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ABSTRACT

This paper takes up Bayesian inference in a general trend stationary model for macroeconomic time
series with independent Student-z disturbances. The model is linear in the data, but nonlinear in
parameters. An informative but nonconjugate family of prior distributions for the parameters is
introduced, indexed by a single parameter which can be readily elicited. The main technical
contribution is the construction of posterior moments, densities, and odds ratios using a six-step
Gibbs sampler. Mappings from the index parameter of the family of prior distribution to posterior
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These mappings show that the posterior distribution is not even approximately Gaussian, and indicate
the sensitivity of the posterior odds ratio in favor of difference stationarity to the choice of the prior
distribution.
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1. Introduction

Beginning with the investigation of Nelson and Plosser (1982), the propositions that
most macroeconomic aggregates are trend stationary, or alternatively that they are difference
stationary, have captured the attention of applied and theoretical econometricians as have few
other issues. These ideas have accelerated the development of the sampling theory of
estimators in the presence of nonstationarity and near-nonstationarity (Dickey and Fuller,
1981; Said and Dickey, 1984; Phillips, 1987; Sims, Stock and Watson, 1950). More
recently, these questions have renewed research in Bayesian inference for time series
(Zellner and Tiao, 1964, Sims, 1988; DeJong and Whiteman, 1991; Phillips, 1991; Sims
and Uhlig, 1991). That basic questions about methodology are being taken up in the
context of a specific empirical issue testifies to the intellectual health and vigor of
econometrics. Contemporaneously with these developments, there have been rapid advances
in Bayesian multiple integration which can enrich time series econometrics. The objective
of this paper is to show some ways in which these advances can help address the issues of
trend and difference stationarity. In doing so, it builds on a number of recent contributions,
including Geman and Geman (1984), Gelfand and Smith (1990), and Geweke (1991a,
1992).

This paper breaks new methodological ground in several directions. First, it takes up
Bayesian inference in an improved specification of the model of Schotman and Van Dijk
(19914, 1991b, 1992) which cannot be attacked by the essentially analytical methods of
those papers or Phillips (1991). Second, it employs informative and nonconjugate priors
for the parameters of interest. Third, in the light of the evidence in Geweke (1992)
disturbances are leptokurtic. Finally, the paper shows how to construct exact highest
posterior density regions for a model that is a nontrivial variant of the standard linear
specification.

This work makes two primary substantive contributions. First, it introduces a single-
parameter family of informative prior distributions for the autoregressive component of the
trend stationary model. The choice of this parameter is implied by the answer to the
question, “At what time interval is a uniform prior density on the unit interval for the
autoregressive component plausible?”’. As this time interval increases the prior distribution
places increasing probability on a near-nonstationary configuration, and as a corollary the
posterior odds ratio in favor of difference stationarity will approach the prior odds ratio,
regardless of the sample. This convergence is illustrated using the data of Nelson and
Plosser (1982). Second, this work presents posterior moments, posterior densities and
highest posterior density regions for these data and priors that indicate near-nonstationarity.
Posterior odds ratios in favor of difference stationarity are sensitive to the choice of the



parameter for the prior for the autoregressive coefficient, but never fall much below the prior
odds ratio and often greatly exceed it. Posterior distributions are non-Gaussian.

The paper is organized as follows. The next section introduces the model and the
likelihood function. A family of informative prior distributions is developed, and the
posterior density function is derived. The posterior distribution is interpreted through
successive conditioning of each of several subsets of parameters on all the other subsets of
parameters. In Section 3 these conditional posterior distributions are used to construct a
six-step Gibbs sampler, which generates a Markov process on the parameter space. The
limiting and invariant distribution of this Markov process is the joint posterior distribution
of the parameters. This section of the paper also discusses the evaluation of the numerical
accuracy of Gibbs sampling-based approximations of posterior moments, shows how to
construct the posterior odds ratio in favor of difference stationarity as the posterior
expectation of a function of interest in the trend stationary model, and develops methods for
computation of exact highest posterior density regions. Section 4 reports the empirical
findings for the Nelson-Plosser data set. These include an investigation of sensitivity to the
specification of the prior distribution, posterior moments and densities for the parameters of
interest, and posterior odds ratios in favor of difference stationarity. The last section places
the results and methods of this work in the context of a broader research agenda.

2. Prior and Posterior Distributions in the Trend Stationary Model
Schotman and Van Dijk (1991a, 1991b, 1992) have used the trend stationary model
yi = Y+t +uy, (2.0.1a)
u = pup.y +&; &~ IIDN(, 62), (2.0.1b)
for an observed macroeconomic time series {y{}. This model is an alternative to the
specifications employed by Nelson and Plosser (1982), Phillips (1991), and others, of the
form
yi = O+ Bt + pyg1 + &, (2.0.2)
or elaborations of this form with more lagged values of the dependent variable. An
important attraction of the former specification relative to the latter is that & is the mean
growth rate of {y¢} in (2.0.1), whereas B/(1-p) is the growth rate of {y;} in (2.0.2).
Standard reference priors in (2.0.1) and (2.0.2), respectively, imply very different prior
distributions for growth rates and the persistence of deviations from the trend line. Some of
these differences are illustrated by Schotman and Van Dijk (1991b).
An important potential shortcoming of (2.0.1) is the restriction of all serial correlation in
{yt} to be first order autoregressive. Indeed, using conventional frequentist model
selection criteria, Nelson and Plosser (1982) found evidence against this specification for



most of the fourteen macroeconomic time series they studied. Following their lead and the
example of Geweke (1988b, 1989b) this study introduces additional terms in u.] - ug.2, ... ,
Utk - Ut-k-1 on the right hand side of (2.0.1b). In addition, based on evidence reported in
Geweke (1992), disturbances are not assumed to be Gaussian.

