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Abstract

Between 1880 and 1920, the US agricultural employment share fell from

50% to 25%. However, despite aggregate demand shifting away from their

sector of specialization, rural labor markets saw faster wage growth and in-

dustrialization than non-agricultural parts of the US. We propose a spatial

model of the structural transformation to analyze the link between aggregate

structural change and local economic development. The calibrated model

shows that rural areas adapted to the decline of the agricultural sector by

adopting technologies already in use in urban locations. Without such catch-

up growth, economic development would have been urban-biased and spa-

tial inequality would have increased.
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INTRODUCTION

The secular decline of the agricultural sector is an essential regularity of modern economic

growth and a key aspect of structural change. In this paper, we study the spatial dimen-

sion of this process and ask whether the structural transformation systematically benefits

or hurts particular locations. Are rural labor markets bound to fall further behind when

the agricultural sector becomes less important? Or does the process of industrialization

offer opportunities for such areas to catch up with their more developed urban peers? In

short, is the structural transformation urban- or rural-biased?

We study these questions in the context of the first phase of the structural transformation

in the US. The US economy changed dramatically between 1880 and 1920: average income

grew by 60%, and the agricultural employment share halved from 50% to 25%. Unknown

to popular belief, however, is that this economic growth was decidedly pro-rural. Using

data on local earnings and sectoral employment shares at the level of counties and com-

muting zones, we find that poor agricultural locations experienced faster wage growth

and rapid industrialization and that regional living standards converged. Hence, rural

locations were the primary beneficiaries of economic growth despite aggregate demand

shifting away from their sector of specialization.

To explain this pattern of rural-biased growth, we propose a novel theory of spatial

structural change. Our approach combines insights from the macroeconomic literature

on structural change with recent advances in quantitative spatial models. Consumers

have non-homothetic preferences, making agricultural spending shares decline as in-

comes grow. Locations differ in their sectoral productivity, amenities, and the supply

of agricultural land. Agricultural production requires land, leading to decreasing returns

at the local level. Workers can move between locations and sectors subject to reallocation

costs.

At the heart of our theory is a flexible process of regional productivity that captures the

possibility that different locations might be on different growth trajectories. Specifically,

we model local productivity as evolving on a sector-specific, spatial productivity ladder.

This formulation lets us parsimoniously capture the spatial evolution of absolute and

comparative advantage. If locations at the bottom of the ladder grow faster and catch up

with locations close to the technological frontier, the cross-sectional dispersion of produc-

tivity declines, and so does spatial inequality. If, by contrast, locations at the top of the

ladder experience faster growth, spatial fortunes tend to diverge.
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Our theory makes precise predictions about the spatial bias of the structural transforma-

tion. Whether growth is urban or rural biased is a horserace between two forces. On the

one hand, falling agricultural demand hurts rural locations. The intuition is similar to that

of Bartik instruments: because rural labor markets have a large share of their workforce in

the agricultural sector, they have high exposure to a reallocation of spending away from

agriculture. All else equal, this demand-side channel makes the structural transformation

urban-biased. Moreover, this force is stronger, the more specific workers’ skills are to a

particular sector, making it difficult to move them out of agriculture.

On the other hand, regions differ in their position on the spatial productivity ladder and,

consequently, their future growth prospects. If agriculturally specialized locations are (on

average) located at the bottom rungs of the ladder and productivity is subject to catch-up

growth, rural labor markets benefit (on average) from faster productivity growth. This

supply-side channel has the potential to make the structural transformation rural-biased.

The overall spatial bias thus depends on the elasticity of sectoral labor supply, the corre-

lation between absolute and comparative advantage, and the extent of catch-up growth.

We structurally estimate our model using time-series and regional data for the US be-

tween 1880 and 1920. Regions’ initial positions on the spatial productivity ladder, the

strength of spatial convergence, and the sectoral substitutability of labor supply are es-

sential for the spatial bias of economic growth. Our model provides an intuitive way to

estimate these objects. First, we can infer the sectoral productivity ladder in 1880 from the

joint distribution of local wages and sectoral employment shares (while controlling for the

size of the local population and the availability of agricultural land in a model-consistent

way). Second, we estimate the extent of catch-up growth and the labor supply elastic-

ity by targeting the empirical relationships between initial agricultural specialization and

subsequent wage growth and industrialization.

Our central finding is that catch-up growth was most important in shielding rural la-

bor markets from the adverse impacts of structural change. First, we estimate that rural

locations had low productivity in both sectors in 1880: their initial agricultural specializa-

tion reflected a comparative disadvantage in manufacturing, not an absolute advantage

in agriculture. Second, the spatial productivity distribution converged, and agricultural

areas were the primary beneficiaries since they were, on average, at the bottom of the

ladder. We estimate that annual productivity growth in both sectors was roughly two

percentage points higher in rural locations relative to urban regions close to the techno-

logical frontier. While faster productivity growth in agriculture explains why rural loca-
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tions experienced faster wage growth, technological catch-up in manufacturing triggered

rural regions’ swift industrialization.

What is the importance of catch-up growth in shaping the spatial evolution of economic

development during the first phase of the structural transformation? To answer this

question, we compare our baseline calibration with an alternative “macro-calibration” in

which we shut down the possibility of catch-up growth. Notably, the “macro-calibration”

of the model matches the same macroeconomic time-series evidence as the baseline cali-

bration by adjusting the aggregate rates of productivity growth in each sector. However,

this alternative “macro-calibration” fails to capture the spatial dimension of the structural

transformation in important ways: it implies that growth is urban-biased, generates spa-

tial wage divergence rather than convergence, and makes counterfactual predictions for

the correlation between initial agricultural specialization and future industrialization.

In addition to this model-based perspective, we also provide direct evidence for the em-

pirical relevance of catch-up growth. We document that various canonical development

indicators, such as educational attainment, capital-deepening, firm size, and financial de-

velopment, grew substantially faster in rural America between 1880 and 1920. In sum,

rural productivity convergence was a central driving force behind the observed patterns

of spatial structural change during the first structural transformation in the US.

Although many aspects of our theory are specific to the transition out of agriculture, our

analysis also provides insights into the spatial incidence of the second structural transfor-

mation toward services. Unlike in 1880-1920, spatial inequality in the US has increased in

the last few decades, and regions specializing in the declining manufacturing sector have

experienced slower growth. Our analysis suggests that changes in the regional produc-

tivity process might be responsible for these differences. While frontier technologies in

manufacturing were embodied in physical capital and easy to move into rural regions,

the human capital required in high-skill service production may be unwilling to settle in

declining manufacturing towns outside big cities. As a result, economically backward

locations today might have more difficulty catching up.

Related Literature We contribute to the large macroeconomic literature on structural

transformation - see Herrendorf et al. [2014] for a survey.1 Models in this literature are ag-

1The macroeconomics literature on structural change highlights both the role of non-homothetic de-
mand (see, e.g., Kongsamut et al. [2001], Comin et al. [2021], and Boppart [2014]) and supply-side explana-
tions such as unbalanced technological progress, capital-deepening, and human capital accumulation (see,
e.g., Ngai and Pissarides [2007], Acemoglu and Guerrieri [2008], Alvarez-Cuadrado et al. [2017], and Porzio
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gregative and hence silent on the spatial dimension of structural change. In contrast, our

theory combines elements of a standard macroeconomic model with recent advances in

spatial economics (e.g., Allen and Arkolakis [2014], Redding and Rossi-Hansberg [2017])

to study the spatial aspects of the structural transformation.2

A set of closely related papers studies aspects of spatial structural change: an impor-

tant early contribution is Caselli and Coleman II [2001]„ who use a stylized two-region

model to highlight that the structural transformation went hand-in-hand with regional

convergence. In a recent contribution, Nagy [2016] examines the transformation of rural

labor markets as part of the process of city formation in the US before 1860. Michaels

et al. [2012] also study the implications of agricultural specialization on subsequent de-

velopment in the US since 1880. Relative to our paper, they focus on population growth

rather than wage growth and industrialization. More recently, a growing number of pa-

pers study the spatial dimension of the structural transformation towards services (see,

e.g., Desmet and Rossi-Hansberg [2014], Eckert et al. [2020a], Fan et al. [2022], Budí-Ors

and Pijoan-Mas [2022] or Hsieh and Rossi-Hansberg [2019]) and structural change within

the agricultural sector in developing countries (e.g., Pellegrina and Sotelo [2021], Sotelo

[2020], Farrokhi and Pellegrina [2020]).

On the theoretical side, we follow Boppart [2014] in using a price-independent gener-

alized linear (PIGL) demand structure. This demand structure has more potent income

effects than the widely used Stone-Geary specification and can generate the large declines

in agricultural employment observed in the data (see Alder et al. [2022] and Buera and

Kaboski [2009]). We show how these preferences can be tractably integrated into a general

equilibrium trade model, making them a natural choice in our setting.

A crucial element of our theory is the spatial productivity ladder and the possibility of

regional convergence. Several studies document technological convergence across coun-

tries (see, e.g., Acemoglu et al. [2006] or Desmet et al. [2018]) and across regions within

countries (see, e.g., Barro and Sala-i Martin [1992] or Desmet and Rossi-Hansberg [2009]).

We add to this literature by showing that regional convergence played a key role in the

structural transformation. In particular, our theory highlights why these benefits of back-

wardness accrued to agricultural regions in the past and why the structural transforma-

et al. [2022]).
2The quantitative spatial literature has studied topics such as spatial misallocation (Hsieh and Moretti

[2019], Fajgelbaum et al. [2019]), the local effects of trade opening (Tombe and Zhu [2019], Coşar and Fa-
jgelbaum [2016], Fajgelbaum and Redding [2022], Caliendo et al. [2019]), the importance of market access
(Redding and Sturm [2008], Ahlfeldt et al. [2015]), and the role of dynamic innovation and investment de-
cision for spatial growth (Desmet et al. [2018], Walsh [2019], Peters [forthcoming], Kleinman et al. [2021]).
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tion today might lead to regional divergence (see, e.g., Austin et al. [2018] and Chatterjee

and Giannone [2021]).

