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ABSTRACT

This paper investigates the one-sector growth model where agents experience idiosyncratic endowment
shocks and face a borrowing constraint. It is shown that a steady-state capital level lies strictly above the
steady state in the model without shocks. In addition, the capital stock increases monotonically when it is
sufficiently far below a steady state. However, near a steady state there can be interesting (nonmonotonic)

economic dynamics.

*I would like to thank seminar participants at the Federal Reserve Bank of Minneapolis for helpful comments. Special
thanks go to Stefan Krasa. The views expressed herein are those of the author and not necessarily those of the Federal
Reserve Bank of Minneapolis or the Federal Reserve System.



1. Introduction

This paper characterizes the steady state and dynamic properties of the one-sector
growth model with two non-standard features. The first feature is that there are a
continuum of agents in the economy experiencing idiosyncratic labor endowment shocks.
The endowment uncertainty is such that there is uncertainty for individual agents but no
uncertainty over the aggregate labor endowment. The second feature is that there are
financial market imperfections. One of these imperfections is that agents face a borrowing
constraint in that asset holding cannot be negative. The other imperfection is that there are
by assumption no markets to insure against endowment uncertainty. Thus, individuals can
only self-insure by holding non-negative quantities of a single asset- physical capital.

Becker and Foias (1987) and Hernandez (1991) have investigated the steady state
and dynamic properties of this model when agents face a borrowing constraint but do not
experience idiosyncratic endowment shocks. They show that the steady-state capital stock
in the borrowing constrained economy is unique and coincides with that in the complete
market economy. In addition, Hernandez (1991) shows that if capital income is increasing
in the level of capital, then the turnpike property holds (i.e. the capital stock converges
monotonically to the steady state) regardless of the distribution of capital across agents.!
This turnpike property is a well-known property of the one-sector model with complete
markets.

Much less is known abm;t the theoretical properties of models with idiosyncratic
shocks. This is not because of a lack of importance of models of this type. Economists
have been interested in such models at least since the work of Friedman (1957). At a partial
equilibrium level the theoretical properties of this model have been developed by
Schechtman and Escudero (1977), Bewley (1977), Sotomayor (1984) and others. At a
general equilibrium level the existing theoretical work has concentrated on existence of
steady states and the properties of steady states. Contributors include Laitner (1979),
Bewley (1984, 198?) and Clarida (1990). Recently there has been substantial interest in
addressing quantitative questions within general equilibrium models of this type.2 This

1 Becker and Foias (1987) examine the case in which agents discount at differeat rates instead of the equal
discount factor case considered by Hernandez (199 1). They prove that the capital stock also converges to the
unique steady state and that this convergence is eventually monotonic.

2 The questions have been in the areas of asset pricing, savings, optimal debt and tax structure, business
cycles, as well as income and wealth distribution. See Huggett (1993), Atyagari (1994), Kruse!l and Smith
(1994), Castaneda, Diaz-Gimenez and Rios-Rull (1994), Rios-Rull {1995) and the references cited therein
for a guide to work in these areas.



work provides additional motivation for understanding the theoretical properties of the
underlying model.

The key findings of this paper are as follows. First, in steady state the capital stock
is strictly greater than the steady-state capital stock in the complete markets economy. Thus,
in steady state the capital stock in the economy with idiosyncratic shocks is always strictly
greater than the steady state capital stock in the economy without idiosyncratic shocks.
Second, the capital stock increases monotonically when the capital stock is sufficiently far
below a steady state. Finally, an example is provided in which near a steady state there can
be interesting non-monotonic economic dynamics. Thus, the turnpike property does not
hold. The example shows that distribution can matter for the nature of economic dynamics
even in one-sector models.

This paper is organized in five sections. Section 2 describes the economy. Section 3
characterizes steady states. Section 4 characterizes economic dynamics. Section 5
concludes.

2. The Economy
2.1 The Environment

The environment is composed of a continuum of infinitely-lived agents. The total
mass of agents is normalized to equal 1. Each agent's preferences over consumption are
given by a utility function:

E[tzoﬁtu(ct) 1. where 0 <P <1

All agents have identical period utility functions u. In the theorems proved in this
paper the period utility function satisfies some combination of the following assumptions:

Al u:R+— Risbounded and continuous.
A2 u'>0,v"<0andlim _ o u'(c) ===

A3 u'is convex,

Each agent receives a random labor endowment each time period that is independent
and identically distributed. The endowment lies in a finite set of possible labor endowment
shocks E= {e1, €2,..., en}, where 0 < ¢] <...< ep. Probabilities are given by a probability
measure %, where 7(e) > O for all € € E. Endowments are independent across agents.



