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Abstract

We document that racial disparities in COVID-19 in New York City stem from pat-

terns of commuting and housing crowding. During the initial wave of the pandemic,

we find that out-of-home activity related to commuting is strongly associated with

COVID-19 cases at the ZIP Code level and hospitalization at an individual level. Af-

ter layoffs of essential workers decreased commuting, we find case growth continued

through household crowding. A larger share of individuals in crowded housing or

commuting to essential work are Black, Hispanic, and lower-income. As a result,

structural inequalities, rather than population density, play a role in determining the

cross-section of COVID-19 risk exposure in urban areas.
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I INTRODUCTION

The novel coronavirus disease 2019 (COVID-19) has disproportionately and negatively

impacted disadvantaged populations. The hardest-hit regions of New York City include

parts of the Bronx, Brooklyn, and Queens with high fractions of Black, Hispanic, and low-

income populations as has been noted by Borjas (2020) and Schmitt-Grohé et al. (2020).1

Nationwide, infections are three times as likely among Latinos and African-Americans

compared to infections among whites.2 While racial disparities in COVID-19 disease bur-

dens have been widely recognized, the ultimate drivers of these inequities remain unclear.

This paper connects racial disparities in COVID-19 cases with mobility patterns for

vulnerable populations by using anonymized mobile phone Global Positioning System

(GPS) data. We focus on New York City, the global epicenter for the pandemic in Spring

2020. Our work splits the COVID-19 pandemic in New York City into two periods. In

the initial stage of the crisis—lasting from March until early April—we document that

the commuting behavior of essential workers placed them at greater risk of infection. We

find these commuting patterns changed after early April, when many of these workers

were laid off. At this point in the crisis, disease spread continued through a household

crowding channel. The relative importance of household crowding compared to mobil-

ity patterns doubled during April. We find that racial minorities are over-represented

in both mobility-based risk factors—occupational specialization in essential work profes-

sions and household overcrowding.

Our analysis is conducted at both the neighborhood and individual levels, allowing

us to finely measure the nature of mobility responses in the wake of this pandemic. To do

so, we link individual mobile phone data with ZIP Code-level data on daily COVID-19

infection and hospitalization rates, as well as Census data on occupation and household

occupancy. A key advantage of our identification approach is that we are able to mea-

sure hospitalizations at aggregate levels as well as the individual level by isolating mobile

phone users who appear in local hospitals. Doing so allows us to control for important

local characteristics and use within-tract variation in commuting and housing character-

istics.
1We document the demographic associations of COVID-19 in Section III.A. New York City official data

suggest that African-Americans were 59% more likely to be diagnosed with COVID-19 relative to whites,
while Hispanics were 64% more likely. See: https://www1.nyc.gov/site/doh/covid/covid-19-data.

page.
2See data from the C.D.C. https://www.nytimes.com/interactive/2020/07/05/us/

coronavirus-latinos-african-americans-cdc-data.html.
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Our results suggest sizeable effects of mobility on disease exposure: increasing time

outside of an individual’s home census tract from the 10th to the 90th percentile is associ-

ated with a 30% increase in the hazard rate of hospitalizations. Similarly, individuals at

the 90th percentile of housing crowding are 7% more likely to be hospitalized than those

at the 10th percentile. While both measures suggest large and statistically significant im-

pacts of our mobility measures on hospitalization outcomes, we also find that including

the housing crowding measure lowers the measured impact of the commuting measure

to 25%. This suggests a substantial correlation between mobility patterns and housing

density, and it points to possible implications of policies that target these measures sepa-

rately. For example, shutting down workplaces through lockdowns may lower infectious

spread through a commuting channel but may instead result in individuals interacting

more in crowded home settings.

Our analysis has implications for ongoing debates on the role of density and urban

form on disease exposure. In contrast to research which emphasizes the role of static

characteristics of urban design such as density (Duranton and Puga, 2020; Carozzi et al.,

2020) or subways (Harris, 2020), we highlight the dynamic responses of individuals and

groups which depend on access to preexisting resources. Notably, Manhattan—the dens-

est and wealthiest borough—saw many fewer infections than the other boroughs.

Instead, our results suggest that the types of density that matter the most are the ex-

perienced density of front-line workers exposed to contact through direct physical prox-

imity, as well as the crowding of individuals in multi-family households. We document

that these mobility-induced densities are disproportionately experienced by vulnerable

populations. In turn, structural inequalities lead disadvantaged groups to disproportion-

ately live in crowded housing and specialize in jobs that require physical presence. These

underlying inequalities in job presence and housing create temporary pockets of density

through which SARS-CoV-2 virus propagates.

We contribute to a growing literature on COVID-19 by providing direct evidence on

the role of specific mobility factors in contributing to the spread of the disease, as well

as on the racial dimensions of these factors. Many papers have used geolocation data

in the context of COVID-19 (Chen et al., 2020; Couture et al., 2020; Garcı́a-Lopez and

Puga, 2020). Our work is most closely related to Glaeser et al. (2020). We differ in four

key ways. First, we consider both aggregated data and individual-level mobility data,

allowing us to highlight individual risk factors for hospitalization. Second, our central

focus is examining racial disparities. Third, we consider an additional housing crowding
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dimension which was crucial at the stage in the pandemic when many workers stopped

commuting due to unemployment. Finally, we complement the approach in Glaeser et

al. (2020) by proposing a new identification strategy that leverages the granularity of our

data. To do so, we construct a panel of buildings where our main outcome variable is the

hospitalization of a building’s resident. Our main identification assumption is that daily

unobservables are common across all individuals who live in buildings in the same census

tract. Chiou and Tucker (2020) also examine income mobility responses and focus on

variation in the ability to work from home and internet access. We emphasize both income

and racial disparities within urban areas and highlight both commuting- and housing-

related disparities.

We build on methods used in prior works such as Athey et al. (2019), Chen et al.

(2019), and Chen and Rohla (2018), which used mobile phone geolocation data to examine

segregation, racial disparities in voting waiting times, and partisanship.

A growing literature also examines racial disparities specifically in the context of COVID-

19 (Borjas, 2020; McLaren, 2020; McCormack et al., 2020; Almagro and Orane-Hutchinson,

2020; Sá, 2020; Karaca-Mandic et al., 2020). Our work adds to this literature by linking

important mobility components of this racial disparity, and further directly connecting

them to case exposure. Notably, the emerging medical literature, such as Rentsch et al.

