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1 Introduction

Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models.
This paper provides a toolkit for solving such models easily, building on log-linearizing
the necessary equations characterizing the equilibrium and solving for the recursive
equilibrium law of motion with the method of undetermined coeflicients. While these
methods have been pioneered by McCallum (1983), King, Plosser and Rebelo (1987)
as well as Campbell (1994), the new contribution here is to demonstrate that log-
linearizing the nonlinear equations can usually be done without the need for explicit
differentiation, to extend the method of undetermined coefficients to models with
more endogenous state variables than expectational equations, to provide a general
solution and to provide frequency-domain techniques, building on results in King and
Rebelo (1993), to calculate the second-order moments of the model in its HP-filtered
version without resorting to simulations. Since the method is an Euler-equation based
approach rather than an approach based on solving a social planners problem, solving
models with externalities or distortionary taxation does not pose additional problems.
Since the (nonlinear) Euler equations usually need to be calculated in any case in order
to find the steady state, applying the method described in this paper requires little
in terms of additional manipulations by hand, given some preprogrammed routines
to carry out the matrix calculations of section 5. MATLAB programs to carry out
these calculations, given the log-linearized system, are available at the Federal Reserve
Bank of Minneapolis web site!. The method in this paper therefore allows to solve
nonlinear dynamic stochastic models easily.

Numerical solution methods for solving nonlinear stochastic dynamic models have
been studied extensively in the literature, see in particular Kydland and Prescott (1982),
the cornparison by Taylor and Uhlig (1990) and the methods proposed by various au-
thors in the same issue, Judd (1991), Hansen and Prescott (1995) and Danthine
and Donaldson (1995). The literature on solving linear-quadratic dynamic stochastic
models is even larger, see e.g. the textbook treatment in Sargent (1987), Chapters IX
and X1, as well as, say, Blanchard and Kahn (1980), McGrattan (1994) or Hansen,
McGrattan and Sargent (1994). Subject to applicability, all the method relying on
a loglinear approximation to the steady state have in common that they will find
the same recursive equilibrium law of motion as the method described in this paper,
since the linear space approximating a nonlinear differentiable function is unique and
“immune” to differentiable transformations of the parameter space. But while Mc-
Grattan (1994) and Hansen, McGrattan and Sargent (1994} focus on solving models

LThe address of that web site is http://res.mpls.frb.fed.us/research/res.html. Go to the“Archive
of Paper” and to the “Discussion Papers from the Institute for Empirical Macroeconomics™. This
discussion paper as well as the MATLAB programs are found under the header with the same title
as this paper.



via maximizing a quadratic objective function, and while Blanchard and Kahn (1980)
solve linear systems by searching for the stable manifold in the entire system of neces-
sary equations describing the equilibrium relationships, this paper by contrast solves
directly for the desired recursive equilibrium law of motion. This approach is very
natural. The stability condition is imposed at the point, where a certain matrix
quadratic equation is solved. It is shown how this matrix quadratic equation can
be reduced to a standard eigenvalue problem of another matrix with twice as many
dimensions.

Two related contributions are McCallum (1983), which is the key reference for the
method of undetermined coefficients, and Ceria and Rios-Rull (1992). While these
two contributions also derive the equilibrium law of motion with the method of unde-
termined coefficients for a multidimensional endogenous state space, their methods do
not easily allow for the possibility that there are more endogenous state variables than
there are expectational equations. McCallum (1983) reduces the coeflicient-finding
problem to a problem solvable with the methods in Blanchard and Kahn (1980),
whereas Ceria and Rios-Rull (1992) reduce the problem to one of solving a matrix-
quadratic equation as do we, but do not reduce the matrix-quadratic equation problem
to a standard eigenvalue problem. Both contributions do not distinguish between en-
dogenous variables which have to be part of the state vector, and other endogenous
variables. Thus applying these models in somewhat larger system can either result
in unnecessary large and computationally demanding eigenvalue problems in which
“bubble solutions” have to be removed in a painstaking fashion, or one is always
forced to reduce the system beforehand to make it fit their description. Further-
more, McCallum (1983) uses eigenvalue methods also to solve some other equations
in his method, which are solved here by a simple linear-equation-solution techniques,
compare his solution for equation (A.6) in his paper to equation (5.8).