Thus, there is endowment uncertainty at the individual level but there is no uncertainty over
the aggregate labor endowment.

The production technology is given by a total output function f(K). The technology
maps the capital stock (equivalently the capital-labor ratio) in a time period into an output
level for that time period. The technology can be related to a standard constant returns to
scale production function F(K, L) as follows: f(K) = F(K, 1) + (1 - K. In this
specification D is the depreciation rate of capital. The technology will satisfy some
combination of assumptions T1-2 below. Assumption T1 is the usual concavity assumption
considered in neoclassical growth theory. Assumption T2 is sufficient to imply that there is
a unique capital stock K satisfying  f (K) = 1. The capital stock satisfying this condition
is the steady-state capital stock in the one-sector growth model with complete markets.

Tl f{0)=0,f'>0andf"<0
T2 lim g, o f'(K)=o0andlim ¢ _, ,, f'(K) <1

2.2 An Agent's Decision Problem

Each agent solves a version of the standard "income fluctuation problem"
(Schechtman and Escudero (1977)). In this problem an agent faces a deterministic sequence
{wi, 1} of wage rates and gross 1nterest rates. An agent then supplies labor inelastically
and chooses capital holdings over time to maximize utility. Agents face a borrowing
constraint in that each period capital holdings cannot be negative. By assumption there are
no other assets available to insure against endowment uncertainty.

This decision problem is now described in the language of dynamic programming.
An agent's position at a point in time is described by an individual state x. The individual
state x = (k, e) is the agent’s current capital holding and endowment. The individual state x
lies in the individual state space X = [0,°)xE. An agent in state x = (k, €) receives in
period t a payment of ew; + kry. The agent then chooses capital and consumption to solve
the following dynamic programming problem. The expectation in the dynamic
programming problem is with respect to the probability measure 7 defined on the agent's
idiosyncratic shocks.

vixh= sup ufewy +kr-k)+ BPE[v(K, e,t+1) ] (D
k' subject to O S k'S ewy + kry



If the period utility function u is bounded, then the contraction mapping theorem
implies that a unique, bounded solution v to equation (1) exists. Furthermore, Theorem 3
in Denardo (1967) says that the solution v is the optimal value function. If the utility
function is also continuous, then Corollary 2 in Denardo (1967) guarantees that optimal
decision rules k(x,t) and c(x,t) exist that achieve the optimal value function. Thus, we have
that assumption Al is sufficient for the existence of optimal decision rules to problem (1).
Fact 1-4 below lists some properties of optimal decision rules that will be useful later.

In the proof of Fact 1-4, I use the following standard results for this type of
problem. First, the value function is increasing, strictly concave and differentiable in k and
vi(ket) = u'(c(k,e,1))r. Second, the following Euler equation is a necessary condition for

utility maximization:
w(c(x,t)) 2 Bres 1 Efu'(c(k(x,t),e',t+1))]; where equality holds if k(x,t) > 0.

Fact : Assume A1-2 and wt, r > 0 for all t, then
I. c(x,t) and k{x,t) are continuous in x.
2. c(k.et) is strictly increasing in k and c(x,t) > O for all x.
k(k,e,t) is increasing in k.
3. c(kel,t) <cket) <. <clkent).
4.1f (wg, 1t ) = (w,r) for all tand B r < 1, then k(k,e1,t) < k for all k > 0.
proof: See the Appendix. ¢ |

2.3 The Firm

There is a single firm that operates the technology f(K). The firm buys capital K

each period to maximize profit, Profit maximization implies that in period t the payment to
capital ry satisfies condition (2) below. The wage rate wy is also defined in condition (2).

i = f'(K) )
wy =f(K) - f(K)K



2.3 Equilibrium

To state the equilibrium concept, some way of describing and keeping track of the

heterogeneity in the economy is needed.? At time t the distribution of individual states
across agents is described by the aggregate state y. The aggregate state is a probability

measure defined on H, where # denotes the Borel subsets of X. Thus, for all B € H, ¥t
(B) is the mass of agents whose individual states lie in B at time t. Since ¥t is a probability
measure the total mass of agents is normalized to equal 1. The aggregate state y lies in the
aggregate state space Y = {y: i kdy <oo}
X

To describe how the aggregate state and the capital stock evolve over time it is
useful to define functions P(x, t, B) and K(y). The function P(x, t, B) is a transition
function that gives the probability that an agent in state x at time t will have an individual
state that lies in the set B next time period. The function K(y) simply gives the aggregate
capital stock as a function of the aggregate state y. These functions are defined below.