(2020) and Price-Haywood et al. (2020), finds evidence of racial disparities in exposure to

COVID-19—but does not find evidence of racial differences in mortality. This highlights

the importance of understanding why different racial groups are potentially exposed to

infection at different rates, which our analysis does through considering commuting and

housing crowding channels. Finally, our findings complement other well-established

health disparities which may impact the severity of COVID-19 for different populations,

such as those presented in Wong et al. (2002) and Trivedi et al. (2005).

II DATA

II.A Geolocation Data

Mobile location data were sourced from VenPath, a holistic global provider of compli-

ant smartphone data. Our data provider aggregates information from approximately 120

million smart phone users across the United States. GPS data were combined across appli-

cations for a given user to produce “pings” corresponding to time stamp–location pairs.
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The provider anonymizes information on individual users. Ping data include both back-

ground pings (location data provided while the application is running in the background)

and foreground pings (activated while users are actively using the application). Our sam-

ple period covers the period February 1st–July 12th, 2020.

II.B Estimating Time Outside of Home Tract

To isolate the mobility behavior of New York City residents, we employ multiple screens

to filter out commuters, visitors, and those who leave the city either temporarily or per-

manently.

First we separate those who spend the night in New York City from those who com-

mute into or visit New York City during the day in order to measure the behavioral re-

sponses of local residents. We select from the anonymous users those who have the ma-

jority of their pings between 6pm and 8am (night hours) in New York City (as opposed

to any non-New York City county in the US) on at least three different days in a spe-

cific month. We then enforce a minimum required data density and keep only those with

at least three pings on at least five nights in the data in New York City, with the same

requirements during work hours.

Second, we filter out those who commute to, visit, or leave NYC by joining our re-

maining users’ pings to census tracts from New York City Open Data. On every date, we

identify each user’s modal tract during night hours. If they ping in the modal tract at least

twice a night, on at least five different nights in a month, we assign their most frequent

remaining modal night tract as their “home census tract” (HCT). If a user spends an equal

amount of nights in more than one HCT, we choose the one that they ping in the most

throughout the data.

We repeat this process each month from February to June and exclude those who have

been identified as residents in previous months. We use only one month of data at a time

to identify residents’ home tracts. We then analyze their data in the months after the

month that was used to identify their home locations. This gives us a sample population

of 647,068 unique users for our base analysis.3

Next, we exclude those who have left New York City from our analysis by requiring

the county of their HCT to match each day with the county they spent the night in. The

resulting dataset allows us to measure the mobility responses among NYC residents.

3We find that our estimated mobile phone population correlates with Census population at 0.89, sug-
gesting representative sample coverage.
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Finally, to measure out-of home-behavior, we estimate the fraction of pings that occur

each hour within that user’s home tract, and we then estimate the number of hours a user

spends entirely outside of their home tract during the range of 8am to 10pm (the “number

of hours entirely outside”).

II.C Household Crowding

To construct our housing crowding metrics, we connect the ping data with the geographic

data for all building footprints in NYC, which are created by Microsoft using satellite

images.4 We join these building shapes to land use data from the NYC Department of

Planning at the lot level.5 Multiple lots correspond to each Microsoft building. We do a

geospatial join of the building lots to the Microsoft building shapes and then aggregate

to arrive at the total number of residential units and residential square footage for each

building.

To define a metric of housing crowding, we identify each user’s modal home building

each night and then their modal building across nights. We aggregate to the building level

and count unique users for whom that building is their home building. For each building,

we calculate the people per housing unit on each date. While our measures of mobility

are measured at the individual level, our housing crowding measure is estimated at the

building level. We then take the average of buildings for each tract and ZIP Code to get

our “mean people per unit” measure of housing crowding. Appendix Figure B2 shows

the spatial variation of the housing crowding measure, averaged across our sample. We

tend to observe greater housing crowding in the outer boroughs of the city.

II.D Measuring Hospitalizations

To construct our hospitalization measure, we first determine which of the Microsoft build-

ing shapes correspond to hospitals by joining them to latitudes and longitudes of hospi-

tals provided by HIFLD Open Data.6 We include only hospitals within NYC that are not

long-term care facilities or psychiatric hospitals. We can then see which pings correspond

to which designated hospitals within NYC.

4This dataset can be found at: https://github.com/microsoft/USBuildingFootprints.
5See: https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page.
6See: https://hifld-geoplatform.opendata.arcgis.com/datasets/

6ac5e325468c4cb9b905f1728d6fbf0f_0.
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We identify whether a user pings within a hospital from our hospital building shape-

files. We observe the first date when a user pings within a hospital as their hospitaliza-

tion date. To verify that our measured hospitalizations line up with other data sources,

we compare against actual hospitalization data for COVID-19 from the NYC Department

of Health in Appendix Figure A2. Across the period from March 25th–April 22nd, we

find a correlation of 0.78 between our mobility measure of hospitalization and actual hos-

pitalizations, suggesting that we are able to accurately estimate individual hospitalized

COVID-19 cases.

II.E NYC COVID-19 Data

Our source of incidence rates of COVID-19 and number of tests performed is the NYC

Department of Health (DOH) data release.7 The DOH releases (almost) daily data on the

cumulative count of COVID-19 cases and the total number of residents who have been

tested, divided by the ZIP code of residence. We have collected data covering the months

of April and May.8 In our analysis, we drop the first week of April due to these missing

dates, and also because the first few days in our sample appear very noisy.

II.F Census and Occupation Shares

We obtain demographic and occupation data at the ZIP code and Census tract level from

the American Community Survey (ACS). The demographic characteristics we include are

ZIP Code median income, average age, racial breakdown, and health insurance status.

We also include commuting-related variables: average commute time to work as well as

means of transportation.
We also construct the shares of the working-age population employed in different oc-

cupation categories, similar to Almagro and Orane-Hutchinson (2020). The ACS provides

the number of workers employed in each occupation by ZIP code of residence. We first

divide occupation between flexible and non-flexible occupations. Then, we categorize

non-flexible occupations according to their essential definition and similarity in work en-

vironments and social exposure. For our occupational variables, we count the number for

workers in each of these occupations and normalize by working-age population, which

includes everyone with age ranging from 18 to 65 years. The summary statistics of de-

mographics and occupations can be found in Appendix A, which also breaks out the

occupational groups in the non-flexible category separately.
7See: https://github.com/nychealth/coronavirus-data.
8Unfortunately April 2nd and April 6th are missing from our sample as these data have never been made

publicly available.
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II.G Aggregating Mobility and Crowding Measures

To aggregate our mobility and crowding metrics to the ZIP Code level, we use the geospa-

tial shapes of NYC’s census tracts provided by NYC Open Data, and we link to ZIP Codes

using a crosswalk provided by the Department of Housing and Urban Development.9 We

select the ZIP and tract mapping that has the highest number of residents residing in the

ZIP for a given tract to get a 1:1 mapping of tracts to ZIP Codes.

