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Leamer (1983) suggested to study the range of estimators By in the model

y = X8 + ¢ when imposing linear constraints of the form M {(C8—-c¢c)=0
where only C and c are fixed. However the extremes may come from models with a

bad Rz, say. In this paper we give the exact bounds when only considering models

with RZ2> (1— R2 4+ 6R2. . These exact bounds can be found from
max min

calculating only two regressions. We apply our techniques to study the velocity of
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1. Introduction

A modeller is faced with many different possible specifications for the model
when there are several possible explanatory variables, each of which can enter with
various lags. Leamer (1983) has suggested that certain essential features of the model
can vary greatly between alternative specifications, thus making the interpretation of
the model difficult or "fragile." An easily understood version of his argument has a
single dependent variable y, a group of variables X that "should" be used as
explanatory variables in any model of y when a particular question is under
consideration, and a second group of variables _}QD that may or may not enter the

model as explanatory variables. A basic or "restricted" model would be
(1.1) y = ﬁF XF + residual

a complete model would be

(1.2) y = Bp Xp + Op Xp + residual

with some linear consiraints on QD, such as requiring that certain variables be given
a zero coefficient in (1.2). Thus, for example, if one was interested in the effect of an
interest rate on velocity then the equation for velocity would certainly include this
interest rate in XF plus possibly also velocity lagged once, money lagged once and a
price index lagged. These explanatory variables might be thought of as a minimum

set of variables necessary to explain velocity, according to some theory. This would
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give the basic model. However, it may be thought necessary, by some modellers, to
augment the basic model so that the model better explains the main features of the
actual velocity series. This augmentation may include further lags of the variables
already used plus other variables, such as variability of money base. As there are
many possible ways to augment the basic model so there will be many different
specifications. Suppose that we are most interested in the value of a particular
coefficient, denoted [)’0, such as the coefficients on interest rate in the velocity
equation. The estimates of ﬁo may vary considerably from one specification to
another, and the extremes taken by the alternative estimates are called the "extreme
bounds" by Leamer (1983). The extent of these bounds are viewed as measuring the
fragility of the estimate of 8 , 28 alternative specifications are used. The value and
interpretation of these bounds have been strongly criticized by McAleer, Pagan and
Volker (1983, 1985) and also by Breusch (1985) and defended by Leamer {1985).

One criticism of the use of extreme bounds, which has some impact, in that
the actual extremes may come from models that most economists would find
unreasonable in some way, such as having low Durbin—Waison statistics, for
example, in a time—series context. One way to express this problem is in terms of Rr?
statistics. We are not defending R2 as an ideal measure of the quality of a model,
but it is possibly a relevant statistic and some exact results are achievable using it.

2isR2

Suppose that the maximum value achievable for R max’ W

hich is certainly found
by using all of the variables Xy, Xy in (1.2) with no exclusions, which might be
called the "full" model. Of course, other specifications may also achieve this Rn21 ax
The above worry about the virtues of using extreme bounds analysis is that the

extreme may come from specifications that achieve R? values very much smaller than
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Rziax and these specifications might be considered irrelevant because of their
relatively low goodness of fit so that estimates of ﬁo based on them would also be
strongly discounted. It may be thought that specifications that achieve Rz values not
too far from Rria.x would produce much narrower extreme bounds for ﬁo. It is this
possibility that we counsider in this paper. Suppose that Rli ax is found from the full
model and Rrii o from the basic model (1.1). Consider model specification achieving

R? values equal to or greater than

R2= (1§ R2, +6R2.
where 0 < § < 1. For § small these may be considered as being 'reasonable"
gpecifications as they are not far from the "best" model in terms of goodness of fit, as
meagured by R2. In the next section of the paper an equation for the values of the
extreme bounds of G, is presented for any given 8. The proof is found in the
appendix. A numerical example is presented in Section 3, concerning the modelling
of velocity and using time series models. It is found that quite wide extreme bounds
can occur using § values as low as 0.1 or 0.2, relative to the extreme bounds found
from the full set of possible specifications. This result strengthens Leamer’s
arguments about the difficulties that can arise when interpreting particular

coefficients. Some further considerations are presented in the final section.

See also Leamer(1981), in which similar ideas and results are obtained when constraining
ridge estimates to achieve a given level of significance.
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2. The Model and Results

The model being considered is

(2.1) y=X8+¢

where y is the vector of observations on the variable v and X is the matrix of
observations on a vector of explanatory variables. At this stage, no distinction is
being made between time—series or cross—section situations. It will be assumed that
¢ is N(O, o 1) where the covarience matrix 0% Q is assumed known for the time

being. The object of primary interest is the "focus" coefficient
(2.2) B,=¥ 8

so that S, can be any individual coeificient or a weighted linear combination of

coefficients. There will be a set of prior linear constraints
(2.3) Ci=c

It is convenient to use this general form for the constraints, but if the two types of
variables XF, XD are considered, as in the first section, then the coefficients on XF
are free of restrictions (hence the notation ﬁF) and the coefficients on Xp are
"doubtful" in that they may or may not appear in any pariicular specification. The
restrictions would then be C = (0, I) with appropriate sizes of the zero and unit

vectors, and ¢ = 0. In a particular specification any linear combination of these
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restrictions can be used, so the objective is to study the range of estimators for ﬁo

when imposing linear constraints of the form

(2.4) M(CG—c)=0

for some matrix M, which is assumed without loss of gemerating to be of full row
rank. If no restrictions are placed on M, one gets the extreme bounds suggested by

Leamer (1983). The following notation is used:

The generalized least square (GLS) estimates of § using the full model (2.1)

with no exclusions is

=X o lxytx aly

which gives the estimate of ﬁo, b(J = 1/)' b.
Let D=oAx atx)!
A=cnc’

and let A™? be the unique symmetric square root of AL

For a given M in (2.4) define

w=atm,



noting that we get any full column rank W as M ranges over all full row rank
matrices and vice versa.