P(x,t,B) = m({e'e E: (k(x,t), ') € B})

K(y) = i k dy
X

Definition: An equilibrium is a pair of functions ¢(x,1), k(x,t) and sequences {w;, T, ¥i §
satisfying:
1) e(x,t) and k(x,t) are optimal decision rules.
2) {wy, 1, } satisfy equation (2) forali t > Q.
3) Markets Clear: Forallt>0
B [ e * kD) dyp = f(K(ye))
X
(i) [ edy =1
X

4) Law of Motion for the Aggregate State: Forallt>Oandall B € R
it (B)= [ P(xtB) dyg
X

3 The way in which this paper handles agent heterogeneity is similar to the treatment in Lucas and Prescott
(1974}, Foley and Hellwig (1975}, Lucas (1980) and others.



3. Steady States

This section considers the properties of a steady state. A steady-state equilibrium is
an equilibrium where in all time periods (w; , I't, ¥t ) = (w, 1, y) and where c(x,t) and
k(x,t) are time invariant functions of the state x. Theorem 1 states that in a positive capital
steady state the capital stock satisfies the condition Bf '(K(y)) < 1. This means that the
capital stock is strictly larger than the steady-state capital stock in the economy without
endowment uncertainty. It also means that the rate of return on capital will be strictly lower
than the return without uncertainty. Recall that the capital level K solving Bf '(K) =1 is the
steady-state in the economy without endowment uncertainty.

The proof of the theorem is based upon the fact that in steady state any statistic of
the state of the economy must remain invariant over time. However, marginal utility
averaged over the population shrinks over time when ff (K(y)) 2 1. The proof is in two
steps. First, it is argued that Bf '(K(y)) > 1 is not possible. If this were the case, then the
Euler equation implies that marginal utility would shrink over time when averaged across
agents. Second, it is argued that ff '(K(y}) = 1 is not possible. The argument is nearly
1dentical except that it is shown that in this case there would be a positive mass of agents
for whom the borrowing constraint would bind. Therefore, marginal utility shrinks over
time,

Theorem 1: Assume Al-2 and T1.Ina positive capital steady state Bf '(K(y)) < 1.

proof: First show that Bf '(K(y)) < 1. Suppose by way of contradiction that B8 '(K(y)) >

1. The weak incquality below is a necessary condition for consumer maximization. The
strict inequality below follows because fr = ff (K(y))> 1.

u'(c(x,t) 2 Pr E[u'(c(k(x,t),e't+1))] > Efu'{c(k(x,t),e" t+1))]

Integrate both sides of the above equation using the stationary probability measure y. The

integrals are finite as factor prices are strictly positive with a positive capital stock
(assumption T1) and therefore Fact 2-3 imply that c(x,t) 2 c(0,e1.t) > 0, for all values of

xandt.

ui(e(x,n) y(dx) > E[u'(c(k(x,1).e't+1)) ] y(dx)
J.X IX



The inequality below follows by rearrangement. The equality follows by Stokey and Lucas
(1989, Theorem 8.3) and by the fact that the aggregate state is time invariant in steady state.

J‘ u'(e(x,h) y(dx) > J‘ J‘ u'(c(x,t+1)) P(x t,dx") y(dx) = I u'{c(x',t+1)) y(dx"
X X X X

The contradiction follows as c(x,t) is time invariant. Lemma 1 below completes the proof.