Rather than just describing the new contributions, this paper describes the en-
tire method as a “cookbook recipe”, which should be of great practical use to Ph.D.
students and researchers alike who are interested in analyzing nonlinear dynamic
stochastic models in discrete time. Since the focus here is entirely on the computa-
tional aspect of studying these models, some issues are left aside entirely. In par-
ticular, the issue of existence or multiplicity of equilibria as well as the reasons for
concentrating on stable solutions is not discussed. The methods in this paper should
therefore not be applied blindly, but only in light of, say, McCallum (1983), Stokey,
Lucas with Prescott (1989) and the related literature.

The outline of the paper will be evident from the description of the general pro-
cedure in the next section.



2 The general procedure

The general procedure to solve and analyze nonlinear dynamic stochastic models takes
the following steps.

1. Find the necessary equations characterizing the equilibrium, i.e. constraints,
first-order conditions, etc., see section 4.

2. Pick parameters and find the steady state(s), see section 4.

3. Log-linearize the necessary equations characterizing the equilibrium of the sys-
tem to make the equations approximately linear in the log-deviations from the
steady state, see section 3 and section 4.

4. Solve for the recursive equilibrium law of motion via the method of undeter-
mined coefficients, employing the formulas of section 5.

5. Analyze the solution via impulse-response analysis and second-order-properties,
possibly taking account of, say, the Hodrick-Prescott-Filter. This can be done
without having to simulate the model, see section 6.

The next section skips directly to step 3 of the procedure outlined above and
describes how to log-linearize nonlinear equations without explicit differentiation.
Section 4 then provides two prototype examples, in which calculating the Euler equa-
tions, the steady state and the log-linearization is carried out to see how this method
works. Once, a linearized system has been obtained, the methods in section 5 provide
the desired recursive equilibrium law of motion.

3 Rules of log-linearization

Loglinearizing the necessary equations characterizing the equilibrium has been pro-

posed in particular by King, Plosser and Rebelo (1987) and Campbell (1994). The

idea is to use a Taylor approximation around the steady state to replace all equations

by approximations, which are linear functions in the log-deviations of the variables.
Formally, let X, be the vector of variables, X their steady state and

z¢ = log X; — log X

the vector of log-deviations. The vector 100 - z; tells us, by how much the variables



differ from their steady state levels in period f in per cent. The necessary equations
characterizing the equilibrium can be written as

1 = f(zy,202) (3.1)
1 = E[g9(ze41, )] (3.2)

where f(0,0) = 1 and ¢(0,0) = 1, i.e. the left-hand side of (3.1) and (3.2). Taking
first-order approximations around (a;, z;—,) = (0,0) yields?

0 = firzg+ fo-zin
0 Eilg1 T+ 92 2

&

One obtains a linear system in z; and z;.; in the deterministic equations and z,.;
and z; in the expectational equations. This linear system can be solved with the
method of undetermined coefficients, described in section 5.

In the large majority of cases, there is no need to differentiate the functions f and
g explicitely. Instead, the loglinearized system can usually be obtained as follows.
Replace a variable X, with X, = Xe®t, where w, is a real number close to zero. Let
likewise y; be a real number close to zero. Take logarithms, where both sides of an

equation only involve products, or use the following three building blocks, where a is
some constant:

e$t+ay: ~~ 1+$t+ayt
Tl ot 0

E,[ae™+'] =~ FE,[az+1] up to a constant .
For example, these building blocks yield

aX; =~ aXz;up to a constant

(X, +a)Y; = XYz,+ (X +a)Yy, up to a constant

2An alternative to approximate (3.2) rewrites it as

0 = log(E;{exp(F(zit1,24))])

where § = logg. Assuming z, and z,4, to be (approximately) conditionally jointly normally dis-
tributed with an (approximately) constant conditional variance-covariance matrix, and assuming
that

1 - -
log g(0,0) =~ §Vart (@1 - Tegr + F2- 2], (3.3)
independent of ¢ (rather than log g(0,0) = 0) yields
0 =~ logE[exp(3(0,0)+d1 - Teq1 + G2 - z0)]
~ Ef s+ 3§22,

using E[eX] = EXI+VarXV/2 for normally distributed variables. The two ways of approximating
(3.2} differ essentially only in their choice for g(0, 0), since g; = gy, if g(0,0) = 1.



Constants drop out of each equation in the end, since they satisfy steady state rela-
tionships, but they are important in intermediate steps: compare for example the two
equations above. Rather than describing the general principles further, it is fruitful
to consider two specific examples instead: this will be done in the next section.

