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ABSTRACT

We show how to use security market data to restrict the admissible region for
means and standard deviations of intertemporal marginal rates of substitution
(IMRS's) of consumers. Qur approach is (i} nonparametric and applies to a
rich class of models of dynamic economies; (ii) characterizes the duality
between the mean-standard deviation frontier for IMRS's and the familiar mean-
standard deviation frontier for asset returns; and (iii) exploits the restric-
tion that IMRS's are positive random variables. The region provides a conven-
ient summary of the sense in which asset market data are anomalous from the
vantage point of intertemporal asset pricing theory.
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INTRODUCTION _

In this paper we investigate the implications of asset market data for a
rich class of models of dynamic economies. The models within this class
differ with respect to the heterogeneity of consumers’ preferences, the span
of the payoffs on tradeable securities and the role of money in the
acquisition of consumption goods. In spite of these differences, a common
implication of these models is that the equilibrium price of a future payoff
on any traded security can be represented as the expectation (conditioned on
current information) of the product of the payoff and an appropriately
interpreted intertemporal marginal rate of substitution {IMRS) of any
consumer le.g. see LeRoy (1973}, Rubinstein (1976), Lucas (1978}, Breeden
(1979}, Harrison and Kreps (1979) and Hansen and Richard (1987)). This
representation is a generalization of the familiar tenet from price theory
that prices should equal marginal rates of substitution, To apply this
principle to models of asset pricing, securities are viewgd as claims to a
numeraire good indexed by future states of the world.

If price data were available from a complete set of security markets,
the IMRS's of all consumers could be inferred from Arrow-Debreu prices.
However, economic agents may not trade in a complete set of contingent claims
markets. Furthermore, it may be practical for an econometrician only to use
data on a small array of securities. Due to these limitations, asset market
data alone is typically not sufficient to identify IMRS's.

One approach that has been uséd extensively is to identify IMRS’s by
restricting them to be parametric functions of data observed by an
econometrician, [e.g. see Hansen and Singieton (1982), Brown and Gibbons
(1985) and Epstein and Zin (1989)]. This approach imposes potentially

stringent limits on the class of admissible asset pricing models, and then




tests whether the particular parameterizations are consistent with the
observed asset market data.

While this parametric approach has yielded interesting insights into the
empirical plausibility of particular families of models, the approach
proposed in this paper goes to ancother extreme. We purposely enlarge the
class of asset pricing models under investigation by imposing as little
structure as possible on the admissible class of models. In so doing we
eliminate most of the testable implications except possibly for the Law of
One Price (portfolios with the same payoffs have the same price) and the
absence of arbitrage opportunities (nonnegative payoffs that are positive
with positive probability have positive prices). Although we are not able to
identify the IMRS's fully, we can extract information about them. When
IMRS’s are constant, portfolio payoffs with the same price must also have the
same mean. Thus the existence of portfolios of securities with the same
price but distinct expected payoffs implies that IMRS's must vary. We
exploit this observation to derive greatest lower bounds on the standard
deviations of -IMRS's, i.e. wolatility bounds. These bounds are expressed
most conveniently as regions of admissible mean-standard deviation pairjs for
the IMRS's.

The existence of volatility bounds on IMRS's was originally noted by
Shiller (1982) [see also Hansen (1982)]. His goal was to construct a
diagnostic for a .particular family of asset pricing models that Iis
insensitive to the alignment of the data. The volatility implications he
deduced for IMRS’s used only two asset returns and, even for the two-asset
case, are weaker than those reported here.

Our reasons for examining wvolatility bounds are soﬁewhat different from

Shiller’s. First, our nonparametric approach can serve as a useful



comp[ement to the parametric approach that is prevalent in the literature.
In particular, it can assist in understanding better why particular models
are rejected on the basis of statistical tests: does the parameterization
admit too little variability in the IMRS's? Second, they provide a comxﬁon
set of diagnostics for a potentially large class of asset pricing models.
These diagnostics can also be used to evaluate models in which IMRS’s are
parameterized as functions of observables as well as models for which
moments can be computed from characterizations of the stochastic equilibria.
Third, they allow us to determine which asset market data sets present the
most stringent restrictions for IMRS’s and consequently the most startling
implications fpr dynamic eccnomic models. Our approach allows us to make
these comparisons without having to focus on a parametric family of such
models.

To illustrate these peints, we provide an alternative characterization
of the so called equity premium puzzle le.g. see Mehra and Prescott (1985)). -
In contrast to other characterizations, ours does not depend either on a
Markov chain approximation with a small number of states or an a narrow class
of asset valuation models. Figure | reports a restricted region for the
means and standard deviations of IMRS's implied by the annual (1891-1985)
time series data on stocks and bonds used by Campbell and Shiller (1988).
The shaded region gives the admissible pairs of means and standard deviations
for IMRS’s. As benchmarks, we also report time series sample means and
standard deviat.ions for IMRS’s implied by a representative consumer model

with commonly-used period utility functions of the form:
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for negative values of y. For this specification of preferences, the IMRS
can be measured by forming a consumption ratio for two different points in
time, raising it to the power 7y and discounting. For illustrative purposes
the annual subjective discount factor is taken to be .95. The "m" symbols
represent mean-standard deviation pairs for alternative values of ¥ ranging
from O to =-30. As |y| increases, the volatility of the IMRS increases but
the effect on the mean of the IMRS is not uniform. Initially the mean
decreases but subsequently increases so that for large |y| the "m"'s are in
the admissible shaded region.

Our strategy for constructing regions such as that reported in Figure 1
is to construct minimum variance random variables with prespecified means
that are related to asset payoffs and prices in the same manner as the
IMRS’s., We refer to such random variables as being on the mean-standard
deviation frontier for IMRS’s. In section II we construct these’ f‘rontier
random. variaples ignoring the fact that IMRS's must -be positive. In this
case the minimum variance random variables are simply linear combinations of
the asset payoffs translated by a constant. As a by-product of  this
construction, we relate our analysis to two commonly used empirical paradigms
in finance: mean-variance analysis and linear factor pricing. More precisely
we characterize the duality between the mean-standard deviation frontier for
IMRS’s and the familiar mean-standard deviation frontier for asset payoffs.
This analysis reveals that asset payoffs on the mean-standard deviation
frontier are sufficient to generate the mean-standard deviation frontier for
IMRS's. Hence the dimensionality-reduction techniques used in linear factor
pricing models can be exploited to derive a region like that reported in
Figure 1. |

In section III we modify the analysis of section two by incorporating



the restriction that IMRS's are positive random variables. For prespecified
means, we construct nonnegative random variables that behave like IMRS's and
have minimum variances. These random variables are not necessarily linear
functions of the payoffs but instead can be interpreted as European call and
put options on portfolios of these payoff's; In contrast to the analysis in
section two, for some prespecified means there may not be any nonnegative
random variables with finite second moments that behave like an IMRS’s.
While the approach of this section yields more rest;‘ictive {and therefore
more informative) volatility bounds, these sharper bounds are harder to
compute.

In section IV we illustrate the results in sections II and III by
displaying volatility bounds computed wusing alternative data sets, and
generating mean-standard deviation pairs for alternative parametric models of
IMRS’s. Among other things, we use these bounds to help assess the

plausibility of some parametric models of asset prices.



|. A GENERAL MODEL OF ASSET PRICING

In this section we present a general model of asset valuation. Consider
an environment in which multiple consumers trade in securities markets. The
preferences and information sets of these consumers may be heterogeneous. We
fix both the trading period (say time zero) and the time period for the
receipts of the asset payoffs {(say time t>0). Let I' denote the information
set of consumer j at time zero, and I = r where the in'-cersection is taken
over the consumers in the economy who trade securities. The prices of
securities traded at date =zero are presumed to be in the individual
information set I’ of individual j for each j and hence in I. Let P denote a
set of portfolio payoffs of the numeraire good at time r. that are traded at
time zero. Since the prices of the portfolio payoffs are in I, we represent
these prices as a function L mapping P into I. Hence nl(p) is the price at
time zero of a portfolio which will pay p units of a numeraire good at a
future date T.

Consumers are presumed to solve optimal portfolio problems in determining
their asset holdings. This imposes restrictions relating marginal rates of
substitution to asset payoffs and prices. To see this let mui and mui_ denote
the equilibrium marginal utilities of consumer j in terms of the numeraire
consumption éood at date zero and T respectively. In equilibrium the
marginal utility-scaled price must equal the expected marginal utility-scaled

payoff conditioned on o
(1.1) muinl(p} = E(mu}rp[IJ) for all p in P.

As long as consumer j is not satiated at time zero, mu; > 0 and we can divide

both sides of (1.1) by mu; which yields:



rtI(p] = E{pmJ[Ij) for all p in P

where mJ = mu"/rm.tJ
. T 0

is the interteﬁtporal marginal rate of substitution (IMRS)
of consumer j. Since asset prices are presumed to be observed by all

consumers, it follows from the Law of Iterated Expectations that
(1.2) nl(p) = E'(pmj|I) for all p in P.