Lemma 1: Assume A1-2 and T1. In a positive capital steady state Bf (K(y)) # 1.
proof: See the Appendix. ¢

Comments

1. Laitner (1979, 1992), Bewley (1984} and Clarida (1990) prove that there exist stationary
equilibria where Br < 1. The basic logic in these proofs are similar. One of the key steps in
these proofs is to argue that the capital stock in steady state is a continuous function of the
value of the gross interest rate r. Then one shows that as the interest rate approaches the
level fir = 1 from below that steady-state capital becomes arbitrarily large. One merit of the
proof given here is its simplicity relative to the arguments given in the papers mentioned
above. The simplicity is gained by not addressing the question of existence and thus
approaching the question using a different logic.

2. Theorem 1 does not depend upon the sign of the third derivative of the period utility
function as some people familiar with the precautionary savings literature might have
conjectured. The result here implies that any idiosyncratic uncertainty at ail will reduce the
interest rate relative to the no uncertainty steady state, regardless of the sign of the third
derivative of the period utility function. The natural conjecture from the precautionary
savings literature would be that adding more idiosyncratic uncertainty would lead to an
even lower interest rate, given appropriate restrictions on the utility function. I will not
pursue this conjecture.

3. Theorem 1 can be extended to the case with more than one agent type. This is true as the
reasoning in the theorem will hold for each agent type considered separately. Theorem 1
will also hold when discount factors differ across agent types for exactly the same reason.
4. Theorem 1 can also be extended to the case where agents are allowed to borrow. As long
as the minimum earnings are sufficient to maintain asset holdings at the credit limit and
_ allow strictly positive consumption, then the reasoning described above will work.



3. The first part of the argument (showing ff (K(y)) < 1) can be extended without change
to the case where the endowment shocks are Markov. However, the second part of the
argument (showing fif '(K(y)) # 1) seems to require some extra structure on the Markov
process. See Huggett (1993, Theorem 2) for some restrictions that work.

4. Dynamics of Capital Accumulation Paths

This section investigates the dynamics of capital paths. First, I briefly review
existing arguments for why capital paths are monotone in the economy with borrowing
constraints but without idiosyncratic shocks. I extend one of these arguments to apply to
economies with idiosyncratic shocks and show that capital paths are monotone increasing
when the capital stock is sufficiently far below a steady state. Second, I provide an example
showing that capital paths need not be monotonic near a steady state.

4.1 A Partial Result on Monotonicity

The monotonicity result in the one-sector model with borrowi ng constraints but
without idiosyncratic shocks is based on Euler equation arguments. The Fuler equation is a
necessary condition for consumer maximization which states that u'(c;) > Bri+q u'(ces 1),
where equality holds when an agent holds strictly positive quantities of capital. The
equation implies that consumptién grows when capital in period t+1 is below the steady
state and falls when capital is above the steady state. The fact that one can unambiguously
"back out” what happens to consumption allows one to prove that capital must be
monotone increasing when capital is below steady state and that the opposite occurs when
capital is above steady state. Actually, to prove that capital is monotone decreasing above
the steady state Hernandez (1991) assumes that the production technology is such that
capital income is increasing in the level of capital.

Matters are not as simple in economies with idiosyncratic shocks. The Euler
equation is then u'(cy) 2 Bri+; E[u'(cy+)], where equality holds when an agent holds
strictly positive quantities of capital. The expectation operator makes it unclear what will
happen to either realized or expected consumption growth when Pri+| is either above or

below 1. Some progress could still be made with stronger assumptions on preferences. For
example, when  ry+ | is greater than 1 it could still be argued that expected consumption

for an individual grows if u' is a convex function. This is Just Jensen's inequality. This
allows one to argue that capital increases monotonically when Pri+) > 1. The example in



the next subsection suggests that it is unlikely that there is any general result on capital
paths when Pri4+; < 1.

The next theorem formalizes the logic stated above. The theorem states that the
capital stock is strictly increasing when the capital stock is below the steady state of the
complete market economy. The theorem also rules out aggregate fluctuations where the
capital stock starts above this level and then falis below this level. Thus, any non-

monotonic fluctuations in the capita! stock must occur at capital levels at or above the level
of capital solving ff f'(K) = 1.

