =
1

2
(h e + hε + βV̂ (0)) +

1

2
(l(2e− ζ)− lε + βV̂ (S)) (51)

V̂ (S) =
1

2
(h ζ + βV̂ (0)) +

1

2
(l e + βV̂ (S)). (52)

From (51) and (52), V̂ (0) and V̂ (S) satisfies

V̂ (S)− V̂ (0) =
1

2

[
(h + l)(ζ − e)− (h− l)ε

]
(53)

V̂ (S) + V̂ (0) =
1

1− β

[
(h + l) e +

h− l

2
(ζ − e + ε)

]
. (54)
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The welfare level of this modified allocation Wε
money is then

Wε
money =

1

2
V̂ (0) +

1

2
V̂ (S) =

1

1− β

[h + l

2
e +

h− l

4
(ζ − e + ε)

]
(55)

which is higher than that of the monetary equilibrium Wmoney given in (24) if ε > 0.

Next we want to show that if ε < ε̂, (M̂, Ẑ) is incentive compatible, that is, no agent

wants to misreport his current marginal utility.15 At steady state, there are four types of

agent each date depending on one’s money balance (0 or S) and preference shock θ (h or

l). So there are four truth-telling constraints,

ICh0 : h(e + ε) + βV̂ (0) ≥ h(2e− ζ − ε) + βV̂ (S)

IChS : h ζ + βV̂ (0) ≥ h e + βV̂ (S)

ICl0 : l(2e− ζ − ε) + βV̂ (S) ≥ l(e + ε) + βV̂ (0)

IClS : l e + βV̂ (S) ≥ l ζ + βV̂ (0).

Condition IChS implies ICh0, and condition ICl0 implies IClS. Conditions IChS and ICl0

can be rewritten as

IChS : h(ζ − e) ≥ β(V̂ (S)− V̂ (0))

ICl0 : β(V̂ (S)− V̂ (0)) ≥ l(ζ − e + 2ε).

Substituting (53) into IChS and ICl0, condition IChS holds automatically, and condition

ICl0 can be rewritten as
l

h
≤ β(ζ − e− ε)

(2− β)(ζ − e) + (4− β)ε
. (56)

Condition (56) holds with equality when ε = ε̂. Given that the right hand side of (56) is a

decreasing function of ε, for all ε ∈ (0, ε̂], all four incentive constraints are satisfied.

That is, for all ε ∈ (0, ε̂], the equilibrium allocation for mechanism (Ŷ , Ŵ ) Pareto

dominates the equilibrium allocation of the monetary mechanism (Y, W ) and is incentive

compatible.

15According to the equilibrium strategy, mit = 0 constitutes a report that θit = l and any other message
constitutes a report that θit = h.

25