In a world with common information sets and complete markets, marginal
rates of substitution are equated across consumers (mj=m for all j). In such
a world, P can be chosen to be sufficiently large so that the common IMRS is
uniquely determined by (1.2). In general, (1.2) does not uniquely determine

mj. As we will see, however, (1.2) does restrict the unconditional moments

of m‘l

even when markets are incomplete.1 Since - the restrictions we derive
apply to all of the individual IMRS’s, ;co simplify notatioﬁ we drop the j
superscript on m.

We now give a more complete description of P and the associated asset
pricing function . We do not require that P contain all of the portfolio
payoffs that are traded by consumers. Omitting payoffs will, however, weaken
the implications for m. As a matter of convenience, we consider the case in
which there is an n-dimensional vector x of asset payoffs at date T. The

time zero prices of these assets can also be represented as an n-dimensicnal

vector, say ¢, and pricing relation (1.2) can be expressed as

(1.3) q = E(xm]|I)




We are interested in the implications of (1.3) for the intertemporal
marginal rate of substitution m. To investigate this relation empirically,
we must have some way to replicate observations on payoffs, prices and
information over time. As in Hansen and Richard (1987), we imagine an
environment in which relation (1.3) is replicated over time. In other words
there is a composite process {(mt’xt’qt)} and a sequence of information sets
{It} that satisfies a version of (1.3). for all t. Econometricians seeking to
study this economy are presumed to have data on a finite recor;d (xt,qt), for
t=1,2,...,T, and the composite process {(mt,xt,qt)} is presumed to be
sufficiently regular so that a time series version of a law of large numbers
applies. Thus sample moments formed from the finite records of data converge
to population counterparts as the sample size T becomes large. Even though
asset prices are determined T periods prior to the realization of the asset
payoffs, from the vantége point of econometricians, we model {qt} as a
stochastic process to accommodate possible variation over time in the asset
prices. In what follows we use the unconditional expectation operater E to
represent the limit points of the time-series averages of the sample
rnomen‘cs.2

We now impose restrictions on m, x and g which are expressed in terms of

unconditional expectations.
Assumption Al: Elml2 { m, Elxlz { w, Exx’ is nonsingular and Elg{ <= .

The restriction that the second moment matrix of x is nonsingular is made as
a matter of convenience to rule out cases in which the entries of x are
linearly dependent. Among other things, this guarantees that the Law of One

Price holds trivially for linear combinations of x. If the moment



restrictions imposed on x and g are not satisfied for an original vector of
assets, then it is often possible to scale the payoffs and prices so that
these restrictions are satisfied. A special case of such scaling is when all
of the payoffs are constructed to have a unit price as in the case of
measured returns to holding securities between time zero and time T.

Applying the Law of Iterated Expectations to the pricing relation (1.3)

results in the following restriction:
Restriction Rl: Egq = Exm.

We focus on the unconditional moment R! instead of the conditional moment
restriction (1.3) because it is typically easier to estimate unconditional
moments rather than conditional moments. Restriction RI, however, is in
general weaker than (1.3). Gallant, Hansen and Tauchen (1989) show how to

extend some of the analysis in this paper by expleiting characterizations of

the moments of x conditioned on {possibly a subset of) I.
As long as consumers are not satiated in the numeraire consumption good

at time T, the IMRS should be strictly positive:
Restriction R2: m > O. .

Restriction R2 is sufficient to imply the absence of arbitrage opportunities.
That is, R2 guarantees that- nonnegative payoffs that are strictly positive
with positive probability conditioned on I have positive prices. In the next
two sections we explore the implications that Rl and R2 have for the mean and
standard deviation of m.

So far, we have treated the case in which only a finite vector of asset

10



payoffs and prices are investigated. In our subsequent analysis, it will be
convenient to extend the pricing function and its unconditional expectation

to the linear span of x. Def ine’

{c'x : ¢ in R™.

"o
1]

In section three we will also consider derivative claims formed by taking
particular nonlinear functions of payof"f‘s in P. In light of A1 each
portfolio payoff in P has a finite second moment. With this in mind we

define a norm on P to be

2,172

ip| = [E(p)]
Notice that the standard deviation of a portfolio payoff p, denoted o(p), is
given by }p -~ Ep}.

Since the portfolio payoffs in x are linearly independent, for each p in
P there is a unique ¢ in R" for which p is equal to c'x. We extend the
pricing function so that the prices of these payoffs are given by the

corresponding linear combinations of g:
nl(c-x) = c-q

As required, ™~ maps P into 1. Notice T is constructed so that (1.3}

extends to the linear span x:

TII(P) = E(pmlI) for all p in P.

11



It is also of interest to define a functional m mapping portfolio

prices into the expected value of the prices:

nip) = Eul(p)

Hence m maps P linearly into the real line R. Again the Law of Iterated

Expectations implies that

(1.4) n(p) = Elmp) for all p in P.

It is straightforward to show that restriction (1.4) is equivalent to RI.

12



il.  IMPLICATIONS OF RESTRICTION 1

In this section we characterize the volatility restrictions for m as
implied by Restriction RIL In subsection II.A we suppose there is a unit
payoff in P, while in subsection II.B we consider the more common case in
which such a payoff is not included in P. Fin_ally, in subsection II.C we
describe how existing empirical methodologies in finance can be used to

characterize these volatility restrictions.

II.A Riskless Payoff

Suppese P contains a payoff that is equal to one with probability one.
In deriving implications for the volatility of m, it is first convenient to
construct a random variable m in P that satisfies RI. This amounts to

finding a vector « in R" such that
(2.1) Exx"occ> = Egq
where m = LR Solving (2.1) for ® gives
P!
a = (Exx") "Eq.
Notice that « depends on the second moment of x and the first moment of q.
Hence m can be constructed from asset market data.

Consider any other random variable m satisfying R1. Since P contains a

unit payoff,

H

Em = u(l) Em

13



Consequently all random variables m that satisfy Rl have the same mean, and

this mean is equal to the expected price of a unit payoff. Also,
-
Elx{m-m )] = 0.

»* 1
because both m and m satisfy Rl. In other words the discrepancy between m
- . 3 * K - - .
and m is orthogonal to the random vector x. Since m is in P, m is the
least squares projection of m onto P and

az(m) = o-ztm.) + oz{m—m‘].

Therefore, we have the following relations:
(2.2) clm) = a‘(m‘) and Em' = Em.

The volatility bound in (2.2) is as sharp as possible because m"  satisfies

R1 by construction.

II.B No Riskless Payoff

Next we consider ihe more usual case in which P does not contain a unit
payoff. It turns out that much of the previous analysis can be exploited 1;1
analyzing this case. Let x° denote the (n+l)-dimensional random vector
formed by augmenfing x with a unit payoff. Since Exx’ is nonsingular, and no
linear combination of x is equal to one with probability one, Ex’x™ is also
nonsingular. We build an augmentgd payoff space P® containing a unit payoff

by using x* in place of x.

14



To apply the analysis in section IILA, we rmust assign a number v to
n(l), which is the expected price of a unit payoff. Such price data may not
be available, and for this reason we examine implications for an array of
hypothetical expected prices. Let v be any candidate for m(l) and n, the
corresponding extension of m from P to P*. We then repiicate the analysis in

subsection II.A to construct a random variable m in P* such that
{2.3) Exmv = Egq, Emv = v,

The counterpart to volatility bound (2.2) is

{2.4) o(m} = o‘(mv]

for any random variable m that satisfies Rl and has mean v. This ‘volatility
bound is as sharp as possible because, by construction, m satisfies R! and
has mean v.

We replicate the construction of m, for all real 1.1umbers v and generate
an indexed collection {mv : v in R} of random variables, each of which
satisfies R1. This collection is of interest because for any m satisfying RI,

the ordered pair [Em,o(m)] is in the region:

(2.5) S = {(vww inR : w = o(m )} .

This region summarizes the volatility implications for m implied by RI. We
refer to the boundary of $ as being the mean-standard deviation frontier for
IMRS's, and we refer to members of the set {mv : v in R} as being on this

frontier.

i5



It is of interest to derive an expression for o*(mv) that is both easy to
compute and interpret. The moment conditions in (2.3) can be rewritten in

terms of the covariance of m and x:

{2.6) E‘[(x-Ex)(mv—v]] = Eg - vEx.
Now
(2.7) m, = (x—Ex]’Bv + v

for some Bv in R" because m, is a linear combination of a unit payoff and the
entries of x and Emvr is v. Substituting (2.7} into (2.6) and solving for ‘Bv

gives

8, = s Eq - vEx)

where T is the covariance matrix of x. It follows that
(2.8) a‘(mv) = [(Eg - vEx)’Z*I(Eq - \iu'-:xlll/2

Notice that for a given v, cr(va depends only on the means of g and x and
the covariance matrix of x.