The rest of the paper is structured as follows. Section 1 presents two facts on spatial struc-

tural change in the US that motivate our analysis. Section 2 contains our theory. Section

3 draws on that theory to characterize the spatial incidence of structural change. We de-

scribe the calibration of our model in Section 4 and quantify the link between catch-up

growth and rural-biased growth in Section 5. Details on both our theoretical derivations

and our empirical analysis are contained in an Appendix.

1. STRUCTURAL CHANGE

ACROSS US COMMUTING ZONES, 1880-1920

In this section, we document a set of patterns of spatial structural change that guide the

development of our theory and inform our calibration. We focus on the time period

between 1880 and 1920, and use data on agricultural employment from the full-count

Decennial Census files and on average earnings from the Census of Manufacturing.3

Throughout the paper, we aggregate county-level observations to constant-boundary “com-

muting zones” (Tolbert and Sizer [1996]) which serve as a consistent spatial unit of obser-

vation.4

,The relative importance of agricultural employment in the US economy declined dra-

matically between 1880 and 1920. The left panel of Figure 1 shows the time series of

the agricultural employment share of the US economy. Starting in 1880, the aggregate

agricultural employment share declined from 50% to essentially 0% today. Half of that

decline occurred between 1880 and 1920, the time period of our study.

The decline in agricultural employment was a “within labor market” phenomenon affect-

ing all locations. This is seen in the right panel, which shows the distribution of agricul-

tural employment shares across commuting zones in our years of study. In 1880, regions

differed widely in their reliance on agricultural employment: many localities had over

75% of their workers engaged in the agricultural sector. Between 1880 and 1920, there

was a pronounced left-ward shift in this distribution indicating that agricultural employ-

3We focus on the years between 1880 and 1920 because consistent data are not available earlier and to
avoid the Great Depression.

4We create this time-invariant measure of geography using the crosswalk of Eckert et al. [2020b]. See
Section 4 for details on the data.
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FIGURE 1: SPATIAL STRUCTURAL CHANGE
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Notes: The left panel shows the aggregate agricultural employment share in the US since 1880. The right
panel shows the distribution of agricultural employment shares across commuting zones in 1880, 1900,
and 1920. The vertical lines in the right panel depict the aggregate agricultural employment share in the
respective year. Both panels use data from the full-count US Decennial Census files available from IPUMS
(see Ruggles et al. [2017]).

ment fell in all regions.5

In Figure 2 we document the importance of spatial convergence during the same time pe-

riod. Initially more agricultural regions started out poor, but saw faster wage growth

and industrialization during the first phase of the structural transformation. The left

panel shows the negative correlation between wages and agricultural employment in

1880: agricultural locations were poor, and average earnings between more and less in-

dustrialized regions differed by up to one log point. The red line (right-axis) in the right

panel, shows average wage growth between 1880 and 1920 as a function of their initial

agricultural employment share. The figure shows a clear pattern of rural-biased growth:

rural locations saw faster wage growth than urban locations.

Regions in the intermediate range of agricultural employment shares industrialized the

fastest. The blue line (left axis) in the right panel of Figure 2 graphs the change in the

5To see this formally, note that we can decompose the change in the agricultural employment share be-
tween 1880 and 1920 into a within location component, a spatial reallocation component, and a covariance
term as follows:

sA1920 − sA1880︸ ︷︷ ︸
−0.21

= ∑
r
(srA1920 − srA1880) lr1880︸ ︷︷ ︸

−0.17

+∑
r

srA1880 (lr1920 − lr1880)︸ ︷︷ ︸
0.04

+∑
r
(srA1920 − srA1880) (lr1920 − lr1880)︸ ︷︷ ︸

0.01

.

Quantitatively, the within component along accounts for almost 80% of the entire decline in agricultural
employment between 1880 and 1920.
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FIGURE 2: THE PATTERNS OF SPATIAL STRUCTURAL CHANGE
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Notes: The left panel shows a scatter plot between commuting zones’ agricultural employment shares and
average earnings in 1880 and a Lowess fit line. The size of the points is proportional to the total workforce
in each commuting zone. The right panel shows two fitted fractional polynomial curves along with 95%
confidence intervals. They show the relationship between commuting zones’ agricultural employment
share in 1880 and (1) their average earnings growth between 1880 and 1920 (left axis) relative to the nation-
wide average and (2) the change in the agricultural employment share between 1880 and 1920 (right axis).
In fitting the polynomials, we weight by commuting zones’ total employment in 1880.

agricultural employment share as a function of its level in 1880. While more agricultural

locations industrialized faster than regions with little reliance on agricultural employ-

ment, the relationship is not monotone, but U-shaped: subsequent industrialization was

fastest in commuting zones that had agricultural employment shares between 0.5 and 0.7

in 1880.

Throughout the paper, we refer to the correlations presented in Figure 2 as the “patterns

of spatial structural change” and use them to inform our theory and identify model pa-

rameters in our calibration. These patterns are robust to changes in the spatial unit of

observation and more formal statistical analysis. In Section B.2 in the Appendix, we repli-

cate our results at the county-level and also provide them in regression form.

The key takeaway from this section is that even though rural locations saw aggregate de-

mand shifting away from their sector of specialization, rural areas caught up with urban

centers and experienced rapid industrialization. As a result, the first phase of the struc-

tural transformation in the US was an episode of regional convergence. In the remainder

of the paper, we show that these patterns are consistent with a spatial theory of structural

change in which productivity convergence allowed rural locations to catch-up with their

technologically more advanced non-agricultural counterparts.
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2. A THEORY OF SPATIAL STRUCTURAL CHANGE

Our theory of spatial structural change combines the workhorse model of economic ge-

ography (see, e.g., Redding and Rossi-Hansberg [2017]) with a macroeconomic theory of

structural change (see, e.g., Herrendorf et al. [2014]). We provide detailed derivations in

Section A of the Appendix.

2.1 Environment

The economy consistent of a set of discrete locations, indexed by r = 1, ..., R, and two

sectors, agriculture and non-agriculture, indexed by s = A, M, respectively. At time t,

the economy is inhabited by a mass L̄t of workers. We suppress time subscripts when

describing the static elements of our model.

Preferences Individuals value the consumption of agricultural and non-agricultural goods.

Preferences for these sectoral outputs are non-homothetic to generate the shifts in sectoral

demand associated with the structural transformation. Following Boppart [2014], we

assume preferences fall in the non-homothetic “PIGL” (Price-Independent Generalized

Linear) class. As we show in detail in Section 2.2, these preferences have convenient ag-

gregation properties that make them a natural choice for models of trade and economic

geography. PIGL preferences do not have an explicit utility representation, but are de-

fined implicitly via the indirect utility function. We parametrize the indirect utility of an

agent with expenditure y facing final good prices (PrA, PrM) as:

(1) V (y, PrA, PrM) =
1
η

(
y

Pφ
rAP1−φ

rM

)η

− ν ln
(

PrA

PrM

)
,

where η, φ ∈ (0, 1) and ν > 0 are the structural preference parameters.

For now, we assume trade costs are zero for the agricultural good. Doing so allows us to

treat the agricultural good as the numeraire, that is, PrA = PA = 1, and to simplify the

notation. Our quantitative exercise below features trade costs in both sectors.

Applying Roy’s Identity yields the following expression for an individual’s expenditure

share on the agricultural good:

ϑA (y, PM) = φ + ν
(

y/P1−φ
rM

)−η
.(2)
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Equation (2) shows that the demand system is akin to a Cobb-Douglas specification with a

non-homothetic adjustment.6 Conveniently, the term y/P1−φ
rM , which we also sometimes

refer to as “real income,” emerges as a summary statistic for such non-homotheticities.

Consumers reduce their relative agricultural spending as they grow richer, since ν > 0

and η > 0 and the expenditure share asymptotes to φ as incomes grow large. If ν = 0 and

η = 1, equation (1) reduces to a Cobb Douglas utility function with constant expenditure

shares and utility fully determined by real income.7 We refer to the elasticity parameter η

as the “Engel elasticity” because it determines the shape of consumers’ Engel curves. The

larger η, the stronger the effect of real income on consumer demand.

Our preferences imply that the elasticity of substitution between the value added gener-

ated in the two sectors,

(3) $ = 1 + η
(ϑA − φ)2

ϑA (1− ϑA)
,

is not a structural parameter, but varies across space and across the income distribution.

The agricultural spending share ϑA emerges as a sufficient statistic for the variation in

income and prices. Moreover, $ is increasing in ϑA (that is, decreasing in real income)

and satisfies limϑA→φ $ = 1. Poor individuals, who spend a large fraction of their in-

come on agricultural goods, consider food and non-agricultural products substitutes.

Consequently, as non-agricultural prices fall, they increase their consumption of non-

agricultural goods. As incomes increase, preferences approach a Cobb-Douglas utility

function with constant expenditure shares and a unitary elasticity of substitution.

Technology Each region can produce agricultural and non-agricultural goods. A repre-

sentative local firm produces the agricultural good using the following technology:

(4) YrA = ZrAH1−α
rA Tα

r ,

where ZrA is the local productivity in agricultural production, HrAt is agricultural labor

(measured in efficiency units), and Tr denotes agricultural land. We assume that agri-

6In Section B.3.7 in the Appendix, we show, using micro data on expenditure from the CEX in 1936, that
the specification in equation (2) describes the cross-sectional relationship between sectoral spending shares
and income well.

7In our quantitative application, we choose the level of regional productivity to ensure expenditure
shares are between 0 and 1. This amounts to assuming consumers are sufficiently rich to be willing to
consume non-agricultural goods in positive quantities.
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cultural land is in fixed supply in each region. As result, the land share, α, indexes the

strength of decreasing returns to scale.