Theorem 2: Assume A1-3 and T1-2.
If B £ '(K(yp) > 1, then K(y; 1) < K(yp < K(y+y).
proof: See the Appendix. ¢

4.2 An Example Where Capital Paths Are Not Monotone

This section provides an example where capital paths are not monotone. The
intuition driving the example is as follows. Take an economy that is in steady state.
Redistribute capital across agents without changing the aggregate capital stock. If the
marginal savings propensities differ across agents in different states then the implied
aggregate capital stock should not remain constant over time at the unchanged steady state
prices.* There are then a couple[of possibilities. One possibility is that the capital stock
could monotonically converge to a different steady-state capital stock. This could happen if
steady states are not unique. However, I have computed that for the example considered
here there is only one steady state capital stock. Thus, the remaining possibility is that the
capital path is not monotone.

l-o
c
Example: Preferences: u(c) = ﬁ , (B, 0)=(.96, 1.9
Endowments: E={e),e2} ={8,12}, n(e)) =m(er) =.5
Technology: f(K) = AK% - (1 - d)K, (A, a,d)=(1,.36,.1)

The economy has preferences and a technology of the parametric classes commonly
used in applied work. The utility functions of agents are identical and homothetic. This

4 There are some redistributions that don't make a difference. For example, there are some redistributions
that are symmetric about the average capital holdings that leave the distribution unchanged.

9



means that with complete markets the distribution of capital across agents does not affect
the dynamics of prices or economic aggregates. The technology is Cobb-Douglas and
therefore satisfies the conditions in Hernandez (1991) that guarantee that capital paths are
monotone in the absense of endowment shocks. There are two possible values of the
endowment that occur with equal probability. The economy is completed by describing the
initial distribution of capital across agents. The initial distribution puts 20 percent of the
agents exactly at zero asset holdings and equal numbers of agents at all capital levels
between O and 10.8104. Thus, the aggregate capital stock is 4.3242 which is the steady-
state capital stock that I calculate for this economy. The steady-state distribution looks
roughly lognormal. Therefore, the initial distribution puts less agents at high capital values
and more agents near zero as compared to the steady-state distribution.

The intuition described previously for why capital paths are not monotone was
based on the non-linearity of the optimal decision rule for capital, Figure 1 graphs the
steady-state optimal decision rule on a 45 degree line diagram for each of the two
endowment shocks. The decision rule is non-linear near the borrowing constraint. The fact
that the non-linearities are very slight in this example suggests that the magnitude of the
departures from the steady-state path will also be small.’

I will now discuss the properties of equilibrium paths and postpone until the next
section a description of the computational methods employed to approximate equilibria,
Figure 2 describes the equilibrium path for the capital stock and for comparison purposes
the steady-state path. Both paths are consistent with the results described in Theorems 1
and 2. Thus, the steady-state capital level lies strictly above the steady-state level in the
complete market economy which for this example is 4.30. Also, both paths stay above the
steady state in the complete market economy as Theorem 2 requires.

In Figure 2 the capital stock at first rises above and then below the steady state and
thereafter slowly converges to the steady state. The dynamics of the capital stock can be
thought of as depending on the initial distribution of capital and on the changes over time in
the optimal decison rule for capital. For the economy considered here it turns out that the
shape of the path is largely determined by the initial distribution of capital and not by
changes in the decision rule over time. When the economy is simulated using the steady-
state decision rule instead of the equilibrium decision rule then one generates a capital path
that is qualitatively similar to that in Figure 2. Changes in the optimal decison rule over time
serve to dampen these fluctuations considerably without changing the qualitative nature of

5 More dramatic results could easil ¥ be obtained by (1) putting a larger mass of agents at the corner of their
borrowing constraint, (2) considering utility functions that are not homothetic, (3) allowing for multiple
types of agents with different preferences or (4) changing the endowment process.

10



the path. Using this intuition, capital at first increases in Figure 2 as the marginal
dissavings of agents moved to zero asset holdings are less than the marginal savings of
agents experiencing an increase in asset holdings.

To close this section [ compare the present example to other examples of aggregate
fluctuations that are based on financial market imperfections within the one-sector growth
model. See Boldrin and Woodford (1990) for a much broader review of models of
aggregate fluctuations. First, Bewley (1986) provides an example where the capital stock
cycles. His example is based on there being two types of agents whose labor endowments
cycle in opposite directions every other period. Second, Becker and Foias (1987) construct
an example where the capital stock cycles. Their example relies on the low substitutability
of capital for labor in the production technology. In their example the total payment to
capital depends sensitively on the level of capital. Hernandez (1991) proves for the case
when all agents discount future utility at the same rate that such examples cannot occur
when the total payment to capital is increasing in the capital stock. In the example of this
paper the production technology is of the type that rules out these fluctuations when there is
no idiosyncratic variation in labor endowment. Thus, the example presented here is based
on endowment fluctuation as is the example in Bewley (1986). The key difference is that
the role of distribution is emphasized here rather than multiple types of agents with
periodically fluctuating endowments. The present example also has the appeal of using the
functional forms and parameter vz'alues commonly used in applied work.