4 Two Examples

The following two examples not only serve to explain how to perform the first three
steps of the general procedure, but also as the two prototypes for the general solution
in section 5: in the first model, the number of endogenous state variables equals
the number of expectational equations, whereas in the second model, the number
of endogenous state variables exceeds the number of expectational equations, as will
become clear below. To avoid confusion in the application of the method in section 5,
it 1s important to stick to the following dating convention. A new date starts with
the arrival of new information. If a variable is chosen and/or (eventually) known at
date £, it will be indexed with . Use only variables dated ¢t and ¢t — 1 in deterministic
equations and variables dated ¢t + 1, ¢ and { — 1 in equations involving expectations
E,[-]. The state variables are then those variables which are the linear combinations
of variables dated { — 1 in these equations. Occasionally the state variables need to
include variables chosen at a date earlier than £ — 1 as well. One can recast this into
the desired format as follows. Thelist of state variables might consist out of lagged
values of the capital stock, k;_; and k;_,. This can and should be rewritten as k; ;_;
and kg1 with k., replacing k,_; and where the additional equation ky; = ky 41
needs to be added to the system. With that notation, k;, is “chosen” at date ¢,
satisfying the dating convention.

4.1 Example 1: a real business cycle model

The following benchmark real business cycle model is due to Hansen (1985) and
explained there in detail. Here, the mathematical description shall suffice.
The social planner solves the problem of the representative agent

oo 1-n _ 1
max E Y g (‘—-—-—— — ANt)
=1 l1—n

s.t.
Ci+14 = (4.1)

I{t = It + (1 —_ 6) I{t.,_l
Y, = ZiK{ N



logZ; = (1—v)logZ +log Zi_y + €, €& ~ i.i.d.N(0;0?),

where C, is consumption, N; is labor,]; is investment, Y] is production, K} is capital Z,
is the total factor productivity and A, 3,7,6, p,Z,% and ¢? are parameters. Hansen
only considered the case 7 = 1, so that the objective function is

E Zﬁt(log Ct — ANt)
t=0
As in Campbell (1994), there is no difficulty in considering arbitrary 75, since no
growth trend is assumed.
The first order conditions are

- Y
A = C7M 1 - p)=—
t ( p)Nt
C n
1 = 5Etl(c‘) Rm], (4.2)
t+1
_ h
R: = pI(t_1+1 6. (43)

Equation (4.2) is the Lucas assct pricing equations, see Lucas (1978), which typically
arises in these models.

The steady state is obtained by dropping the time subscripts and stochastic shocks
in the equations above, characterizing the equilibrium. Formally, this amounts to
finding steady state values such that f(0,0) = 1 and g(0,0) = 1 in the notation of
the previous section®. For example, equations (4.2) and (4.3) result in

1 =5

=T

= p=+1-§
pK+ 3

where bars over variables denote steady state values. One needs to decide what one
wants to solve for. If one fixes A and &, these two equations will imply values for R and
Y /K. Conversely, one can fix R and ¥ /K and then these two equations yield values
for § and é. The latter procedure maps observable characteristics of the economy
into "deep parameters,” and is the essence of calibration, see Kydland and Prescott
(1991).

Introduce small letters to denote log-deviations, i.e. write

Ct = C‘ect

3Alternatively, find the steady state so that (3.3) is satisfied. This is, however, rarely done.



for example. The resource constraint (4.1) then reads
Cet + It = Vet
This can be written approximately as
Cll+e)+I(1+4) =Y +y)

Since C + I = Y due to the definition of the steady state, the constant terms drop
out? and one obtains

Ce,+Ii, = Yy,
The resource constraint is now stated in terms of percentage deviations: the steady
state levels 1n this equation rescale the percentage deviations to make them compa-
rable. Note that no explicit differentiation is required to obtain the log-linearized
version of the resource constraint: log-linearization is obtained just by using the
building blocks described in the previous section.

Similarly log-linearizating the other equations yields

Kk, = Tii+ (1~ 8Kk,
yr = ze+ phici+{1 — p)ne
22 = Yzt &
—NC + Y — Nt
= Eynle: — cipr) + rea]

_ Y
Bry = P}'—('(yt_'kt—l)-

To find the state variables, one needs to find all (linear combinations of) variables
dated £ — 1 in these equations: the endogenous state variable is capital, k,_; whereas
the exogenous state variable is the technology parameter z;_,. Note that there are as
many expectational equations as there are endogenous state variables. The coeflicients
of the equations above need to be collected in the appropriate matrices to restate these
equations in the form required for section 3: this is a straightforward exercise.