2.1 The likelihood function
The difference stationary model used in this research is

yi = ¥+t +uy (2.1.12)
5

U = pruel + ,Ezpj(u:-ju -u) +&, 0<pr<1, (2.1.1b)
J=

{&} iid., & ~t0,c2% V). (2.1.1¢)

The process {ug} is rendered trend stationary by the restriction on pj. The truncation of
the {p;} after j=5 is conservative, based on the fact that for annual macroeconomic time
series, lags of order three or greater provide adequate allowance for secular and business
cycle behavior (Geweke, 1986, 1988b). In conjunction with the prior distribution described
in Section 2.2, this truncation also loses the knife-edge character it might otherwise have.
The i.i.d. Student- specification requires the disturbances to be leptokurtic, but for larger
values of v the distinction is inconsequential. This specification has been lightly used in
applications, although it dates back at least to work in astronomy by Jeffreys (1939) who
used it for mean estimation. Fraser (1976, 1979) used this distribution in a linear model,
Maronna (1976) discussed maximum likelihood estimation, and Lange, Little and Taylor
(1989) have applied it using the EM algorithm. Here, we exploit the equivalence of the
Student-¢ distribution to the appropriate scale mixture of normals. The latter specification
has been taken up in the Bayesian literature (De Finetti, 1961; Harrison and Stevens, 1976;
Ramsay and Novick, 1980; West, 1984).

The usual transformation of (2.1.1) yields

5 5
yt = W1 -p1)+8(p1- jz:zpj) +3(1 - ppt+p1ye-1 + jgpj(Yt-jH -~y +&, (2.1.2a)

(g} iid., g~ t(0,02; V). (2.1.2b)
Conditional on the presample values (y-4, ... , Y0), the likelihood function may be expressed,
T
oI + e2)vo2})- v+, (2.1.3a)
t=
5 5
& =y - Y(1-p1)-8(p1- _%Pj) -8(1-p1t- p1ye1- j):zpj(Yt-jH - ¥t-.) (2.1.3b)
J= =

There are nine parameters, which subsequently will be sorted naturally into five groups: ¥,
& p1; P2, P3, P4, Ps; G and V.




2.2 Prior distributions
The parameter of paramount interest, on which recent Bayesian studies of trend and
difference stationarity have concentrated, is p;. To develop a useful family of priors
consider a simplified version of (2.1.1b),

ug = Pru.1 +& 0=Lp1<1, g~IIDN(@©,c?), ¢ known. 2.2.1)
If {u;} pertains to a point in time {rather than an average over a time interval) then (2.2.1)
implies

w = omer + €0, & ~ NO, 6X1-p20/(1-p2)], a=pT, 222)
cov(egr), efrzr) =( for any non-zero integer n.

A uniform prior distribution on [0, 1) for o in (2.2.2) implies a prior distribution for pt
with density rpli'1 on {0,1)in (2.2.1). Similarly, were the prior distribution on the
autoregressive parameter uniform on [0, 1) for a time interval T =n"1, n integer, the implied
prior distribution for p; in (2.2.1) would have density tp :'1 on the unit interval. The
notion of a “flat prior” for p; is meaningless without reference to a sampling interval for
the time series. These considerations motivate the family of priors,

mp,(PD) = (s+1)p I, n(P1): (22.3)
s =0 corresponds to a flat prior on the autoregressive parameter for annual data, s =29
for data recorded every 30 years, s =-11/12 for monthly data, etc. The temporal
aggregation argument is only motivating: if taken literally in (2.1.2) one would have to deal
with the presence of the yt.j+1 - ytj, the nonnormality of the disturbances, and interaction
between prior distributions for the other parameters and pj, any one of which presents
technical challenges. The empirical work here is carried through to completion using
several different values of s.

If the time interval between measurements is many periods, a uniform distribution for
the autoregressive parameter assigns high probability to strong persistence from one period
to the next. As s — oo, the effect of the prior distribution becomes the same as a
reformulation of (2.1.1) with pj =1. As a corollary, the posterior odds ratio in favor of pj
=1 must approach the prior odds ratio, as s — oo; and a posterior odds ratio for (2.1.1)
with s =s* in favor of s =s* + g, s * fixed, must approach the posterior odds ratio in
favor of p1 =1, as q — =. The operational ramifications of these facts will be seen in
Section 4.

The trend coefficient & displays no such sensitivity to time aggregation. The prior

specification employed hereis
5~ NG, 03). 2.2.4)



The same prior distributions are used for all macroeconomic time series studied. Since the
data are in logarithms, & indicates mean growth rate. The empirical work is carried out
with 5=0 and o5=.05. Some checks for sensitivity are reported in Section 4.1.
The prior specification for py, ..., p5 1s
pj~ N(O, non ) >0, 0<m <L (2.2.5)
This reflects the belief that these coefficients are not likely to be large in magnitude, and that
they are smaller the greater the lag. A similar specification was employed by Doan,
Litterman and Sims (1984) for vector autoregressions. In the empirical work mp=.731
and w1 =.342: this implies a standard deviation of .5 for p2, and .1 for ps. Checks for
sensitivity are reported in Section 4.1.
For the intercept ¥ of (2.1.1a) consider prior distributions of the form
Y11, - P5, G, y0) ~ NIm(yo), V(a2 p1)),
where V(o2, p1) has the property plligl(l-plﬂwc% p1) = 0. Conditional on
1, - s P5: G, Yo) the prior distribution for the intercept in the reduced form (2.1.2) is

¥(1 - p1) +8(p1 - ji)lzpj)
~ N[(1-pm(yq) + &(p1 - é:zpj), (1-p)V(e2, p1) + o §(m -ji:ﬁpj)z]
and for the trend term it is
81 - p1) ~ NI(1-pD3, (1-p1)cp)l.
The limiting distributions, as p; — 1, are N[S(l—_% i) Gg(l-jgipj )2} for the intercept,
and 8=0 forthe trend This 1mp11cs the limiting model
yt = 6(1- E Pi )+ ¥l + E pj(yl‘.-_|+l Vi) + €

or equivalently
yt=0+y1 +u (2.2.62)
4
ug = j_EIPjHUt-j + &, (2.2.6b)

with prior distribution & ~ N(S, 0%’) As p1 — 1 the trend stationary model (2.1.1)
therefore passes smoothly to the difference stationary model (2.2.6). In the empirical work
reported in Section 4, the prior distribution
¥1(¥0, p1, ) ~ Nlyo, 62/(1-p )] 2.2.7)
of Schotman and Van Dijk (1991a, 1991b, 1992) is employed.
With regard to the dispersion of g, the reference prior distribution with density
Ts(0) o= ol (2.2.8)



is assumed for 6. An exponential prior distribution with density

(V) = wexp(-v) (2.2.9)
is taken for v. In the empirical work, @ =.25, implying a prior mean of 4 and median of
2.77 for . These values are consistent with related findings in Geweke (1992), and the
exponential form of the prior density allows ample probability for very fat tails in the
distribution.