We can aggregate housing crowding data and individual mobility data to the building

level. Panel A of Appendix Table A1 presents the summary statistics of the building-level

dataset used for our housing crowding analysis. We identified 333,132 buildings in NYC

with residential space, from March 1st to July 12th. We were able to link 538 hospitaliza-

tions to residents of these buildings, where the hospitalizations occurred between March

18th and April 22nd.

For the individual analysis, we aggregate these variables to the ZIP and date level. We

winsorize these variables at the 1% level. All of the daily values are constructed using

a seven-day moving average to reduce the noise of daily raw values and to account for

weekly seasonality. Panel B of Appendix Table A1 presents the summary statistics of the

individual-level dataset used for our survival analysis. We identified 286,367 individual

residents in NYC from March 1st to July 12th. We were able to link 597 hospitalizations to

these residents, where the hospitalizations occurred between March 18th and April 22nd.

III RESULTS

III.A Descriptive Analysis

We begin with a descriptive analysis of our sample to highlight the key features of the

COVID-19 pandemic in New York City. Appendix Figure A1 shows how our mobility

metrics, housing crowding, and the daily share of positive tests evolve over time. We

observe that the share of positive tests steadily decreases over time. We also observe

a large decrease in mobility in early March that started prior to the stay-at-home order

issued by Governor Cuomo on March 20. Our finding that mobility responds primarily

to the pandemic, rather than the state-imposed order, is consistent with similar nation-

wide findings in Goolsbee and Syverson (2020). Mobility in our sample hits a low in

9See: https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku for the
list of tracts and https://www.huduser.gov/portal/datasets/usps_crosswalk.html for the crosswalk.
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early April before steadily recovering towards pre-pandemic levels later in our sample.

On the other hand, we do not see any stark trend for the average number of people per

housing unit.

We also contrast the time series of mobility measures in Appendix Figure B1 across

different boroughs of NYC. In the early period of our sample, we observe the greatest

sheltering responses in Queens and Staten Island (Richmond County). However, after

May, we observe the highest sheltering responses in Manhattan. These differential pat-

terns across boroughs may reflect the ability of different populations to shelter effectively

given the tendency for these jobs to be precarious and non-local. We compare across both

the time series and the cross-section in Appendix Figure B3. In the key months of the

pandemic, in March and April, measured mobility patterns shows sheltering in certain

high-income neighborhoods of Manhattan and Brooklyn—while residents in other bor-

oughs were much more likely to spend time outside of their home tract.

We then plot some basic correlations between our mobility and housing density mea-

sures with demographics and occupations. Panel A of Figure 1 shows correlations of

mobility with certain neighborhood demographics: the fraction of tract residents who are

Black, Hispanic, and/or low-income.

We find substantial positive correlations of increased out-of-home mobility in areas

with more low-income, Black, and Hispanic individuals. We also observe a positive cor-

relation between crowded spaces and neighborhoods with a higher share of minorities

and lower average income in Panel B of Figure 1.

Given that many workers were laid off during April and May due to the pandemic,

we turn to a more dynamic analysis to illustrate correlations between our two mobility

measures (commuting and housing crowding) across occupations. In Panel C of Figure

1, we show the coefficients obtained when we regress daily mobility patterns and hous-

ing crowding on the share of flexible occupations after controlling for time trends. We

find that ZIP Codes with higher shares of flexible occupations are consistently positively

correlated with less mobility throughout our sample, as shown by the positive daily coef-

ficients plotted on the left graph. This suggests that a key driver of our mobility results is

related to commuting to essential work.10 We conduct the same exercise for our measure

of housing crowding and find a negative, although not significant, coefficient for most of

our sample.
10The lack of significance in most of these regressions is mainly driven by our having a small number of

observations for each daily regression.
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Figure 1: Demography and Mobility Measures
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Panel B: Binscatter plots of crowded spaces and demographics
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III.B ZIP Code-Level Analysis

Having established our basic variables, we turn next to a deeper analysis of the relation-

ship between structural inequalities and the incidence of COVID-19. We start by con-

structing a panel of the daily share of positive tests across NYC ZIP codes from April 8th

to May 26th. For this specification, we estimate the following equation:

share of positive testsjt = β1mobilityjt + β2housing densityjt + γXj + µt + ε jt

where Xj contains demographic and occupational characteristics at the ZIP Code level

and µt is a day fixed effect that controls for the aggregate evolution of the pandemic in

NYC.

Table 1 shows the estimation results of regressing the daily share of positive tests

across ZIP Codes on mobility and housing crowding measures for several specifications

that vary in their set of neighborhood controls. The first specification, column (1), in-

cludes only basic demographics such as race and income, while column (2) includes only

our mobility and housing density measures. Column (3) includes all of these covariates

together. A comparison of column (1) with column (3) shows that the initial racial dispar-

ities are partially explained by differences in mobility patterns and housing density, as

all coefficients for racial groups shrink towards zero. Similarly, a comparison of column

(2) with column (3) shows that much of the correlation in mobility and housing density

is mediated through race and income differences: their coefficient sizes decrease by 10%

and 52%, respectively, when including both set of controls.

For this basic specification, column (3), which presents the interpretation of the magni-

tudes for our mobility measure, is as follows: if the fraction of pings inside a home census

tract (HCT) increases by 10%, an average level increase of 0.06, the daily share of posi-

tives decreases by 0.00396 points, corresponding to a 1.8% lower share of daily positive

tests. On the other hand, a 10% increase in the number of people per unit corresponds

to a 0.0019-point increase, or equivalently a 0.8% increase in the share of positive tests.11

When we include other controls, we find that the size of the coefficient on the out-of-tract

mobility decreases, becoming non-significant with the inclusion of the occupation con-

trols. This result indicates that most of the housing density variation can be captured by

the occupational composition of neighborhoods.

11The average rate of daily tests that came out positive between April 8th and May 26th is 22%.
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Examining only demographic variables shows evidence of strong racial disparities in

test positivity rates. Incorporating mobility, demographic, and occupational controls low-

ers the coefficient on fraction Black by 45%, and lowers the coefficient on the fraction of

population members who are Asian to zero. This suggests that racial disparities in test

positivity rates, at least for these groups, can be accounted for by variation in background

variables related to mobility and occupation—though we observe larger residual dispar-

ities for Hispanic populations.