4.2 Example 2: a model with external habit formation

Using the external habit formulation of Campbell and Cochrane (1994), Lettan and
Uhlig (1995) analyze the following business cycle model. Note that this equilibrium

4Another way to see that constants can in the end be dropped is to note that the steady state
is characterized by ¢; = & = ¥ = ki1 = 0. If one replaces all log-deviations with zero, only the
constant terms remain, and that equation can be subtracted from the equation for general ¢, &y, y;
and k;_, above.



does not easily permit a social planners representation due to the presence of the
external habit.

Let C, be the consumption of the representative agent at date ¢, and X, the habit,
which the agent takes as given. The representative agent solves

oo C,— Xt -1
max £ t (€ t
tg{ﬂ l—7

: — AN,
ChI\hNt

s.t.
Co+ K =D +1-8)Kiy + W N, +m
where K; is capital, D, are dividends per unit of capital, W, is the wage and N; is

labor. The representative firin maximizes profit,

= max Y; — DK, ; — W,N,,

E—1,4VE

s.t.
Y, = Z,Kf \N}~*

Z; evolves according to
log Z; =log Z + Ylog Zi_1 + € & ~ i.i.d N(0;0%)
Define the surplus consumption ratio

Cy — X
S, = -*—C———‘- (4.4)
i

Let & = log C; and 3, = log S;. X, or equivalently §; evolves according® to
e = (1 - ¢)5 + ¢8s-1 + A& — &-1)- (4.5)

Markets clear. Here, Y; is output, Z; s total factor productivity, and 8,7, A,6, p, Z,
¥, 0%, ¢,5 and X are parameters.® For the usual reasons, one obtains

Dy = PYt
W\N, = (1"P)Kc

'JTt:O

Tt may be more natural to formulate the law of motion directly on X;. This can be done by
replacing s, and s,_; in (4.5) with the logarithm of the right hand side of (4.4) and solving for X,
as a function of X;_;, C¢ and C;_;. The reason to equivalently use (4.5) instead is to make sure,
that one always gets 5; > 0 by construction.

SCampbell and Cochrane (1994) actually specifly a rather elaborate function A(s;) rather than

a single number. For the purposes here, a single number suffices, see the discussion in Lettau and
Uhlig (1995).



Keeping in mind that X; and not S, is external, the first order conditions for the
agent can be written as

A = (SC)(1-p)7E

Ny
1 = BE |{— R ,
BE: [(St+1 Cii1 i
Y;
Ry = ,‘t)Ks_1 +1-4.

The steady state (denoted by bars over the variables) is obtained from these equations
by dropping the time subscript as in the previous subsection. Similarly, the log-
linearized version of the system in terms of log-deviations, denoted by small letters,
is obtained by applying the building blocks described in the previous section. For
expositional clarity, we do not reduce the number of equations by, say, substituting
out dividends etc., although one would typically do so in practice. Using the full
system, one obtains

éct-}-l_{kt = Df_(dt-l-(D—l—l—5)Kkt_1+WN(wt+nt)
¥y = 2+ pkioy + (1 — p)ny
zn = Yzt

S = Psiq+ )\(C: - Ct—l)
de + ki1 =y
wetny = Y
0 = —nsi+e)+ye—

0 = Ein(s— sep1+ € — ) + 7o
- Y
Br, = PT('(yt - k:—1)-

To find the state variables, one needs to find all linear combinations of variables dated
t—1,1.e ki1 and q_y = ¢s,_1 — Aci_;. Thus, the equation

8 = ¢8y + Mer — 1)

turns into

8 = Aeg + g1

and one needs to add the equation

qe = $s; — Acy
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to the system. Alternatively, use capital, k,_;, the relative habit s;_; and consumption
c:— as endogenous state variables. Then, the state space is no longer of minimal size
and the method of the next section may deliver more than the desired solution. In
particular, the coeflicient matrix P calculated in the next section will be singular at
the desired solution. One therefore needs to be a bit more careful in applying the
formulas below. In either case, there are are fewer expectational equations than there
are endogenous state variables. The coeflicients of the equations above need to be
collected in the appropriate matrices to restate these equations in the form required
for section 5: this is a straightforward exercise.