Two important vectors are

(2.5) u=A"*CDy
and
(2.6) v=A"1(Cb)
The Euclidean norm of u is Jju| = (u’u)i. It is convenient to define an angle

delo, "/2] by

(2.7) cos 20 = cos (u, v)

The GLSE ,é of B, under the restriction (2.4) is
Bo=b, —u WW W)Wy

Breusch (1985) proved:



THEOREM 1

The extreme values of f;’oover all choices of (full column rank matrices) W are

b, ——— (cos 20+ 1) [ful] [v]]

ie. b, —cos” ¢ |Jufl {vI

o by, + sin® 6 fjul] fIv]
The bounds can be attained for some W.

Suppose now that a value for § is chosen, with 0 < § { 1 and models are

considered having R? values? greater or equal to

2

2 2
R6 = (1-6) B‘max + ¢ Rmin

Define an angle A ¢ [0, "/2] such that

2Alternatively, restrict M to be of rank m with 0 < m < rank(C). Consider all models
where the F—statistic for testing the set of linear constraints M(Cp—c) is less or equal to

’ . §,m=5Fm,ma.x.+ (I_QF;n,mn’ _
where Fm,max is the maximum and Fm, mip 18 the minimum among the achievable
F—statistics when there are m restrictions. Again, Theorem 2 gives the correct bounds.

Observe that the F—statistic is essentially B.2 except for the number of regressors.
Furthermore, any R? can be achieved for any given number m, 0<m<rank(C) of

restrictions: for the maximal Rg, simply include the regressor that arises as the linear
combination of regressors with coefficients taken from the unrestricted regression. For the

minimal Rz, choose regressors orthogonal to that regressor. Therefore fixing the number m
i8 no restriction.




sin® A = 6.
The upper and lower bounds on ,80 will be given by
by — ¢ lulf vl
and by + dyy llull Iv]

where ¢L and qﬁU are always positive and depend on the chosen 6. The precise

formula is given in:

THEOREM 2

i) if A < 0 then ¢.. = sin® f —sin® (A — 0
U
. . 2
if A > #then qﬁU = sin“ 49
(i) if A < 7/2 — 4 then ¢y, = cos® § — cos® (A+06)
if A2 7/2 — 0 then ¢y = cos” 6.

The proof is in the appendix.

For given 6, and thus, A, the extreme bounds can be found directly from the




two regressions3, the basic regression involving just the free variables Xp, which gives
bo as the estimate of ,60 and also provides R:riin’ and the complete regression in
which all variables enter, which gives b as the estimate of #, and b o 38 the estimate of

2
ﬁo and Rmax‘ It follows that
uv= bo - bo

¥l = (Cb—c)” A7 (b—c)
and

full = vax(b,) - var (b)

From these quantities # is determined as cos 26 = cos (u, v). It may be
suggested that it is good economic practice to report the values of u’v, ||v||, [juf as
well as the extreme bounds on ﬁo for various values of §, say 0.1 and 0.05. Table 1,
at the end of the paper makes this latter task easy by tabulating the values of qﬁL and

gbU for various values of cos 24.

3. The effect of interest rates and inflation on the velocity of money.
We want to analyze the effect of interest rates and inflation on the increase in
the velocity of money. To this end, we consider two models in quarterly data and

homoskedastic errors with unknown variance.

30Observe that the bounds do not depend on o*. Thus one might therefore set =1 to
simplify the calculation.




We used the following list of variables:

veloc velocity of money, computed as GNP /ML,

dveloc first differences in the velocity of money

thill 3—month treasury bill rate,

infla inflation, computed from the consumer price index CPI,
gnp gross national product,

mbvariab variability of money4, computed as standard deviation within one yeaxr
of the growth rate of the monetary base from its global mean and trend
and 12 own lags, using monthly data. We multiply that number by

10000 for numerical reasons.

GNP, CPI, M1 and monetary base are seasonally adjusted. We use first differences in

the velocity of money in our regression.? The time index t counts quarters.

41t has been argued that the recent decline in the velocity of money was caused by changes
in the variability of money supply (see Friedman (1984) and Hall-Noble (1987)).

51t has been argued that the velocity of money iollows a random walk, i.e. that there are
unit roots in the corresponding regression equation in levels. Then, first differencing the
velocity series is a reasonable procedure. But also in the level model the inference iawn
from OLS (instead of using unit roots distribution theory) is valid, if the linear
combination of regressors that we look at for our focus coefficient doesn’t lie in the
eigenspace of the unit root in the joint VAR (see Sims—Stock—~Watson). Another way to
justify using levels is the Bayesian point of view, in which the posterior distribution of the
coefficient given the data is still almost normal even in the presence of unit roots, see Sims
(1987). In fact, the results don’t change much using levels instead of first differences except

that the range of R? becomes much smaller. We chose a model in first differences because
the results are more instructive and not because we believe the level model to yield
incorrect results.
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a) unrestricted: ("equation 1")

5 6 5
dveloc(t) = + By ot + E By dveloc(t—) + z By otbill(t-1) + 2 B, ginfla(t-1)
=1 1=0 1=0
6 6
+ 2 By 480p(t-1) + 2 By ymbvariab(t-1) + ¢,
1=0 , 1=0 ’

b) restricted: ("equation 2")
2 1

dveloc(t) =a + fy gt + ) By jdveloc(t1) + } B othill(t-) + €.
l=1 ’ _ - - 1=0 ’

Model II:

a) unrestricted: ("equation 1"): same as in model I

b) restricted: (Mequation 2")