The standard deviation bound given in (2.8) has the following
interpretation. Consider a risk-neutral valuation of the asset payoffs in
which m is set to a constant value v for all states of the world. In this
case the means of the prices should be proportional to the means of the asset

payoffs with proportionality factor v. The bound in (2.8) is the square root

16



of a quadratic form in the vector of deviations of the observed average
prices from the average risk-neutral prices. For a fixed I larger deviations
from risk neutral pricing imply larger bounds on the volatility of m.
Shanken (1987) derived a related bound on the pricing error induced by using
error-ridden proxies in computing the valuation of asset payoffs. When a
constant v is used as a proxy for m, the bound in (2.8) can be viewed as

special case of Shanken’s bound [see Proposition 1, page 93-41.

II.C Relation to Empirical Models of Asset Prices

In this subsection we derive the relation between the mean-standard
deviation frontier for m and the mean-variance frontier for asset returns.
This latter frontier is the focal point of the static capital asset pricing
model, The link we deduce between the two frontiers provides an alternative
interpretation of the volatility bounds for m. We then describe how linear
factor restrictions as imposed in Ross’s (1976a) arbitrage-pricing model [see
also Chamberlain (1983), Chamberlain and Rothschild (1983) and Connor (1984)]
can be used to characterize the n'1ean-standard deviation frontier for m.

Define:

(2.9) R = {pin P : n(p) = 1}
When the vector ¢ is not random, R is the collection of (gross) returns on
portfolics in P. More generally, R contains all the payoffs in P with
expected prices that are equal to one.

Consider, first the case in which P contains a unit payoff and =nf{l) is
different from zero. Then l/m{l) is in R. A second payoff in R is r"i =

m‘/n{mﬁ). Note that

17



xm’) = E(mH?]

and hence

- - » 2D *
(2.10) lr il = lim /1m0l = 1/iim I.

Furthermore, Hansen and Richard (1987) established that r' is the payoff in R
that has the smallest norm (second moment). Consequentiy, r is the solution

to the following optimization problem:

minimize o(r) subject to Er = pu
rinR

- *» N
when p is set equal to Er . Therefore, m is proportional to a particular

payoff on the mean-standard deviation frontier for R.

To relate the bound for o{m) given in (2.4) to the slope of the
mean-standard deviation frontier for R, note that

- * L ] L] - - *
(2.11) clml/Em =z olm )YEm = o¢lr Mm W/Em = ofr VEr.
Recall that the second moment of a random variable r satisfies:
E(rz} = o'(riz + (Er)z

Since P contains a unit payoff, the mean-standard deviation frontier for R is

a cone with apex at [0,1/m(1)] and axis parallel to the horizontal axis. In

-
order that r be the minimum second moment payoff in R, the ordered pair

18



[a‘(r‘),E’r'] must occur at the tangency of a circle with center (0,0) and the
lower (inefficient) portion of the mean~-standard deviation frontier for R.
This tangency point is depicted in Figure 2. Since the lower portion of the
frontier is a ray from (O,l/n{i}] through [a‘(r'),Er.], the slope of this ray
is the Sharpe Ratio of the payoff r.. [Er- - l/n(l]]/o'(r.), and the slope of
the circle with center (0,0) that passes through [a'(r'),Er‘l is -cr(r-)/Erh.

Therefore,

o-(r') _ [1/7(1) -Er']

(2.12) :
Er elr )

In light of (2.11) and (2.12}, the bound on the ratio ¢(m)/Em is given by the
absolute value of the slope of the mean-standard deviation frontier for R.
These relations demonstrate the precise sense in which a steep slope of a
mean-standard deviation frontier for asset payoffs can Imply a potentially
dramatic bound on the volatility of m.

Next_ we consider the case in which P does not contain a unit payoff and
hence R does not contain an (unconditionally) riskless payoff. We follow the
strategy used in section II.B by augmenting x with a unit payoff and
assigning this payoff an expected price v. This results in an expansion of R
to Rv where 1/v is now in Rv' Let r: denote the payoff in Rv with the
smallest second moment. Since r; is on the mean-standard deviation frontier
for Rv, it is well known from static capital asset pricing theory that r; is
a linear combination (with coefficients that sum to one) of 1/v and any other
distinct return on the mean-standard deviation frontier for Rv' As long as
1/v is not equal to the mean of the minimum variance payoff in R, we can find
a payoff Ty that is on the mean-standard deviation frontier for both R and

L]
Rv' Also, for each v the variable m, is proportional to Ty Therefore, with

19
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one exception, for each random variable m, on the mean-standard deviation for
IMRS's there is a corresponding payoff ry on the mean-standard deviation
frontier for R such that m, is a linear combination of - and a unit payoff.
In this sense the mean-standard deviation frontier for IMRS's can be thought
of as the dual of the mean-standard deviation frontier for R. The
exceptional case occurs when 1/v is the me;':m of the minimum variance payoff
in R. In this case m is a linear combination of a unit payoff and a payoff
that is on the mean-standard deviation frontier for the space of payoffs with
expected prices equal to zero.

The impact of augmenting R with I/v can be seen graphically by passing a
ray from the point (0,l/v}) through a tangent point on the mean—standard-
deviation frontier for R. One side of the mean-standard deviation frontier
for the augmented set Rv is given by this tangent ray and the other is a
reflection about a horizontai ray from (0,l/v}. This construction is
displayed graphically in Figure 3. In the special case in which 1/v is the
mean of the minimum variance payoff in R, it is not possible to draw a
tangent line to the mean-standard deviation frontier of R from the point
(0,1/v). Instead the frontier for Rv is given by the two asymptotes.

Once the frontier for the augmented set R‘|Y is obtained, the construction
illustrated in Figure 2 can be mimicked using Rv in place of R. Thus for any

m with mean v that satisfies RI,

o(m) om) oir) [1/n(1} - Er. ]
(2.13) = = o= v
Em v Er

*
olr )
v
The relations in (2.13) show the connection between the volatility bound on

m’s with mean v to the slope of the mean-standard deviation frontier for Rv'

A steeper slope of the frontier for R‘r implies a correspondingly sharper

21
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volatility bound for m.*

Since the mean-standard deviation frontier for R is known to have a
two-fund characterization, the preceding results show that the mean~standard
deviation frontier for m can be represented using two distinct frontier
payoffs in R. For the general class of asset pricing models considered in
this paper, there ié no prediction that particular payoffs in R say the
returns on the wealth portfolios of consumers, are mean-variance efficient.
Thus without additional restrictions, there is no guidance on how to reduce a
priori a potentially large collection of portfolio payoffs into a small
collection used in a time series analysis.

One ad hoc approach that is often used to reduce the dimensionality of
the collection of payoffs is factor analysis as emplc'ayed in empirical
arbitrage-pricing models [e.g. see Connor and Korajczyk (1988} and Lehmann

and Modest (1988)]. Suppose that P is generated by a sequence {pj} where
(2.14) = f o+
P, 7, f €,

and f is a vector of common factors for all of the payoff‘s.s Often, the
factors f are in (an appropriately defined) span of {p)}. Hence, it follows
from the Law of One Price that there exists a unique vector wn{f) of
hypothetical expected prices for the factor payoffs. One possible strategy
for deducing volatility bounds on m is to use the extensive collection of
payoffs (pj} (or possibly a subset of it) to identify the first two moments
of f and the expected price vector n{f). A region S then could be
constructed from these factor moments and prices using formula (2.8).

In general, inf‘ormaﬁon is lost in going from the larger space P to the

smaller space F of linear combinations of factors. Tests of factor models of
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asset pricing examine whether the pricing relation:
(2.15) n(pj) = a'j-n(f)

holds at ieast approximately. When (2.15) helds exactly, the regions S
generated by P and F coincide. Therefore, if asset payoffs can be priced in
terms a small number of factors f, there is no loss tc constructing the
region § from F instead of the larger space p.

As argued in Hansen and Richard (1987), an unconditional factor
decomposition as in (2.14) may not be very appealing when economic agents can
use conditioning information in I to make investments, If the factor
decomposition (2.14) is conditioned on an information set I and 71 is a
vector of random variables in I, a reduction in payoffs is more complicated

but still feasible.
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IIl. IMPLICATIONS OF RESTRICTION 2

In section 11 we showed how to construct minimum variance random
variables that satisfy restriction RIL These randem variables may be
negative with positive probability and hence may fail to satisfy R2.” As
long as we limit ourselves to candidate IMRS's that are translations of
payoffs in P, it ma{y not be possible to ensﬁre that frontier random variables
are strictly positive, or for that matter nonnegative.