4.3 Computational Details

The equilibrium discussed in the previous section are computed as follows. First,
calculate the capital stock in a stationary equilibrium. This can be determined by guessing
different values K of the steady-state capital and then backing out factor prices from
marginal products. The capital stock implied by these prices in a stationary equilibrium can
then be determined by computing time-independent decision rules for capital and then
integrating these decision rules with respect to the stationary distribution y implied by the
guess, K. The results of Hopenhayn and Prescott (1992, Theorem 2) can be applied to this
problem to show that this stationary distribution is unique and that the integral can be
computed up to arbitrary accuracy. Details of how to apply this theorem to the present
context are provided in Huggett (1993). Steady-state capital levels are then determined by
finding a fixed point of the mapping from the conjectured to the implied capital stock.
When I computed this mapping, there was a unique point where the map crossed the 45
degree line. Thus, steady-state equilibria appear to be unique in this example. This

11



completes the argument that there is only one steady state. The precise details of how to
carry out these computations are provided in Huggett (1993).

The final step in the construction of the equilibrium is to determine the transition
path from the initial capital stock level back to this steady-state level. The procedure is to
assume that the economy is back in a steady state after a large number of periods, which in
these calculations is 1000 periods. Next, a guess is made for the transition path for the
economy. With the guess, the decision rules k(x,t) can be computed by backward recursion
on Bellman's equation (1). The transition path implied by the guess can then be computed.
If the implied path coincides with the guessed path and the path converges to the steady
state then one has computed an equilibrium. If the guessed and implied paths do not agree
then one updates the guess and repeats the process.

5. Conclusion

This paper shows that the steady-state and dynamic properties of the one-sector
growth mode} do not survive the addition of idiosyncratic shocks and a borrowing
constraint. In particular, there is more capital in steady state in the model investigated here
than in similar models with complete markets and there can be interesting economic
dynamics around a steady state. In the future it would be interesting to investigate the
nature and the quantitative importfmce of these economic dynamics. The example provided
here suggests that the economic fluctuations produced by "shocking” the higher moments
of the distribution of wealth occur at much lower frequencies than business-cycle
fluctuations.

12



References:

R. Aiyagari, Uninsured Idiosyncratic Risk and Aggregate Savings, Quarterly Journal of
Economics 109 (1994) 659-684 .

R. Becker and C. Foias, A Characterization of Ramsey Equilibrium, Journal of Economic
Theory 41 (1987) 173- 184.

T. Bewley, The Permanent Income Hypothesis: A Theoretical Formulation, Journal of
Economic 16 (1977) 252-292.

T. Bewley, Notes on Stationary Equilibrium with a Continuum of Independently
Fluctuating Consumers, Yale University, 1984.

T. Bewley, Dynamic Implications of the Form of the Budget Constraint, in H.
Sonnenschein, ed., Models of Economic Dynamics (Springer Verlag, New York, NY)
1986.

M.Boldrin and M. Woodford, Equilibrium Models Displaying Endogenous Fluctuations
and Chaos, Journal of Monetary Economics 25 (1990) 189-222.

A. Castaneda, J. Diaz-Gimenez and J.V. Rios-Rull, On the Cyclical Behavior of Income
Distribution, University of Pennsylvania, mimeo, (1994).

R. Clarida, International Lending and Borrowing in a Stochastic, Stationary Equilibrium,
International Economic Review 31 (1990), 543-58.

E. Denardo, Contraction Mappings in the Theory Underlying Dynamic Programming,
SIAM Review 9 (1967), 165- 177.

D. Foley and M. Hellwig, Assét Management with Trading Uncertainty, Review of
Economic Studies (1975), 327- 346.

M. Friedman, A Theory of the Consumption Function, Princeton University Press 1957,

A. Hernandez, The Dynamics of Competitive Equilibrium Allocations with Borrowing
Constraints, Journal of Economic Theory 55 (1991), 180- 191.