2 2 2
dveloc(t) =a + ﬁ0,0t + E ﬁljldveloc(t——l) + E ﬂl}ztbill(t——l) + E ﬂ1’3inﬂa(t—1)
=1 1=0 I=0
1
+ 2 B 5mbva,riab(t—l) + &
1=0

We used ordinary least squares to estimate the models. The regression output is in
appendix 2. Let us highlight a few results(the numbers for ||uf},|jv|| and cos(u,v) are

calculated for orz-_-l, see remarks above):
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Table 1:

Model I
focus coeff. 62:1.0 62=0.1 52=.05 62=0.0
By o (tbill —first lag)
’ upper .08110 07342 .06808 05154
lower  ~00540 02420 03230 . .05154

(|lu]|=.16853,||v]|=.51325,cos(u,v)=.31675)
By o (trend)
’ upper .00300 00161 00107 —.00034

lower —.00342 —.00224 —00172 ~.00034
(||u]j=-01251,|}v||=.51325,cos(u,v)=—.0392)

Modet IT
focus coeff. 52=1.0 £=0.1 §2=.05 62=0.0
By o (tbill — first lag)
’ upper 07635 07044 06591 05155
lower —.00108 .02709 .03441 .05155
llu]|=.15999,||v]|=.48395,cos(u,v)= .35931)
By o (tbill — second lag
’ upper 00725 —.02404 ~.03436 —.06019
lower ~. 10847 —.09251 — 08411 —.06019
(Jlue||=.23911,||v]|=.48395,cos{u,v}=—.16570)
6
2 By o (effect of permanent increase in interest rates)
1=0
upper .01682 .01288 .01048 00334
lower —.01811 —.00799 —.00469 .00334

(|lull=-23911,}||v]|=.48395,cos{u,v)=—16570)

ﬂl 3 (inflation — first lag)

upper 01156 .00918 .00795 .00448
lower —.00513 —.00072 00076 .00448
(|[u]|=-03449,||v[|=.48395,cos(u,v)= .15132)

These resulis contain several interesting aspects:
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The range of possible estimates for the trend variable is bigger than the two
coefficient estimates in the restricted and the unrestricted model suggest. This
coincides with the uncertainty about the trend coefficient as indicated by the

t—statistic (see McAleer et al (1985)).

The shape of the range of coefficient estimates for the first lag of thills changes little
in either model. In both cases it has a positive coefficient as long as we stay in the top
20% of RZ, say. Similarly, the second lag has a negative coefficient. Notice that the
unrestricted EBA doesn’t allow here for that conclusion (since coefficients of the
opposite sign in these cases are included here when R2 is not restricted). It is of
course subject to debate whether it is reasonable to look at a fraction of the range of
possible RZ, The point is, that we have to make the unrestricted model pretty much
a8 bad as possible within the admissable range to arrive at coefficients of the opposite
gign in etther case. It is now up to the judgement of ihe individual researcher to
decide whether (s)he wants to rule out these coefficients as unreasonable (because of
the "bad" R2) or not. This type of sensitivity analysis, putting the facts on the table,

is of course the whole point of this approach.

We also see that not much can be said about the permanent effects of e.g a
permanent rise in the nominal interest rate. Different models allow for different
conclusions within the top 20%—range of R? and that might be all that can be said.
The same applies to money base variability which we did not find to have a clear
effect on velocity. Looking at a plot of real interest rates (computed as

thill{t)—inflation(t), where contemporaneous inflation is used as a crude substitute for
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the inflation expectation of agents in our economy), it seems that the recent change
in the behavior of the velocity of money coincides with the shift of real interest rates

from negative values to positive values.

An analysis as shown here helps to understand better the possibilities for the
outcomes from different models and the type of restrictions we impose when passing

from a large "bench—mark" model to a smaller model.

4. Conclusions:

Qur result enables the researcher with a "continnum" of choices between classical
econometrics and Leamers "extreme" EBA: if one only wants the maximal B.Z, the
theorem will give the coefficient of the classical analysis. If one allows for any Rz, the
theorem gives the extreme bounds as e.g. given by Breuschs theorem ({which is
contained in our theorem as a special result). It seems reasonable, as explained above
to give the extreme bounds of the coefficient of interest subject to restricting r? 1o be
in the top 5% or top 10% of the range of possible RZ: using ordinary regression
output, this can be done using the formulas of the theorem or the tables at the end of
this paper. Of course, one would like extensions of our result: how can we deal with a
vector of coefficients of interest? Is there a similar version of the theorem that
controls for the Durbin—Watson statistic? How can we incorporate uncertainty about
2 in our model? Are there similar results for other inference procedures {e.g. probit
models) or in the presence of nonnormal distributions (as e.g. in the unit roois case).

How do we include coefficient—uncertainty arising from any of the specific models
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included in our range? How can we find bounds if we pose positivity constraints on

certain coefficients? Are there interesting asymptotic results?

The theorem above allows us to get a feel of how much actually changes, if we
proceed from a general "bemnchmark" model to a smaller, restricied model. The
procedure described above is intended to append current practice in that way, not to

replace it and can thus provide useful insights about the data.
Appendix 1:
Proof heor

Given a restriction matrix M as in (2.4), find the corresponding W. Write
By = by — @W)llull |iv]} and
? 2 2
2 e’e + A W)livii“o
R"=1-— ’
-G -7

where e is the vector of residuals under the unrestricted model, ¥ is the mean of y8 and

HW) is assumed to be positiv.

Assume that {u,v} is linear independent and that C is not trivial (i.e. there is at least
one nonzero constraint).