We model the non-agricultural sector in the standard “CES-monopolistic-competition”way.

Individual firms pay a fixed cost of entry, fE, denoted in units of manufacturing la-

bor. Upon entering, each firm produces a differentiated variety, indexed by ω, using

the same constant-returns-to-scale, labor-only production technology with productivity

ZrM. Firms operate for a single period, which we define as 20 year in our empirical appli-

cation. We assume free entry, so that new firms enter until their profits equal their fixed

costs. Total demand for non-agricultural labor in region r, HrM, is therefore the sum of

entry and production labor, HrE and HrP, respectively. The market for non-agricultural

varieties is monopolistically competitive.

In each location, a representative firm assembles the differentiated non-agricultural vari-

eties into a final consumption good:

(5) YrM =

(∫ N

0
y (ω)

σ−1
σ dω

) σ
σ−1

=

(
R

∑
j=1

∫ Nj

0
y (ω)

σ−1
σ dω

) σ
σ−1

.

Here, N is the total number of varieties available and Nr denotes the number of varieties

produced in region r. Non-agricultural varieties are subject to the usual iceberg trade

costs. The presence of such trade costs implies that the composition and price of the final

non-agricultural good differs across locations.

Productivity Growth and the Spatial Productivity Ladder Productivity growth is the

fundamental driver of economic development in our model, both at the regional and

aggregate level. We model the evolution of the region- and sector-specific productivity

terms productivity in a parsimonious way and assume they evolve on a spatial productivity

ladder. Specifically, let Zst denote a sector-specific productivity shifter that grows at the

constant rate gs. Assume Zrst ≤ Zst so that we also refer to Zst as the sectoral frontier.

We assume the following process for the evolution of the local productivity terms in each

sector:

(6) d ln Zrst = gs + λs ln
(

Zst

Zrst

)
for s = A, M.

Equation (6), which is similar to Acemoglu et al. [2006] and Desmet et al. [2018], allows us

to capture regional divergence, regional convergence, and balanced productivity growth

10



parsimoniously through one sector-specific parameter, λs. If λs = 0, sectoral productivity

grows at the same rate in all regions and the spatial productivity distribution in sector s

is stationary. If λs > 0, less productive regions benefit from their backwardness and grow

at a faster rate. If λs < 0, the opposite is the case and technologically backward locations

fall further behind.8

Our interpretation of the local productivity terms ZrAt and ZrMt is intentionally broad.

A region’s “benefit of backwardness” could be due to actual spatial technology diffu-

sion, where lagging localities adopt existing techniques to catch up to the technological

frontier. But, catch-up growth could also be driven by infrastructure investments, capital

deepening, or other institutional changes that spatially diffuse with a time lag and reach

less productive locations at later stages of economic development. Below, we provide di-

rect empirical evidence for this pattern of catch-up growth for a variety of development

indicators.

Importantly, equation (6) does not hardwire local productivity growth to local sectoral

specialization. Whether agriculturally specialized locations experience faster growth de-

pends on why they specialize in the agricultural sector. If agricultural locations have, on

average, lower physical productivity ZrAt or ZrMt, they benefit from catch-up growth.

However, a comparative advantage in agriculture is also consistent with an absolute ad-

vantage in both sectors, or could be entirely due to an abundance of agricultural land Tr.

As a result, our model does not mechanically produce a systematic relationship between

sectoral specialization and future growth.9

Sectoral Labor Supply Structural change exerts pressure on local economies to reallo-

cate labor across industries. Workers’ ability to move out of agriculture depends on the

extent to which their skills are substitutable across sectors. To capture this reallocation

margin, we model sectoral labor supply using the typical Roy-type machinery.

An individual worker i in region r can supply zi
s efficiency units to sector s that are drawn

from a sector-specific Fréchet distribution, P
(
zi

s ≤ z
)
= Fs (z) = e−z−ζ

. The parameter ζ

captures the dispersion of efficiency units across workers in sector s.

8If λs > 0, equation (6) implies regional productivity differences disappear in the long run. This is for
simplicity only. Suppose equation (6) was given by d ln Zrst = gs + λs ln

(
Zst/Zrst

)
− µrs, where µrs ≥ 0.

Then, Zrst → e−µrs/λs Zst. For the case of µrs = 0, we recover Zrst → Zst. In our empirical application, which
covers a 40-year period, this long-run result is not consequential.

9The diffusion process itself does not reflect any geographic attributes. Note, however, that local pro-
ductivity growth will be correlated across labor markets if the initial cross-sectional distribution of produc-
tivity, {Zrst}rs , are spatially correlated.
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We denote total payments per efficiency unit of labor in region r and sector s by wrs and

assume the payments to agricultural land in a location are distributed to local agricultural

workers and included in wrA.10 Workers choose a sector of employment to maximize their

income, yi
r = max

{
zi

AwrA, zi
MwrM

}
. As a result, the income distribution in each location

inherits the Fréchet distribution of the underlying efficiency units, that is,

(7) Fr (y) = e−(y/wr)
−ζ

where wr =
(

wζ
rA + wζ

rM

)1/ζ
,

where the term wr denotes average earnings in region r. Similarly, sectoral employment

shares and aggregate labor supply are given by:

(8) srs = (wrs/wr)
ζ and Hrs = Γζ Lr (wrs/wr)

ζ−1 ,

where Γx ≡ Γ (1− 1/x) and Γ(·) is the gamma function.

Equation (8) highlights that ζ governs the sectoral-labor-supply elasticity: the higher ζ,

the higher the elasticity of labor supply. As ζ → ∞, the heterogeneity in efficiency units

disappears and labor is fully elastic across industries. This limiting case is the benchmark

of most macroeconomic models of the structural transformation. We show below that

the parameter ζ is a crucial determinant of the spatial distribution of wages and sectoral

employment shares in the presence of aggregate growth.

Spatial Mobility At the beginning of each period, workers can move to another loca-

tion. We denote the distribution of workers across regions at the beginning and at the end

of a period by {LY
rt}r and {Lrt}r, respectively.

We assume that worker learn their labor productivity in each sector only after arriving in

a destination. The indirect utility of worker i from location r in location r′ at time t is thus

given by:

(9) U i
rr′t ≡ VrtBrtµrr′ui

rt, where Vrt ≡
∫

V (y, prt) dFrt (y) and Brt = BrL−ρ
rt

The term Vrt denotes expected consumption utility reflecting a worker’s uncertainty about

the efficiency units of labor drawn upon arrival in a region. The term Brt is an amenity

10If we denote the skill price in agriculture by w̃rA, then wrA ≡ 1
1−α w̃rA. With non-homothetic prefer-

ences, the income distribution is consequential for aggregate sectoral spending. Distributing land payments
to local workers instead of immobile local land owners (see, e.g., Redding and Rossi-Hansberg [2017]) im-
plies we have to keep track of only one income distribution.
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term, which comprises an exogenous and endogenous part. The parameter ρ > 0 indexes

the strength of congestion forces such as the scarcity of local housing or other non-traded

goods. The parameter µrr′ ∈ (0, 1] reflects the cost of moving: destination utility is dis-

counted depending on a worker’s region of origin. We assume that workers who stay put

enjoy the full local utility, i.e., µrr = 1. Finally, ui
rt, reflects a worker-location-specific pref-

erence shifter, which is drawn prior to choosing a region, i.i.d. from a Fréchet distribution

with shape parameter ε.

Using standard properties of the Fréchet distribution, the share of workers moving from

location r to r′ can be written as

(10) mrr′t =
(µrr′Vr′tBr′t)

ε

∑j
(
µrjVjtBjt

)ε .

Changes in the local labor force are not only the result of internal migration, but also due

to factors we do not model explicitly. In particular, international immigration was sub-

stantial during the time period of our study and local birth rates varied considerably. To

capture these factors, we follow Cruz and Rossi-Hansberg [2021] and allow for an exoge-

nous component of population growth, nrt, that links the beginning-of-period distribu-

tion of workers, {LY
rt}r, to the end-of-period workforce of the previous period, {Lrt−1}r,

according to LY
rt = nrt−1Lrt−1. As a result, the law of motion for the local population takes

the following form:

(11) Lrt = ∑
r′

mr′rtLY
r′t = ∑

r′
mr′rtnr′t−1Lr′t−1,

where mr′rt is given in equation (10). The size of region r is thus determined by its rel-

ative attractiveness (mr′rt), its size in the past (Lrt−1), and exogenous local population

growth (nrt−1). Allowing for population growth is important because decreasing returns

in agriculture imply that the size of the labor force has real effects.

2.2 Aggregate Demand and Spatial Welfare

To compute the equilibrium, we need to characterize workers’ expected utility Vrt and the

aggregate demand system. As we detail in Section A.3 in the Appendix, the combination

of PIGL preferences and the Fréchet distribution of individual income allows us to derive

closed-form expressions for these objects, despite the fact that consumer demand is non-

homothetic.
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First, the aggregate expenditure share on agricultural goods in region r, ϑrA, is given by

ϑrA ≡
∫

ϑA (y, pr) ydFr (y)∫
ydFr (y)

= φ + νRC
(

wr/P1−φ
rM

)−η
,(12)

where νRC = ν
Γζ/(1−η)

Γζ
is a composite parameter that depends on the underlying micro

preference parameter ν, the second moment of the income distribution ζ, and the En-

gel elasticity η. Hence, the aggregate demand system is akin to the one generated by a

representative agent who earns the average wage, wrt, and has a preference parameter

νRC. The aggregate demand system is still non-homothetic: an increase in average real

income reduces the aggregate spending share on agricultural goods. Furthermore, the

macro-elasticity of expenditure shares to real income coincides with the corresponding

micro-elasticity, η. Importantly, local wages and prices are enough to compute the aggre-

gate spending share and thus aggregate demand.

Second, we can also derive an intuitive expression for consumption utility in region r, Vr:

(13) Vr =
∫

V (y, pr) dFr (y) =
1
η

Γ ζ
η

(
wr/P1−φ

rM

)η
− ν ln (1/PrM) .