In this section we initially replace R2 by a weaker requirement that m
be nonnegative. We then construct minimum variance candidates for m among
the class of nonnegative random variables satisfying RI. It turns out that
these minimum variance random variables can be interpreted as either European
call or put options on payoffs in P. Recall that when the payoff on the
underlying portfolic is p and the strike price is k, a European call option
entitles an investor to the payoff max{p-k,0} and a put option to mak{k—p.O}.
These payoffs are clearly nonnegative, but they may be nonlinear functions of
x. The resulting volatility bounds for nonnegative random variables
satisfying Rl also apply when the random variables are r:estricted to be
strictly positive (satisfy R2). However, in this case the lower bounds may
only be approximated rather than attained.

This section is divided into three subsections. In section IIL.A we
suppose there is a unit payoff in P while in section III.LB we consider the
more common case in which such a payoff is not included in P. Finally, in
section III.C we discuss the close connection between our analysis and work
by Harrison and Kreps (1979) and Kreps (1981) on the viability of equilibrium

pricing functions consistent with the absence of arbitrage opportunities.



11I.A Riskless Payoff

First consider the case in which there is a unit payoff in P. For each p
in P, let p’ denote max{p,0}. Note that for any p’ in P and any nonnegative
strike price k that is proportional to the unit payoff, the payoffs p’-k and
k-p’ are in also in P. Therefore the collection of all random variables p
for some p in P includes the payoffs on European call and put options with
constant strike prices.

Suppose that we weaken R2 to the requirement that m be nonnegative. By
construction, all derivative claims of the form p+ for payoffs p in P are
nonnegative. It turns out that the minimum variance nonnegative random
variable m satisfying RI is given by such a derivative claim. Hence we are

led to the problem of finding a vector @ in R" such that

(3.1) Elx(x'a )] = Eq

where ;1 = (x’on°]+. In what follows we will first show that ;1, when it
exists, has the smallest variance among all nonnegative random variables, m,

satisfying R1. We then discuss the existence and computation of a solution

to (3.1).
To show that m has the smallest variance, consider any other nonnegative
random variable m satisfying Rl. Clearly
E.‘Scm = Exm

Exploiting the nonnegativity of m, we have that

(3.2) Emm = ao’Exm = ao’Exr?l = El(r;l)zl
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It follows from the Cauchy-Schwarz Inequality that
lmil = #mi

Since P contains a unit payoff, both m and m must have the same mean.

Therefore, we have the following r-e[ations:3
(3.3) olm) = om) and Em = Em

Next we ask whether the volatility bound in (3.3) can be sharpened by
requiring m be strictly positive instead of nonnegative. If m is strictly
positive (with probability one), then clearly the answer is no. This can
only occcur when m coincides with m“r computed in subsection ILLA. Consider
the case in which m s not strictly positive with probability one, and let m
be any random variable satisfying Rl and R2. Then m is zero with positive
probability, and it follows from (3.2) tha;t

0 < fm - mit® = 1mi% - 2Emm + amh® = wmi® - amn>,

Therefore, at the very least the weak inequality (%) in {(3.3) is replaced by
the strong inequality (>). In fact no further improvements are possible. To
see this form

(3.4) m = [-(/jm + (L/)im .

Then mJ is strictly positive -and {o*(mj)} converges to alm). Therefore, o{m)
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is in fact the greatest lower bound for ¢(m) when m is restricted to satisfy
R1 and R2.

Equation system {3.1) is nonlinear in the parameter vector «, and its
solution cannot necessarily be represented in terms of matrix manipulations.
There is a a closely related optimization problem whose sclution may be
easier to compute. This problem entails finding a payoff‘ in R whose

truncation has the smallest second moment:

(3.5} min el
r in R

in Appendix A we show that (3.5) has a solution, although this solution may
not be unique. Furthermore, a necessary and sufficient condition for r to be

a solution to (3.5) is
(3.6) E(F'2) =0 for all z in P such that n(z) = 0.

We can think of (3.5) as being the first-order condition for optimization
problem (3.5).

[t turns out that we can construct a solution to (3.1) by scaling r
appropriately. Let
(3.7) e T
This scaling is permissible because i i must be strictly positive as long as
there exists at least one random variable m satisfying Rl and R2. To see

this, suppose to the contrary that IF'N is zero. Then -r is a nonnegative

payoff with a strictly negative expected price. Such a payoff is
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inconsistent with RZ2 because it implies that there exists an arbitrage
opportunity.

Clear!ly m as given by (3.7) can be represented as (txo’xf' for some @ in
R". To verify that @« solves (3.1), we must show that m as given by (3.7)

satisfies Rl. Let p be any payoff in P, and form the payoff:

zZ = p- n(p)r.
Note that m(z) = O because w(r) = 1. It follows from first~order condition
(3.6) that

0 = Emz = Emp - n(p)Emr

2

Emp - n(p)ElF rFl/IF "

Emp - wu(p)

Thus m satisfies Rl as required.

This constrﬁction of m parallels a similar ' construction reported in
Hansen and Richard (1987) and in section IL Ignoring R2, one way to
construct the random variable m’ which has minimum variance among the class
of random variables satisfying Rl is to compute the minimum second moment
payoff, r., in R and divide it by its second moment, Hr'Hz. We have just
demonstrated that a similar strategy works for constructing a random variable
m that attains the volatility bound among the class of nonnegative random
variables satisfying RI. Instead of computing the minimum second moment
payoff in R, we calculate the minimum truncated second moment payoff, r, in
R. To form m, the truncation of this payoff, rt, s dilvided by the second

. ~ . » . . ~
moment of its truncation Ilr+l|2. Whereas Ilm | is given by W/lr I, lmll is
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given by /07 . Since truncating a random variable reduces its norm, as
required m has a larger second moment than m-. The difference in the two
norms reflects the incremental contribution of restriction RZ for the
volatility bound on m.

One advantage to solving optimizatioﬁ problem (3.5} instead of solving
directly the nonlinear equation systeﬁ {3.1) is that optimization problem
(3.5) has a convex objective function Hr-"ll2 and a convex constraint set R so
that numerical solutions are quite feasible.to obtain. Although F is not
necessarily unique, its truncation rois (see Appendix A). A sufficient
condition for r to be unique, which is often satisfied in practice, is that

no two payoffs in R have the same truncation.

III.B No Riskless Payoff

Consider the more common case in which P does not contain a unit payoff.
As in section IILB augment x with a unit payoff and form an augmented payoff
space P> Similarly, assign alternative strictly positive numbers v for mn(l)
and extend m from P to P*. Let Rv be the augmented set of payoffs with
expected prices equal to one when n(l) is assigned v. The counterpart to
equation (3.1) is not guaranteed to have a solution, however. It turns out '
that there additiona! limits on the admissible choices of v consistent with
R2.

To investigate these Iimits, we study the counterparts to optimization
problem (3.5) using the augmented space of payoffs Rv in place of R. Define:

(3.8) 5, = inf  trn?

rin R
v

When év is positive, the bound on Ihmll2 among the class of nonnegative random
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variables satisfying RI and R2Z with mean v is 1/6\" However, particular
choices of v may result in av being zero and hence 1/:‘5‘r being infinite. For
instance, when there is a portfolio payoff p in P such that p is less than or
equal to one with probability one and v is strictly less than ulp), c‘iv is
zero. This is true because the random variable (1-p)/[v-n{p)] is in Rv and
is less than or equal to zero with probability one. Consequently, the norm
of its truncation is zero.

As noted by Merton (1973), Cox, Ross and Rubinstein (1979), Harrison and
Kreps (1979) and Kreps (1981), it possible to obtain arbitrage bounds on the
admissible (expected) prices that can be assigned to payoffs not in P. In

the case of a unit payoff, the upper and lower bounds are given by

_ infin(p) : p=zl} if {p in P : pzl} is not empty
nil) .

1]

+20 otherwise

n(l)

sup{n(p) : p=l}

respectively.9 Since the =zero payoff is in P, =(l) is always and
nonnegative. The arbitrage bounds =n(l) and 1?(1)l determine the range of
admissible values of Em that are compatible with m being a nonnegative random
variable. Clearly, {v : 6v>0} must be a subset of the interval [1_:(1),'1_1(1)].
In fact, the interiors of these sets coincide (see Appendix A).

When 6v is strictly positive, there exists a minimum variance,
nonnegative random variable with mean v that satisfies RI (see Lemma A.4 in
the Appendix A). Let this random variable be denoted ;‘tv. The corresponding

volatility bound is:

(3.9) alm) = G‘U?IVL
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and the family of random variables, {ﬁ:v : 5v>0}’ comprise the mean-standard
deviation frontier for nonnegative random variables satisfying RI Thus the
counterpart to the region S given in (2.5) is

+

{3.10) S = {{v,w): év >0 and w = cr(ﬁ:lv)}

The set S° is convex. To see this consider two values of v for which av
is strictly positive, .say v(g) = vluk Form convex combinations of the
random variables nhiv(ﬁ) and f?tv(u). These convex combinations are nonnegative
random variables that also satisfy RIL Recall that the mean of a convex
combination of random variables is equal to the convex combination of the
means, and by the Triangle Inequality, the standard deviation of a convex
combination is less than or equal to the convex combination of the standard
deviations, While convex combinations of av(ﬂ) and ;ﬁv(u) are not necessarily
on mean-standard deviation frontier, the ordered pairs of their means and
standard deviations must be in S*. This is sufficient for s" to be convex.