2.3 Posterior distributions

The product of the kernel densities of the independent prior distributions (2.2.3), (2.2.4),
(2.2.5), (2.2.7), (2.2.8), (2.2.9), and the likelihood function (2.1.3) provides the posterior
density kernel

P& 8, P1. P2, P3 P4, P5. G, V)

= 4 ;
= pslexp{%[(ﬁ - 8)2/0%) + ):fti_ /T + (v - yo)2(1 - pf)/c2}6'(“+1)cxp(—mv )(2.3.1.3)
J=
T
. O--Ttl_'ll(l + 8%/\;0'2)-(\'4'1)/2’ (23 1b)

with &; defined in (2.1.3b). The parameters of the prior distribution are s, & s, 7o, T,
and . This density is not only analytically intractable, but it is also quite likely immune to
attack by Monte Carlo integration with importance sampling (Kloek and Van Dijk, 1978;
Geweke, 1989a). A useful first step in a workable approach, is to exploit the equivalence

between the i.i.d. Student-¢ and the independent heteroscedastic normal distribution noted in

Geweke (1992).
To this end, consider an alternative specification,

& ~ IDN(0, 62vp t=1,..,T), (2.3.2)
the v; being fixed but unknown relative variance parameters, Given v, the v¢ have
independent prior distributions

vl ~ 20, t=1,..,T.

The prior density kemnel for each w; = V;l is w22 exp(-vwy/2) and the prior density

kernel for v; is

vi-v+D/2 exp(-v/2vy). (2.3.3)
The effect of the new specification is to change (2.3.1b) to
T T
nlv,-(V+3)f2 expl 3 @22 +v)i2vi. 2.3.4)
t= t=

Integrate this expression with respect to v, ..., vT to obtain the kernel
T
I (0—23[2 +v)- (12,
t=1



which is proportional to (2.3.1b).
Consequently the model and prior may be expressed,

yt = Y(1-p1)+0(p1 - j__52291') +8(1-ppt+piy1+ szZPj(yt-ju - ¥t + &5
gr ~ IDN(O, 02vy);
i, (P = G+Dp3;
3~ N(, 0%);
¥ (0. p1. 6) ~ Nlyo, 6%(1-pD;
pj~IDNQ, k) (=2, .., 5);
Vi v ~ID WM @=1,...,T);

Tg(0) = ol

v ~ exp{w).

2.4 Conditional posterior distributions

Consideration of conditional posterior distributions provides both insight into the structure

of the posterior distribution, and a basis for efficient computation described in Section 3.
Conditional posterior distribution of y and 6. Write

5
W= Y - PIYL ~j§2Pj(Yt-j+1 - ¥ij)

= Y(1-pp+8[p1- jgipj +(L-ptl+& = vz + 0z +8, (241
g ~ IDN(O, 62v) t=1,..,T),
WT+] = YO = Y+ET+1 = YZ1T+1 +€T+1, €T+1 ~ N[O, 6%/(1 -p%)],
w42 = 0 = 3+eme2 = Sz 2 +eTe2, €Tw2 ~ N, oﬁ).

The conditional posterior distribution for v and & is therefore bivariate normal, with mean

and variance given by the usual generalized least squares expressions.
Conditional posterior distribution of pa, ..., ps. Write

we =y - Y(1-pp)- 5391 -9[(1-ppt - Pm-l4

= _):2pj(y:.j+1 -Ytj-9) = _lej+12j(+8t, (2.4.2)
j= j=
g ~ IDN(, 62vy) (t=1,..,T),
WTyj = 0 = Pj+ €T4j = PjZ,T+j + €T+j €T+ ~ IDN(Q, mom J1'1) G=1,..,4)



Again the posterior distribution is conditionally multivariate normal, with mean and variance
given by the GLS expressions.

Conditional posterior distribution of py. The conditional posterior distribution results
from the combination of the simple linear regression model

5 5
W = yi-Y+ 383 pj-6t- 3 pj(yejel - Vi)
i=2 =2
= p1(yt-1-y+0— Ot) +& = p1z +&,
gt ~ IDN(0, 62vy) t=1,..,),

with the prior density (2.2.3) for pj. The conditional posterior distribution therefore has
kernel density

p} expl-(p1 - P1Y22A21T0,1y(P1): (2.4.3)
T

~ 1 T a2 T a2
where p1 = Elvt wizy/ Zlvt z, and A2= o% Zlvt Z,.
t= t= t=
Conditional posterior distribution of v. From (2.2.9) and (2.3.4) this distribution has
kernel density

(V2YVR2E ) Texp(-nw), (2.4.4)
T
where 1} = %El[log(v() + vtl] + .
Conditional posterior distribution of vy, ..., vy. From (2.3.4), the conditional
posterior density of y = (G‘zst2 +V)/vy is proportional to y--1)/2 exp(-y/2). Hence
(022 + Vv ~ X2V +1). (2.4.5)

This result may be obtained heuristically by noting that in the prior distribution v/vy ~
¥2(v), that in the likelihood function for (2.3.2) 6—2¢ tz/vt enters in the form of the kernel
density of the %2(1) distribution, and appealing to the reproductive property of the chi-
square distribution.

Conditional posterior distribution of . Given all the other parameters, the posterior
density kernel for ¢ is

T
o (T+1) exp(- 2,18[2/202“).
=
T 2
The kemel density of ¢ = 21(&:t/vt)/0'2 is ¢-(T+1D/2exp(-9/2). Consequently
t=

T
t_):l(af/vo/'cf2 ~ XXT), (2.4.6)

which has an obvious heuristic.