III.B.1 Weekly Analysis

In principle, the effects of mobility measures may vary over time given the dynamic be-

havior of other factors such as the natural evolution of the pandemic or its effects on the

economy. Motivated by this hypothesis, we estimate the following equation:

daily share of positivesjt = α1,tmobilityjt + α2,thousing densityjt + γtXj + µt + ε jt.

Panels A and B of Appendix Figure A3 plot the evolution of the daily coefficients

for our mobility measure as well as for housing density. These patterns suggest that

mobility had a larger impact for the first three weeks of April, while the magnitude of the

coefficient of housing crowding was larger for the last week of April and the first week of

May.

As pointed out by Glaeser et al. (2020), the estimates of these regressions are likely

masking correlations with unobservables that bias the coefficients towards zero. For ex-

ample, a change in behaviour following the evolution of the pandemic correlates with

mobility measures as well as with the number of new infections. For this reason, we turn

to our next analysis, where we leverage the granularity of our data to overcome these

endogeneity concerns.
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Table 1: Neighborhood Associations of Positive Tests

Dependent Variable: Daily Share of Tests that are Positive

(1) (2) (3) (4) (5)
Race & Income Mobility Mobility & Mobility & Mobility, Dem. &

Race, Income Demographics Occupations

Fraction of Pings in Home Tract -0.076∗∗∗ (0.024) -0.066∗∗ (0.026) -0.144∗∗∗ (0.026) -0.065∗∗∗ (0.025)
Log People per Unit 0.044∗∗∗ (0.002) 0.019∗∗∗ (0.002) 0.011∗∗∗ (0.003) 0.000 (0.003)
Log Income -0.003 (0.003) -0.001 (0.003) -0.015∗∗ (0.006) -0.000 (0.011)
% Black 0.113∗∗∗ (0.004) 0.095∗∗∗ (0.005) 0.061∗∗∗ (0.008) 0.051∗∗∗ (0.008)
% Hispanic 0.154∗∗∗ (0.006) 0.145∗∗∗ (0.006) 0.125∗∗∗ (0.008) 0.157∗∗∗ (0.010)
% Asian 0.170∗∗∗ (0.007) 0.152∗∗∗ (0.008) 0.006 (0.013) 0.002 (0.013)
Share ≥ 20, ≤ 40 0.066 (0.059) 0.040 (0.054)
Share ≥ 40, ≤ 60 0.016 (0.090) 0.027 (0.108)
Share ≥ 60 0.456∗∗∗ (0.058) 0.371∗∗∗ (0.072)
Share Male 0.192∗∗∗ (0.050) 0.362∗∗∗ (0.055)
Log Household Size 0.124∗∗∗ (0.020) 0.086∗∗∗ (0.025)
Log Density 0.007∗∗∗ (0.002) 0.004∗∗ (0.002)
% Public Transport 0.020 (0.014) -0.016 (0.018)
Log Commute Time 0.016 (0.011) 0.017 (0.012)
% Uninsured 0.203∗∗∗ (0.038) 0.351∗∗∗ (0.047)
Bronx -0.010 (0.007) -0.017∗∗ (0.007)
Brooklyn 0.026∗∗∗ (0.008) 0.028∗∗∗ (0.007)
Queens 0.022∗∗∗ (0.007) 0.030∗∗∗ (0.008)
Staten Island -0.019∗∗ (0.008) -0.003 (0.009)
% Flexible Occupations -0.034 (0.058)
% Health Practitioners -0.121 (0.138)
% Other Health 0.618∗∗∗ (0.107)
% Firefighting -0.323 (0.305)
% Law Enforcement -1.705∗∗∗ (0.397)
% Essential: Service -0.287∗∗∗ (0.068)
% Non Ess.: Service -0.017 (0.144)
% Ind. and Construction -0.240∗∗ (0.096)
% Essential: Technical -0.683∗∗ (0.294)
% Transportation 0.312∗∗∗ (0.106)
Constant 0.280∗∗∗ (0.014) 0.570∗∗∗ (0.019) 0.395∗∗∗ (0.023) 0.014 (0.059) -0.105 (0.066)

Day FE

N 6401 6401 6401 6401 6401
adj. R2 0.89 0.88 0.89 0.91 0.91
Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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III.C Building-Level Analysis

In this section we exploit the panel structure of our sample including both mobility and

housing crowding measures in order to better address identification concerns. Unfortu-

nately, test data at more granular geographical levels are unavailable. To overcome this

challenge, we instead measure hospitalizations at the individual level by measuring di-

rect individual visits to hospitals. We classify individuals as being hospitalized if they

spend more than 24 hours at a hospital. We focus on the first month after the issuance

of the stay-at-home order to maximize the probability that new hospitalizations that we

observe in our data are due to COVID-19 and not due to something else.12 Our main

outcome variable is defined as the event of a building’s resident being hospitalized per

building occupancy. Because our unit of observation is the crowding at the building level,

we analyze as our key outcome the hospitalization rate per building.
Table 2 shows the result of an analysis in which our dependent variable is the event of

a new hospitalization within a building and different specifications include different sets

of neighborhood controls. Our main regression equation is

hospitalizationbt = α1mobilitybt + α2housing densitybt + γXj(b) + µt + εbt,

where mobilitybt and housing densitybt are respectively the average mobility and hous-

ing density measures for date t, Xj(b) are demographic and occupational controls for the

Census tract where the building b is located, and µt are date fixed effects.
Specifications (1)–(4) are similar to those of Table 1 but are done at a different level of

aggregation. Given that we have variation across buildings within the same census tract

for any given date, we can include a fixed effect at the census tract and date level, δj(b)t,

to control for daily factors common to all individuals within a census tract. That is, our

regression equation in this case is:

hospitalizationbt = α1mobilitybt + α2housing densitybt + δj(b)t + εbt.