5 Solving recursive stochastic linear systems with
the method of undetermined coefficients

This section describes how to find the solution to the recursive equilibrium law of mo-
tion in general, using the method of undetermined coefficients. MATLAB programs
performing the calculations in this section are available at the Federal Reserve Bank
of Minneapolis web site”,

It is assumed that the system takes the following form®. There is an endogenous
state vector z;, size m x 1, a list of other endogenous variables y;, size n x 1, and
a list of exogenous stochastic processes z;, size k¥ x 1. The equilibrium relationships
between these variables are

0 = Azi+ Bz, +Cyi + Dz, (5.1)
0 = Et[FIEH_l + G.’Et + th—l + Jyg.|.1 + Kyt + th+1 + MZ;] (52)
zZir = Nzpteyy Elean) =0,

where it is assumed that C is of size ! x n, | 2 n and® of rank n, that F is of size
(m 4+ n —1) x n, and that N has only stable eigenvalues.
What one is looking for is the recursive equilibrium law of motion

Ty = Pmt—l + QZt (54:)
yi = Rzey+ Sz, (5.5)

"The address of that web site is http://res.mpls.frb.fed.us/research/res.html. Go to the“Archive
of Paper” and to the “Discussion Papers from the Institute for Empirical Macroeconomics”. This
discussion paper as well as the MATLAB programs are found under the header with the same title
as this paper.

8Note that the notation differs from the notation in section 3

®The case I < n can be treated as well: in that case one needs to solve a matrix quadratic
equation in R, where R is defined below. Since that case is rare in practice and involves considerable
additional costs, it 1s excluded here.
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i.e. matrices P, Q, R and 5, so that the equilibrium described by these rules is stable.
The solution is given in the next theorem. The important special case I = n is treated
in corrolary 1. In order to obtain P, a matrix quadratic equation needs to be solved
(see also Ceria and Rios-Rull, 1992). The solution can be obtained via a standard
eigenvalue problem for some 2n x 2rn-matrix as stated in theorem 2.

Theorem 1 If there is a recursive equilibrium law of motion solving equations (5.1),
(5.2) and (5.3), then the coefficient matrices can be found as follows. Let C* be the
pseudo-inverse'® of C. Let C° be an (I — n) x I matriz, whose rows form a basis of
the null space'' of C'.

1. P satisfies the (matriz) quadratic equations

0= C°AP + C°B :
0= (F—JCt*A)P? —(JCYB-G+ KCY*A)P-KC*B+H (57)
The equilibrium described by the recursive equilibrium law of motion (5.4), (5.5)

and by (5.3) is stable iff all eigenvalues of P are smaller than unity in absolute
value.

2. R is given by
R = —C+(AP + B)

3. Gwen P and R, let V be the matriz

V= Iy ® A, L,eC
| N@F+L®(FP+JR+G), NN@J+L®K |’

where [ is the identity matriz of size k x k. If the matriz V is invertible, then

e ] =7 i | 9

where vec(-) denotes columnuwise vectorization.

Proof: Plug the recursive equilibrium law of motion into equation (5.1). This yields

(AP + CR+ B)zi1 + (AQ+ CS + D)z, =0, (5.9)

10The pseudo-inverse of the matrix C is the n x I matrix CT satisfying CYCCt = Ct and
CC*HC = C. Since it is assumed that rank(C) > n, one gets Ct = (C'C)~'C’, see Strang (1980),
p. 138. The MATLAB command to compute the pseudo-inverse is Cplus = pinv{C).

1Y can be found via the singular value decomposition of C’, see Strang (1980), p. 142. The
MATLAB command for computing C? is C0 = (null(C"))'.
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which has to hold for arbitrary x,_, and z,. Thus, the coeflicient matrices on z,_, and
z; in (5.9) are zero. Plugging the recursive equilibrium law of motion into equation
(5.2) twice and using (5.3) yields

0 = (FP+JR+G)P+ KR+ H)xyq + (5.10)
(FQ+JS+ LN+
(FP+JR+G)Q+ KS+ M)z

Again, the coefficient matrices on x;., and z; need to be zero. Taking the column-
wise vectorization of the coefficient matrices of z; in equations (5.9) and (5.10) and
collecting terms in ved(Q) and vec(S) yields the formula for @ and §.

To find P and thus R, rewrite the coefficient matrix on z;_ in equation (5.9) as

R = —-C*(AP+ B) (5.11)
0 = C°AP+(C°B,

noting that the matrix [(C*)’, (C°)'] is nonsingular and that C°C = 0, see Strang (1980),
p- 88. Use (5.11) to replace R in the coefficient matrix on z,—; in {5.10), yielding
(5.7). Note finally that the stability of the equilibrium is determined by the stability
of P, since N has stable roots by assumption.