Expected utility in region r resembles the indirect utility of a representative agent who

earns average income wrt and has a “taste” parameter Γζ/η determining the relative im-

portance of real income and relative prices. The indirect utility in equation (13) presents a

non-homothetic generalization of the location-utility in the workhorse economic geogra-

phy model (see, e.g., Allen and Arkolakis [2014] or Redding and Rossi-Hansberg [2017]).

2.3 Equilibrium: Local Wages and Industrialization

We are now in the position to characterize the equilibrium.

Definition. Let {Lr0, ZrA0, ZrM0}r be the initial distribution of workers and productivity and{
ZAt, ZMt

}
t be a path of the technological frontier. An equilibrium is a sequence of prices {PrAt, PrMt}rt,

wages {wrAt, wrMt}rt, rental rates {Rrt}rt, non-agricultural varieties {Nrt}rt, employment al-

locations {HrAt, HrEt, HrPt}rt, local populations {Lrt}rt, and individual consumption choices{
ci

rAt,
[
ci

rMt (ω)
]

ω

}i
rt, and productivity processes {ZrAt, ZrMt}rt, such that (i) consumers’ con-

sumption and location choices maximize utility, (ii) the creation of local varieties is consistent with

free entry, (iii) firms maximize profits, (iv) all markets clear, and (v) productivity evolves according

to equation (6).
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We highlight a useful characterization of our main outcomes of interest: local wages and

sectoral specialization and relegate a discussion of the full equilibrium system of equa-

tions to Appendix A.4.

Our model allows us to represent the non-agricultural sector within each location in a
simple way. Under free entry, the mass of firms is proportional to non-agricultural pro-
duction labor, who receive a fixed fraction of sectoral revenue. As a result, a location’s
non-agricultural revenue,RrM, is given by

(14) RrM = f̃ED
1
σ
r Z

σ−1
σ

rM HrM, where Dr ≡∑
j

τ1−σ
rjM Pσ−1

jM ϑjMΓζ Ljwj,

where Dr is a measure of the effective demand for non-agricultural products and f̃E is a

composite constant. Hence, non-agricultural revenue is similar to a constant-returns-to-

scale production function, with revenue TFP being a combination of local physical pro-

ductivity, ZrM, and the endogenous demand term, Dr. The presence of the demand term

in sectoral revenue highlights the endogenous link between structural change and sec-

toral productivity: as incomes rise and spending shifts towards non-agricultural goods,

the increase in market size leads to higher revenue productivity in the non-agricultural

sector.

The production side of each local economy can thus be represented as a two-sector econ-

omy, with decreasing returns to scale in agriculture and constant returns in manufac-

turing. This representation is useful to derive the equilibrium factor prices and sectoral

employment shares.

Proposition 1. Define “population density,” ` ≡ Lr/Tr, and the following “effective” sectoral

productivity terms in region r:

ZrM ≡ f̃−1
E D

1
σ
r Z

σ−1
σ

rM and ZrA ≡ ZrA
(
Γζ`r

)−α .

Local wages wrMt and wrAt and sectoral employment shares srAt are then determined by

(15) wrM = ZrM;

((
ZrM

wrA

)ζ

+ 1

) ζ−1
ζ (

ZrA

wrA

) 1
α

= 1;
s1+(ζ−1)α

rA
1− srA

=

(
ZrA

ZrM

)ζ

.

Proof. See Section A.5 in the Appendix.

Proposition 1 characterizes local factor prices and sectoral specialization in terms of the

two sufficient statistics, ZrM and ZrA. We refer to these terms as “effective” sectoral

15



productivities. While both Dr and `r are endogenous and intrinsically linked to the way

locations spatially interact on the market for goods (Dr) and in terms of inter-regional

migration (`r), Proposition 1 shows that as far as wages and sectoral specialization are

concerned, they are isomorphic to sectoral productivity.

Equation (15) highlights that the two sectors differ in their exposure to these effective

productivity terms. Manufacturing wages only depend on Zr and Dr and are indepen-

dent of agricultural productivity ZrA and population density `r. By contrast, agricultural

wages are increasing in both ZrM and ZrA. Moreover, the elasticity of agricultural wages

to either productivity term varies across locations and depends on the elasticity of labor

supply, ζ, and the share of land, α. These properties are direct implications of the sec-

toral differences in the returns to scale. Given that agriculture has decreasing returns,

the marginal product of labor depends on the quantity of agricultural labor and hence

sectoral labor supply. By contrast, as highlighted in equation (14), the marginal product

of labor in the non-agricultural sector is constant and only depends on aggregate sectoral

revenue TFP, ZrM. Finally, sectoral specialization is entirely determined by agricultural

productivity ZrA relative to non-agricultural productivity ZrM. The ratio ZrA/ZrM thus

plays the role of endogenous comparative advantage.

The expressions in Proposition 1 speak directly to the patterns of spatial structural change

documented in Section 1. More specifically, the joint distribution of wages and agricul-

tural employment shares in Figure 2 identifies the distribution of the effective produc-

tivity terms, ZrM and ZrA. Rural locations have, by definition, a comparative advan-

tage in the agricultural sector, that is a large ZrA/ZrM. Rural labor markets also have

most of their labor force in agriculture. As a result, their low levels of average income

suggest they have low effective agricultural productivity, ZrA, and even lower effective

non-agricultural productivity, ZrM.

Similarly, Proposition 1 also stresses that changes in the effective productivities, ZrM and

ZrA, are at the heart of local wage growth and industrialization. Although the static

equilibrium allocations do not depend on whether effective non-agricultural productivity,

ZrM, is low because of low market access, Dr, or low physical productivity, ZrM, the dis-

tinction becomes important to predict the change in effective productivity. If differences

in physical productivity drive most of the variation in effective industrial productivity,

ZrM, rural labor markets benefit from catch-up growth in the non-agricultural sector. If,

by contrast, most of the variation in revenue productivity is due to market access, the

benefit for a rural location from productivity convergence is limited. Similarly, if most of
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the variation in agricultural effective productivity, ZrA, is driven by differences in popu-

lation density, `r, then the agricultural productivity ladder, ZrA, must be compressed and

the potential for catch-up growth limited. By contrast, if rural locations are on average

poor because their physical agricultural productivity, ZrA, is low, they have substantial

potential for catch-up growth.

3. THE DRIVERS OF SPATIAL STRUCTURAL CHANGE

In Section 1, we presented the key patterns of spatial structural change in the US be-

tween 1880 and 1920: agricultural locations experienced faster wage growth and indus-

trialization exhibited a U-shape as a function of initial agricultural specialization. We

now leverage Proposition 1 to derive predictions for these patterns of wage growth and

industrialization.

Local wage growth and industrialization vary across space for two reasons. First, regions

differ in their exposure to changes in effective productivity ZrM and ZrA depending on

their sectoral specialization. Second, effective productivity itself might grow faster in

some regions than in others, that is, regions could differ in the incidence of growth.

We now consider a single region r that takes aggregate prices as given. Using the results

in Proposition 1, local wage growth and industrialization in such a region r are given in

the following Proposition.

Proposition 2. Local wage growth and local industrialization are given by

d ln wrt = φ (srA) d ln ZrMt + (1− φ (srA)) d ln ZrAt

dsrAt = ψ (srA) (d ln ZrAt − d ln ZrMt) ,

where the two exposure elasticities are given by

φr ≡ φ (srA) =
(γ + 1) (1− srA)

γ (1− sAr) + 1
; ψr ≡ ψ (srA) = −

srAt (1− srAt) ζ

γ (1− srAt) + 1
,

with γ ≡ α (ζ − 1). The regional incidence of effective productivity growth can be decomposed as

d ln ZrMt =
σ− 1

σ
d ln ZrMt +

1
σ

d lnDrt; d ln ZrAt = d ln ZrAt − αd ln `rt.

Proof. See Section A.5.2 in the Appendix.

Proposition 2 summarizes the patterns of spatial structural change in the model. Lo-
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cal wage growth is a simple average of sectoral effective productivity growth, with the

weight of non-agricultural productivity growth given by the wage-exposure elasticity φr.

Similarly, changes in comparative advantage, d ln ZrMt/ZrAt, map into local industrial-

ization with the semi-elasticity ψr.

Importantly, Proposition 2 highlights the distinct roles of regional differences in incidence

and exposure. Differences in exposure are summarized by the elasticities φr and ψr,

which, crucially, are region-specific: a given change in effective productivity ZrMt and

ZrAt will have a bigger impact in a location where φr and ψr are large. Interestingly, the

local agricultural employment share srA emerges as the sufficient statistic for the regional

heterogeneity in exposure.

Furthermore, our theory highlights the possibility of spatial differences in the incidence

of growth, whereby effective productivity changes differentially across localities. Such

differences in growth could be due to (i) the presence of technological catch-up (d ln ZrMt

and d ln ZrAt), (ii) local population growth (d ln `rt), and (iii) differential changes in mar-

ket access (d lnDrt).

Spatial Heterogeneity in Exposure In Figure 3, we depict the two exposure elasticities,

φr and ψr, as a function of the agricultural employment share. As seen in the left panel,

the sensitivity of local wages with respect to productivity growth in the manufacturing

industry decreases in srA. Hence, whereas industrial areas benefit especially from growth

in non-agricultural effective productivity, rural location are affected disproportionately

by effective productivity growth in agriculture. Similar to the logic of “Bartik-style” in-

struments, Proposition 2 thus highlights that the sectoral origins of growth have direct

spatial implications and that the current employment share determines regional expo-

sure. Note, in particular, that rural locations benefit little from rising aggregate demand

for non-agricultural products Drt. This formalizes the intuition that the demand shifts of

the structural transformation have an inherent urban bias.