Our identifying assumption for this specification is based on the hypothesis that unob-

servables with temporal variation that correlate with mobility and housing density mea-

sures are common to all buildings inside the same census tract.
12Using data available at https://github.com/thecityny/covid-19-nyc-data that constructed total

hospitalizations from reports of Governor Cuomo’s office, we observe that more than 50% of all hospital-
izations for the first three weeks of April were related to COVID-19. This measure includes new hospital-
izations as well as as patients with more long-term diseases or patients in palliative care. For the time-series
correlation of our measure of hospitalizations and the official numbers, see Appendix A2.
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Table 2: Impact of Mobility on Hospitalizations

Dependent Variable Hospitalizations per Occupancy

(1) (2) (3) (4) (5)
Mobility Mobility & Mobility & Mobility & Census Tract

Race, Income Demographics Dem., Occ. × Day

Fraction of Pings in Home Tract -1.815e-04∗∗∗ -1.780e-04∗∗∗ -1.766e-04∗∗∗ -1.770e-04∗∗∗ -1.837e-04∗∗∗

(2.624e-05) (2.618e-05) (2.620e-05) (2.626e-05) (2.766e-05)
Log People per Unit 1.226e-05∗∗∗ 1.217e-05∗∗∗ 1.283e-05∗∗∗ 1.281e-05∗∗∗ 1.347e-05∗∗∗

(2.313e-06) (2.340e-06) (2.329e-06) (2.333e-06) (2.482e-06)
Constant 3.135e-04∗∗∗ 3.496e-04∗ 2.832e-04 1.373e-04 3.191e-04∗∗∗

(2.873e-05) (1.425e-04) (3.389e-04) (3.547e-04) (2.979e-05)

Day FE
Demographic Controls
Occupation Controls
Census Tract × Day FE

N 1,355,459 1,354,504 1,354,504 1,354,504 1,355,459
Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The interpretation of the coefficients is as follows. For our preferred specification,

column (5), if a building’s residents increase their fraction of pings within their HCT by

10%, the number of hospitalizations per occupant in that building decreases by 7.8%.13

Similarly, if a building’s number of people per housing unit increases by 10%, we expect

to see hospitalizations per occupant increase by 0.96%. These results are similar to those

presented in Table 1 where the effect sizes of mobility patterns are larger compared to

housing crowding.

Also, we observe that coefficients on mobility patterns are very stable across speci-

fications, showing small differences that are no larger than 5%. This result implies that

for this particular specification, unobservables are not producing meaningful biases in

the coefficients. On the other hand, we see more pronounced changes in housing density

with a bias of 10% when we compare the results in column (1) to those in column (5). In

both cases, we see a bias that shrinks the coefficients towards zero, which is consistent

with the fact that people adjust their behaviour counter-cyclically with the evolution of

the pandemic.

13The average probability of hospitalization per occupant is 1.396e-4, and the average number of pings
per building is 0.6.
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III.C.1 Building-level weekly analysis

Similarly, motivated by the dynamic evolution of different channels of transmission, we

estimate the following equation:

hospitalizationbt = α1,w(t)mobilitybt + α2,w(t)housing densitybt + γw(t)Xj(b) + µt + εbt,

where coefficients are allowed to change week by week as denoted by subindex w(t).

Appendix Table C2 shows that the coefficients for mobility patterns had a larger im-

pact at early stages of the pandemic and that they decrease in magnitude over time, sim-

ilar to Glaeser et al. (2020). We also find a similar pattern for housing density. Between

week 1 (March 25th to March 31st) and week 4 (April 15th to April 21st), the coefficient

for mobility patterns declines by 48% while decreasing by 41% for housing density—

suggesting that housing density gained more importance over time with the progression

of the pandemic, the issuance of the state-at-home order, and the large economic shock

that led to high unemployment levels.

III.D Individual-Level Analysis

In this section we present results obtained using anonymized individual-level data. Given

that we can track individual pings over time, we associate mobility measures to individ-

ual phones. While we cannot see whether an individual has been tested, we can observe

whether an individual pings inside a hospital (in which case we assign them as a hos-

pitalized individual). Our measurement of individual hospitalizations is an important

contribution to the literature, which has generally focused on cases measured at more

aggregate levels—and hence has been unable to control for possibly important local co-

variates. However, we face an important challenge of censoring. The event of being

hospitalized due to COVID-19 generally happens only once with a probability that in-

creases over time. For this reason, we borrow tools from the survival analysis literature

to appropriately account for this censoring issue as well as for the fact that the probability

of this event is not independent of what happened in the past. In doing so, we construct

a panel of individuals with the hazard rate of being hospitalized as the outcome vari-

able whose covariates are seven-day moving averages of mobility measures and housing

density lagged by two weeks.

We start by plotting Kaplan-Meier graphs with the cumulative probability of failure

on a daily time scale. We observe that the probability of being hospitalized increases

16



over time. For the following graphs, we have divided the population into two bins corre-

sponding to above and below median. We do so for two variables: share of pings in HCT

and average number of people in the same housing unit.

Panel B of Figure 2 shows that spending more time outside of the HCT is associated

with a greater cumulative probability of being hospitalized. Similarly, individuals with

more people in their housing unit also experience a higher cumulative hazard rate of

being hospitalized, as shown in Panel C of Figure 2.

Figure 2: Kaplan-Meier graphs of survival probability

Panel A: Whole Sample
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III.E Survival Analysis Regressions

In this section we present estimation results obtained from semiparametric Cox regres-

sions where a failure in our sample is the event of being hospitalized in a panel of indi-

viduals. This type of estimation constructs hazard rates of being hospitalized nonpara-

metrically and then uses such hazard rates as the outcome variable in a regression where

covariates can be similarly defined as in any standard linear regression.

We first start by looking at all individuals.14 To understand how mobility and housing

crowding measures correlate with each other, we perform our analysis in two steps: (1)

including only mobility measures, and (2) including mobility as well as housing crowing

measures.

Our estimation results from the Cox regression are presented in Table 3, and they

highlight the central role of out-of-home mobility and housing crowding in determining

individual hospitalization rates. First, we observe a similar pattern as in Table 2 for mobil-

ity patterns in both Panel A and B of Table 3: including demographics and occupational

controls decreases the magnitude of the coefficient, suggesting that part of the mobility

patterns can actually be mediated by occupations and demographics.

Moreover, we can employ a similar identification strategy as in our aggregate analysis

at the Census tract level. Unfortunately, Cox regressions do not allow fixed effects at

the same level as the temporal unit level, which in this case is days. Hence, we cannot

include day fixed effects. To overcome this problem, we pool days in the same week.

We then interact week with ZIP Code to construct fixed effects that control for common

factors in a given week and inside a given ZIP Code. The identifying variation comes from

differences in individual patterns for those who live in the same ZIP Code in any given

week. Our exclusion restriction is that unobservables that correlate with mobility and

housing crowding patterns are common to all individuals living in the same ZIP Code

in a given week. Reassuringly, we obtain similar results as in Table 2, where we find

that the coefficient on mobility increases in magnitude after controlling for such types

of unobservables, which possibly indicates that individuals countercyclically adjust their

mobility patterns with the evolution of the pandemic.15

14For 34% of individuals in our sample, we cannot identify a modal building and thus we cannot con-
struct a housing density measure for them.