3. Computation of Posterior Moments and Densities
In this study the Gibbs sampler (Gelfand and Smith, 1990) is used to produce a sequence
of drawings from the parameter space that is neither independent nor identically distributed,
but converges in distribution to the posterior distribution whose kernel density is (2.3.1).
Consistent with the discussion of Section 2.4, adopt the following notation and groupings
of parameters:

8, = (1 0); 84 = V;
0 = (P2, 3, P4 P5): 05 = (V1 ., v
93 = py; 06 = ©;

0" = (8}, 6,, 63, 64, 07, 66"
The Gibbs sampling algorithm for the posterior distribution is easy to construct. Begin
with an arbitrary initial value
= 007 gy o A0 [0y )
6(0)—-(91 » 657, 037, 6,7, 057, 8.7)

€ O1x0x03x03x05x06 = RZxR4x{[0, D]} xR*xRT*xR*=0. (3.0.1)

A convenient choice is the ordinary least squares estimate for 01, 62, and 93 (forcing the
appropriate constraint on py if need be), v=4, 8s = (1,1, ..,1Y, 85 = s2. These
initial values were used for all results reported in this paper, but any element of & may be
chosen. Given 60),
(i) Draw B(ii) = (y®, 30))’ from the bivariate normal distribution for y and
O indicated by the regression (2.4.1).
(i) Draw (-)g) = (pg), pg), pg), pg))', from the multivariate normal
distribution for p3, p3, P4, and ps indicated by the regression (2.4.2);
(i) Draw p; from the distribution whose kernel density is given by (2.4.3).
A computationally efficient method is described in Appendix A.
(iv) Draw v from the distribution whose kernel density is given by (2.4.4);
see Appendix A.
(v) Draw vy, ..., vT successively and independently according to the
conditional posterior distributions (2.4.5).
(vi) Draw 62 using (2.4.6).
These six steps constitute a single pass of the Gibbs sampler. After each pass a function of
interest g(80)) can be computed, and after m passes rn'l)?,l g(00)) provides a numerical
j=
approximation to E[g(9)].



This procedure is superficially similar to the EM algorithm, which has been used to
maximize the likelihood function in a related but simpler situation by Lange, Little and
Taylor (1989). Leonard {(1975) used a similar approach to find an approximate posterior
mode in a related problem. The superficial similarity stems from similar conditioning in
each iteration. However, the Gibbs sampler produces the entire posterior distribution, not
just the mode. This section takes up the justification for this procedure and some important
technical details. Some of the discussion in this section closely parallels that in Geweke
(1992), Section 4.

3.1 Numerical approximations
The essential characteristic of this procedure is the convergence in distribution of the
continuous-state Markov chain described by (i) - (vi) to the posterior distribution.

Theorem 1. Let {60) };'__l denote a sequence of passes for the Gibbs sampling algorithm.
Then {80} converges in distribution to the posterior distribution whose kernel density is
given by (2.3.1).

Proof. The result follows from the decomposition (3.0.1) and the fact that each conditional
density is positive at every point on therelevant ©; (j=1,...,6). Letting pj and Pj
denote the conditional probability densities and probability measures respectively (j=1, ...,
6),

(1) pj®;1{6;,i#j}) >0 forall {6;,i#]}.

(2) forany Pj-measurable set A € ©j, Pj(A|{9;,i#]}) is absolutely continuous

with respectto {0;,1#]}.

Condition (1) implies that the continuous state space Markov chain induced by the Gibbs
sampler is n-irreducible, aperiodic, and positive Harris recurrent. Let [©, A, PR(40(0)]
denote the probability space induced at the end of pass m by the Gibbs sampler beginning
from the initial condition 8, and (©, A, P) the probability space corresponding to the

posterior density p(-). From Thecrem 3.8 of Nummelin (1984) or Corollary 1 of Tierney
(1991), sup iPM(A | 6O - P(A)l — 0, and consequently {60)} converges in
AeA

distribution to the posterior distribution.

Theorem 2. 1In addition to the assumptions of Theorem 1, suppose that the posterior
expectation of 1g(8)! exists and is finite. Then

10



m .
Bm = m"jzllg(eﬁ)) — E[g®)],

where the convergence is almost sure.

Proof. The conditions of Theorem 2 imply that {80} is ergodic. The result follows from
Theorem 4.3.6 of Revuz (1975) or Theorem 3 of Tierney (1991).

The informative prior distributions developed in Section 2 guarantee the existence of all
posterior moments of parameters of interest like p1 and 9, to which Theorem 2 therefore
applies. Formal Bayesian problems can always be cast in the form of determining the
posterior expectation of a function of interest. A case in point important for this work is the
posterior odds ratio taken up in Section 3.3.

For certain commonly reported posterior moments two variants on this procedure often
yield much more accurate numerical approximations. For specificity, consider the case of
01. Given 63, ...,686, E@11 02, ..., 06 = (Z'V-12)1Z’V-lw = ), where Z is the
matrix of regressors and w the vector of dependent variables from (2.4.1),and V =
diag(vy, .., vT). Obviously 61 and 61 have the same posterior expectation, but the
former has smaller posterior variance than the latter by the Rao-Blackwell theorem. This
suggests that a more accurate approximation of E(B;) will be achieved by choosing as the
function of interest §1 rather than ©1 itself. Evaluating accuracy as described in Section
3.2, this indeed turns out to be the case. A similar procedure can be used to improve the
numerical approximation of posterior variances (Geweke, 1992).

When conditional moments are not known analytically, this procedure cannot be used,
but the closely related method of antithetic acceleration (Geweke, 1988a) can be applied.
For illustration again consider the case of 01, but suppose now that E[g(01) | {02, ..., 65}]
is not a known function of {09, ...,0g}. Let B? be a drawing from the bivariate normal
distribution for 0; implied by (2.4.1), define n = 9‘? - 61, and 6? = 61 -M. Then
Elg®D] = E(.5[g®) + 2631}, but in many cases var(.5[g(6"}) + £65)]} <<
var{g(01)]. If g were linear then the former variance would be zero. Infact g is not
linear (if it were then the method described in the previous paragraph would be used) but
under weak regularity conditions it approaches linearity in the relevant domain as sample
size increases and the ratio var{.S[g(B?) + g(G?)] }var{g(81)] approaches zero (Geweke,

1988a).