Note that (i) and (ii) are equivalent o the following formulation, using the usual

addition theorems for sin and cos. It is this version that we are going to prove:

8We have of course y = 0, if .. the model is already in deviation form.
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For a chosen § € [0,1] and matrix W, suppose that (W) < 4.
(i) If & (1—cos(u,v))/2,
then o(W) 2 ¢y = 61/2sin(/\—26)
else (W) 2 ¢ = (cos(u,v)-1)/2
(i) If & (14cos(n,v))/2,
then o(W) < ¢y; = 51/25in(A+20)
else (W) < ¢y = (cos(u,v)+1)/2.
These bounds can be achieved for properly chosen matrices Wi and WU’ i.e for these

matrices we get the upper bound ¢y =¢(Wy ) and the lower bound by= o(Wyp)-

The proof involves two steps. We consider a special class of W—matrices {W(t)|teR}.
First, we show, that any other W can do only "worse" than some W(t), i.e. at the
same Rz, w(W) will be restricted to the range given by the corresponding @(W(t)).
Secondly, we show that we get the bounds mentioned in the Theorem within that

class of W(t)’s, proving the theorem.

Consider any (full column rank) matrix W of size kxm, say, where 1<m<k and k is the
number of possible restrictions, k>1 by assumption. We find that

(W) = wW(W'W)Wv/(ul] |lv]]) and

HW) = vWWWIW v/({Iv]] [[v]),
so assume w.l.o.g. (in order to avoid the norm-signs) that |[u]|=||v||=1. The special
class of W that we want to consider are all W of size kx1 which are linear

combinations of u and v.
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Claim: For all W, there is a linear combination ¢ of x and y and a real number n with
0<n<1 such that {W) = 4(¢) and (W) = ny({).

Proof of the Claim:

Recall from linear algebra, that W(W'W)W’ is a matrix that maps any
k—dimensional vector in an orthogonal way on the range of W. Hence {W)<1. Fix a
W. Let P be the orthogonal projector on the plane spanned by u and v. Let
2 =PW(WW)W’v, we then have @(W)=wzy, and similarly +(W)= vay,.
Assume zy,#0 (otherwise we are done). Let x be the orthogonal projection of v on
Zyy» 1.8 X=TZyy, where ﬁ(sz)/(zV’Vzw). By Lemma 1 (below), we have 1<7. Now,
find a linear combination ¢ of u and v such that {’v = zyyv and ¢ is the orthogonal
projection of v on { itself, i.e. C=C(C’C)_1§’v. By Lemma 2 (below), ¢ exists and
satisfies || C[|2||zw||. Write C=(zv’vv)v + q, where q is orthogonal to v. Notice that
Ej:(zv’vv)v — q also satisfies E’v = 2y “ZHZHZW“ and Zj is the orthogonal projection
of v on Eitself. Therefore, we can assume w.l.0.g. that (w'q)(way)20.

Write  zy, = (24V)v + og, where [a]<l. Now we are dome, since
'y(C):v’C:v’zW:'y(W) and (for the case Wz, #0, otherwise the claim is now trivial)
qo(():u’(;=u’zw+(1—a)u’q = @(W)/n, where 1/n=1+ (1—~a)(u’q)/(u’zW) > 1. This
finishes the first part of the proof.

We now proceed to the second part of the proof.

Consider W(t) = u + tv (recall that we assumed w.l.o.g. |[u[|=]v|]|=1). Observe that
we exclude the matrix W=v among the class of all linear combinations of u and v.
However, since W(W’W)“1W’ is an orthogonal projector on the range of W, we can

include W=v by considering t-w. A look then at the algebraic results below shows

17




that W=v is "irrelevant" for the bounds given in the theorem (actually, W=v gives

the worst possible R? among our class).

Let f(t) = o(W(t)) and gz(t) = W W(t)). Let k=cos(u,v). Calculate f and g2 to be
f(t) = (kt-+1)(t+x) /(t°+2xt+1) and

(1) = (t+6)2 12+ 2mt+1)
8o that we might set
gt) = (t+x)/(2r2nt+1)1/2

Observe that g vanishes only for t = —« and that also f(—«) = 0. Define the ratio r(t)
by 1(t) = f(t)/g(t), whenever g(t)#0. We find
r(t) = (st+1)/(t2+2mt+1)2,
which is also defined for t=—«. (For W=v, observe that |r(t)| converges to s,
|g(t){+1 and f£(t)x as t-» and that |[g(t)[<l for all t}). Observe that
r(—n):(l—&z)l/ 2 To get to the exact bounds, note that f has its absolute minimum
at t=—1 and its absolute maximum at t=1, {f is a strictly increasing function in
between. Using the relationship between (t——ﬁ;)2 and gz(t) as stated above, we find at
g2(1) = 7
() = re(t) + (1-xA)1/2(-g%(1))!/2
= sign(g(t))cos(28)sin()) + sin(20)cos(A)
= gign(g(t))sin(X + sign(g(t))24).
Using the fact that g is also a strictly increasing function on the whole real line with
g2(—1)=—f(~1)=(1—x)/2=5in%(0) and gZ(1)=H(1)=(1+x)/2=cos%(§) we obtain the

sharp bounds as stated in (i’) and (ii’). This concludes the proof of the Theorem.
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In the proof of the Theorem we made use of the following two Lemmata:

Lemumg 1:

Suppose for u,v,W,dek, that v=w+x, that w and x are orthogonal to each other and
that {u,v} is linear independent. Project w in the plane spanned by u and v, call this
projection Z Then VE 25T

Proof:

Decompose w in w=av-+p+q, where av+p=z_ and p is orthogonal to v. Then
y=p-q is orthogonal to v and we have

2
2’2 L vV A+ VvV vV=ww=wv=2'V.
wiw=o I w

Lemma 2:
Let v,x,y,zemk, k>2 and 1<7 be such that v=x+y, x orthogonal to y and x=7z. Then
there exists a linear combination ¢ of x and v such that {"v={"x and v—{ orthogonal

to { and we have [z[|<]|{]-

Proof:

W.lo.g. |v[|=! (rescale every vector). Assume w.lo.g. that {x,v} is linear
independent, otherwise the claim is Let q be orthogonal to v in the plane spanned by
x and v and of unit length. Set ¢ = (z’v}v + ogq, where @ is & solution to the equation
a2=(z’v)(1 —z'v). Check that (*v=(’(=z'v. Observe that with a similar argument,
we can write x as x = (x'v)v + aq, where a now satisfies a,2=(x’v)(1-—x’v). Hence

|a]<7| @], proving {|z[[<||{]|-
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Appendix ITIa)

Rats subroutine programs for performing the calculation of
restricted extreme bounds.

hhkhhhkhkAkdRRkhhhhkhhhhhhdhhhhkhhdAhkhdohkhhdhhhbhkhkhihkhkhddhltddkrkhkhhkdkhFiddhit

RATS-procedures for the calculation of restricted extreme
bounds acc. to Granger-Uhlig (1988)

Usage:

increase BMA COMPILE 500

Define two equations:

Equation 1 - the "unrestricted regression". It is assumed that*
a constant is included in the regression and that the sum of*
the coefficients lol to upl (lol and upl are options for
EBASET) is the focus coefficient.

Equation 2 - the "restricted regression". Again, a constant
has to be included and the sum of the coefficients lo2 to
up2 (lo2 and up2 are options for EBASET) is the focus
coefficient.

Equation 2 should define the regression eguation for a
subset of the regressors of equation 1 and the sum of the
first coefficients lo2 to up2 should correspond to the sum
of the coefficients 1ol to upl of equation 1 with
(up2-lo2+1)-(upl—-lol+l) zero restrictions.

Per default, lol=upl=lo2=up2=1, i.e. the first coefficient is

the focus coefficient.

Ok ¥ % o F A %

First execute the procedure EBASTART to do the initial
calculation of the regressions etc. Then decide on your focus
coefficient and set the neccessary data for the calculations
of the bounds with the procedure EBASET. Then, with each run
of EBACALC, the bounds are calculated according to the given
restriction on Rsquared. EBASET and EBACALC can be executed
several times after an initial EBASTART.

Reserved names used in these procedures are:

zzzru ZZzrYr zzzbu zZzbr zzzvaru zzzvarr zzzvlen zzzulen
ZZZuv 22zco_uv 2zzg lol upl 102 up2 2zzzxXxXr Z2zxXxu zzzbetau
zzzbetar zzznobs zzzyvar

L T R T R R T R

output includes the lengths of the vectors u and v and their

inner product and covariances, assuming sigma=1.0 (recall that=*

the calculated bounds do not depend on sigma). *

*

Example: suppose, the effect of x1 on vy is to be determined
Other possible regressors are const, trend, x2,..,x5,
and we always want to include x2. Define

SMPL firstper lastper

*** allow for all lags in equation 1 !

EQUATTION 1 y

# X1 const trend x2 x3 x4 x5

:(-x-*******!—*ﬁ-ﬂ-*!—#*ﬂ-**ﬁ-**%ﬁ-***H»x-**ﬁ-*#*******X—*#ﬁ-*&***

%k A kB N ¥




EQUATION 2 vy

# %1 const x2

EXEC EBASTART ¥y

EXEC EBASET(lol=1,upl=1l,lo2=1,up2=1)
(or simply EXEC EBASET )

EVAL g2 = 0.1

EXEC ERACALC lower upper g2

EVAL g2 = 0.05

EXEC EBACALC lower upper g2

* %k N % A X ¥ ¥ % %
L R A

kdedhhk ki hkhhhhhrkhkhkdhdhdhdhdhdhhdhbhhhbhhbhhhhbdbkhkhkhkhhdhhkhhkhkh ki fddoddi
*

PROCEDURE EBASTART y
hhkhdekhkhdkhhhkhkhhhhdhhhhhkdhhdkhhrhhhhhrhhhhhhhkhhkhhkhhrhhhhhhhkhhkhk

* Instructions: y is the dependent variable *
kkdhkhkhkhhkhhhkdhhhhthhhhkhkhkhkkhkhkhkhkhkkihhdkkrrkhhrhhkhkdhhkhddhkkhhkhkkhkhkhkrhkihhhksi
TYPE EQV ¥

DECLARE SYMM ZzzXxXU ZZZXXXr .
DECLARE VECTOR zzzbetau zzzbetar
OLS (EQUATION=1)

FETCH zzzru . = RSQUARED

MATRIX zzzxxXu = XX

MATRIX zzzbetau = BETA

OLS (EQUATION=2}

FETCH zzzrr = RSQUARED

MATRIX zzzxXr = XX

MATRIX zzzbetar = BETA

STATISTIC vy

EVAL zzznobs = NOBS

EVAL zzzyvar = VAR

END
*

*

PROCEDURE EBASET

OPTION LOl1 INTEGER 1

OPTICN UP1 INTEGER 1

QPTION LO2 INTEGER 1

OPTION UP2 INTEGER 1

Y EI I IR EEET AT RS L LT 2222 2 22 2 2 R 2 LR L EE R L2 TR T LT T N
* 1ol,upl,lo2 and up2 are options.