15For full results, see Appendix D.
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Table 3: Cox Regression of Mobility on Hospitalization

Panel A: Personal Mobility

Dependent Variable: Hazard Rate of Hospitalization

(1) (2) (3) (4) (5)
Baseline Demographics Dem. & ZIP Code ZIP ×Week

Occupations Fixed Effect Fixed Effect

Share of Pings in HCT -0.224∗∗∗ -0.216∗∗∗ -0.215∗∗∗ -0.211∗∗∗ -0.284∗∗∗

(0.060) (0.060) (0.060) (0.060) (0.063)

Demographic Controls
Occupation Controls
ZIP Fixed Effects
ZIP ×Week Fixed Effects
Number of Observations 1,798,442 1,795,810 1,795,810 1,798,442 1,795,810

Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Panel B: Personal Mobility and Housing Crowding

Dependent Variable: Hazard Rate of Hospitalization

(1) (2) (3) (4) (5)
Baseline Demographics Dem. & ZIP Code ZIP ×Week

Occupations Fixed Effect Fixed Effect

Share of Pings in HCT -0.196∗∗∗ -0.186∗∗∗ -0.186∗∗∗ -0.187∗∗∗ -0.243∗∗∗

(0.064) (0.064) (0.064) (0.065) (0.067)
Log People per Unit 0.023∗∗∗ 0.022∗∗∗ 0.021∗∗∗ 0.025∗∗∗ 0.015∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)

Demographic controls
Occupation controls
ZIP Fixed Effects
ZIP ×Week Fixed Effects
Number of Observations 1,677,868 1,675,466 1,675,466 1,677,868 1,675,466

Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The magnitude of mobility patterns decreases when including housing crowding mea-

sures when we compare Panel A to Panel B for all specifications. For example, for col-

umn (5), the magnitude of mobility patterns decreases by 14%. This pattern indicates that

mobility patterns and housing crowding measures share a component that affects the in-

dividual level of exposure to the pandemic: if we ignore the housing crowding channel

we will overestimate the effect of mobility patterns. However, it is important to disentan-

gle these two channels in order to understand different effects of containment policies.

For example, the most common non-pharmaceutical intervention, that is a quarantine on

the population, can mitigate contagion by minimizing mobility but will undoubtedly fuel
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exposure within the household.

In our preferred specification, column (5) of Panel B, a 10% increase in the share of

pings inside HCT translates into a hazard rate of being hospitalized that is 1.46%. Sim-

ilarly, a 10% increase in the number of people per unit leads to a hazard rate of being

hospitalized that is 0.15% higher. These estimates are quite large, and they point to eco-

nomically and statistically important impacts of our estimated risk factors on hospitaliza-

tion risk.

Following the same specification, column (5) of Panel A in Table 3, we find that in-

dividuals at the 10th percentile of share of pings inside HCT have a hazard rate of being

hospitalized that is 30% larger than individuals at the 90th percentile when only mobility

measures are taken into account. This decreases to 25% when we control for the hous-

ing crowding channel, in Panel B . When we do the same comparison for the housing

crowding distribution we find a hazard rate of being hospitalized that is 7% higher for

individuals at the 90th percentile compared to individuals at the 10th percentile.

IV CONCLUSION

We document that important inequities in occupations and housing lead to racially dis-

parate outcomes in exposure to COVID-19. We focus on the epicenter of the global pan-

demic in New York City, showing that infections spread in two waves. First, infections

spread through essential workers, who continued to commute to establishments. Next,

even after many of these essential workers were laid off, infections continued to spread

within more crowded households, and the relative importance of this channel grew.

Racial disparities in infections reflect inequalities in access to both jobs and housing.

Black, Hispanic, and low-income workers are more likely to be employed in an essential

work occupation and hence exhibit mobility patterns which put them at greater risk of

infection in the initial phase of the pandemic. We use novel data drawn from cell phones

to measure these mobility patterns, which we use to establish a direct link between out-

side mobility at both neighborhood and individual levels. Our individual-level analysis

advances on prior research using geolocation data by directly linking greater mobility

for individual workers and presence in hospitals, controlling for other unobserved local

factors.

We also connect both cell phone mobility and Census data on housing occupancy,

and we see case increases in the second phase of the pandemic. We find that housing
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overcrowding predicts a greater caseload, and we also document more Black, Hispanic,

and low-income households present in overcrowded buildings. As a result, vulnerable

populations are disproportionately burdened by disease exposure through this housing

crowding channel.

Our results present a stark contrast to some existing work on the COVID-19 pandemic

which highlights the role of static factors such as population density or public transporta-

tion. We find that population density per se is not the dominant factor in explaining the

cross-section in infections seen throughout this crisis: the densest borough, Manhattan,

was relatively less affected. Instead, we find that underlying inequalities in access to jobs

and housing explain the racial disparities in outcomes. Crowding and exposure at work,

rather than density, best explains the pattern of exposure through the pandemic.
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ONLINE APPENDIX

A DATA APPENDIX

Table A1: Summary Statistics

Variable Mean Std. Dev. p10 Median p90
Panel A: Housing Crowding Measures

People per Unit 0.043 0.228 0.000 0.000 0.031
Residential Units per Building 8.306 4.420 1.000 2.000 9.000
Residential Area (sqft) 8071 38,034 1140 2160 9011

Panel B: Individual Level Mobility

Average Number of Pings in Home Tract 0.62 0.41 0.00 0.80 1.00
Average Distance From Home Tract (km) 2.42 4.50 0.00 0.22 8.13
Number of Hours Entirely Outside of Home Tract 1.46 2.37 0.00 0.00 5.00