11



3.2 Evaluation of numerical accuracy
A compelling advantage of Monte Carlo integration methods in general is that accuracy may
be assessed through a central limit theorem (e.g. Geweke, 1989a, Theorem 2). In the case
of the Gibbs sampler this strategy is complicated by the fact that the process {80} is
neither independently nor identically distributed. The limiting distribution of
ml2(§, - E[g(6)]) is known to be normal under several sets of assumptions. Some
require that © be bounded and therefore do not apply to our problem. Others (e.g.
Nummelin, 1984, Corollary 7.3) pertain to bounded g(8), and consequently apply to the
computation of posterior probabilities but not posterior expectations of parameters. Even in
these cases there are no subsidiary results supporting estimation of the variance of the
limiting distribution. The strategy adopted here is to employ an estimated variance that
would be appropriate if {80)} were a serially correlated but identically distributed process,
and then make certain checks for internal consistency.

Under the assumption that {60} is identically distributed and serially correlated the
approximation of E[g(8)] is equivalent to the classical problem of mean estimation in time
sencs analysis. A full development is given in Geweke (1991a) and is only outlined here.

leen that g(60) has finite mean and variance, g, = m-l E g0y — g=E[g®)]
J_

Under weak conditions (Hannan, 1970, Section 2.2) the spectral density S(w) of g(®0))
exists; and mV2(gy - §) = N[O, S(0)] (Hannan, 1970, Theorem 4.11). If §() isa
consistent (in m) estimator of S(w), then the accuracy of gy as an approximation of §
may be assessed by the numerical standard error (NSE) [m‘lgm(O)]m. Many consistent
estimators of S(0) are available. Technical details for the ones employed here are provided
in Appendix C.

The posterior variance var(g) of g(6) may be approximated consistently (in m) by

m -
varm(g) = m‘l_z,l g2(80)) - gn2. Were it possible to make m i.i.d. Monte Carlo drawings
J=

directly from the posterior density, then the NSE associated with the mean of these draws
would have been [m-lvary(2)]1/2, Following Geweke (1989a), define the squared ratio of
this term to the actual NSE, vﬁrm(g)/ﬁm(O), to be the relative numerical efficiency (RNE) of
the approximation §p,. It indicates the relative number of drawings required to obtain a
given NSE, and is a routine side computation. Some information about RNE for the
moments and posterior odds ratios computed in this study is given in Appendix C.
Especially in the absence of a central limit theorem that pertains to all g(8), and of a
demonstrated consistent estimator of the variance term in the limiting normal distribution, it
is important to assess the adequacy of the computed NSE’s. In the work reported here that
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is done by repeating the computations with different initial conditions and a different seed
for the random number generator. It was always the case that differences in computed
posterior moments were consistent with computed NSE’s and the assumption of normality.

3.3 Posterior odds ratios

Much of the recent empirical literature concerning unit roots has addressed hypotheses
about pp or its conceptual equivalent in other models. The hypotheses studied have been
@pi<l; )p1>1; (¢) p1=1. Forreasons well stated in Schotman and Van Dijk
(1991b), (c) is much more compelling than (b). Here we focus on (a) and (b); the prior
distributions adapted in Section 2.2 further restrict pj 2 0 in the case of (a), but trivial
variants on these procedures would easily cope with prior distributions for p; extending to
(-1,0).

Begin by considering the general case of alternative hypotheses for the same model with
likelihood function L(6), 0 € ©, that can be described by alternative prior distributions
with densities ®a(0) and wp(8). To fix ideas, prior distributions for p; in the trend
stationary model, with density function (2.2.3) and different values of s, are examples. In
the general case the posterior odds ratio in favor of hypothesis A is

JeL(®)rA(8)d8 / foL(8)np(6)de

= falna(®)na(0)] LO)rp(©)dd / foL(©)np(0)d0 = Eg[ra(6)/nn(0)]. (3.3.1)
The posterior odds ratio is the posterior expectation under hypothesis B of the function of
interest ®A(0)/np(0). The methods described in Section 3.1 may by applied to compute a
numerical approximation of this function. The quality of the approximation will depend on
the behavior of wA(0)/np(0) on that part of © where the mass of the posterior density
under hypothesis B is concentrated, and in general will be better when the posterior variance
of nA(8)/np(0), under hypothesis B, is smaller. (In general this variance need not even be
finite, and this is a consideration in determining the roles of A and B in the computations.)

In the case of the alternative prior distributions,

nalpn) = ¢+ pllo Py, m(PD = G+DpSlonleD,  t>s,  (3.32)
the function of interest pertinent to computation of the posterior odds ratio is
[(t+1)/s+DIp] (3.3.3)
Since this function is bounded on the unit interval all its posterior moments exist. If the
roles of t and s are reversed, these moments in general will not exist, and hence the
configuration (3.3.2) is maintained in the empirical work.
In the case of the alternative distributions
malPD) = elge P,  7BPD = (s+1)p ] Ijo,1P1)s
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the function of interest is (s+1)'1p'lsa‘1l(1.£' 1)(p1), which for small values of ¢ is
indistinguishable from

(s+1)le- 11 e, 1y(p1)- (33.4)
The Gibbs sampler may be applied to approximate the posterior expectation of (3.3.4), but
as € decreases this method becomes increasingly inefficient since a very small fraction of
the draws of p; from the distribution whose kernel density is given by (2.4.3) will occur in
the interval (1-g, 1). Following the discussion of Section 3.1, it is computationally much
more efficient to choose as the function of interest the conditional expectation of (3.3.4),

1 N 1 n
(s+1)le-l Jexpl-(p1 - p1)%/2A21dpy / J p]expl-(P1 - pDY2A2dpy.  (3.3.5)
1€

As € — 0, the posterior expectation of (3.3.4) approaches the posterior odds ratio in favor
of p1=1. Taking the same limit in (3.3.5), the posterior odds ratio is the posterior
expectation of the function of interest

-~ 1 ~
(s+1)ylexpl-(1 - pr%2A%1 / fp] expl-(p1 - 122 %1dp1. (33.6)

in the difference stationary model. The one-dimensional integral in the denominator is
evaluated quickly and accurately using a 21-point Gauss-Kronrod rule (IMSL, 1989, 569-
572).