The right panel shows that the industrialization elasticity, ψr, is a U-shaped function of the

agricultural employment share. Changes in comparative advantage, d ln ZrMt− d ln ZrAt,

therefore induce industrialization everywhere. but especially at intermediate levels of

agricultural specialization. Intuitively, the most urban locations cannot reduce their agri-

cultural employment share, because they already are - effectively - fully specialized. By

contrast, the most rural counties have such a strong comparative advantage in the agri-

cultural sector that labor reallocation is limited. As we have shown in Figure 2 above, this
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FIGURE 3: SPATIAL HETEROGENEITY IN EXPOSURE

(A) WAGE GROWTH, φ (srA)
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Notes: The figure shows the exposure elasticities φ (srA) and ψ (srA) given in Proposition 2 as a function of
the agricultural employment share. We depict the case of relative inelastic supply (low ζ) as a darker line
and the case of relative elastic supply (high ζ) as a more lightly-shaded line.

U-shape in local industrialization was one of the key patterns of spatial structural change

in the US.

Proposition 2 also highlights that these exposure elasticities depend on the supply elas-

ticity ζ. This is because ζ captures the ease of sectoral reallocation and hence the ability of

local labor markets to adjust to changes in the economic environment. As shown in Figure

3, the higher sectoral substitutability of skills ζ, the higher the weight of non-agricultural

productivity growth in determining local wages. As labor becomes very substitutable

across sectors, the regional heterogeneity in wage exposure disappears. This is because

sectoral wages equalize within a location and agricultural wages inherit the constant-

returns-to-scale property of the non-agricultural sector, i.e., limζ→∞ φr = 1. The inherent

urban bias of falling agricultural demand is thus a symptom of the imperfect sectoral

substitutability of workers within regions. Expectedly, the right panel shows that (the ab-

solute value of) ψr (srA) is also increasing in ζ: the higher the sector labor elasticity, the

stronger the sectoral reallocation induced by changes in comparative advantage and the

more pronounced the U-shape.

Finally, the exposure elasticities are tightly linked to the returns to scale in agriculture. If

agricultural production was not reliant on land and had constant returns-to-scale, limα→0 φr =

1− srA. Local wage growth would then simply be an employment-share weighted aver-

age of sectoral-revenue-productivity growth.
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Spatial Heterogeneity in Incidence The discussion above highlights the spatially un-

balanced impact of aggregate technological progress. This raises the natural question

whether differences in exposure alone are able to explain the patterns of spatial structural

change? The answer is no.

Suppose that the growth rate of the effective productivity terms ZrAt and ZrMt is common

across regions and given by ιA and ιM respectively.11 In this case, local development

varies across regions only due to differences in exposure. In particular, using Proposition

2, the patterns of spatial structural change would then be given by:

(16) d ln wrt = ιA + φ (srA) (ιM − ιA) ; dsrAt = ψ (srA) (ιM − ιA) .

Since ψ (srA) < 0, the aggregate agricultural employment declines if and only if ιM >

ιA. However, wages in rural locations would grow less because φ (srA) is declining in

srA. Hence, if effective productivity growth had been balanced, growth would have been

urban-biased during the structural transformation. This is clearly at odds with the actual

patterns of spatial structural change we documented in Section 1.12

The empirically observed rural bias thus directly implies that agricultural locations must

have experienced faster growth in effective productivity. Proposition 2 highlights that

such faster wage growth can be achieved in three ways: (i) out-migration, so that popula-

tion density `rt falls in rural location raising the marginal product of labor, (ii) increases in

market access Drt, stimulating additional firm entry and associated job-creation in rural

locations, and (iii) faster growth of physical productivity ZrMt and ZrAt. Next, we exam-

ine which of these factors were most influential in the US economy between 1880 and

1920.

4. QUANTITATIVE ANALYSIS

We now apply our framework to understand why economic growth in the US between

1880 and 1920 was pro-rural. In this section, we estimate the structural parameters of our

model before studying the role of catch-up growth in generating the patterns of spatial

structural change in Section 5.

11For example, if population were fixed, sectoral productivity ZrMt and ZrAt grew at the same rate in all
locations, and trade was free, so that the market-access term was common across space (i.e., Drt = Dt).

12Note that this result holds regardless of why the agricultural employment share is declining. As long
as agricultural employment is declining and the proportional change in effective productivity is spatially
balanced, this aggregate reallocation will lead to urban-biased growth.
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4.1 Data Description

To map our model to the data, we define locations in the model as commuting zones in

the data. We map historic counties to modern-day commuting zones using the crosswalk

in Eckert et al. [2020b] and drop commuting zones in states that were not in the Union by

1880. Our final sample consists of a balanced panel of 495 commuting zones (see B.1 in

the Appendix for a map). We assume a period in the model corresponds to 20 years in

the data.

Our analysis relies on the following sources of data. We obtain total employment by sector

and county from the U.S. Census Bureau’s Decennial Full Count Census files (via IPUMS;

see Ruggles et al. [2015]). These data also contain information on children and immi-

grants, which we use to estimate the exogenous component of local population growth,

nrt. We supplement these data with information on average earnings at the county level

from the Census of Manufacturing (via NHGIS; see Manson et al. [2017]).13 We draw

average values of farmland and buildings per acre for each decade from the Census of

Agriculture (via NHGIS; see Manson et al. [2017]). We use longitudinal data at the indi-

vidual level from the linked version of the Decennial Census data to measure migration

flows across commuting zones (via IPUMS; see Ruggles et al. [2015]). Finally, to connect

our model with macroeconomic aggregates, we rely on time-series data from the “Histor-

ical Statistics of the United States” (see Carter et al. [2006]) on real GDP per capita and

the sectoral price indices. In Appendix B.1, we provide more details on data sources, data

construction, and sample selection.

4.2 Estimation Strategy

We estimate a set of structural parameters via indirect inference using eleven empirical

moments: the two catch-up parameters λM and λA, the labor supply elasticity ζ, con-

sumers’ preferences ν, φ, η, and ε and the growth rates of the sectoral productivity fron-

tiers gM and gA. In addition, we estimate the elasticities of migration and trade costs

with respect to distance from gravity relationships of trade and migration flows outside

of the model. Finally, given these structural parameters, we infer the distribution of local

fundamentals, that is the initial productivity ladder in 1880, [Zrs1880]r, the endowment of

agricultural land [Tr], and local amenities [Br], to perfectly rationalize the data on wages,

13In the model, average earnings in manufacturing exactly coincide with average regional earnings, wrt,
which we compute as manufacturing payroll divided by manufacturing employment.
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population, land rents and sectoral employment shares in 1880.

In Table 1 below, we provide an overview of all the parameters of our model and the

empirical moments we use for identification. Even though most parameters are calibrated

jointly, we discuss our calibration strategy for particular structural parameters in terms

of the most informative empirical moments. The Appendix provides more details.14

Regional Fundamentals: [Tr], [Br], and [Zrs1880] We choose regions’ initial sectoral pro-

ductivity, [Zrs1880]rs, and land endowments, [Tr], to exactly match the distribution of

average earnings {wr1880}r, agricultural employment shares {srA1880}r, and land rents

{Rr1880}, given the observed population in 1880. A virtue of this approach is that the

initial spatial productivity ladder in 1880 is directly taken from the data. So instead

of assuming that agricultural regions are necessarily backward and hence benefit from

catch-up growth, the correlation between a region’s sectoral productivity and its initial

agricultural employment share in our calibrated model comes directly from the data.

As we show below, we find that agricultural regions in 1880 had both low agricultural

productivity, ZrA1880, and low manufacturing productivity, ZrM1880. Agricultural special-

ization was thus only a reflection of comparative advantage in agriculture, and not of an

absolute agricultural advantage. The fact that rural locations were technologically behind

the frontier in both industries implies that they benefitted from catch-up growth in both

sectors.

For each sector separately, we set the level of the economy’s technological frontier , [Zs1880]s,

to the highest regional productivity level of any region in 1880. Finally, we infer the exoge-

nous component of regional amenities, [Br]r, to ensure the population distribution would

be stationary between 1880 and 1920, if regional productivities and aggregate population

stocks were fixed at their 1880 levels.15

Technological Catch-Up (λs) and Skill Substitutability (ζ) The key empirical patterns

motivating our analysis are the positive relationship between agricultural specialization

and wage growth, and the U-shaped relationship of agricultural specialization and sub-

sequent industrialization (cf. Section 1). In Section 3, we showed that the extent of tech-

nological catch-up (λs) and the sectoral substitutability of skills (ζ) are important deter-

14Note the fixed costs fE can be normalized to unity without loss of generality.
15Note also that such calibrated amenities implicitly control for differences in the size of commuting

zones. For given wages, commuting zones with a larger area and correspondingly larger population are
associated with a higher amenity term.
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minants of these patterns. We therefore estimate (ζ, λA, λM) by explicitly targeting these

cross-sectional relationships.

Specifically, we summarize the empirical relationships from Figure 2 in the regressions

(17) d ln w̄rt = δt + βw srAt + νrt; dsrAt = δt + βsA srAt + γsA s2
rAt + urt,

where w̄rt and srAt denote average annual earnings and the agricultural employment

share in commuting zone r in 1880 and 1900, respectively, and δt is a time fixed effect. We

then estimate (ζ, λA, λM) through indirect inference by matching the three coefficients

βw, βsA and γsA in our model. In Table A.1 in the Appendix, we report the results of

estimating equation (17) in our panel of commuting zones.

The coefficients βw, βsA , and γsA are informative about λA, λM, and ζ because rural loca-

tions have an absolute disadvantage in agriculture and non-agriculture and benefit from

catch-up growth in both industries. Hence, βw increases in both λA and λM. At the same

time, λA and λM have opposite effects on rural industrialization: if most catch-up growth

occurs in agriculture, local agricultural specialization would increase in rural regions. If,

by contrast, rural wage growth is mostly driven by catch-up in manufacturing, we would

see a comovement between wage growth and industrialization in rural locations. In addi-

tion, Figure 3 above showed that a larger supply elasticity, ζ, leads to a more pronounced

U shape in industrialization. As such, parameter γsA is informative about ζ.