Panel C: Other Variables and Local Controls

Share of Positive Tests 0.563 0.085 0.438 0.583 0.645
Tests per Capita 0.018 0.006 0.012 0.017 0.026
Median Income (in $1000ss) 68.604 31.878 34.122 62.202 115.084
Share ≥ 20, ≤ 40 0.323 0.084 0.246 0.308 0.433
Share ≥ 40, ≤ 60 0.258 0.033 0.220 0.261 0.296
Share ≥ 60 0.200 0.079 0.132 0.190 0.276
Share Male 0.477 0.029 0.446 0.479 0.508
Household Size 2.683 0.537 1.930 2.750 3.300
% Black 0.200 0.240 0.010 0.076 0.600
% Hispanic 0.263 0.195 0.078 0.189 0.634
% Asian 0.144 0.139 0.017 0.094 0.335
Density (in 1000s of people per unit) 43.380 31.045 10.784 36.639 90.075
% Public Transport 0.532 0.150 0.312 0.543 0.712
Commuting Time (in mins) 40.647 7.054 27.200 42.100 48.100
% Uninsured 0.089 0.043 0.042 0.084 0.143
% Essential: Professional 0.126 0.089 0.046 0.092 0.285
% Essential: Service 0.065 0.033 0.035 0.060 0.107
% Essential: Technical 0.014 0.009 0.004 0.013 0.022
Non-Flexible Occupations:
- % Health Practitioners 0.029 0.018 0.009 0.026 0.050
- % Other Health 0.038 0.024 0.010 0.035 0.073
- % Firefighting 0.012 0.009 0.003 0.012 0.023
- % Law Enforcement 0.007 0.007 0.001 0.006 0.014
- % Ind. and Construction 0.054 0.027 0.014 0.056 0.090
- % Transportation 0.029 0.016 0.004 0.032 0.048
- % Non Ess.: Professional 0.279 0.075 0.195 0.271 0.359
- % Science Fields 0.006 0.007 0.001 0.004 0.015
- % Law and Related 0.018 0.026 0.003 0.008 0.049
- % Non Ess.: Service 0.032 0.013 0.016 0.032 0.047
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Figure A1: Time series of share of positive tests, mobility patterns, and housing density
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Figure A2: Comparing Hospitalizations in Mobile Phone Sample

These graphs plots the time series for our individual-level mobility-derived measure of
hospitalization in comparison with the official figures provided by the DOH. The corre-
lation between the two is 0.79
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Figure A3: Time series of mobility and crowding coefficients

Panel A: Coefficient of share of pings in HCT on daily positive share
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Panel B: Coefficient of log of people per unit on daily positive share
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B TIME SERIES AND CROSS-SECTION OF MOBILITY

MEASURES

Figure B1: Time Series of Mobility Measures
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Figure B2: Cross-Section of Housing Crowding Measure
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Figure B3: Cross-Section of Outside of HCT Mobility Measure
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C BUILDING LEVEL ANALYSIS

Table C1: Dependent Variable: Hospitalizations per Occupancy

(1) (2) (3) (4) (5) (6)
Mobility Demographics Demographics & Mobility & Mobility, Dem. & Mobility

Occupations Demographics Occupations
Fraction of Pings in Home Tract -1.815e-04∗∗∗ -1.766e-04∗∗∗ -1.770e-04∗∗∗ -1.837e-04∗∗∗

(2.624e-05) (2.620e-05) (2.626e-05) (2.766e-05)
Log People per Unit 1.226e-05∗∗∗ 1.283e-05∗∗∗ 1.281e-05∗∗∗ 1.347e-05∗∗∗

(2.313e-06) (2.329e-06) (2.333e-06) (2.482e-06)
Log Income 1.669e-05 3.709e-05 1.977e-05 3.564e-05

(3.674e-05) (4.768e-05) (3.673e-05) (4.768e-05)
Share ≥ 20, ≤ 40 8.318e-05 1.696e-04 7.534e-05 1.611e-04

(2.365e-04) (2.459e-04) (2.365e-04) (2.458e-04)
Share ≥ 40, ≤ 60 2.038e-04 3.018e-04 1.846e-04 2.891e-04

(2.898e-04) (2.924e-04) (2.894e-04) (2.922e-04)
Share ≥ 60 2.264e-05 2.130e-04 2.546e-05 2.091e-04

(2.284e-04) (2.477e-04) (2.284e-04) (2.476e-04)
Share Male -4.539e-04 -5.037e-04 -4.554e-04 -5.023e-04

(2.839e-04) (2.915e-04) (2.841e-04) (2.915e-04)
Log Household Size -1.076e-06 1.277e-05 -1.182e-05 7.429e-06

(7.604e-05) (8.391e-05) (7.582e-05) (8.380e-05)
% Black 1.478e-05 2.735e-05 3.124e-06 1.856e-05

(5.735e-05) (6.633e-05) (5.751e-05) (6.643e-05)
% Hispanic 1.374e-05 5.078e-07 1.355e-05 2.703e-07

(8.876e-05) (9.829e-05) (8.877e-05) (9.829e-05)
% Asian -1.067e-04 -1.388e-04 -1.018e-04 -1.345e-04

(8.472e-05) (8.754e-05) (8.462e-05) (8.746e-05)
% Public Transport -7.439e-05 -5.389e-05 -6.890e-05 -4.948e-05

(1.031e-04) (1.074e-04) (1.030e-04) (1.073e-04)
Log Commute Time 3.133e-05 7.468e-05 3.125e-05 7.561e-05

(7.924e-05) (8.154e-05) (7.970e-05) (8.192e-05)
% Uninsured 7.045e-04∗ 7.817e-04∗ 7.054e-04∗ 7.798e-04∗

(2.889e-04) (3.044e-04) (2.889e-04) (3.044e-04)
Bronx -4.522e-05 -4.126e-05 -4.450e-05 -4.026e-05

(5.039e-05) (5.096e-05) (5.021e-05) (5.078e-05)
Brooklyn 7.926e-06 5.342e-06 9.103e-06 6.997e-06

(4.639e-05) (4.764e-05) (4.622e-05) (4.750e-05)
Queens -5.847e-05 -6.588e-05 -5.814e-05 -6.561e-05

(4.749e-05) (4.954e-05) (4.735e-05) (4.941e-05)
Staten Island -6.500e-05 -8.138e-05 -6.649e-05 -8.162e-05

(5.649e-05) (5.927e-05) (5.641e-05) (5.919e-05)
% Flexible Occupations -2.138e-04 -1.953e-04

(1.781e-04) (1.777e-04)
% Health Practitioners -3.211e-06 3.794e-05

(4.518e-04) (4.522e-04)
% Other Health -6.136e-04 -6.307e-04

(3.278e-04) (3.279e-04)
% Firefighting -1.482e-03∗ -1.517e-03∗

(7.495e-04) (7.502e-04)
% Law Enforcement 9.929e-04 1.048e-03

(9.474e-04) (9.484e-04)
% Essential: Service -2.094e-04 -1.834e-04

(3.328e-04) (3.330e-04)
% Non Ess.: Service -3.793e-04 -3.278e-04

(5.994e-04) (5.995e-04)
% Ind. and Construction -3.336e-04 -3.357e-04

(3.358e-04) (3.359e-04)
% Essential: Technical -1.397e-03 -1.365e-03

(7.253e-04) (7.255e-04)
% Transportation 4.253e-04 4.248e-04

(4.789e-04) (4.791e-04)
Constant 3.135e-04∗∗∗ 1.054e-04 -3.692e-05 2.832e-04 1.373e-04 3.191e-04∗∗∗