* the sum of the coefficients lol to upl is the focus

* coefficient in equation 1, the unrestricted equation.
* the sum of the coefficients lo2 to up2 is the focus

* coefficient in equation 2, the unrestricted equation.
Rk hkh kR AR Ak A h A kA AR AR IR KA IR A AR AR R AR A h ko kkhhhhd kR AR R bk Ak kkkkhkkk k%

¥*

% % % % %

LOCAL INTEGER counta countb
*

EVAL zzzbu = 0.0
EVAL zzzvaru = 0.0
DO counta = lol,upl

EVAL zzzbu = zzzbu + zzzbetau(counta)
DO countbh = lol,upl
EVAL zzzvaru = zzzvaru + zzzxxu(counta,counth)
END
END

EVAL zzzbr = 0.0
EVAL zzzvarr = 0.0
DO counta = lo2,up2
EVAL zzzbr = zzz2br + zzzbetar(counta)



DO countb = 1lo2,up2
EVAL zzzvarr = zzzvarr -+ zzzxxr{counta,counth)
END
END
EVAL zzzvlen
EVAL zzzulen

SQRT{ (zzznocbs-1l.0)*zzzyvar*(zzzru-zzzrr) )
SQRT( zzzvaru - zzzvarr )

o

EVAL zzzuv zzzbu - zzzbr

EVAL zzzco_uv zzzuv / (zzzulen*zzzvlen)
DISPLAY

DISPLAY

DISPLAY ‘RESTRICTED EXTREME BOUNDS. DATA:’

DISPLAY 'FOCUS ON SUM OF ¢ lol 7 TO !/ upl 7 IN EQUATION 17
DISPLAY ‘FOCUS ON SUM OF 7 lo2 # TO ' up2 ' IN EQUATION 27
DISPLAY fLENGTH OF U-VECTOR :’ zzzulen

DISPLAY ‘LENGTH OF V-VECTOR :’ zzzvlen

DISPLAY ‘INNER PRODUCT r zzzuv ' COos(U,V)= ’ zzzco_uv
DISPLAY

DISPLAY

END
*

*

PROCEDURE EBACALC lower upper g2
TYPE REAL lower upper g2
hdekhkhhkdkhkhkhhhhhhkhkhkkhkhkkhhkkhhkhkhhhhhkhhkhkhhhhhkbhhhkhdhhhhhhhhhhhhikkhhhkidk
*# Instructions: lower is the variable that is going to be set *
*# to the lower extreme bound. upper is the variable that is *
* going to be set to the upper extreme bound. g2 is the para- =*
* meter gamma-squared, determining the fraction of the range of*
* admissible R-squares, 0.0<=g2<=1.0 *
1 3 e e e e ok ok ok o ok ok ko ok ok ok ok ok ok ok ok ok ek ok ok ok ek ok ok ek ko ok ek
EVAL zzzg = SQRT(g2)
IF g2.LE. ((1.90-zzzco_uv)/2.0)
EVAL upper = zzzbu - zzzg*( zzzco_uv¥*zzzg - S
SQRT (l-zzzco_uv**2) *SQRT(1l-g2) }*zzzulen*zzzvlen

LI L B X

ELSE
EVAL upper = zzzbu - ((zzzco_uv - 1.0)/2.0)*zzzulen*zzzvlen
*
IF g2.LE.((1.0+zzzco_uv)/2.0)
EVAL lower = zzzbu - 2z2g*( zzzco uv*zzzg + $
SQRT(1l-zzzCo_uv**2) *SQRT(1-g2) )*zzzulen*zzzvlen
ELSE
EVAL lower = zzzbu - ((zzzco uv + 1.0)/2.0)*zzzulen*zzzvlen
END

*
KRR E R AR AR A AR AR R AR T AR AR AR AR AR AR AR AR AR AR AR A KRR IR IR AR IR AR R AT T AR KRR
* End of EBA-Subroutines *
Ahkhkk IR AR AR IR A h Ak kA kA kAR hkh AR AR AAR A AR A AR AR AR AR I AR R AR AR AR AT o h k&R
. :

*



Appendix ITIb

The following two tables list the lower and upper bounds
as given in the theorem for different values of
delta.

LOWER BOUND

cos(u,v) delta=0.05 delta=0.1 delta=0.2 delta=1.0
0.9500 -0.0250 -0.0250 -0.0250 -0.0250
0.9000 -0.0500 -0.0500 =0.0500 -0.0500
0.8500 -0.0723 -0.0750 -0.0750 -0.0750
0.8000 -0.0908 -0.1000 . -0.1000 -0.1000
0.7500 -0.1067 -0.1234 =0.1250 -0.1250
0.7000 -0.1206 -0.1442 -0.1500 -0.1500
0.6500 -0.1331 —-0.1630 -0.1780 -0.1750
0.6000 -0.1444 ~0.1800 -0.2000 ~-0.2000
0.5500 =0.1545 -0.1955 -0.2241 -0.2250
0.5000 -0.1637 ~0.2098 ~-0.2464 ~-0.2500
0.4500 -0.1721 -0.2229 ~0.2672 =0.2750
0.4000 -0.1797 -0.2350 ~0.2866 -0.3000
0.3500 -0.1867 -0.2460 -0.3047 -0.3250
0.3000 -0.1929 -0.2562 -0.3216 -0.3500
0.2500 -0.1985 -0.2655 -0.3373 -0.3750
0.2000 -0.2035 -0.2739 —-0.3519 -0.4000
0.1500 -0.2080 -0.2816 -0.3655 -0.4250
0.1000 -0.2119 -0.2885 ~0.3780 -0.4500
0.0500 -0.2152 —-0.2946 -0.3895 =0.4750
~0.0000 -0.2179 -0.3000 -0.4000 -0.5000
-0.0500 -0.2202 ~0.3046 -0.4095 -0.5250
-0.1000 -0.2219 -0.3085 —-0.4180 -0.5500
-0.1500 ~-0.2230 ~0.3116 -0.4255 -0.5750
-0.2000 -0.2235 -0.3139 -0.4319 -0.6000
-0.2500 -0.2235. ~0.3155 -0.4373 -0.6250
=0.3000 —-0.2229 —0.3162 —0.4416 -0.6500
-0.3500 -0.2217 -0.3160 ~0.4447 -0.6750
=0.4000 ~0.2197 -0.3150° ~-0.4466 ~0.7000
-0.4500 -0.2171 -0.3129 -0.4472 -0.7250
-0.5000 -0.2137 -0.3098 =-0.4464 -0.7500
~0.5500 -0.2095 -0.3055 -0.4441 -0.7750
-0.6000 -0.2044 -0.3000 -0.4400 -0.8000
-0.6500 ~-0,1981 -0.2830 -0.4340 -0.8250
-0.7000 =-0.1906 =0.2842 -0.4257 =0.8500
-0.7500 -0.1817 ~0.2734 -0.41486 ~0.8750
-0.8000 -0.1708 -0.2600 =0.4000 -0.9000
-~-0.8500 -0.15873 -0.2430 =0.3807 -0.9250
~0.9000 =0.1400 -0.2208 -0.3544 -0.9500
-0.9500 -0.1156 -0.1887 -0.3149 -0.9750



