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ABSTRACT

Models of low-frequency behavior of time series may have strongly
conflieting substantive implications while fitting the data nearly
equally well, We should develop methods which display the result-
ing uncertainty rather than adopt modeling conventions which hide
it. One step toward this goal may be to consider "overparameter-
ized" stationary ARMA models.
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MODELING TRENDS

Macroeconomists have recently been exploring what the time series
data can tell us about long run behavior of economic variables.
There is, I think, a consensus emerging that statistical models
which are similar in their ability to fit the long run
characteristics of the data may differ substantially in their
behavioral interpretations. (Recent examples exploring both these
conclusions are Campbell and Mankiw [1987), Christiano and
Eichenbaum {19891, and Cochrane [1988].) This paper develops the
implications of this consensus for modeling strategies and also
points ocut a class of models for trending time series which may
deserve wider use.

I. Common Sense

The most commonly used models for economic time series showing
persistence are all special cases of general ARMA specifications
with exogenous polynomial trends. The two leading special cases
are the unit root and the trend-stationary mocdels. A unit root
model has its variance growing at a polynomial rate for large
values of its time argument t and may also have a deterministic
polynomial "drift" component in its mean. The trend-stationary
model has a polynomial in time as its mean, but variance
converging to a constant for large t. Most practical modelers
have paid little attention to a third special case, the stationary
subclass of ARMA models, for time series showing an "obvious"
trendlike behavior. In any case, if the series at hand seems to
have a trend when plotted, usually it is easy to construct a test
statistic which rejects stationarity against an alternative with
polynomial trend or accepts a unit root null hypothesis at

conventicnal significance levels.




Postwar quarterly data on real GNP spans about 170 observations,
over which its log has grown at a 3.2% annual rate. If we plot it
againset a linear trend, there is no obvious tendency for it to be
flying away from the trend line at the ends of the sample. (See
Figure 1.) Common sense tells us that it should be very hard to
reject a model with a linear trend of 3.2% per vear in the log of
real GNP. The fluctuations of real GNP arcund its trend line
change sign more often than would be very likely if they
themselves represented a random walk, but a random walk does
fluctuate around its initial level for a while with some
nontrivial probability. Furthermore, the deviations of a random
walk from a fitted linear trend line necessarily fluctuate in
sign. Figure 2 shows the fluctuations of GNP around its trend
line and the fluctuations of a simulated Gaussian random walk
about its fitted linear trend line. Common sense tells us that it
will be hard to be confident that GNP’s deviations from a linear
trend are not close to a random walk.

But take another lock at Figure 1. GNP is below its trend line at
the start and the end of the sample and stays above the trend line
for a long stretch toward the middle of the sample. Isn’t this
what we would expect if there were a tendency of the growth rate
to drop over the period? 1Indeed, in current discussions of
prospects for the economy in the U.S. and the world generally, the
apparent slacking off in the "trend" growth rate of output is a
major concern. Most economists would agree that there is a
definite possibility that the trend growth rate has dropped
permanently, or at least for the next several decades. No ARMA
model which includes trend (and this includes unit-root ARMA
models which contain a positive constant term) is consistent with
the possibility of a permanent drop in the growth rate.
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We can fit a model with a bounded mean function to the GNP series
and obtain a better fit than with a linear trend model. For
example, one can fit an equation of the form

¥Y(t) = o + Becos(vrtte) (1)

with greek letters treated as free parameters and ¥ representing
log of real GNP. My calculations show that a choice of a=2.11,
f=6.68, ¥=.00215, and ¢=-.76 gives a trend line which fits
substantially better than a linear trend, though when it is
plotted over the sample its deviation from linearity is hard to
see. Of course this model of trend implies that we are nearing a
peak of the level of GNP, which will arrive about the year 2044
and be followed by over 700 years of mostly negative growth.

This latter model of deterministic trend is of course not to be
taken seriously. However, in my view, it is no more ridiculous
than the linear trend model, which ought also not to be taken
seriously. The problem with both models is theilr deterministic
treatment of low-frequency components of the process. It seems
apparent that we could construct models in which there is a
stochastic trend component whose sample paths lock like those
emerging from deterministic trend models, yet which cannot be
extrapolated with certainty. Wouldn‘’t this be more reasonable?