3.4 Posterior densities

For public reporting presentation of posterior densities is often desirable. Since the Gibbs
sampler generates a representative sample of points from the posterior distribution, these
densities may be approximated using conventional kernel density methods. But if the
function of interest involves only a single ; from the partition of the parameter space, and
the posterior density of the function of interest conditional on the remaining parameters is
known analytically, then a much better approximation is possible. These conditions are
satisfied here for the the parameters py, 8, and v, which constitute functions of interest of
the parameter subvectors 03, 01, and 04, respectively.

Suppose that g(0) is a function of ©; alone, and that the posterior density function for
g£(9) conditional on {6j,i# j}, pg(d!{6j,i#j})is known. The unconditional posterior
density function for g(0) is pg(d) = E[pg(d {6, 1= j}]. This expectation may be
approximated by the Gibbs sampler in the same way as that of any other function of
interest. Moreover, in most cases smoothness of pg(d) is reflected in pg(d | {0;,i#j}),
and the numerical approximation of pg(d) will therefore be appropriately smooth,
Precisely this method is used to provide (very good) numerical approximations to the
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univariate posterior densities of py, 8, and v in Section 4.3, (In the cases of pl and v,
numerical one-dimensional integration of the kernel densities (2.4.3) and (2.4.4),
respectively, is required. That for p; is available from (3.3.5), and that for v is computed
by transformation of

(0, =) into (0,1) followed by evaluation using a 21-point Gauss-Kronrod rule IMSL, 1989,
577-580).

If two functions of interest are function of the same Bj alone, and if the conditional
bivariate posterior density function for the functions of interest is known analytically, the
same method may be applied. Furthermore the numerical approximations of the densities
may be used in conjunction with the Gibbs sample itself, to compute highest posterior
density regions to arbitrary accuracy, as follows. Given the Gibbs sample {6®}" ,

compute the corresponding approximations to the probability densities evaluated at these

1

ints, p® = p16®] = mt 3 p 0 1 (69,1 ® .
points, p = p [ej I=m leg(ej 1{6.;”,i#j}). Then sort the p(® into ascending
h

order, and compute the o’th quantile pg, in the obvious way. An approximate 100(1-c)%

m .
highest posterior density region consists of all d for which m'ljzjlpg(d | {9?), i#j}) > po.

This procedure produces the exact 100(1-0))% highest posterior density region as m — eo.

The bivariate posterior density of greatest interest here is that of (py, 8). The procedure
just described may still be applied, but is complicated by the fact that the joint conditional
distribution of p; and & involves two subvectors of the parameter space, 0; and 63. The
principal idea is to express the conditional density function for p; and &, using a
combination of analytical and numerical integration techniques. Sufficient statistics for
these conditional distributions are recorded in each pass of the Gibbs sampler, and the
bivariate density and highest posterior density regions are then constructed at the end.
Technical details are provided in Appendix B,

4. Empirical Results for the Nelson-Plosser Data Set
These methods were applied to six of the time series studied by Nelson and Plosser (1982):
real GNP, nominal GNP, real per capita GNP, unemployment, consumer prices, and
velocity., Data were furnished by Charles Nelson, and the least squares estimates reported
in Nelson and Plosser (1982, Table 5) were reproduced to all reported places. The sample
period for the results here is the same as that used by Nelson and Plosser (1982), except
that a few early observations could not be used because the model here involves five values
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of the lagged dependent variable, whereas the number of lags used by Nelson and Plosser
(1982) varied but did not exceed four for any of these six series.

4.1 Sensitivity to the Prior Distribution

Examination of the sensitivity of results to the prior distribution for pj is a principal
objective of this research, taken up in Sections 4.2 and 4.3. Here we report briefly on
sensitivity to other parameters of the prior distribution subsequently fixed. These
parameters are as follows. .

Forj=2, .., 5, the prior distribution of pj is IDN(O, nmr]l'l). For the empirical work
with the six time series, ®g=.731 and w1 =.342, implying a standard deviation of .5 for
p2, .1 for ps, and geometrically declining standard deviations in between. This is the
“base case” of Table 1. We examine four alternative settings of these parameters, while
keeping the other parameters of the prior distribution fixed at the values used in the
empirical work. First, mp is increased by a factor of 4, doubling all standard deviations;
second, ®g is decreased by a factor of 4; third, 7p is decreased to 2.5 x 105 so that the prior
standard deviation of p2 is .005, thus effectively constraining the coefficients on all yj+i -
yij to be zero; fourth, tp =.25 and ®ty = 1.0, so that the prior distribution for each of
these coefficients is N(0, .52). These four settings correspond to the four lines below the
“base case” line in Table 1.

The prior distribution for the degrees-of-freedom parameter v of the Student-¢ density
of the disturbances is exponential with parameter ® and therefore has mean !, In the
empirical work and “base case” =.25. We examine two alternative settings: @ =.05
(mean 20, or “thin tails”) and ® = 1.0 (mean 1, or “fat tails”). These two settings

correspond to lines five and six below the “base case” in Table 1.
The prior distribution for the trend coefficient 8 is N(b, 0%) In the empirical work

and “base case,” the distribution has mean 0 and standard deviation .05. Since the data are
in logarithms, this corresponds to a centered 95% prior confidence interval extending from a
growth rate of -10% to one of +10%. Therefore this prior distribution is rather diffuse.

We examine four alternative settings for 5 and o5. First, op is increased to 1.0; second,
o3 is decreased to 104, effectively constraining & to 0; third, the location of the base case
is shifted by setting 8 = .03 while maintaining o5 = .05; and finally, the effects of
imposing a growth rate equal to the observed rate of growth from the first to the last
observation on the dependent variable are examined by setting 8 = .03118 and o5 = 104,
These four settings correspond to the last four lines in each of the two panels in Table 1.
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The effects of these alternative settings on eight posterior moments were examined,
employing the Gibbs sampler as described in Section 3.1. (Some technical details of
implementation are provided in Appendix C.) For the posterior odds ratios and posterior
expectations, the number of figures reported is at most one more than warranted by the
numerical standard error computed as described in Section 3.2. The posterior odds ratio in
favor of pj =1 is computed as the posterior expectation of the function of interest (3.3.5).
The posterior odds ratio in favor of “next 8™ is computed as the expected value of the
function of interest (3.3.3), using s =0 and t =% when s=0 (top panel), and using s =9
and t=29 whens =9 (bottom panel). Posterior means and standard deviations for the
other parameters are computed in straightforward fashion. Several observations may be
made about the results reported in Table 1.