Next we consider the incremental contribution of requiring that m be
strictly positive as in R2. It is shown in Appendix A that Em must be in the
open interval (g(l}.ﬁ(l)) {(see Lemma A.6). Henc'e one effect of the
imposition of strict positivity is that end points of the interval (v : 6v>0}
are eliminated.

For v's in the (m(1),m(1}), f?'lv can be interpreted as either a call or
put option on a payoff in P. More precisely, we obtain the éounterpart to

the result in section III.A that

32
1

(p. - k)
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where Ev is a portfolio payoff in P and k is in R. When k is nonnegative, ﬁ:tv
is a call option on a portfolio with payoff Ev and strike price k, and when k
is negative nﬂiv is a put option on a portfolic with payoff -Ev and strike
price -k. Therefore for any. v in ('_l'_t(l),T_!(llJ the counterpart to equation
(3.1) has a solution.

As in section IILA, this gives us a simple check of the incremental
impact of positivity on the volatility bounds given in (3.9). For any v in
(r_til),?_t(l)) such that ;Iv is strictly positive, the bound in (3.9) cannot be
improved by restricting m to be strictly positive. This can only occur when
r?zv coincides with m calculated in section I1.B. On other hand, for any v
for which m is not strictly positive, the weak inequality (2) in (3.9) is
replaced by a strong inequality ).

Even though S° may be a proper subset of S, the region S is still of
interest for a variety of reasons. First, § is easier to use in practice
because a characterization of S’ may require that a nonquadratic optimization
problem be solved for each value of v. Second, the lower boundaries of s*
and S coincide for values of v for which m, is nonnegative. Consequently, it
is advantageous to characterize S as a first step in characterizing s' and
then check for nonnegativity of m_. Finally, even for values of v for which
m, is negative with positive probability, the coefficients on x* given in
representation (2.7), when scaled appropriately, can be used as starting
values for a numerical search routine used in computing 6v.

In Figure 4 we report plots of the regions S and $° for the same
financial data set as was used to generate Figure |. The region S’ is
shaded, and the lower boundary of the region S is given by the dashed line
below S°.  While thé lower boundaries of these regicns coincide for points

closest to the the horizontal axis, they diverge for other points. The
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divergence between the boundaries is greater when the volatility bounds are
more restrictive. Recall that in generating the lower boundary of S, we
constructed random variables m“r with mean v that satisfy Rl and are linear
combinations of X When these random variables have large standard
deviations relative to their means, it is not surprising that they are
negative with high probability. As a result, the positivity restriction (R2)
often has more bite when o-(mv)/v is larger.

As is true for S, the dimensicnality of P can sometimes be r;educed prior
to the construction of S Suppose that members of P have factor

decompositions of the form:

p = ¥f+re
where f is a vector of common (factors. Suppose further that the
idiosyncratic - components of the payoffs satisfy Elelf) = 0 and n(e) = O.

Hence we have exact factor pricing and each payoff p in P is a
mean-preserving spread of a payoff y-f with the same price. Consequently,

TN N

ip*u
because the function [[pﬂz of p is convex. Hence in solving (3.5) or (3.8)
it suffices to restrict attention to linear combinations of the factors with
expected prices equal to cne. While it is evident how to use this reduction
when the factors are observed, unobserved factors are problematic because it
may be difficult to compute or estimate 0{y:f )+1I2' for arbitrary vectors 7.
Due to the truncation of (y-f), calculating l!(a’-f)‘ll requires knowledge of

the entire probability distribution of f, whereas typical factor analytic
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procedures identify only the first two moments of f.

III.C Viability of Equilibrium Pricing Functions and Arbitrage Pricing

The analysis in this section is intimately connected to generai
treatments of pricing derivative claims [e.g. see Ross (1978), Harrison and
Kreps (1979) and Kr;eps {1981)]. Among other things, Harrison and Kreps
(1978, 1979) and Kreps (198l) consider the following question. Given a set
of payoffs n‘nn primitive securities and the prices of those securities, when
is it possible to extend the pricing function to a larger collection of
payoffs in such a way as to preserve no-arbitrage? As emphasized by Kreps
{1981), this experiment should not be construed as introducing new markets in
an economy that might alter the resulting competitive equilibrium
allocations. It s merely a hypothetical extension leaving intact the
(expected) prices of the payoffs in P. When such an extension is possible,
Harrison and Kreps (1979) and Kreps (1981) refer to the pricing function as
being viable. ' -

Throughout the analysis in this section, we presumed that the family of
m’s that satisfying R! and R2 is not empty. Clearly this is sufficient to
eliminate arbitrage opportunities on P. Rather than assuming that this
family is not empty, an alternative starting point is to verify that no
arbitrage opportunities exist on P, and then to appeal to Theorem 3 in Kreps
(1981) to show that m can be extended from P to the collection L° of all
random variables that are (Borel measurable) functions of x and have finite
second mc:rmen.ts.10 The existence of an m satisfying R! and R2 then follows
from the Riesz‘ Representation Theorem applied to L% [See also Lemma 2.3 in

Hansen and Richard (1987}].
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1V, ILLUSTRATIONS AND DISCUSSION

We now illustrate our analysis with alternative parametric models of m
and alternative data sets on asset payoffs and prices, The model of m
described in the introduction and used to generate Figure | assumed that
consumers’ preferences are separable over time and states of the world. In
section IV.A we investigate the impact on m of relaxing time separability.
In subsection IVI.B we focus on logarithmic risk preferences but do not
require that these preferences be state sépar'able. Finally in section IV.C,
we describe the implications of price data on short term Treasury bills for

IMRS’'s and comment briefly on the implications for monetary models.

IV.A: Preferences that are not Time Separable

Consider the following stylized version of a model with time
nonséparabilties in preferences. As in the introduction, we use a time- and
state-separable specification of preferences for consumption 'services with a

power utility function:

o
(4.1) E Ta

except now s, depends on measured consumption in the current period and one

previous period:

(4.2) s = c, + ect_

t t 1

More general versions of this model have been investigated by Dunn and

-Singleton (1986}, Eichenbaum, Hansen and Singleton (1988), Gallant and
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Tauchen (1989) and Eichenbaum and Hansen (1990). We will proceed as if there
is a single representative consumer. As noted by Wilson (1968) and
Rubinstein (1974), this assumption c¢an be relaxed when @ is zero, the
consumption allocations are consistent with the existence of complete
contingent claims markets and all consumers have the same preferences. This
aggregation result also applies more generally, say when 6 is different from
zero, as long as there are, in effect, complete markets in consumption
services. [See Eichenbaum, Hansen and Richard (1987]]. When @ is positive,
consumption generates positive services in the current as well as in one
subsequent time period. In this case there is intertemporal substitution in
generating consumption services from consumption goods. More precisely,
there is a durable component to consumption that depreciates fully after one
time periad. Alternatively when © is negative,’ there is intertemporal
complementarity in generating consumption services from consumption goods.
Put somewhat differently, the term _Gct—l is a component of current period
consumption which reflects either committed consumption from the previous
time pericd or habil persistence. Sundarasen (1989), Novales (1990) and
Constantinides (1988) have argued that habit persistence may be important in
fsxplaining the relation between asset market data and economic aggregates.

For these forms of time nonseparabilities, the marginal utility of
consumption is

mu_ = (c_)¥ + aoElc_, )II ]

The IMRS between time zero and time T is the corresponding ratio of marginal
utilities scaled by AT, Constructing m requires computation of the

conditional expectation E[(ct+1)7|ITl except in the special case in which 6
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is zero.

To illustrate what impact positive and negative values of & have for the
volatility of m, we report calculations from Gallant, Hansen and Tauchen'
(1989). For these calculations the ratio (ct/ct_l) is a component of a

Markov process with a stochastic law of motion estimated by Gallant and
Tauchen (1989) for monthly data on the consumption of nondurables and'
services [for more details see Gallant and Tauchen (1989) and Gallant, Hansen
and Tauchen (1989)].‘ The estimated law of motion was then used to compute
E[(CTH)?II.L_] required in forming a time series for m. Sample means and
standard deviations were calculated for m's implied by alternative values of
7 and a1

For this illustration we let 6 = —.S; & = 0 and 8 = .5. The results are
reported in Figure 5. Tﬁe "m"'s are used to denote mean-standard deviation
pairs for 8 = O, the "A"s for 8 = .5 and the "0"™s for 8 = -5, For each
choice of 8, we let y range from O to -14 with decrements of minus one. In
all cases the subjective discount factor A .is set to one. Smaller values of ‘
A- decrease proportionately the mean and standard deviation of m. When y = 0,
m is one for all choices of 6. In this case [E{m),elm}] = (1,0).