II. bistinguishing Among Models of Persistence

We can model persistence with ARMA processes with unit roots, ARMA
processes with explosive roots, processes with deterministic
polynomial or exponential trends, fractionally integrated
processes, and covariance stationary ARMA processes with high
power at low frequencies, among other possibilities. This section




presents a number of results emphasizing the artificiality of most
attempts to get finite spans of data to distinguish among these
models.

Finite parameterizations of these models are matters of
convenience; we ordinarily expect that the orders of ARMA
processes and the degrees of polynomial trends will be adjusted in
interaction with the data. Once we recognize this, so that the
order of parameterization is treated as data-dependent, we have to
recognize that we should not expect to distinguish the models by
looking at the data.

It is known, but perhaps not widely appreciated, that in a certain
well-defined sense ARMA models with explosive autoregressive roots
are equivalent to models with deterministic exponential trends.

To take the simplest example, suppose

Y(t) = pY¥(t~-1) + e(t) (2)

with p>1 and E [e(t+1)]1=0, where E.
on all ¥(s) for sst. This model implies that

means expectation conditional

v(t) = ~o (1o Ty te(t+1) 4 lim v(t+s)o S . (3)

=g ]
If the £’s all have finite variance, the limit appearing on the
right of (3) exists, not as a constant but as a random variable.
To see why, observe that

t-1
Y(t) = pTY(0) + zoe(t-s)ps
5=
= p5{v(0)+ L e()p™%) - I e(tra)p™ (4)
s=1 s=1




Assuming Y(0) and the €’s are jointly normally distributed, the
two terms on the right of (4) are jointly normally distributed.
Furthermore, if we call the second term on the right of (4) z(t).,
it 1s clear that z(t), t=1,...,x, has the distribution of a draw
from a stationary AR process with parameter p_l. Also, because
¥(0) is uncorrelated with e£(t) for t=l, the first term on the
right of (4), which we will call Q, has a non-degenerate normal
distribution conditicnal on {zs, all s=1}. Thus we can think of
generating a particular realized path for ¥(t), t=0,...,%, by
first drawing a realized path of a Gaussian AR(1l) process with
parameter pwl, treating that as {z(t), t=0,...,w}, then drawing a
realization of Q from the appropriate normal distribution
Qli{z(t), t=0,...,x}, then applying (4) to generate Y(t},
t=0,...,o.

Suppose our model was instead

1

Y(t) = Ap" + p lyv(t-1) + m(t) - (5)

Here Et[n(t+1)]=0, all t, as usual. If we do not know A with
certainty, then even if we know p with certainty, there is no way
to use a single realized time path for Y to distinguish (5) from
(2). Another way to put it is that if we treat A as a random
variable jointly normal with the i.i.d. 7’s, the probability
measure on the space of paths implied by (5) is equivalent to the
probability measure implied by (2). "Eguivalence" here is in the
technical measure-theoretic sense that no class of paths with
nonzero probability under one measure has zero probability under
the other. This means that there is no way to define a decision
procedure which picks the true data generating process with
probability one using an cbserved time series of unbounded length.

It might be argued that the symmetry between the exponent of the
trend in (5) and the inverse of the root of the AR component is
gspecial, so that it will be easy to distinguish this model from




general models containing trends at rates not exactly matching
inverses of AR roots. But this comforting conclusion is availlable
only if we treat the order of parameterization as given a priori.
Individual roots of stationary ARMA processes are not identified
when we recognize that the order of the process is not given a
priori. In particular, we have the result

Proposition 1: Given an arbitrary root ocutside the unit circle,
an arbitrary covariance-stationary process can be approximated
arbitrarily well, in the sense of one-step-ahead mean square
linear prediction error, by finite-order AR processes whose
autoregressive operator has the given root.

Proof: Let the process be Y and the prespecified root be R>1. We
know that the minimum one-step-ahead mean square prediction error
linear forecast for Y(t) can be approximated arbitrarily well as
b(L)Y(t) for b(L) a finite order polynomial in positive powers of
L. Let e(L)=(1-R1L) Y b(L). This will generally be a polynomial
in I, of infinite order, but we can approximate c(L) arbitrarily
well (in.£l or 82 norm) by truncating c(L) at some finite power of
L, calling the result &(L). Then since c(L) (1-R ‘L)=b(L),
é(L)(l—R-lL) approximates b(L) arbitrarily well -- and of course
it has R as a root. Approximation of b in.£2 is sufficient to
guarantee approximation of b(L)Y(t) in the variance norm for
stationary Y. g.e.d.