Corollary 1 Suppose that I = n, v.e. that there are as many ezpectational equations
as there are endogenous state variables. [f there is o recursive equilibrium law of
motion solving equations (5.1), (5.2) and (5.3), then their coefficient matrices can be
found as follows.

1. P satisfies the (matriz) quadratic equation'?
(F—-JC'A)P— (JCT'B-G+ KCT'A)P-KC'B+H=0. (512)

The equilibrium described by the recursive equilibrium law of motion (5.4), (5.5)
and by (5.3} is stable iff all eigenvalues of P are smaller than unity in absolute
value.

2. R is given by
R=-C"'({AP+ B)

12The solvability of equation (5.12) is discussed in Theorem 2 and in the text following it.
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3. @ satisfies

vee(Q) = (N'®(F—-JCT'A)+ @ (JR+FP+G—KC™'A)™"-
vec((JC™'D — L)N + KC™'D — M), (5.13)

where I, is the identily matriz of size k X k, provided the matriz which needs to
be inverted in this formula is indeed invertible.

4. S5 is given by
S=-C"YAQ + D)

Proof: This corollary can be obtained directly by inspecting the formulas of the-
orem 1 above for the special case | = n. In particular, C* is just the inverse of C.
Alternatively, a direct proof can be obtained as follows by following the same proof
strategy as above. Obtain (5.9) and (5.10) as before. Equation (5.9) implies

R = —C (AP + B)
S = —-CY(AQ+ D)

Replacing S in the coeflicient on 2z, in equation (5.10) and collecting terms in ) yields

(F—JCT'A)QN +(FP+JR+ G- KC'A)Q = (5.14)
(JCT'D—-L)N4+ KC™'D - M,

which needs to be solved for (). Take the columnwise vectorization operator vec(+)
to find (5.13) stated above. Note that these formulas can be evaluated as soon as P
and thus R is known. To find P and thus R, proceed as in the previous proof. e

The formulas in these theorems become simpler vet, if m = 1 or &k = 1. If
m = 1, there is just one endogenous state variable and the matrix quadratic equation
above becomes a quadratic equation in the real number P, which can be solved using
standard formulas. If & = 1, there is just one exogenous state variables, in which case
the Kronecker product (i.e. “@”) in the formulas above becomes multiplication, and
in which case vec(@) = @ and vec(S5) = 9, since  and S are already vectors rather
than matrices.

To generally solve the matrix quadratic equations (5.6), (5.7) for P, one needs to
rewrite the equations to make the next theorem applicable. Rewrite (5.6) as

0=C°AP* + C°BP. (5.15)
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This is in general a weaker condition than (5.6), but it is equivalent to it, if either
[ = n or the desired solution P is invertible. P is invertible, if the state space is of
minimal dimensionality. Let

U= C°A
| F—JCtA |’
Provided that ¥ is invertible, let

r = ¢ [ ~C°B ]

JCtTB -G+ KCtA

_ -1 Ol—n,m
© =1 {I(C’*B—H,

where O;_,, . 1s a (I — n) X m matrix with only zero entries. With that, equations
(5.15) and (5.7) can be written as

P_TP-0=0. (5.16)
In the special case [ = n, the formulas for I' and © become slightly simpler:

I = (F-JCTA)yW(JCT'B—G+ KC™A)
0 = (F-JC'A)yY(KC™B - H).

Equation (5.16) can now be solved by turning it into a standard eigenvalue and
eigenvector problem:

Theorem 2 To solve the quadraiic matriz equation
P?*—-TP -0 =0, (5.17)

for the m x m matriz P, given mn X m matrices I' and ©, define the 2m x 2m matriz

= via
- ' ©
- Im Om,m ’

where I, is the identity matriz of size m, and where O, , s the m X m matriz with
only zero entries.

1. If there are m eigenvalues A, ... A, together with eigenvectors sy,..., 5, of Z,
written as s; = [Azx}, z}] for some z; € R™, so that (z1,...,z,) is linearly
independent, then

P =QAQ7"
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where Q@ = [z1,...,2,] and A = diag(},...,A,) is a solution to the matriz
quadratic equation (5.17). The solution P is stable if | A; |< 1 for all i =
1,...,m.

Conversely, any diagonalizable solution P to (5.17) can be written in this way.

2. If m =1, then the solutions P to equation (5.17) are given by
1
P1,2 = ‘2‘(F :t VPZ + 49)

Proof: First note that any eigenvector s for some eigenvalue h of the matrix Z can
indeed be written as
§ =
T

for some ¢ € R™ because of the special form of =. Examining the first 7 rows of the
relationship As = =s then shows that

Mz —Alz -0z =0 (5.18)

1t follows that
QAZ-—TOA—-0Q =0

and hence

PP_TP-0=0

as claimed, after multiplying with =! from the right.