Consider first the case in which & = 0. Increasing |y| magnifies the
volatility of m but initially reduces its mean. Extr-‘apolated much further,
the curve (indexed by ¥) does not turn around until |yl is in the vicinity. of
one hundred, after which increasing |y| enlarges fhe mean of m. The initial
decline in the mean of m reflects the dominant role of positive growth rateé
in consumption. For extremely large values of |[¥|, observations with
negative growth rates in consumption come to dominate the sample mean
eventually resulting in a change of slope of the curve. In comparing the

curves denoted by "s™s in Figures 1| and S5, recall that the long annual time
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series used to generate Figure 1 containg negative growth rate observations
on consumption during the depression, The absence of bad events in the
monthly data set is responsible for the fact that the curve (indexed by 7)
does not turn until magnitude of 7 is substantiad.12

Consider next the case in which 8 = .5. Not surprisingly, intreducing
this local durabijlity into preferences reduces the volatility of m. The
quantitative effect of this smoothing does not appear to be very substantial,
however. The curves for 8 = .5 and @ = 0 are similar for the rar-lge of ¥'s
that are plotted. Hence there is little adverse effect on the volatility of
m to introducing durability by setting 8 = .5.

Finally, consider the case in which 8 = -.5. This intertemporal
complementarity has the anticipated impact of increasing the volatility of m
for. a given value of ¥. This effect is quite dramatic as indicated in Figure
5.  Furthermore, the value of |y| at which the curve turns is reduced
dramatically. for‘ @ = -5 the turning point for |¥] is in the vicinity of
-7, and the initial decline in the mean of m is much less dramatic.

We now compare the three curves, which describe -alter‘native
mean-standard deviation pairs for parametric models_; of m, to a region s’
generated using monthly data on asset payoffs and prices. The aséet market
data are the saxﬁe as were used by Hansen and Singleton (1982) except that
data revisions were incorporated and more recent data peints were included.
The resulting time period is from 1959:3 - 1986:12. The first two asset
payoffs are the one-month real return on Treasury bills and the one-month
real value-weighted return on the New "York Stock Exchange. Six additional
time series of asset payoffs were constructed using these data by scaling the
original two payoffs and prices by the one-period lagged returns and the one

peried lag in the consumption ratio. For the the range of hypothetical means
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considered, the region S described in section II was essentially the same as
the region S* described in section III.

For the specification of preferences with 8 = 0, larger values of 7l
initially make the mean-standard deviation pair for m further from s" region
because of the adverse effect on the mean of m. This is consistent with the
fact that Hansen and Singleton (1982) found point estimates for y that were
close to zero but substantial evidence against the over-identifying
restrictions. As emphasized by Singleton (1988), estimates of the discount
factor A are often greater than one when bond returns are included in the
analysis. For a fixed ¥, enlarging A has the desired effect of increasing
proportiqnately the mean and standard deviation of m.

From the vantage point of Figure 5, the case for intertemporal
complementarities in preferences is appealing. For a given value of 7, a
negative value of B increases both the mean and the standard deviation of m.
However, it is quite possible for m to have a mean and standard deviatioﬁ in
S" and not satisfy Rl In other words, for a given parametric specification
of m, requiring [Elm),elm)) be in S does not exhaust the testable
implication of RI. As emphasized by Gallant, Hansen and Tauchen (1989),
there is substantial statistical evidence that the resulting m's violate RL
In fact empirical studies that use similar data and preference
specifications, such as Dunn and Singleton (1986), Eichenbaum, Hansen and
Singleton (1988), and Eichenbaum and Hansen (1990), typically find parameter
estimates that reflect intertemporal substitution 7(6 > 0} althou'gh they find

statistical evidence against the resulting parametric model of m.
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IV.B: Logarithmic Risk Preferences

In (4.1) and (4.2} suppose that 8 is zero and ¥ is minus one. In this
case preferences are logarithmic. As noted by Rubinstein (1976), m is equal
to the reciprocal of the return on the wealth portfolio of the representative
consumer between time zero and time T. [See also Brown and Gibbons (1985)l.
Epstein and Zin (1989) showed that this same conclusion applies to a
parametric class of recursive preferences that are not state separable so
long as the risk preferences remain lc-agarithmic. Whereas in the
state-separable case, the return on the wealth pbrtfolio is equal to the
discounted consumption ratic, this exact relation no longer applies when
state separability is relaxed. Nevertheless, the return on the wealth
portfolio can still be used as a valid measure of m.

For this reason we have included an "x" in Figures 1 and 5. In the case
of Figure 1 this "x" denotes the sample mean-standard deviation pair for the
reciprocal of the measured annual return on the Standard and Poors 500 stock
price index and in Figure 5 it represents the sample mean-standard deviation
pair for the reciprocal of measured monthly value-weighted return on the New
York Stock Exchange. In both_cases the means are near the points in s" that
are closest to the horizontal axis, but the mean-standard deviation pair is
outside of S°. However, after taking of sampling error, there is very little

evidence against the null hypofhesis that this model of m satisfies RS

IV.C: Treasury Bill Data and Monetary Models

We also calculated the regions S and s* using monthly data on
three-month holding period returns on Treasury bills. The holding peried
returns were constructed using bond prices on three, six, nine and tweive

month discount bonds from 1964:7 - 1986:12. Nominal returns were converted
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to real returns using the implicit price deflator on nondurables and
services. These bond price data (excluding the most recent periods) have
been used by Fama (1984), Dunn and Singleton (1986) and Stambaugh (1988),
among others, to investigate time variation in risk premia and particular
models of bond prices. In Figure 6 we report the ‘resulting regions S and s".
The region s" is shaded and the lower boundary of the region S is given by
the dashed line below S°. The resulting standard deviation bounds for m are
quite striking. For means of m in the vicinity of one, the bound on the
standard deviation is near one. Given the magnitude of these bounds, it is
not suprising that RZ has an important incremental contribution vis-a-vis RIL
The bounds reported in Figure 6 appear to us to pose quite a challenge
to a large class of asset valuation models. For instance, the quarterly
counterpart to the @ = O curve in Figure S ranges from (1,0) to (.90,.08) as
y ranges from O to -l4. Volatility bounds of a similar magnitude were also
obtained using monthly data on one-month holding périod returns for Treasury
bills with maturities from one to six months. These bounds are directly
comparable to the three curves plotted in Figure 3. Since these latter
bounds apply to IMRS's measured over a shorter time period (one month instead
of three months), they are even more startling. However, short term Treasury
bills are often held to maturity and trading of these Treasury bills takes
place in sécondary markets except for the three, six and twelve month bills.
The bid-ask spreads for the short-term bills can be quite substantial [see
Stambaugh (1988} and Knez, Litterman and Scheinkman. (1989)] so that the
prices used in our calculations may be less reliable. These concerns should
be less problematic for the results in Figure & since they were computed
using price data from the more richly traded three, six, nine and twelve

month Treasury bills.
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STANDARD DEVIATION
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As emphasized by Knez, Litterman and Scheinkman (1989), short term
Treasury bills often may be held to maturity as cash substitutes for
particular transactions. As such, these bills may generate important
liquidity services that are not measured appropriately by the implied ex post
real returns. Hence the measured real returns may understate the value of
the assets to the holders of the securities. Recall from section IL.C, that
large standard deviation bounds for m occur when the slope of the
mean-standard deviation frontier for R is steep. For the Treasury bill data,
this means that the reason that the volatility bounds on m are large (as
reflected in the region S) is that the expected §hort—term gain associated
with holding longer term billé is large relative to the increase in the
standard deviation. Abstracting from the liquidity services of the short
term bills may distort the magnitude of the resuiting volatility bounds on m.

Refinements of real asset pricing models to incorporate money, such as
the cash-in-advance models of Lucas and Stokey (1987), Swennson (1985) and
Townsenc_l {1987) ‘are designed to accommodate the rate of return dominance
between one-period bonds and money. However, in their current form they are
not well suited to differentiate among short term Treasur}lr bills with
different maturity dates. Although the link between measured real IMRS's andA
security market data may be conf oﬁnded in these models, there is an
alternative notion of the indirect IMRS for money which reflects the fact
that the cash-in-advance constraint may not always be binding. Hence for an
apprbpriate interpretation of m, these monetary models are compatible with Rl
and R2 as long as money is not included among the vector of assets used to

generate S,
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CONCLUSIONS AND EXTENSIONS

In this paper we have characterized the implications of security market
data for means and standard deviations of IMRS’s. This exercise is important
in evaluating alternative models of dynamic economies because IMRS’'s are the
channels by which the attributes of these models impinge on asset prices.
Abstracting from the restriction that IMRS's are positive, we established the
connection between volatility bounds on IMRS’s and mean-standard deviation
f‘ rontiers for asset payoffs. Thus we showed how diagnostics commonly used in
empiricai finance can be translated into information about IMRS’'s. We also
showed how to extract sharper volatility bounds by taking account of the fact
that IMRS’s should be positive. These sharper bounds exploit more fully the
absence of arbitrage opportunities in the underlying economic environment
than, say, linear factor representations of asset prices.