Proposition 1 means that a model’s list of roots is not identified
if we do not know a priori the order of model. The proposition
can be extended -- the process need not be stationary if it is
difference-stationary of some order; a finite list of roots can be
prespecified instead of a single root.




Proposition 1 together with our previous discussion about (2) and
{5) implies that we should not take comfort in the requirement
that roots in the trend and stationary components in (5) match up.
In practice, we will be able to find finite order models in which
the roots do match up and which fit arbitrarily well, even if in
the true model they do not match up. Thus models with
exponentially explosive, deterministic trend are essentially
indistinguishable from models with no deterministic trend but with
explosive autoregressive roots.

It is possible to distinguish a medel with exponentially explosive
deterministic trend (or, equivalently, with an explosive AR root)
from the class of models with polynomial trends and roots on or
outside the unit circle. There is no analogue to Proposition 1 if
the prespecified root is strictly inside the unit circle. Thus
expected prediction error from stationary ARMA models, no matter
how high their orders, remain worse by an amount bounded away from
zero than those from a true model with an explosive root. Another
expression of essentially the same mathematical fact is that it is
impossible to uniformly approximate et on the interval [0,T] by
polynomials of degree Q without letting the degree of Q grow
linearly in T. Thus in a large enough sample exponential trend
behavior will be clearly distinguished from polvnomial trend
behavior. oOn the other hand, an arbitrary stationary ARMA model
can be approximated arbitrary well by models containing at least
one explosive root, so long as that root can be chosen arbitrarily
close to the unit circle. Correspondingly, polynomial trends can
be approximated well by linear combinations of exponentials, so
long as we are allowed to choose the exponentials to have
arbitrarily slow rates of growth.



Proposition 2: Models with stationary fluctuations about
deterministic polynomial trends can be approximated arbitrarily well
by stationary finite order AR models without constant terms.

Proof: Suppose the stochastic process Y has polynomial component
P(t) of order m, so

¥(t) = P(t) + Z(t) (6)

with Z stationary and linearly regular (meaning that it contains
no linearly deterministic component). If we difference ¥ mt+l times
we extinguish the P component (including the constant term) and
are left with Z*(t)=AmY(t)=AmZ(t). This process is itself
stationary, and its innovation (error from best one-step-ahead
linear prediction) is the same as that of Y. since it is linearly
regular, Z has the property that Zk(f)"E[z (t)IZ (t-8), s=1,..,k]
converges in mean sguare to E[Z ()12 (t-s), all s=1l] as k+w. But
k(t) is just the least squares estimate of a k’th order
autoregressive predlctor for Z (t). It will be a finite linear
combination of past Z ’s, thus of past ¥’s, and will achieve
arbitrarily close to optimal predictions of Z*, and thus of Y.
g.e.d.

Proposition 2 could be extended to cover the case of true models
which are difference-stationary processes plus polynomial trend.
All that is required is that in the first step we difference by
the larger of the order of P or the order of integration in Z.
The purely autoregressive predictors constructed in the proof of
Proposition 2 will generally involve long averages of past data
which in effect reconstruct the polynomial component of Y from z”.

ITII. An Interesting Class of Models

The results of the preceding section suggest that, if we are
interested mainly in models without strongly exponentially



explosive deterministic components, we could stay entirely within
the class of stationary AR models, eveh stationary AR meodels
without constant terms, without paying any permanent penalty in
fit or predictive power. In practice, though, econometricians
have tended to abandon such models when data seem to show
trend-like behavior. It seems to me we have done so more out of a
desire for computational convenience than out of careful
consideration of the models’ implications.