Reversing the steps shows that any diagonalizable solution P to (5.17) can be
written in this way. e

Solving the eigenvalue and eigenvector problem for a 2m X 2m matrix is a well-
studied problem and many numerical packages have preprogrammed solutions for
this. Furthermore, this theorem links the approach to Blanchard and Kahn (1980).
Consider solving the second order difference equation

Tiyp2 — F$t+1 -0 =0. (519)

The approach in Blanchard and Kahn (1980} amounts to finding the stable roots of
=. The approach here solves for the matrix P in the recursive equilibrium law of
motion 2,47 = Pz;. The Theorem above states that both approaches amount to the
same problem. The advantage of the method here is that it is easily applied to the
entire system (5.1), (5.2) and (3.3), reducing it to (5.19) eventually, while finding the
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stable roots in the entire system given by these equations and at the same time taking
care of the expectation operators, using the Blanchard-Kahn (1980) procedure, can
be quite daunting.

To apply this theorem, one needs to select m out of 2m possible eigenvalues. Note
that P has only nonzero eigenvalues if the state space was chosen to be of minimal size:
thus attention can be restricted to the roots | A; |> 0 in that case. This is important
in particular for the case [ > n and K = 0, since rewriting (5.6) as (5.15) introduces
spurious zero roots in that case. In general, there may be quite a bit of choice
left. In practice, however, there will often be exactly m stable eigenvalues remaining
so that the stable solution is unique'®. The literature on solving linear rational
expectations equilibria typically assumes this condition to hold or shows it to hold in
social planning problems under reasonable conditions, see Blanchard and Kahn (1980)
and Hansen, McGrattan and Sargent (1994). If there are fewer stable eigenvalues
than endogenous state variables, the equilibrium might be inherently unstable. The
method above then still permits calculation of an equilibrium which satisfies the
nonlinear equilibrium conditions at least locally. In particular, in models involving
more than one agent (or one country), one may find as many unit roots as there
are more agents (countries) than one since shocks may affect the relative wealth
of any two agents {countries) and thus may result in permanent changes in their
consumption paths: in these cases, the method above allowing for unit roots still
gives useful results, which obviously should then be used with some care. If there
are more stable eigenvalues than endogenous state variables, enlarging the number of
endogenous state variables by including further lagged values might help. Redoing
the calculations might then result in a unique solution.

If not all eigenvalues of = are distinct, P in turn might have repeated eigenvalues.
Since the eigenspace for a repeated eigenvalue is (usually) multidimensional, there
will be infinitely many cheices for the eigenvectors and hence infinitely many choices
for P in that case. Note, for example, that for any given A and any three real numbers
a,b,c satisfying a? + bc = A?, all matrices

r=lot,]

13Another approach to select a unique solution is in McCallum (1983), who suggests to use those
roots that can be obtained continuously from the zero roots of the equation P? — TP — o© for
o = 0, as a changes from 0 to 1. However, not only is following these roots as functions of o
computationally very demanding, it is also the case that uniqueness gets lost once twa or more such
paths cross each other. If these paths do not cross in a particular application, and if additionally
all roots for all o are positive real numbers, say, then the McCallum proposal simply amounts to
using the roots of minimal value. The MATLAB programs supplied by the anthor use the roots of
minimal absolute value subject to eliminating spurious zero roots as described above and tries to
use complex roots in conjugate pairs, as described below.
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solve

2?0
P - = 0.
These cases are rare in practice, since = is diagonalizable with distinct eigenvalues
generically in the coeflicients of the system (3.1), (5.2) and (5.3).
More disconcerting is the possibility that some of the roots may be complex rather

than real. Consider, for example, I' = —1I,; and
0= 0.23 0.64 0
—0.64 0.23

Using the theorem above, one obtains exactly two stable roots, which happen to
be complex, A, = 0.3 + 0.4i = 0.5¢***, where where a = 0.9273. Their associated
eigenvectors are complex, too. Calculating P results in a matrix with only real entries,
however, given by

0.3 0.4 COosS¢ SN
P = [ —0.4 0.3 ] =0.5 [ —sina cosa } ’

Since = is a real-valued matrix, complex eigenvalues only arise in complex-conjugate
pairs. When using both roots of a complex-conjugate pair to calculate A and thus P,
the resulting solution should be a real-valued matrix. The complex roots then give
rise to endogenous damped cycles of frequency a.