There are three important directions in which the ideas in this paper
can be developed further. An earlier version of this paper has already
provoked some work along these three lines.

i) In this paper we focused exclusively on deriving implicatilons for
IMRS's expressed in terms of population moments of asset payoffs and prices.
in practice, these attributes of asset market data will not be known a
priori, but only can be approximated by using time series averages in place
of population moments. This introduces sampling error into the analysis. A
major drawback in the discussion in Section 4 is that it abstracted from the
presence approximation error introduced by using sample averages from
historical time series in place of population moments. Hansen and
Jagannathan (1990) shows how to use large sample theory to both assess
whether there is sufficient statistical evidence to reject that the bounds
are degenerate (equal to =zero) .and to assess the magnitude of the

approximation errors.
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ii} The restrictions on IMRS's derived in this paper all pertain the
first and second moments. More generally, it would be desirable to
characterize the admissible family of distributions for IMRS's given asset
market data. An additional step towards such a characterization is taken by
Snow (1990), who shows how to extend the analysis in this paper to obtain
bounds on other moments of the IMRS’s. ‘

iii) The diagnostics derived in this paper can be applied to any
intertemporal asset pricing model for which moments of m can be computed.
While the calculations in section IV were performed by first constructing
hypothetical time series on m, such a construction is not necessary. All
that is really essential is the ability to compute the moments of m implied
by the model. As an alternative to constructing a time series on m, these
moments can be deduced from the equilibrium stochastic law of motion for the
model [e.g. see Heaton (1990)]. Therefore, calculations like those
illustralted in section IV can be performed for an extensive array of
intertemporal asset pricing models including models that take account of
measurement errors in consumption, seasonality and aggregation-over-time

biases.
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NoTES

L. In the case of incomplete markets, formula (1.2) abstracts from the
possible existence of short sale constraints.

2. Our use of the unconditional expectation operator in this context is
justified formally when the time series converges appropriately to a
stochastic steady state and is ergodic. In this case unconditional
expectations are computed using the stationary distribution. For processes
that are asymptotically stationary but not ergodic, the Ilimit points can
often be represented as conditional expectations where the conditioning is on
the invariant sets for the approximating stationary stochastic process.

3. Notice that a larger set P of portfolic payoffs could be constructed by
following more complex trading strategies in which the vector ¢ is replaced
by a vector of random variables in I. The theoretical analysis in Hansen and
Richard (1987) is designed to accommodate this case as is the econometric
analysis in Gallant, Hansen and Tauchen (1989}, We focus on the linear span
of x for pedagogical convenience and empirical tractability.

4. Using conditioning information in clever ways can sharpen the volatility
bounds on m by increasing the maximum Sharpe Ratio of the payoffs in Rv' For

example Breen, Glosten and Jagannathan (1989) show that information Iin
Treasury bill returns can be used to construct a portfolio which has the same
average return as the value-weighted index of New York Stock Exchange
securities but is only half as variable.

S. Although our derivation of the volatility bounds for m assumed that the
payoff space P is finite-dimenionsal, this restriction was made for
pedagogical convenience. In fact the duality relation between the
mean-standard deviation frontiers for m’'s that satisfy restriction R! and for
payoffs in R extends to environments in which. P is generated by an infinite
number of payoffs, say by {pj}.

6. In contrast to factor analytic approaches, Huberman and Kandel (1987)
test whether the dimensionality of P can be reduced to a prespecified
observed subset of security returns, namely three size-based portfolios of
New York Stock Exchange Securities. In this case F can be constructed using
these three returns. Huberman and Kandel find, however, that this
construction of F is not adequate to span the mean-standard deviation
frontier for the original P constructed using thirty three size-sorted
portfolios, Hence in this case the dimensionality reduction from P to F will
result in weaker implications for m.

7. As Dybvig and Ingersoll {1982) have pointed out, naive use of m. 10
compute (expected) prices of contingent claims may lead to assignment of
negative (expected) prices to some positive payoffs and hence to the
appearance of an arbitrage opportunity.



8. An alternative way to deduce these bounds it to exploit the fact that
when payoffs on calls and puts are included in the analysis, the space of
admissible payoffs is essentially complete [see Ross (1976b), Breeden and
Litzenberger (1978), Arditti and John (1980) and Green and Jarrow (1987)].
If the prices of .all such payoffs were available, the counterpart to the
random variable m in section II would be strictly positive. Although this
extensive collection of option price data is typically not available, we can
follow Merton (1973} and use lower bounds on optien prices to obtain a lower
bound on the volatility of m.

9. The characterization reported in Harrison and Kreps (1979) and (1981) is
somewhat more complicated because they allow the counterpart to the space P
to be infinite dimensicnal.

10, In addition to a no-arbitrage restriction, Kreps (1981) also imposed a
no-free-lunch restriction on (P,m). The extra restriction is required
because the counterpart to P in Kreps' analysis is allowed to be infinite
dimensional.

11. Note that the calculations of mean-standard deviation pairs for m when @
= 0 do not exploit the Markov specification estimated by Gallant and
Tauchen (1989) and are consequently more robust.

12. The sample volatility of m may be substantially lower than the
population volatility if consumers anticipate that extremely bad events can
occur with small probability when such events do not occur in the sample.
Reitz (1988) argued that this phenomenon could explain the equity -premium
puzzle.

13. In the case of Figure 1, one of the two moment conditions Elmx-g) = O is
satisfied by construction. The other condition wag tested using the method
suggested in Hansen and Singleton (1982): the x %(1) statistic is 1.40 with
probability value 0.24. Similarly, for Figure 5, four of the eight moment
conditions are satisfied by construction. The ¥ (4] statistic for the four
remaining conditions is 4.88 with probability value of 0.30.



APPENDIX A

Let P be the linear space {c'x : ¢ € R"} and m be a continuous linear

functional on P. Let L° be the Hilbert space of all random variables with

]

finite second moments that are Borel measurable functions of x. Define R
(reP:alr) =1, RR=4{":r eR and Z = {z € P : m(z) = 0}). Throughout
our analysis we assume the R is not empty. Let C denote the closure (in Lz)
of R In this appendix we establish several results that support

conclusions in section III

Consider the following two minimum norm problems. The first problem is

(P1) 5 = inf I w2
re R

A closely related minimum norm problem is

{(P2) n = inf |1y|!2
yve C

This second problem has the advantage that the (nf is attained.
There are two additional problems that are closely related to (P1} and

{P2). The first one is an orthogonality problem:
(P3) Find v € € such that E{yz) = O for all z € Z.
As in standard minimum norm problems on Hilbert spaces, it is often the case

that (P3) has the same solution as (Pi) and (P2). The focal point of our

analysis is the following problem:



(P4) Find y‘ e L% such that y‘ z 0 and Ily“ll2 = 1/8 and n(p) = E(y'p) for

all p e P.

We now investigate the relation among these four problems. First we

establish the connection between (Pl} and (P2}

Lemma A.l: There is a unique ; in € such fhat |I')“r!l2 =3 =17

Proof: Let {rj} be a sequence in R such that {ll(rj)kllz} converges to s.

Then for any positive integers j and k,

W) - (e )i T A S TR I S 1T o
] k J L ) Kk

= = W o+ r )TN 2000002+ 2000 ) 02
J k } Kk
because 1I(rj)+ + {rkfll2 L= Il(Jr'J + rk)+II2. Since rJ and r, are both in R,

rj/z + rk/z is also in R. Consequently, | (r]/z + rk/Z))'Il2 =z &, and

+ + 2 + 2 + 2 + 2
(A1) Il(rj) - (rk) Il = - 41I(rj/2 + rk/2) o+ 2II(rJ) =+ 2II(rk) 1

< - 45 + zutrj)"nz + zu(rk)*nz

Taking limits as jk = o, it follows that {(rj)+} is Cauchy and hence
converges to some ; in €. Therefore, {ﬁ(rj)*tlz} converges to Il;ilz = 4.

Since € is the closure of R, for any y in C there is a sequence
{Il(rJ)+II2} that converges to Ilyllz. Therefore, n = 8.

Finally, let ; be any member of R  for which H;'!I2 = &, and let {;j} be a

sequence in R such that {(rj)+} converges to y. Analogous to (A.l1),



) - (Fj)*uz < 45 + 2u(rj)*u2 + zntf-j)*nz .

Since {u(rj)*uz} and {Il(rj)+lI2} both converge to &, {(rj)+} and {(r)" have
the same limit points. Therefore, y and } are equal (with probability one).

Q.E.D.

Next we establish the connection between (P2) and (P3).
Lemma A.2: A solution ; to (P2) is also a solution to (P3).
Proof: To prove this result we use the following inequality:
A2)  lr+e’P s (2

To see that it holds; first suppose that r + cz = 0. In this case the left
side of (A.2) is zero while the right is greater than or equal to zero.
Set-:ond suppose that r + cz = 0. Then 0 = (r + cz) = (r" + ¢cz) which also
implies {A.2}.