To stay in the stationary class of models in the face of
trend-like behavior in the data requires that we model components
which evolve very slowly relative to the span of our data. When we
allow for such components, we have to recognize that the data are
likely to be only weakly informative about their nature. It is
important in applications of a model not to allow aspects of it
about which the data has little to say to be set essentially
arbitrarily by the data. Usually in non-~Bayesian approaches, and
often even in Bayesian approaches, this is accomplished by making
arbitrary choices of certain parameters. 1In the context at hand,
it is often done by differencing the data, preliminary regression
on a pelynomial in t, or initial prefiltering with a high~pass
filter other than a simple difference operator. Nonetheless it is
possible in principle to leave in the model parameters describing
the low-frequency characteristics of the data about which the data
are weakly informative. This will generate larger implied
standard errors on estimates and numerical problems, just as in
the similar case of near collinearity in regressors. But just as
in that case, it may often be better scientific practice to expose
the uncertainty actually present than to resolve it by an
arbitrary restriction.

Let us consider two examples, one theoretical and one applied, to
see the difficulties and possibilities of stationary modeling of




trending series. Suppose the data contained a first-order AR
component with parameter .8, innovation standard deviation .006,
and a component, independent of the first, which moved slowly and
smoothly enough to show a fairly steady growth rate over 169
periods (a postwar quarterly sample). If the latter had the form

(1-aL) %z (t) = e(t) (7)

we could get a standard error of about .002 on £ and a correlation
of of .4 between growth rates of Z separated by 169 guarters by
choosing a A of about .998. Adding on the first-order AR
component gives an overall MA representation for the process of

2
v(t) = —L=-5712L+.624L ) (8)

1-2.798L+2.593L°%-.797

The numerator has imaginary roots of .786+1.0831, which are close
to the denominator root of .8. Usual good practice for
constructing ARMA forecasting models would suggest reducing the
order of numerator and denominator, therefore. However, this
near-cancellation can be expected to occur when we allow low
frequency components of the process to be freely parameterized.

Figure 3 shows the impulse response of the model (8). The
response is very slowly decaying, and implies forecast errors
increase sharply with increased forecast horizon.

IV. Log GNP, For Example

Since it has been s0 much studied, it is interesting to see the
results from attempting a stationary ARMA model of log GNP. The
results reported here all use the RATS program to estimate ARMA
models, which means that a conditional likelihood is mawximized
rather than the the unconditional likelihood which would be usable
in principle for the stationary models. At the edge of the unit
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circle it is not obvious that using the marginal distribution of
initial conditions implied by the model, as the unconditional
likelihood does, is appropriate. Matrix singularity problems
would create difficulties with these near-unit-circle models in an
unconditional likelihood calculation. The RATS approach instead
develops convergence problems. It is an interesting fact that
generating forecasts from the ARMA difference equations
conditional on initial zero values for disturbances often leads to
convergence to global best fits with MA roots inside the unit
circle. These anomalous fits are substantially better than can be
obtained with models which stay on the proper side of the unit
circle, and they do represent legitimate forecasting formulas for
future data as functions of past data. However, they imply that
one-step-ahead forecasts of Y(t) have a coefficient on ¥{0) which
increases with t. This makes it implausible that their in-sample
performance will persist much outside the sample and justifies
ignoring them. Avoiding them required frequent restarts of the
RATS algorithm.

The Table reports the fitted versions of four egquations:
ARMA(3,3) with constant; ARMA(3,3) with trend; ARMA(3,3) with a
cos(.002t+0) trend term; and ARMA(2,3) fit to differenced data.
The last of these is reported with the AR operator multiplied by
1-L for comparability with the other three models. The best Ffit
is the model with trigonometric trend, though its margin of
advantage over the linear model is very small.

A t test for the restriction that the sum of coefficients on
lagged ¥ in the first column is one, which tests the null
hypothesis of a unit root, i.e. of the column 4 model, yields a
value of 1.204 and a marginal significance level of .23. Thus a
differenced model is very close in fit to the model on levels
data. Nonetheless, as can be seen in the figures for the long
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term forecast growth rates, the implication of the models are
substantively different. The differenced model (because it
converts the constant into an implied linear trend) forecasts more
persistent growth, averaging 3.3% over 8 years compared to 2.2%
for the stationary model. From the forecast standard errors in
the table one can see that the standard error on the annualized
31l-guarter growth rate is approximately 1%. Thus the difference
between these two models in forecast long-term growth rates is
only about one standard error. Nonetheless for practical purposes
a report that the growth rate will be about 3.3% for the next 8
vears, with only about one sixth probability of being less than
2.3%, 1s quite different from one that it will be about 2.2%, with
only about one sixth probability of being above 3.2%. To arrive
at a reasonable conclusion from these two models cone must assess
their relative a priori plausibility and weight together the
results appropriately.