H. Hopenhayn and E. Prescott, Stochastic Monotonicity and Stationary Distributions for
Dynamic Economies, Econometrica 60 (1992), 1387-1406.

M. Huggett, The Risk-Free Rate in Heterogeneous-Agent Incomplete-Insurance
Economies, Journal of Economic Dynamics and Control 17 (1993), 953-69.

P, Krusell and A. Smith , Income and Wealth Heterogeneity, Aggregate Fluctuations, and
the Representative Agent, Camnegie-Mellon University, mimeo (1994),

J. Laitner, Bequests, Golden-age Capital Accumulation and Government Debt, Economica
46 (1979), 403-414.

J. Laitner, Random Earnings Differences, Lifetime Liquidity Constraints, and Altruistic
Intergenerational Transfers, Journal of Economic Theory 58 (1992), 135-170.

13



R. Lucas and E. Prescott, Equilibrium Search and Unemployment, Journal of Economic
Theory 7 (1974), 188-209,

R. Lucas, Equilibria in a Pure Currency Economy, in Models of Monetary Economies,
editors J. Kareken and N. Wallace, Federal Reserve Bank of Minneapolis (1980).

J.V. Rios-Rull, Models with Heterogeneous Agents, in T. Cooley, ed., Frontiers of
Business Cycle Research, Princeton University Press (1995).

J. Schechtman and V. Escudero, Some Results on "An Income Fluctuation Problem",
Journal of Economic Theory 16 (1977), 151- 166.

M. Sotomayor, On Income Fluctuations and Capital Gains, Journal of Economic Theory
32 (1584), 14-35.

N. Stokey and R. Lucas, "Recursive Methods in Economic Dynamics", Harvard
University Press 1989,

14



Appendix
Fact : Assume A1-2 and wy, rt > O for all t, then
[. c(x,t) and k(x,t) are continuous in x,
2. c(k,e,t) is strictly increasing in k and c(x,t) > 0 for ali x.
k(k,e,t) is increasing in k.
3. c(kel,t) <clke,t) <... < clken.t).
4.1f (wg, 1t ) = (w, 1) for all tand B r < 1, then k(k,e],t) < k forall k > O,

proof: (1.) The theorem of the maximum together with the strict concavity of u and v
generates the result.

(2.) c(ke,t) is strictly increasing in k because vi(ke,t) = u'(c(k.e,t))ry and v is
increasing and strictly concave in k. Assumption A2 guarantees that consumption 1s always
strictly positive. Suppose by way of contradiction that there were values ki,kp,eandt
such that kp > k1 and k(kp.et) < k(kj,e,t). Since c(ke,t) is increasing in k it is true that

Pres+1 BT v'lc(k(kp.e,t).et+1)) 1 > Preeq Bl w'(ctkkpen,este1) |

The Euler equation then implies that u'(c(ky,e,t)) > u'(c(ky,e.t)), a contradiction.
(3.) Suppose by way of contradiction that there were values ¢;, ej, k and t such that
ej > e and c(k.ej,t) 2 c(k.ej,t). jhen it is true that k(k.e;,t) > k(k.e;,t). Since c(x,t) is

increasing in k, it is true that
Pre+1 E [ vc(kke;t)et+1)) 1 > Brivg B[ u'(c(k(ke;b).e.t+1) ]

The Euler equation then implies that u'(c(k,e; t)) > u'(c(k,ej,t)), which contradicts the fact
that u' is a decreasing function.

(4.} The inequality in the first line below holds by Fact 3 and fri+| < 1. The
equality holds since (wy, 1y) = (w, r) for all t implies that optimal policy functions are time

invariant. The second line below is the Euler equation.
ulc(ker.t) > Pres 1 E[u'(c(k,e )] = Bres 1 Elu'(c(k.e,t+1))]

u'(clkeq,t) 2 Pris 1 Elu'(c(k(k,er,t)e' t+1)]; =if k(keq,t) >0
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For the Euler equation to hold there are two possibilities. If k(k,ej,t) > 0, then
k(k,eq,t) < k since c(k,e',t+1) is increasing in k by Fact 2 and since u' is decreasing. The
other possibility is that k(k.e,t) = 0. In either case Fact 4 holds. ¢

Lemma 1: Assume A1-2 and T1. In a positive capital steady state Bf '(K(y)) # 1.

proof: Suppose by way of contradiction that Bf '(K(y)) = 1. It will then be shown later that
there is a set A such that y(A) > 0 and on this set the Euler equation holds with strict
inequality. It then follows from the arguments in the first part of the proof of Theorem 1
that the following equation holds. To simplify notation the time index is dropped in this
equation and throughout the proof as decision rules are time invariant in steady state.