Let {rj} be a sequence in R such that {(rj)*} converges to }, and let z
be any member of Z distinct from zero. Then

(A.3) lim inf Mr + cz)' 1% = Ny + cz1%.
J .

The right side of (A.3) is minimized by ¢ _E(jz)/E(z%). In order that y be

the solution to (P2), it must be that ¢ 0 or equivalently that E;z

[
©

Q.E.D.



Lemma A.2 has the following partial converse.

Lemma A4.3: If ;+ € R is the solution to (P3) and the solution to (P2) is in

R*, then r is the solution to (P2).

Proof: Let r denote the solution to problem (P2}, It follows from Lemma

A.2 that

EIGF* - P - 1)l = 0,
Also, (F)YF s ()77 and F(7)' = (77", Hence

0 = EWF :rF - = EF R = o
Th_erefore, o= ;+ (with probability one). Q.E.D.

We now use the Hahn-Banach Theorem and the Riesz Representation Theorem

to establish the existence of a solution to (P4).
Lemma A.4: If & > 0, (P4) has a solution.

Proof: The first half of this proof follows closely the proof of Lemma 1 in

Kreps (1981). Since 350,

172

(A.4) alp) = (1/8)“up’t for all p € P.

Among other things, inequality (A.4) implies that w(p) =z O whenever p =z 0



because m is linear and (-p)” is zero. The right side of (3.9) (/8-
is a particular version of the sublinear function used by Kreps in applying
the Hahn-Banach Theorem to extend P to a larger space, say 1% (The analogs
to the spaces P and JL2 are much more general in Kreps' analysis). Let T

denote such an extension. Then 1 satisfies the counterpart to (A.4):
(A.5) oy = w2y for all y e L2

Clearly T is continuous and T{y) = O whenever y = 0. It follows from the

»
Riesz Representation that there exists a y € L? such that

(A.6) My) = E(y'y) forall ye L%
. . » 172 sy
It remains to show that ¥y = 0 and lly | = (1/8)" 7. Consider any r € R
and note that T(r’) = Mr) = 1 Since (A.6) is satisfied, it follows from

the Cauchy-Schwarz Inequality that

- + L
iy U = E(rR) = L
Consequently,
iy'n 8% = ny's inf 0% = o1,
re R

(1/5)% Relations (A.5) and (A.6) imply

v

or equivalently Hy.ll

i = oy = waZugh = wel iyt .



» + /2
Therefore, Iy I = ll(y') = (1/6)l . Q.E.D.

For our next set of results we find it convenient to restrict (P,m) to

satisfy the no-arbitrage condition:
(N) For any p &€ P such that p =z 0 and lipll > O, n(p) > Q.

Lemma A.5: If (P,r) satisfies condition (N), then 8 > 0 and the solution to

(P2) is in R .

Proof: Let {r'J} be a sequence in R such that {{rj)+} converges to ; where :{r
is a solutidn to (P2}, Our goal is to show that there exists a convergent
‘subsequence of {rj} with limit payoff r. Given this convergence, we then
argue that (" = ;

The proof exploits the following inequality:

~

(A.7) IF - s e -l

-~

When r and r are both either nonnegative or negative, this inequality hold

~

trivially, If one is nonnegative, say r, and the other is negative, say r,

~

then O sr ~r =rsr-ras required. An implication of (A.7) is

-~

(A.8) et - o= e - el

Next we show that {IIrJlIZ} is bounded. Suppose to the contrary that
{Hrjllz} is unbounded. Without loss of generality, we may assume that this

sequence is increasing (otherwise we could extract a subsequence that is



increasing and unbounded). Form pJ = rj/llrjll. Since P is finite

dimensional, {pj} is in P and |lleI = 1 for all j, {pj} has a subsequence that

converges to a payoff 5 with IIElI 1 and n(S) = 0. Furthermore, {p)" = 0
{almost surely) because ll{pj)+ll = Il(rJ)*H/llrjll and a subsequence of {(pj)+}
converges to (p)" Isee (A.8)]. Consequently, -p = 0, I!-—Eil = 1 and 11:[-5) =0
which contr‘adicts condition (N). Therefore {Ilrjll}_is bounded..

Since {Ilrjll} is bounded and P is finite dimensional, {rJ.} has a
convergent subsequence. The limit point r of any convergent subsequence i$
in R, and the corresponding subsequence of {(rj)+} converges to r)" = }
where llyll = 8 [see (A.8)).

To verify that & > 0, suppose to the contrary that & = 0. In this case
-r = O implying a violation of condition (N) because w(-r) = -1 and n is

linear. Q.E.D.

In light of Lemmas A.l, A.2, A3 and A.5, when (P,n) satisfies condition
(N}, the solutions to (Pl), (P2) and (P3) coincide and are in R'. As is
shown in section III, in this case a solution to (P4) is given by y‘ = }/II}IIZ
where } is the solution to (P1), (P2) and (P3).

Consider now the special case in which 1 is not in P. As in section

IIl, let P> = P ® {1} and extend m from P to P" by assigning v to 1. Let T,

denote the resulting extension.

Lemma A.6: Suppose (P,n) satisfies condition (N), (Pa,rtv) satisfies

condition (N) if, and only if v € (E{I}.E(l)).

Proof: Part of this result is an implication of Theorem 4 in Kreps (i981)

and the remainder is asserted for a space P, such as ours, that is finite



dimensional [see Kreps (1981) page 30]. For completeness we include a simple
proof.

Suppose that v € (m(l),n(1)). Let p + w = O for some p € P and some w #
Q. If w > 0, then p/(-w) =1 and nlp/(-w)] = m(l) < v. Hence n(pl+vw > 0. A

similar argument applies to the case in which w < 0.

m.

Next suppose that (P‘,nv) satisfies condition (N}.. Then ciearly v

1A

I[g(l),ﬁ(l)]. If v = m(l), there exists 'a sequence {pj} in P such that P,
1 and {n(pj)} converges to m(l). First suppose that {Illel} has an unbounded
subsequence. Then {pj/ﬂpj!l} has a convergent subsequence with limit point E
such that -5 z 0, HEH > 0 and m{p) = 0. This contradicts the assumption that
(P,m) satisfies condition (N). Hence the sequence {ll pjll} must be bounded.
Consequently, {pJ} has a convergent subsequence with limit point B such that
p = 1 and H{E) = v. Since 1 is not in P, 1-p is a nonneéative random
variable with a strictly positive norm and rtv(l-};) = 0. This implies that
(Pa,nv) violates (N). A similar argument applies when v = wn(l}. Therefore v

must be in the open interval (m(1),n(1}). Q.E.D.



APPENDIX B

In this appendix we describe in more detail the series used to perform

the calculations underiying each of the figures.

Figures 1 and 4: For a description of the stock, bond and consumption data,
see Table 1 of Campbell and Shiller (1989) under the heading Cowles/S&P 500,

1871-1986.

Figures 2 and 3: Monthly observations from 1959:4 ~ 1986:12 on one-month
hoiding period returns on one, two, three, four, five and six month Treasury
bills were constructed using bond prices from the Fama term-structure yield
file of the CRSP data tapes. Nominal returns were converted to real returns
using the implicit price deflator for consumption of nondurables and services
from the Personal Cénsumption Ekpenditure data tape of the National Income

and Product Accounts.

Figure S: Monthly observations on the one-month return on Treasury bills and
on the one-month value-.weighted return on the New York Stock Exchange weré
taken from the ‘CRSP data tape. Nominal returns were converted to real
returns using the implicit price deflator for the consumption of nondurables
and servicés. Monthly observations on eight series of asset payoffs were
constructed using these two returns. The first two payoffs are the two
original returns. The prices of these payoffs are one by construction. The
second two payoffs were formed by multiplying the two returns by the
one-period lagged value of the real Treasury bill return. The prices of
these two payoffs are equal to the one-period lag of the real Treasury bill
return. The third two payoffs were forrneﬁ by multiplying the original two

returns by the one-period lagged value of the real value-weighted return.
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The prices of these two payoffs are equal to the one-period lag of the real
value-weighted return. Finally, the last two payoffs are the original two
payoffs multiplied by the ratio of per capita real consumption in the two
previous time periods. The prices of the last two payoffs are both equal to
the lagged consumption ratio.

The consumption series was taken from the Personal Consumption-
Expenditure data -tape of the National Income and Product Accounts, and the

total population series from the CITIBASE data tape.

Figure 6;: The bond prices were taken from the Fama term-structure yield file
of the CRSP data tapes. Four monthly time series of three-month holding
period returns were constructed from the monthly price data on three, six,
nine and twelve month discount bonds. Nominal returns were converted to real
returns using the monthly implicit deflator for consumption of nondurables

and services described previously.
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