(2.873e-05) (3.367e-04) (3.527e-04) (3.389e-04) (3.547e-04) (2.979e-05)

Day FE
Demographic Controls
Occupation Controls
Census Tract × Day FE

N 1354631 1354631 1354631 1354631 1354631 1354631
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Table C2: Weekly Analysis of Mobility Exposures and Hospitalization

Dependent Variable: Hospitalizations per Occupancy

(1) (2) (3) (4)
Mar 25–31 Apr 1–7 Apr 8–14 Apr 15–21

Fraction of Pings in Home Tract -1.962e-04∗∗∗ -2.715e-04∗∗∗ -1.890e-04∗∗∗ -1.020e-04∗∗

(6.609e-0.5) (6.700-06) (5.070e-0.5) (4.990-0.5)
Log People per Unit 1.220e-05∗∗∗ 2.370e-05∗∗∗ 1.320e-05∗∗∗ 7.210e-06∗∗∗

(5.860e-06) (5.460e-06 ) (3.760e-06 ) (4.810e-06)

Census Tract × Day FE

N 336,455 312,529 288,467 280,810
Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D SURVIVAL ANALYSIS
Table D1: Cox Regression of Mobility on Hospitalization

Dependent Variable: Hazard Rate of Hospitalization

(1) (2) (3) (4) (5)
Baseline + Demographics + Demographics & ZIP Code ZIP Code × week

Occupations Fixed Effects Fixed Effects

Fraction of Pings in Home Tract -0.224∗∗∗ (0.060) -0.215∗∗∗ (0.060) -0.216∗∗∗ (0.060) -0.211∗∗∗ (0.060) -0.284∗∗∗ (0.063)
Log Income 0.396∗∗∗ (0.079) 0.661∗∗∗ (0.104)
Share ≥ 20, ≤ 40 -1.247∗ (0.562) -1.058 (0.571)
Share ≥ 40, ≤ 60 -3.949∗∗∗ (0.703) -4.027∗∗∗ (0.716)
Share ≥ 60 -1.123 (0.580) -0.501 (0.623)
Share Male -3.166∗∗∗ (0.642) -3.370∗∗∗ (0.666)
Log Household Size 1.113∗∗∗ (0.200) 0.852∗∗∗ (0.215)
% Black 0.695∗∗∗ (0.122) 0.450∗∗ (0.141)
% Hispanic -0.689∗∗∗ (0.201) -1.052∗∗∗ (0.217)
% Asian 0.535∗ (0.212) 0.299 (0.219)
% Public Transport 0.051 (0.215) 0.260 (0.236)
Log Commute Time -0.092 (0.183) -0.299 (0.198)
% Uninsured 2.903∗∗∗ (0.527) 2.196∗∗∗ (0.600)
Bronx -0.192∗ (0.084) -0.124 (0.087)
Brooklyn -0.460∗∗∗ (0.074) -0.422∗∗∗ (0.077)
Queens -0.807∗∗∗ (0.081) -0.762∗∗∗ (0.083)
% Flexible Occupations -1.457∗∗∗ (0.385)
% Health Practitioners -0.440 (1.128)
% Other Health -0.180 (0.786)
% Firefighting 2.174 (1.712)
% Law Enforcement 2.775 (2.333)
% Essential: Service 1.587∗ (0.742)
% Non Ess.: Service -1.167 (1.279)
% Ind. and Construction -0.057 (0.843)
% Essential: Technical -3.300 (1.962)
% Transportation 0.168 (1.050)

Demographic Controls
Occupation Controls
ZIP Code FE
ZIP Code × week FE
Number of Observations 1798442 1795810 1795810 1798442 1795810

Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D2: Cox Regression of Mobility and Housing Crowding on Hospitalization

Dependent Variable: Hazard Rate of Hospitalization

(1) (2) (3) (4) (5)
Baseline + Demographics + Demographics & ZIP Code ZIP Code × week

Occupations Fixed Effects Fixed Effects

Fraction of Pings in Home Tract -0.196∗∗ (0.064) -0.186∗∗ (0.064) -0.186∗∗ (0.064) -0.187∗∗ (0.065) -0.243∗∗∗ (0.067)
Log People per Unit 0.023∗∗∗ (0.006) 0.022∗∗∗ (0.006) 0.021∗∗∗ (0.006) 0.025∗∗∗ (0.006) 0.015∗ (0.006)
Log Income 0.450∗∗∗ (0.084) 0.668∗∗∗ (0.110)
Share ≥ 20, ≤ 40 -1.592∗∗ (0.595) -1.337∗ (0.605)
Share ≥ 40, ≤ 60 -4.615∗∗∗ (0.745) -4.671∗∗∗ (0.760)
Share ≥ 60 -1.515∗ (0.615) -0.909 (0.662)
Share Male -2.978∗∗∗ (0.679) -3.188∗∗∗ (0.705)
Log Household Size 0.996∗∗∗ (0.212) 0.767∗∗∗ (0.228)
% Black 0.748∗∗∗ (0.130) 0.544∗∗∗ (0.151)
% Hispanic -0.564∗∗ (0.213) -0.895∗∗∗ (0.230)
% Asian 0.672∗∗ (0.225) 0.441 (0.234)
% Public Transport 0.084 (0.228) 0.275 (0.250)
Log Commute Time 0.043 (0.195) -0.130 (0.211)
% Uninsured 2.587∗∗∗ (0.562) 1.830∗∗ (0.640)
Bronx -0.266∗∗ (0.089) -0.199∗ (0.092)
Brooklyn -0.492∗∗∗ (0.079) -0.457∗∗∗ (0.081)
Queens -0.831∗∗∗ (0.085) -0.786∗∗∗ (0.088)
% Flexible Occupations -1.323∗∗ (0.408)
% Health Practitioners 0.468 (1.179)
% Other Health -0.526 (0.840)
% Firefighting 2.436 (1.819)
% Law Enforcement 1.719 (2.497)
% Essential: Service 1.289 (0.788)
% Non Ess.: Service -0.867 (1.359)
% Ind. and Construction 0.450 (0.895)
% Essential: Technical -4.681∗ (2.099)
% Transportation 0.685 (1.115)

Demographic Controls
Occupation Controls
ZIP Code FE
ZIP Code × week FE
Number of Observations 1677868 1675466 1675466 1677868 1675466

Standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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