In addition to the parameters βsA and γsA , we also target the change in agricultural em-

ployment shares between 1880 and 1920 among the most rural location. In doing so, our

model captures the U-shaped relationship of local industrialization and initial agricul-

tural specialization. Specifically, we target the change in the agricultural employment

share between 1880 and 1920 among locations with at least 80% of their 1880 workforce

in agriculture.

The Spatial Labor Supply Elasticity ε The sensitivity of spatial reallocation with re-

spect to local factor prices is mainly governed by the Fréchet parameter ε. However, un-

like in models with homothetic preferences, the parameter ε is not the sole determinant

of the spatial labor supply elasticity. In particular, the non-homotheticity of preferences

implies that the elasticity varies endogenously across labor markets. In particular, using

equation (10), the partial elasticity of migration flows from r to r′ with respect to wages
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in r′ is given by

(18)
∂ ln mrr′

∂ ln wr′
= εη

1 + ν
ln (Pr′A/Pr′M)

1
η Γζ/η

(
wr′/

(
Pφ

r′AP1−φ
r′M

))η
− ν ln (Pr′A/Pr′M)

 ,

which, in addition to the parameter ε, depends on the Engel elasticity η, the taste param-

eter ν, and a set of endogenous variables.

We estimate ε using two data moments. First we target an average labor-supply elastic-

ity of two, a consensus estimate in the literature (see e.g. Allen and Donaldson [2020],

Monte et al. [2018] or Peters [forthcoming]). Second, similar to equation (17), we match

the observed correlation between initial agricultural specialization and future population

growth. Specifically, we estimate the regression

(19) d ln Lrt = δt + βl srAt + νrt

both in the data and in the model and target the coefficient βl. Empirically, we find that

βl = −0.36 (see Table A.1 in the Appendix).

Aggregate Productivity Growth (gA and gZ) and Sectoral Preferences (η, ν, and φ) We

estimate the growth rates of the agricultural and non-agricultural frontier, gA and gNA,

and consumers’ preferences, η and ν, to ensure that the model matches three macroeco-

nomic time-series moments: (i) aggregate GDP growth between 1880 and 1920, (ii) the

change in relative price of agricultural products between 1880 and 1920, and (iii) the evo-

lution of the agricultural employment share. Given our estimates of [Zrs1880]rs and [Tr],

we match the agricultural employment share in 1880 by construction. We thus target six

macroeconomic moments: two growth rates (1880-1900 and 1900-1920) for each of the

three outcomes. The remaining preference parameter, φ, corresponds to the asymptotic

spending share on agricultural value added for very high incomes. We set φ = 0.01,

which is close to the agricultural employment share in the US in 2020.

Other Parameters In our quantitative model, both people and goods are subject to mov-

ing costs. We parameterize these costs as power functions of distance. Migration and

trade costs increase in distance with elasticity κ > 0 and θ > 0, respectively. If we denote

the geographic distance between regions r and r′ by drr′ , migration cost are µrr′ = d−κ
rr′ ,

and trade costs in both sectors are τrr′ = d−θ
rr′ .
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To estimate the “distance elasticity“ of migration costs, κ, we use the following log linear

relationship for interregional migration flows our model implies:

(20) log mrr′t = δo
rt + δd

r′t − κε log drr′ .

In the equation, δo
rt and δd

r′t are origin and destination fixed effects, respectively, that are

functions of endogenous location-specific objects and parameters. We estimate equa-

tion (20) using commuting-zone-to-commuting-zone migration flows that we constructed

with the linked Census data. In specific, we use the Poisson Pseudo Maximum Likelihood

estimator proposed by Silva and Tenreyro [2006] since the data contain many zero values.

As we show in Section B.3.3 in the Appendix, our finding that κε ≈ 2.8, is consistent with

Allen and Donaldson [2020] who find a distance elasticity of 2.16 across counties during

the same time period in the US. For the elasticity of trade flows to distance, (1− σ)θ, Allen

and Donaldson [2020] report an estimate of −1.35.16

We take the remaining parameters from various sources in the literature. Most related

economic literature assumes an elasticity of substitution σ between 3 and 8; we set σ = 6.

Valentinyi and Herrendorf [2008] find the value-added share of land is roughly one third

as large as the one of labor; consequently, we set the land share in agriculture, α, to 0.4.

We also borrow the congestion elasticity of ρ = 0.15 from Allen and Donaldson [2020]

which is estimated using the same time period and Census data used in our study.

The Exogenous Component of Local Labor Force Growth nrt In Section B.3.2 in the

Appendix, we show that between 1880 and 1920 rural locations had substantially higher

birth rates, while urban locations received more international immigrants. To capture

both the aggregate level and spatial heterogeneity in population growth through fertility

and international migration, we allow for an exogenous component of local population

growth nrt - see equation (11). We choose the region- and period-specific parameter nrt

to match the net effect of the cross-sectional variation in immigration and fertility rates

for each commuting zone, as well as the overall aggregate rate of population growth

between 1880 and 1920. In Section B.3.2, in the Appendix, we describe this procedure in

more detail.

Importantly, since workers at the beginning of each period have the option to migrate

before becoming economically active, employment growth in each location remains en-

16Monte et al. [2018] find a similar elasticity of −1.29. Disdier and Head [2008] show this elasticity is
roughly constant in international trade data in the 20th century.
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TABLE 1: STRUCTURAL PARAMETERS AND MODEL FIT

STRUCTURAL PARAMETERS ESTIMATION METHOD

DESCRIPTION VALUE PANEL A: IN-MODEL (MOMENT, DATA,MODEL)

ζ Labor Supply Elasticity 6.9 γsA in regression (17) 0.45 0.51
E[srA1920 − srA1880|srA1880 > 0.8] -0.20 -0.20

λA Catch-Up in Agricult. 0.21 βw in regression (17) 0.25 0.16
gA Growth of Agricult. Frontier 0.07 Ag. Empl. Share 1900 0.39 0.35

0.12 Ag. Empl. Share 1920 0.26 0.25
λM Catch-Up in Non-agricult. 0.05 βsA in regression (17) -0.48 -0.57
gM Growth of Non-agricult. Frontier 0.09 GDP growth 1880-1900 1.43 1.50

GDP growth 1900-1920 2.04 2.05
ε Location Taste Heterogeneity 3.80 Avg. Migration Elasticity 2 2.03

βl in regression (19) -0.36 -0.04
η Engel Elasticity 0.93 Rel. price PM/PA 1900 0.94 1.01
ν PIGL preference parameter 0.12 Rel. price PM/PA 1920 0.89 0.87

PANEL B: OUT-OF-MODEL (STRATEGY)

κ Migration Cost Distance Elasticity 2.8 Gravity relationship of migration flows
θ Trade Costs Distance Elasticity 1.35 Gravity relationship of trade flows

PANEL C: EXOGENOUSLY-SET (SOURCE)

σ Elastictiy of Substitution Mfg Good 6 NA
ρ Amenity Congestion Elasticity 0.15 Allen and Donaldson [2020]
α Land Share in Production Function 0.4 Valentinyi and Herrendorf [2008]
φ Asy. Exp. Share on Agricult. Goods 0.01 NA

Notes: The table contains the values for all structural parameters and targeted moments of our model.
The eight parameters in the upper panel are estimated within the model, targeting the eleven moments
on the right. The two distance elasticities are estimated from gravity equations outside of the model. The
remaining four parameters are set exogenously.

dogenous in our theory.

4.3 Estimates and Model Fit

Table 1 presents our parameter estimates and their loosely-associated moments in the

calibrated model and the data. We differentiate parameters estimated within the model

by matching moments (Panel A) parameters estimated outside the model (Panel B), and

parameters that are set exogenously (Panel C). Overall, the calibrated model successfully

captures the most important empirical features of spatial structural change in the US be-

tween 1880 and 1920.

The calibrated model produces the time-series patterns of the three aggregate “macro”

moments: it successfully captures the large decline in agricultural employment, the in-

crease in GDP per capita, and the small increase in the relative price of agricultural goods

between 1880 and 1920. These time series moments mostly informed the rates of aggre-
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gate productivity growth and preference parameters. We estimate that the productivity

frontier in non-agriculture (ZMt) grew at a rate of 0.09, and the frontier in agriculture (ZAt)

at 0.07 over a 20-year time period. The estimates of the preference parameters imply an

important role of the demand-side non-homotheticities: we find an Engel elasticity η of

0.93 and ν = 0.12, which implies that agricultural value added is a necessity.17

Given the estimated preference parameters, we can compute the implied elasticity of sub-

stitution $ via equation (3). Because $ increases in the spending share on food, it is lower

in urban areas and decreases over time. Our estimates imply that the median substitution

elasticity declines from 2 in 1880 to 1.52 in 1900 and 1.31 in 1920. Similarly, the 10% and

90% quantiles of ρ across regions in 1900 range from 1.3 to around 2.18 This pattern of

declining substitution elasticities along the development path is qualitatively consistent

with the cross-country data reported in Comin et al. [2021].

Most importantly, the calibrated model matches the patterns of spatial structural change

from Section 1. In particular, our model can rationalize the relationships between agri-

cultural employment shares and future wage growth and industrialization. The cross-

sectional estimates of the parameters βw, βsA, and γsA from the two regression in equa-

tions (17) are very similar in the model and the data. In Figure 4, we replicate the non-

linear relationships between agricultural employment shares and wage growth (left panel),

and industrialization (right panel) introduced in Section 1 in both the data (grey) and our

model (red and blue, respectively). Although we only targeted three regression coeffi-

cients and the change in agricultural employment among rural locations, our model re-

produces the rural-bias of wage growth and the U-shape of industrialization very well.