The t test for the null hypothesis of 0 coefficient on t in column
2, which tests column 1 against column 2, is 2.26, for a marginal
significance level of .024. While as usual conventiocnal
significance levels are an unreliable guide, here the usual
Bayesian rule of thumb, the Schwarz criterion, is also unreliable
because of the failure of all the coefficients to be converging at
the usual T ">
consider how concentrated the likelihood function is relative to

rate. A Bayesian assessment of the evidence must

our prior on the coefficient for t. Furthermore, it is
unreasonable to suppose our priors on the coefficient of t and on
the coefficients on lagged Y’s and lagged e€’s are independent. My
informal experiments with priors suggest that, unless prior
uncertainty about the trend coefficients is very great (say an
initial uniform prior on the range -6% to +12% for the trend rate
of growth), the observed data makes the models with trend a
posteriori more likely than they were a priori. On the other
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hand, if the prior probability on the stationary model is not
small, the evidence is not strong enough to make its posterior
probability negligible. Here the case that there are
substantively important differences among the models is even
stronger. The trend models differ among thenmselves on the
forecast growth rate by almost as much as the stationary models
and also make the implied standard error of the forecast much
smaller, so that the differences in implied distributions for the
growth rate are sharper.

Figures 4-5 show the impulse responses for the three estimated
models. Observe that the time scale for the stationary model is
completely different from that for the others. The decay of the
response to shock is fastest for the best-fitting model, the
trigonometric trend model. The lower part of the Table reports
implied forecast standard errors at horizons up to 4 years. At
longer horizons, the stationary medel implies much larger forecast
errors than do the other two models. Also reported in the Table
are forecast average annual growth rates over the 31 dquarters
following 1989:1. The trigonometric trend model and the
stationary model forecast 2.1% and 2.2% rates, while the linear
trend model forecasts a 3.1% rate.

V. Conclusions

The preceding section’s applied example illustrates the main
points of this paper. We can fit the data well with a variety of
approaches to modeling low frequencies. Stationary models, which
are not a priori implausible, can fit roughly as well as models
with non-stationary trends. There are large differences in
practical implications among models with simjlar fits.

Putting these individual conclusions together suggests that

i3
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econometricians should be paying more attention to giving an
honest account of the uncertainty about long run implications of

their statistical models.
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Coeff. Pure ARMA
Vvbl. Lag
const. .0431
(.0288)
4 1 1.355
(.309)
2 -.826
(.422)
3 .466
(.174)
e 1 -.042
(.316)
2 .669
(.118)
3 <144
(.144)
t
cos (.002t)
sin(.002t)
SEE .00998
Forecast
Annual Growth
82:1-97:4 2.2%
std. Err.
of Fcst by
Horizon in Qtrs.
1 .010
4 .029
8 .042
16 .061
32 .084
Roots (root,period)
AR .996,®
.684, 4.81
MA .847, 4.40
.200, 2.00

TABLE

Lin. Trend

.684
(.287)
1.160
(.322)
-.588
(-439)
.332
(.191)
.107
(.326)
.633
(.130)
.194
(.142)
. 000722
(.000319)

.00980

.0l1l0
.026
.034
.039
.040

.914,®

.602, 4.60
.827, 4.29
.284, 2.00
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Trig. Trend Diff.’d Data

<437
(.358)
1.141
(.365)
-.562
(.491)
.287
(.210)
.111
(.367)
.611
(.135)
.199
(.155)

.503
(.468)
.605
(-296)

.00978

.010
.026
.032
.034
.035

.874,®

.573,
.817,
.298,

.00883
(.00255)
1.408
(.311)
~.889

.481
(.171)
*0085
(.318)

.668
(.115)

.131
(.147)

.01000

.010
.029
.043
.063
.089

1.000, »

.694, 4,94
.847, 4.45
.183, 2.0