UPPER BOUND

cos(u,v) delta=0.05 delta=0.1 delta=0.2 delta=1.0

0.9500 0.1156 0.1887 0.3149 0.92750

0.9000 0.1400 0.2208 0.3544 0.92500
0.8500 0.1573 0.2430 0.3807 0.9250
0.8000 0.1708 0.2600 0.4000 0.9000
0.7500 0.1817 0.2734 0.4146 0.8750
0.7000 0.1906 0.2842 0.4257 0.8500
0.6500 0.1981 0.2930 0.4340 0.8250
0.6000 - 0.2044 0.3000 0.4400 0.8000
0.5500 0.2095 0.3055 0.4441 0.7750
0.5000 0.2137 0.3098 0.4464 0.7500
0.4500 0.2171 0.3129 0.4472 0.7250
0.4000 0.2197 0.3150 0.4466 0.7000
0.3500 0.2217 0.3160 0.4447 0.6750
0.3000 0.2229 0.3162 0.4416 0.6500
0.2500 0.2235 0.3155 0.4373 °~ 0.6250
0.2000 0.2235 0.3139 0.4319 0.6000
0.1500 0.2230 0.3116 0.4255 0.5750
0.1000 0.2219 0.3085 0.4180 0.5500
0.0500 0.2202 0.3046 0.4095 0.5250
-0.0000 0.2179 0.3000 0.4000 0.5000
-0.0500 0.2152 D.2946 0.3895 0.4750
~-0.1000 0.211% 0.2885 0.3780 0.4500
-0.1500 0.2080 0.2816 0.3655 0.4250
=-0.2000 0.2035 0.2739 0.3519.. 0.4000
-0.2500 0.1585 0.2655 0.3373 0.3750
—-0.3000 .0.1929 0.2562 0.3216 0.3500
-0.3500 0.1867 0.2460 0.3047 0.3250
-0.4000 0.1797 0.2350 0.2866 0.3000
~0.4500 0.1721 0.2229 0.2672 0.2750
-0.5000 0.1637 0.2098 0.2464 0.2500
-0.5500 0.1545 0.1955 - 0,2241 0.2250
-0.6000 0.1444 0.1800 0.2000 0.2000
-0.6500 0.1331 0.1630 0.1750 0.1750
-0.7000 0.1206 0.1442 0.1500 0.1500
-0.7500 0.1067 0.1234 0.1250 0.1250
-0.8000 0.0908 0.1000 0.1000 0.1000
~-0.8500 0.0723 0.0750 0.0750 0.0750
-0.9000 C.0500 0.0500 0.0500 0.0500

-0.9500 0.02850 0.0250 0.0250 0.0250



Appendix IIX T

Application to the analysis of the velocity of money.
(See main text for the description of the model.)

The following plots of restricted extreme bounds show the
range of coefficient estimates as a function of the fraction
delta of the possible range of correlation coefficients.

The graphs contain lines at the 5%, 10% and 20% fraction of
that range as well as a horizontal line for the coefficient
estimates from the restricted model.




Model I and II - velocity in first differences

EQUATION 1
DEPENDENT VARIABLE 13
FROM 49: 3 UNTIL
OBSERVATIONS 154
R¥% %2 .79616921
SSR .14906528
DURBIN-WATSON 1.99182778
Q( 36)= 32.4226
NO. LABEL VAR LAG
* %% e e Je ke e e de * % % ek
1 TBILL 4 0
2 TBILL 4 1
3 TBILL 4 2
4 TBILL 4 3
5 TBILL 4 4
6 TBILL 4 5
7 TBILL 4 6
8 CONST 1 0
9 TREND 2 0
10 NOMGNP 11 0
11 NOMGNP 11 1
12 NOMGNP 11 2
13 NOMGNP 11 3
14 NOMGNP 11 4
15 NOMGNP 11 5
16 NOMGNP 11 6
17 INFLA 14 o©
18 INFLA 14 1
19 INFLA 14 2
20 INFLA 14 3
21 INFLA 14 4
22 INFLA 14 5
23 SP500 7 0
24 SP500 7 1
25 SP500 7 2
26 SP500 7 3
27 SP500 7 4
28 SP500 7 5
29 SP500 7 6
30 MBVARIAB 10 O
31 MBVARIAB 10 1
32 MBVARIAB 10 2
33 MBVARIAB 10 3
34 MBVARIAB 10 4
35 MBVARIAB 10 5
36 MBVARIAB 10 6
37 DVELOC 13 1
38 DVELOC 13 2
39 DVELOC 13 3
40 DVELOC 13 4
41 DVELOC 13 5

DVELOC
87: 4
DEGREES OF FREEDOM 113
RBAR**2 . 72401672
SEE .36320267E-01
SIGNIFICANCE LEVEL: .639492
COEFFICIENT STAND. ERROR
Fekdo Rk ok ok deok kR Thkkhkkkhkdkk