To fit these patterns of spatial structural change, our parameter estimates point towards

the importance of catch-up growth in rural areas. Recall that local productivity growth

depends both on a region’s position on the spatial productivity ladder (i.e., Zs1880/Zrs1880)

and the strength of catch-up, i.e., the parameters λA and λM. Our estimates of λA = 0.21

and λM = 0.05 indicate that there was significant catch-up growth and spatial conver-

gence between 1880 and 1920. Moreover, because we estimate sectoral productivity in

1880, Zrs1880, to be negatively correlated with the agricultural employment share, srA1880,

rural labor markets were the main beneficiaries of such catch-up growth.

The quantitative impact of these patterns is depicted in Figure 5. In the left panel we dis-

17In Section B.3.7 in the Appendix, we compare this estimate from time-series data to cross-sectional
estimates.

18In Section B.3.6 in the Appendix, we display the entire distribution.
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FIGURE 4: RURAL GROWTH AND INDUSTRIALIZATION – MODEL AND DATA

(A) WAGE GROWTH
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Notes: The figure displays the correlation of wage growth (left panel) and industrialization (right panel)
with the agricultural employment share. We show the data in lighter-shaded colors and model output in
darker shades.

play the productivity ladder in 1880 as a function of the agricultural employment share.

Agriculturally specialized labor markets are, on average, less productive in both sectors.

Locations with an agricultural share of 80% in 1880 operate, on average, with manufactur-

ing technology that is only 20% as productive as the frontier technology at the time. In the

agricultural sector, these differences are less pronounced but still sizable: although rural

regions specialize in agriculture, TFP in the agricultural sector is only half that of more

developed urban centers. These within-country productivity differences are comparable

to estimates of relative TFP across countries [Jones, 2016].

Given that we found λA, λM > 0, the absolute technological disadvantage of agricultural

regions in both sectors implies that they stand to enjoy the “benefits of backwardness”

through catch-up growth. In the left panel of Figure 5, we show the implied heterogene-

ity in productivity growth across regions. In the four decades following 1880, rural labor

markets experienced a growth premium of around two percentage points. The similar-

ity in productivity growth in both sectors reflects the combination of two aspects of our

theory. First, there is less regional dispersion in agricultural productivity, reducing the

opportunities for productivity catch-up. Second, our structural estimation showed that

λA > λM, that is, the process of catch-up is faster in agriculture (which, in turn, might be

why agricultural productivity in 1880 is less dispersed). In terms of their regional growth

implications, these two forces roughly balance out.
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FIGURE 5: THE SPATIAL PRODUCTIVITY LADDER AND LOCAL CATCH-UP

(A) THE PRODUCTIVITY LADDER IN 1880
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(B) CATCH-UP GROWTH: 1880-1920
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Notes: The left panel displays the correlation of initial backwardness, Z1880/Zr1880 and A1880/Ar1880,
with the agricultural employment share in 1880. As a measure of the frontier Z1880 and A1880, we take
the 98% quantile of the distribution Zr1880 of Ar1880. The right panel displays the correlation of the es-
timated rate of annual local productivity growth between 1880 and 1920, i.e., 1

40 ln (Zr1920/Zr1880) and
1
40 ln (Ar1920/Ar1880), with the agricultural employment share in 1880.

In Figure 6, we turn to the implications for spatial mobility. In the left panel, we show

the cross-sectional relationship between local population growth and initial agricultural

specialization, that is, the data underlying regression (19). The empirical relationship is

non-monotone and, on average, relatively flat, indicating that population growth and

agricultural specialization are not very strongly correlated. The R2 of regression (19) is

only 0.17, indicating that the agricultural employment share in 1880 is a weak predictor

of future population growth.19 As suggested by the pronounced leftward shift of the re-

gional employment share distributions in Figure 2, the structural transformation in the

US was mostly a within-labor-market phenomenon. Accordingly, the net-reallocation of

labor from rural to urban commuting zones played a less important role for the struc-

tural transformation.20 Our calibrated model captures the qualitative relationship rea-

sonably well: the overall correlation of local population growth and initial agricultural

19This, of course, does not imply that spatial reallocation was not important. Presumably there was
ample spatial reallocation within counties or commuting zones from rural areas to the local town. This
view is consistent with the fact that most urbanization in the United States between 1880 and 1920 occured
within commuting zones.

20Interestingly, Budí-Ors and Pijoan-Mas [2022] show that this pattern was different in the case of Spain
between 1950 and 2000. They document a strongly negative correlation between population growth and
agricultural employment shares and argue that migration costs might have been lower. Using data across
countries, they show that for most countries, the relationship between population growth and agricultural
specialization is similar to the case of the US shown in Figure 6.
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FIGURE 6: POPULATION GROWTH AND LOCAL INDUSTRIALIZATION IN MODEL AND
DATA, 1880-1920

(A) POPULATION GROWTH
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Notes: In the left panel, we show the relationship between population growth and the agricultural employ-
ment share. We show the data in grey and our model in orange. The size of the markers reflect the relative
size of different commuting zones. The solid lines show the best non-linear fit. In the right panel we display
the correlation between wage growth and population growth in the model.

employment shares is small. However, we slightly overestimate (underestimate) popula-

tion growth for very rural (urban) communities.21

At first glance, the weak relationship between agricultural employment shares and popu-

lation growth seems at odds with the strong rural-bias of wage growth. After all, regional

utility Vrt depends directly on regional wages and our model generates an empirically

reasonable migration elasticity of two. We observe that these patterns are consistent with

each other in the right panel of Figure 6, which - expectedly - shows a positive correlation

between wage growth and population growth in the model. However, the relationship is

noisy because (i) goods prices change at different rates due to trade costs, (ii) the current

population distribution matters directly for future population growth because of moving

costs, and (iii) the exogenous part of population growth nrt due to differential fertility and

immigration inflows is not perfectly correlated with future wage growth. This, together

with the fact that wage growth is not perfectly correlated with the agricultural employ-

ment share, rationalizes the weak relationship between agricultural specialization and

future population growth shown in the left panel of Figure 6.

21In addition, population growth is less dispersed compared to the data. This is not surprising given
that our analysis abstracts from idiosyncratic shocks to local productivity or to amenities.
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4.4 Rural Catch-Up: Direct Evidence

Figure 5 showed that rural labor markets benefitted systematically from catch-up growth

in both sectors. In this section, we complement these model-based estimates with direct

empirical evidence for the presence of faster rural productivity growth.

Our theory summarizes all factors leading to catch-up growth in the reduced-form pro-

cess of technological convergence. We view this parametrization as a modeling device for

various technological and institutional developments in the US between 1880 and 1920

that benefitted rural locations. In Table 2, we provide evidence for such developments

from multiple data sources. Specifically, we run a set of bivariate regressions where we

regress the growth of different outcomes between 1880 and 1920 against the agricultural

employment share in 1880. We differentiate between outcomes we expect are correlated

with general productivity growth, and those we expect are correlated with sector-specific

productivity growth.

In columns 1 and 2, we report two examples of general developments that benefitted

rural locations. In Column 1, we show rural locations experienced faster financial devel-

opment, as measured by the growth of the number of banks per capita. In the second

column, we provide evidence for the pronounced catch-up in educational attainment,

proxied by the share of children attending school. As a result, we find that the school at-

tendance rate increased much faster in agriculturally specialized labor markets between

1880 and 1920.

In the remaining columns, we present additional evidence for sector-specific factors. In

particular, rural locations saw faster growth in the capital stock in both sectors (columns

3 and 5) and experienced a faster increase in scale: the growth in both average farm and

firm size is positively correlated with the initial agricultural employment share (columns

4 and 6).22

We view these results as an empirical description of the general transformation of rural

labor markets between 1880 and 1920. Rising educational attainment, changes in the scale

and capital intensity of production, and financial deepening are often seen as markers

of economic development across countries. Table 2 shows that the same patterns were

also present across local labor markets in the US during the first phase of the structural

transformation.

22Desmet and Rossi-Hansberg [2009] provide direct estimates of manufacturing TFP convergence across
regions in the US between 1900 and 1920; their estimates are of a similar magnitude (cf. Figure 6 in their
paper).
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TABLE 2: DRIVERS OF RURAL CATCH-UP

GROWTH IN...

GENERAL SECTOR-SPECIFIC FACTORS

School Agri. Non-agri.
Banks Atten- Machi- Farm Machi- Plant

pc dance nery Size nery Size

Agri. Emp. 0.117*** 0.007*** 0.032*** 0.012*** 0.039*** 0.032***
Share (0.006) (0.001) (0.002) (0.003) (0.009) (0.007)

R2 0.723 0.331 0.359 0.107 0.090 0.242
N 495 495 495 495 495 495

Notes: The dependent variables are the growth rate in the number of banks per capita from Jaremski and
Fishback [2018] (Column 1), the change in the share of children attending school from the Decennial Census
(Column 2), and the growth rates of the sectoral capital stocks and average employment per farm/firm
from the Census of Manufacturing (Columns 5 and 6) and the Census of Agriculture (Columns 3 and 4).
All regressions are employment weighted.

5. CATCH-UP AND RURAL-BIASED GROWTH

In this section, we use our calibrated model to quantify the importance of catch-up growth

in generating the patterns of spatial structural change introduced in Section 1.

5.1 The Sources of Rural-Biased Growth

In Proposition 2, we decomposed local wage growth and industrialization into four com-

ponents: demand growth (d lnDrt), sectoral productivity growth (d ln Zrst), and changes

in population density (d ln `rt).

In Figure 7, we implement this decomposition in our calibrated model.23 Specifically, for

each commuting zone, we compute the impact of each component separately for local

wage growth and local industrialization. We then aggregate these results among urban,

intermediate, and rural locations which we define as all regions below, within, and above

the interquartile range of agricultural employment shares in 1880.