First, there is a tendency for the posterior odds ratio in favor of py =1 to increase as
the prior distribution for p2, ..., p5 becomes less informative. This is consistent with the
fact that reasonable but more diffuse specifications have smaller posterior probability.
However, the differences between the least and most restrictive prior distributions are not
great. Changes in these priors have negligible effects on the posterior moments of py, 8,
and v relative to posterior standard deviations.

Second, as @ increases, raising the prior probability of smaller v (fatter tails in the
distribution of the disturbance}, the posterior mean of p; decreases as does the posterior
odds ratio in favor of a unit root. The effects are significant, although not overwhelming.
This pattern may be related to the greater sensitivity of posterior means to outliers when
disturbance distributions have thinner tails, and the implication of Perron (1989) that these
same outliers tend to shift the posterior distribution of pj toward 1. Both the pattern and
this interpretation bear further investigation.

Third, increased prior uncertainty about & increases the posterior odds ratio in favor of
difference stationarity. This is most evident in the effect of constraining & to the empirical
growth rate of real GNP in the sample. For realistic variations in the prior distribution for
& (i.e., excluding the last line of both panels) effects on posterior odds ratios and all
moments appear very small. The reason for this effect will be discussed in the context of
posterior densities, in Section 4.3.

Fourth, when 8 is constrained to 0, the posterior odds ratio in favor of pj = 1 rises
sharply. In this case the alternative to difference stationarity is simple stationarity, which is
a less plausible alternative. Notice, however, that the odds ratio drops by a factor of about 8
from the top panel (5 = 0) to the bottom panel (s =9). As s increases without bound, the
argument made in Section 2.2 once again applies: the posterior odds ratio must approach
the prior odds ratio.
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Fifth, the posterior distribution of 8 is insensitive to all changes in the prior distribution
except those that force the value of & to a constant, the only example of which here is the
case o= 104. Since & is the coefficient of a fixed regressor, and since the specification
(2.1.1) used here disentangles the trend coefficient from the autoregressive coefficient (as
(2.0.2) does not, but (2.0.1) aiso does) this finding is not surprising.

Finally, changes in ® have two effects. The first is to shift the posterior distribution of
v substantially, E(v) moving inversely with ®. The effects shown in Table 1 are quite
large, and are consistent with the results in Geweke (1992) for the real GNP data indicating
that the posterior odds ratios for pairs of fixed values of v are within the range (.5, 2) for
values of v ranging from less than 3 to more than 20. For some other time series the
evidence on Vv is stronger, as will be seen. The second effect of an upward shift in o,
which assigns higher prior probability to distributions with thicker tails, is to diminish the
posterior standard deviation of coefficients. This is most evident for & in Table 1, and has
been documented for a greater variety of time series and artificial data in Geweke (1992).
Smaller posterior odds ratios in favor of the competing difference stationary model are
consistent with these smaller posterior standard deviations.

4.2 Posterior odds ratios and moments

Using the “base case” priors for all other parameters, posterior odds ratios and moments
were computed for the six indicated macroeconomic time series of Nelson and Plosser
(1982). Six different prior distributions indexed by s were employed for the
autoregressive coefficient pj. As explained in Section 2.1 the choices for s correspond
approximately to prior densities for the autoregressive coefficient that are flat on the unit
interval for data recorded at various hypothetical intervals: s =-11/12, monthly; -3/4,
quarterly; 0, annual; 9, every decade; 29, every 30 years; and 99, every century. Of course,
the actual data used are annual in each case.

Results are reported in Table 2. For the posterior odds ratios (“P.QO.R.”), “Next s”
refers to the value of s in the next row: e.g., in the row labeled s = - 3/4, the odds ratio is
in favor of the prior specification with s = (. Simple arithmetic shows that except for error
due to numerical approximation, the “Next s odds ratio should be the ratio of the “pj =
1” odds ratio for that row to the “py = 1" odds ratio for the next row, a relationship that
is borne out up to the number of places accuracy that numerical standard errors would
indicate. These indicators of numerical accuracy are not reported here, but they are used to
choose the number of digits reported in Table 2 just as they were in Table 1.

As the prior parameter s increases the posterior mean of py increases and its posterior
standard deviation decreases monotonically (within the limits of numerical accuracy) in
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every case. The posterior odds ratio in favor of p; =1 shows a general tendency to move
toward 1 as it must in the limit, but this tendency is complicated by the fact that odds ratios
for high values of s are barely numerically accurate to two places in may instances. The
difficulty is that the posterior distribution of (3.3.6) has substantial concentration near zero,
with its expected value largely determined by high values with low posterior probability.
For four of the time series there is also a tendency for the posterior odds ratio in favor of
p1=1 to increase above and away from 1.0 between s =29 and s =99. Further insight
into this phenomenon will be provided by posterior densities reported and discussed in the
next section. ’

Comparison of results for different time series in Table 2 is generally consistent with
the findings of other investigators for these data: e.g., unemployment and real per capita
GNP show less evidence of difference stationarity than do consumer prices and velocity.
Specific comparisons provide more insight. The only published work reporting posterior
probabilities or odds ratios for these data involving the hypothesis pj =1, to my
knowledge, is Schotman and Van Dijk (1991b). Their investigation is also one of the few to
take up an informative prior distribution for pj;, which is essential if all of the posterior
probability is not to be assigned to the difference stationary model (p1 = 1) a priori. They
report posterior odds ratios in favor of a unit root, when the competing hypothesis is trend
stationarity with a prior distribution for p; uniform on (.8, 1.0) as follows: real GNP, .57;
nominal GNP, 1.3; real per capita GNP, .53; unemployment, .20; consumer prices, 7.6;
velocity, 3.1. These figures are substantially lower than those reported in Table 2 for s =0
in every case, but this is due to the fact that given a prior distribution for p; uniform on the
unit interval little of the posterior mass lies in (0, .8) except for the unemployment time
series. Had Schotman and Van Dijk employed the unit interval prior distribution, their
posterior odds ratios would increase by nearly five (less for unemployment). This brings
their posterior odds ratios and those in Table 2 for s = 0 into rough consistency. To make
the same point another way, the odds ratios reported in Table 2 for the cases s=9 and s =
29 are in rough agreement with Schotman and Van Dijk (1991a), except for unemployment
where the ratios in Table 2 all run at least three times their reported value. These remaining
differences may be attributed to the richer specification of the model used here.