[t dy > Elu(eke)ldy = [ u(c(x) dy
X X X
Therefore, the lemma follows if such a set A exists. To prove that such a set A exists note
that Fact 2-3 and fir = 1 imply that the following inequality holds for k = 0.

u'(c(k,e1)) > Pr Efu'(c(k(kel),e)) }

The continuity of u' and continuity of the optimal decision rules imply that there is a
constant a > 0 and a set of states A = [0,a)x{e]} where the strict inequality above also

holds. Next, argue that in steady state y(A) > 0. For x in X define a sequence {xn (x)} by
x] = (k(x),e1) and xp = (k{xp -}),e]) forn=23 ..

Fact 4 implies that xp (x) converges to (0,e1). So it is possible to go from x to A in

N or greater steps, for some value N which depends on x. Let P(x,A) denote such n-step
probabilities. Therefore, P (x,A) > m(e)1 > 0 for all n > N. Select B = [0,k]xE such that

y (B) > 0. Fact 2 then implies that there is an N such that PR(x,A) 2 7(e])™ > 0 for all n >
N and for all x in B. Therefore, the following is true.

yA) = [ PxA)dy = [ PMxA)dy 2ae)"y(B)>0. 0
X X
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Theorem 2: Assume Al-3 and T1-2.
If P £'(K(y) > 1, then K(y; 1) <K(yp < K{yge1)-

proof: Suppose by way of contradiction that K(y; ;) 2 K(yy). Apply Lemma 2 below
repeatedly to get that {K(y; _,), K(yp), K(yg+1),--} is decreasing. A necessary condition

for maximization is

u'(e(x,t-1)) 2 fry E[u'(e(k(xt-D,e't) | = Pr¢ J' u'(c(x1,1) P(x,t-1,dx1)
X

Integrate this expression with respect to the measure vy and apply Stokey and Lucas

(1989, Theorem 8.3) to get the inequality and the equality in the first line below. Repeat the
argument to get the second line below.

f u'(c(x,t-1))dyi-1 2 Pry j E[u'(c(k(x,t-1),€,t))1dyt-1 = Py J‘ u'(c(x,t)) dyy
X X X

J‘ u'(c(x,t-1))dyy 1 213"*1rt wTeen J‘ u'(c(x,t+n)) dyt+n
X X

This implies that { u'(c(x,t+n)) dyg+q tends to zero as n increases because the term on the
right-hand side preceeding the integral grows without bound. Given any € > 0, let n be
such that [ u'(c(x,t+n)) dyt+n < €. Since marginal utility is a convex function, Jensen's

inequality implies the line below.
u'(Je(x,t+n) dyt+n ) € Ju'(c(x,t+n)) dyten <€

This then implies that aggregate consumption becomes arbitrarily large which contradicts
the fact that output is bounded. Therefore, it is the case that K{y; .1) < K(y{). Repeat the

same argument to obtain the second inequality in the Theorem. ¢

Lemma 2: Assume Al-3 and T1-2.
If B 1'(K(yp) 2 1 and K(y; ;) 2 K(yy), then K(y; ) 2 K(y+ ).

proof: The first inequality below is a necessary condition for consumer maximization. The
second inequality follows because Pry > 1.

17



u(c(x,t-1)) 2 fry E[u'(c(k(x,t-1),e',0)1 2 Efu'{c(k(x,t-1),¢,0)) ]

The inequality below follows by applying Jensen's inequality to the equation above and
then integrating. The equality follows by Stokey and Lucas (1989, Theorem 8.3).

J‘ c(x,t-1) yi_1(dx) £ I Efc(k(x,t-1),e,t)] yi-1(dx) = J‘ c(x,t) yi (dx)
X X X

Finally, f(K(y_1)) 2 f(K(y) and the previous step yield

K(yy) = f(K(y-1)) - { c(x,t-1) yo1(dx) 2 f(K(yp) - [ ety yi(dx) = K(yg+1) . 0
X X
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