The left panel of Figure 7 presents the decomposition of wage growth. The white bars

represent the total wage growth in each group of commuting zones, and exhibit the

previously-documented pattern of rural-biased growth. The remaining bars show that re-

23Proposition 2 relies on a first-order approximation. In Section B.3.8 in the Appendix, we compare these
predictions with the full non-linear solution in our model and show they are close.
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FIGURE 7: THE MECHANISMS OF SPATIAL STRUCTURAL CHANGE

(A) WAGE GROWTH
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Notes: The figure reports the decomposition of local wage growth, d ln wrt, and local industrialization, dsrA,
(see Proposition 2) into non-agricultural demand

(
φr

1
σ d lnDrt

)
, local productivity growth (φr

σ−1
σ d ln ZrMt

and (1− φr) d ln ZrAt), and changes in local population density (−φrαd ln `rt). We define urban (rural) loca-
tions as regions in the lower (upper) quartile of the distribution of agricultural employment share in 1880
and intermediate locations in the interquartile range. We refer to all commuting zones in the interquartile
range as "intermediate."

gions differed substantially in why their wages grew. In rural labor markets, agricultural

productivity growth was the dominant factor. By contrast, industrial revenue productiv-

ity growth through increasing demand (Drt) and non-agricultural growth (ZrMt) had a

positive, but small effect. This is because a small fraction of local workers is employed

in non-agriculture, making φ (srA) small. Population growth reduced wage growth, es-

pecially in rural locations, whose sectoral structure exposes them to decreasing returns in

the agricultural sector.

These patterns differ in urban areas. Revenue productivity growth in the non-agricultural

sector played a dominant role for wage growth, and almost half of all wage growth

stemmed from increased demand. Even though manufacturing productivity growth is

slower in urban areas (see Figure 5), their outsized exposure to this sector implies that

the total impact is comparable to rural locations. Rising agricultural productivity did not

meaningfully affect wages in urban labor markets. Finally, increased population density

also reduced wages in urban areas. Still, this reduction was far less than in rural labor

markets in which a large fraction of workers is employed in the agricultural sector that is

subject to decreasing returns.

Overall, the decomposition highlights the importance of exposure versus incidence in
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shaping the spatial bias of of growth. The impact of non-agricultural productivity growth

is balanced across regions since exposure and incidence are inversely correlated: produc-

tivity growth is faster in rural regions where exposure is lower, since most workers belong

to the agricultural sector. The opposite is true for urban regions. By contrast, rural regions

are both more exposed to and benefit from faster agricultural productivity growth, mak-

ing it a powerful source of rural-biased growth.

The right panel of Figure 7 displays the same decomposition for local industrialization.

Rural locations industrialized because of rising relative productivity in the manufactur-

ing sector and increasing population density. By contrast, productivity growth in the

agricultural sector was a strong counteracting force that kept workers in agriculture. In-

termediate locations saw a slightly faster decline in agricultural employment shares (the

“U shape”), primarily due to a less pronounced increase in agricultural productivity. Fi-

nally, in urban centers, rising demand, nonagricultural productivity growth, and rising

population density are equally important contributors to the decline in agricultural em-

ployment.

5.2 Catch-up Growth and Spatial Structural Change

The accounting decomposition in Figure 7 highlights the pivotal role of rural-biased pro-

ductivity growth to explain the patterns of spatial structural change. We now quantify

the full impact of this form of productivity convergence.

To do so, we consider an alternative calibration of our model that does not feature catch-

up growth. Specifically, we keep all preference parameters the same but consider a differ-

ent parametrization of the productivity process: we assume that the spatial productivity

ladder is stationary, i.e., λA = λM = 0, and re-estimate the growth rates of the respective

technological frontiers, gA and gM, to match the growth of aggregate income per capita

and the change in relative prices since 1880. Hence, this scenario resembles a baseline

macroeconomic model in which local labor markets are spatially segmented, but tech-

nologies grow at the same rate across regions. We thus refer to this parametrization as the

“no-catchup” calibration of our model.

We report the resulting parameters of the productivity process (Columns 1 - 4) and the

implied macro moments (Columns 5 - 10) in Table 3. All parameters except for gs and λs

are held fixed.24 Table (3) shows that the overall rate of frontier productivity growth in

24Note that this implies that the location fundamentals, that is, the initial productivity ladder, the land
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TABLE 3: THE MACRO CALIBRATION

TECHNOLOGY PARAMETERS MACRO MOMENTS

Agri. Non-Agri. Agri. Emp. Share GDP pc PM/PA

Calibration gA λA gM λM 1900 1920 1900 1920 1900 1920

No-Catchup 0.41 0 0.34 0 0.34 0.24 1.41 2.03 0.98 0.88
Baseline 0.07 0.21 0.08 0.05 0.34 0.25 1.5 2.05 1.01 0.87

Notes: The table reports the technology parameters and the macro moments for the baseline model and the
"macro-calibration." All other parameters are the same in both calibrations and reported in Table 1.

each sector, gs, is substantially faster in the macro calibration to compensate for the ab-

sence of catch-up growth. In terms of the macro moments, however, both calibrations are

indistinguishable and replicate the time-series patterns of the structural transformation

equally well.

In contrast to these aggregate patterns, Figure 8 shows that the “no-catchup” calibration

makes counterfactual predictions about the patterns of spatial structural change. The

left panel shows that catch-up growth is essential to rationalize the empirically observed

features of rural growth - both quantitatively and qualitatively. In the absence of produc-

tivity catch-up, growth would have been urban biased, and rural labor markets would

have fallen even further behind their urban counterparts. This pattern resembles the the-

oretical results in equation (16) when differential exposure was the only form of spatial

heterogeneity. Quantitatively, this form of differential exposure leads to a meaningful ur-

ban bias in wage growth: urban locations experience roughly 20% faster wage growth

than rural locations.

The right panel summarizes the implications for local industrialization. Without catch-up

growth, the initially most agricultural locations would have industrialized the fastest --

in sharp contrast to the U-shaped industrialization pattern in the data. This is because the

initially more agricultural regions benefitted substantially from relatively fast productiv-

ity growth in agriculture. This mechanism, which is absent without catch-up growth,

increased the comparative advantage of initially more agricultural locations and kept

workers in agriculture.

An important implication of these findings is that catch-up growth played a key role for

the spatial convergence of living standards. We document this finding in Figure 9. In

endowment, and the local amenities in 1880, are exactly the same in both calibrations because they are
estimated from static equilibrium conditions and therefore independent of gs and λs.
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FIGURE 8: THE ROLE OF RURAL PRODUCTIVITY CATCH-UP

(A) WAGE GROWTH

.2

.4

.6

.8

1

1.2

1.4
ΔL

og
 A

vg
. W

ag
es

, 1
88

0-
19

20

0 .2 .4 .6 .8 1
Agricultural Emp. Share, 1880

Baseline
No Catch-up

(B) INDUSTRIALIZATION

-0.6

-0.4

-0.2

0

0.2

ΔA
gr

i. 
Em

p.
 S

ha
re

, 1
88

0-
19

20

0 .2 .4 .6 .8 1
Agricultural Emp. Share, 1880

Baseline
No Catch-up

Notes: In the left (right) panel we show local wage growth (local industrialization) as a function of the
initial agricultural employment share. We depict the baseline calibration in grey and the macro calibration
with no catch-up in red and blue respectively. The size of the markers reflect the relative size of different
commuting zones.

both the baseline model (black) and the data (grey), there is a strong negative correlation

between wage growth and initial wages. Given our model is only disciplined by the

relationship between wage growth and agricultural specialization, Figure 9 suggests that

the mechanism of our theory, whereby agriculturally specialized labor markets caught

up with the productivity frontier, played a key role in the evolution of regional living

standards and the regional convergence highlighted in other studies of the period (e.g.,

Barro et al. [1991]). In the absence of catch-up growth, there is no indication of wage

convergence. In fact„ wage growth is slightly faster in locations with higher initial wages

reflecting the urban bias shown in Figure 8.

In sum, Figures 8 and 9 highlight that it is difficult to make sense of the patterns of spatial

structural change between 1880 and 1920 without the possibility of productivity conver-

gence in rural areas. Faster productivity growth in rural America played a key role for

rural-biased growth, and can rationalize why industrialization was faster in intermediate

localities relative to the rural fringe and why spatial inequality declined. Without pro-

ductivity convergence, growth would have been biased towards the already rich urban

areas of the country. Catch-up growth thus saved rural America from the perils of the

first phase of the structural transformation.

36



FIGURE 9: WAGE CONVERGENCE
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Notes: The figure shows commuting zone wage growth between 1880 and 1920 as a function of local aver-
age wages in 1880 in the calibrated model in grey. The dark red line shows the wage growth to initial wage
relationship in the model without catch-up growth, i.e., when λA = λM = 0.

6. CONCLUSION

Economic growth systematically reallocates resources out of the agricultural sector. In

this paper, we examine the spatial implications of this process. For the case of the US, we

document a surprising finding: between 1880 and 1920, when agricultural employment

fell from 50% to 25%, rural locations experienced substantially faster wage growth than

their more developed urban peers. Moreover, almost all of the decline in agricultural

employment took place within labor markets. Hence, the shrinking agricultural sector

did not lead to a demise of rural labor markets, but rather seemed to offer opportunities

for these locations to reinvent themselves.

These patterns are quantitatively consistent with a parsimonious model of spatial struc-

tural change that features a converging spatial productivity ladder. Since rural locations

were, on average, concentrated on lower rungs of the ladder, the possibility of catch-

ing up with the frontier allowed them to successfully navigate the structural transfor-

mation. Without the possibility of catch-up growth, the structural transformation would

have been decisively urban biased and rural locations would have fallen further behind.

Interestingly, the structural change toward services seems to have taken a different turn:

spatial inequality has increased and the decline of manufacturing seems to have taken a

toll on manufacturing-intensive labor markets. Our theory suggests that these differences

reflect a changing spatial productivity ladder, whereby technologies in the service sector
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might be harder to adopt, for example, because they are not embodied in spatially mobile

capital goods. Investigating the systematic differences in regional development during

the first and second phase of the structural transformation would be a fruitful direction

for future research.
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