-.1415851E-01

.5154808E~01
-.6019413E-01
.2764187E~01
-.1466998E-01
.1365635E~01
~.4828803E-03
.3657343E-01
-.3399892E-03
-2373780E-02
-.2806166E-02
.8014433E-03
~+3222367E-05
-.3000919E-03
~.8398701E-05
-.1401326E-03
-.7337027E-03
.4480048E~02
—.6417090E-04
-.5262354E-03
~.1233611E-02
~.1795641E~03
-.7737140E-03
.1459134E-02
-.1538187E-02
.8227908E-03
~-.1571696E-02
.4283050E~-02
-.2404061E-02
-.4000235E-02
.2238494E-01
-.1565780E-01
.2782646E-01
.7859654E-01
=.7316997E-01

-.1564823E-01

.1589101
-.9156270E-01
~.1339621

.4803443E-01
-.1157085%

.6046652E-02
.8464049E-02
.9717375E-02
.1107695E-01
.1061456E-01
.9594341E~-02
-.7097789E-02
-1214622E-01
.4729782E-03
.2374066E-03
.3948654E-03
.5128168E-03
.5336357E-03
.50876285E~-03
.5102534E-03
.3668422E-03
.1798490E-02
.2163098E~02
.21479S90E~-02
.20368B06E-02
.2015203E-02
.1721894E~02
.B121064E~03
.8364934E-03
.1096999E~02
-1186250E-02
.1356365E~-02
«1347113E-02
-8705775E-03
.1166322

-121.0302

.1762333

.1583921

.1644100

.1732389

1130170

-9326050E-01
.10403530

.1018180

.1009783

.9337908E-01

T-STATISTIC
dedede ok de de ke ek k k%
—-2.3415458
6.090239
-6.194485
2.495442
=-1.382062
1.423375
-.6803250E-01
2.011086
—-.7188264
9.998798
=-7.106641
1.562826
-.6038515E-02
~.5898468
-.1646182E-01
-.3819969
-.4079549
2.071125
—-.2987486E-01
—.2583650
-.6121521
-.1042829
-1.51084¢86
1.744346
=-1.402178
.6936068
-1.158756
3.179430
—-2.761455
-.3429785E-0L
.1171802
-.8884698E-01
-1756808
.4780521
-.4223644
-.1384591
1.703938
~-.8799620
-1.315701
.4756907
~-1.239127



STATISTICS ON SERIES 13 DVELOC 154 OBSERVATIONS

FROM 49: 3 URNTIL 87: 4

SAMPLE MEAN .2411900E-01 VARIANCE +A779861E-0
STANDARD DEVIATION .6913654E-01 STAN. DEV. OF MEAN .5571181E-0
T-STAT FOR MEAN=0 4.329244 SIGNIFICANCE LEVEL .1496223E-0

Model I - velocity in first differences

EQUATICN 2

DEPENDENT VARIABLE 13 DVELOC

FROM 49: 3 UNTIL 87: 4

OBSERVATIONS 154 DEGREES OF FREEDOM 147

R¥**2 .43596533 RBAR**2 -41294350

SSR 41248914 SEE .52972149E-01

DURBIN-WATSON 1.79940473

Q( 36)= 30.1241 SIGNIFICANCE LEVEL .743578

NO. LABEL’ VAR LAG COEFFICTENT STAND. ERROR

¥ % Kk khkfhkxk * %k * %k hhkkkkkkkkkkk Khkdkkdhhhktk
1 TBILL 4 0 .1654119E-01 .5560119E-02
2 TBILL 4 1l .2414939E-01 -8525709E-02
3 TBILL 4 2 -.4186459E-01 .5846300E-02
4 CONST 1 0 .2961311E-01 .9758004E-02
5 TREND 2 0 -.881310%9E-04 .1908511E-03
6 DVELOC 13 1 .1759825 -7147110E-01
7 DVELOC 13 2 .8176570E-01 .7137294E-01

Model ITI - veloclity in first differences

EQUATION 2

DEPENDENT VARIABLE ~ 13 DVELQC

FRCM 49: 3 UNTIL 87: 4

OBSERVATIONS 154 DEGREES OF FREEDOM l4a2

R#¥*#2 .47591604 RBAR**2 .43531799

S8R .38327243 SEE .51952879E-01

DURBIN-WATSON 1.78195047

Q( 36)= 39.9104 SIGNIFICANCE LEVEL .300441

NO. LABEL VAR LAG COEFFICIENT STAND. ERROR

e gk khkkkkhk hkk  hkk oo de ke g ok ke e e ke de ke e khkkhkhkhkrAk
1 INFLA 14 0 .2746374E-02 .2175553E-02
2 INFLA 14 1 .1954262E-02 .2522484E-02
3 INFLA 14 2 .5396981E-03 .2162828E-02
4 TBILL 4 0 -1166279E-01 -5936678E-02 .
5 TBILL 4 1 W“2372811E~-01 .8803060E-02
6 TBILL 4 2 =-.4102008E-01 -6235978E-02
7 MBVARIAB 10 o .1715579 -1227636
8 MBVARIAB 10 1 -.1202288 -1241446
9 CONST 1 o .2572789E~01 -.1118883E-01
10 TREND 2 0 -.6980102E-04 .1896833E-03
11 DVELOC 13 1 .1209456 . 7336283E-01
12 DVELOC 13 2 .4979867E~01 .7244218E-01

T-STATISTIC

&k ok Rk ok ke ok ke ke ok
2.974970
2.832538
-7.160870
3.034750
-.4617793
2.462289
1.145612

T~STATISTIC

ek de ek Rk kkkkRk
1.262380
7747373
.2495335
1.964532
2.695439
-6.577970
1.397465
-.9684580
2.299427
-.3685144
1.648596
.6874402
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