Some additional properties of a solution P to (5.16) are stated in the following
theorem!*

Theorem 3 1. The eigenvalues A of = are the solutions to the equation
det (31, — AT — ©) =0.
The lower half x of the eigenvector s to A satisfies
(ML= -0)z=0
2. If P is a real-valued solution to the matriz-quadratic equation (5.12), then

ir(40 + %) > 0.

1] am grateful to Jan Magnus for pointing these out to me. Furtherrmore, Ceria and Rios-Rull,
1992, peint to additional literature on this subject, which found and concentrated on part 1 of
theorem 3, but apparently did not find the more useful theorem 2.
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Proof: The claim about A follows from

det ([ E,i‘ Alrm) ?Mm D — det (=A(T = M,,) — 0),

which follows from inspecting the formula for the determinant. The claim about the
eigenvector piece x is just (5.18). For the last claim, calculate that

0=tr(P*-TP —0)=tr((P - %F)"’ -0+ irz)).

The conclusion follows since tr((P — 1T)?} > 0. o

6 Interpreting the results
The results obtained, i.e. the recursive equilibrium law of motion

e = Pre 4+ Q2

Y = Rryq + Sz,
zp= Nz + &

can be used to examine model implications. Since zi,y; and z are log-deviations,
the entries in P,Q), R, S and N can be understood as elasticities and interpreted
accordingly as in e.g. Campbell (1994).

Impulse responses to a particular shock ¢; can be calculated by setting zo = 0,y =
0 and zg = 0, as well as ¢, = 0 for ¢ > 2, and recursively calculating 2, and then z;
and y;, given x;_y, Y1, 2¢-1 and € for t = 1,...,T with the recursive equilibrium law
of motion and the law of motion for z,.

To find the second moment properties of the model such as variances and autocor-
relations of certain variables as well as the small sample properties of their estimators,
simulation methods are often used. Before calculating these moments, the Hodrick-
Prescott filter is typically applied (short: HP-Filter). This section demonstrates a
frequency-domain technique to obtain these moments (albeit without the small sam-
ple properties of their estimators) without the need for any simulations, see also Uhlig
and Xu (1994). The matrix-valued spectral density for [z}, 2})’ is given by

fw) = o [ Sim - PeTe ] (I — Ne*)™'%

(Ik _ N.re-iw)—l [Q’(Im _ Pleiw)—I’ Ik]
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where [} and I, are the identity matrices of dimension k£ and m, see Hamilton (1994),
formula (10.4.43). Two ways to calculate the matrix-valued spectral density for the
entire vector of variables s, = [z}, y;, 2]’ are calculate

Im. Om. k :
. ¥ Im, Rfeiw Om
gw) = | Re™ S | fw) .
Okm S I
Ok Ii '
Im: Om,k
= Wf(w)W', where W= | RP*, S$~RP*Q |,
O,m, I

where Pt is the pseudo-inverse of P and where the last equality exploits s, =
W(zi,2l)', replacing z,.; with P*z, — P*Qz in the recursive equilibrium law of
motion for y;. The HP filter aims at removing a smooth trend 7, from some given
data s; by solving

T
rrgnz ((st — ﬁ)z +A((rip1— 7)) = (10— Tt-l))2)

t=1

The solution is a linear lag polynomial r, = s, — 7y = h(L)s; which has the transfer

function
s AM1 — cos(w))?

h(w) = 1 +4A(1 — cos(w))?’

see King and Rebelo (1993). Thus, the matrix spectral density of the HP-filtered
vector is simply

gup(w) = k¥(w)g(w),

from which one can obtain the autocorrelations of r; in time domain via an inverse
Fourier transformation,

| gnp()edo = Elrri_),

-

see formula (10.4.4} in Hamilton (1994). Inverse Fourier transformations are part of
many numerical packages.

7 Conclusions

We have provided a toolkit to analyze nonlinear dynamic stochastic models easily.
The main contribution of this paper is to show that loglinearzing the necessary equa-
tions characterizing the equilibrium typically does not require explicit differentiation,
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to provide a general solution to a linearized system using the method of undetermined
coefficients, allowing in particular for several endogenous states, and to provide simu-
lation free frequency-domain based method to calculate the the model implications in
its HP-filtered version. These methods are easy to use if a numerical package such as
MATLAB or GAUSS is available. This paper should therefore be useful for anybody
interested in analyzing stochastic dynamic models.
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