Posterior moments for p; and & are consistent with those reported by Schotman and
Van Dijk (1992), and with parameter estimates for more distantly related models taken up
by other investigators. Posterior means and variances for v provide new evidence, on the
dispersion of the disturbances for these time series. For consumer prices, these moments
strongly suggest a highly leptokurtic distribution, for which fourth moments do not exist.
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Nominal GNP disturbances are almost as leptokurtic, while for the other series the posterior
expectation of v exceeds the prior mean of 4.0.

4.3 Posterior densities and highest posterior density regions

Aspects of posterior densities for the six time series are presented in Figures 1 through 18.
Each figure consists of four panels, The upper right panel and the two lower panels each
present a prior density (thin line) and a marginal posterior density (heavy line) for the
parameter indicated on the horizontal axis. All of these densities are proper and normalized,
i.e., they integrate to one. The upper left panel presents highest posterior density regions
for the joint distribution of the trend coefficient, 8, and the autoregressive coefficient, pi.
The interior of the contour line labeled *“1” has posterior probability .99, that labeled *5”
has posterior probability .60, and other probabilities are listed on page 35. Scales differ
from one figure to the next and axes must be examined when making comparisons,
especially for the bivariate marginal densities in the upper left panels.

None of these densities is even approximately Gaussian. Marginal densities for & are
nearly symmetric, but clearly leptokurtic. As p; — 1, var(dlp;) increases. The source of
the increase may be found in the vanishing sample variance of the term (1 - p1)t of the
reduced form equation (2.1.2a) as p; — 1. The effects many be seen in a comparison of
the marginal posterior densities for & plotted in the upper right panel: as s increases, so
does dispersion in 8. (See also Table 1.) The effects are also discernible if the bivariate
densities in the upper left panel are examined closely: as py increases, so does the relative
dispersion in a horizontal “slice” of the density.

An interesting aspect of the posterior distributions is the asymmetry of the bivariate
density with respect to p1, So too is the fact that the marginal posterior density of pj
either has a local minimum near (but not at) pp = 1, or else it increases monotonically --
despite the existence of only a single mode of the bivariate density for py and &, which is
interior except for a few series when s =29. The source of this behavior may be found by
considering the bivariate densities. Condition on 8, and let S denote the posterior mean of
5. As 18- 81 increases, the deteriorating “fit” of the trend line ¥+ &t increases the
probability of more persistent departures from trend. This is exhibited in the upward shift
of mass in the bivariate marginal density along a vertical line, as that line is moved left or
right of the center of mass. This effect is also evident in Table 1, where fixing 8 at its fitted
value .03118 produced the smallest posterior mean for pj, and fixing it at O produced the
largest posterior mean. In many instances the distribution of § is sufficiently disperse that
there is enough mass near pj =1 to produce a mode in the univariate, marginal posterior
density of p; at pi =1, in addition to the interior mode. Even when this is not the case the
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effects of the concentration near py =1 may often be seen (e.g. nominal GNP, s = 9). The
local behavior in the marginal posterior density for p; near py =1 is consistent with the
behavior of the posterior odds ratios in favor of difference stationarity reported in Table 2:
this ratio increases going from s =29 to s =99 if (and only if} the marginal posterior
density for p; is positively slopedat p; =1 for the bivariate (pj, §) posterior densities
corresponding to the prior with s = (.

The marginal posterior density for v draws a sharper contrast between series than do
the posterior means and variances for this parameter reported in Table 1. This density is
little affected by changes in s, for the same time series. Comparison of posterior densities
for v between series is most easily made by noting the points at which the posterior
density rises above and falls below the prior density. Nominal GNP and consumer prices
have the most leptokurtic disturbances: for the former P(v £4) =.75, and for the latter
P(v <4) = .91, In all cases there is essentially no posterior mass on v € (0,1), and the
posterior probability density at v=4 exceeds the prior probability density. These results
are consistent with strong evidence for leptokurtosis reported in Geweke (1992), where
posterior odds ratios in favor of v =15 against Gaussian disturbances range from 2.7 for
velocity to 8.7 x 106 for consumer prices.

5. Conclusion
The main technical contribution of this work is to the practical application of Bayesian
methods to macroeconomic time series. Beginning with a nonconjugate prior distribution in
a nonlinear model with leptokurtic disturbances, it has been shown that posterior moments,
odds ratios, and highest posterior densities may be computed methodically. With respect to
the problem taken up, a single-parameter prior distribution for the key parameter in the trend
stationary model was introduced, with the parameter implied by the answer to the question,
*At what time interval is a uniform prior density on the unit interval for the autoregressive
parameter plausible?”. If this time interval is a year and the prior odds ratio between the
hypotheses of difference and trend stationarity is 1:1, then the posterior odds ratio in favor
of difference stationarity is about 2:1 for real GNP, real per capita GNP, and
unemployment, 10:1 for nominal GNP, 20:1 for velocity, and over 100:1 for consumer
prices. As the time interval lengthens the posterior odds ratio must necessarily converge to
the prior odds ratio of 1:1, but for no time interval examined did the posterior odds ratio in
favor of difference stationarity ever fall below 0.5:1. These conclusions are not very
sensitive to other aspects of the prior distribution. An investigator who finds the family of
prior distributions employed here reasonable and believes difference stationarity more
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plausible than trend stationarity a priori will find difference stationarity more plausible a
posteriori.

Yet the results presented here are sensitive to the chosen family of prior distributions for
the autoregressive coefficient. In Section 4.2 it was noted that Schotman and Van Dijk
(1991b) reported posterior odds ratios in favor of difference stationarity generally lower
than those given here, and the differences were traced to differences in the prior
distributions. In the study of the trend and difference stationarity hypotheses there can be
no such thing as a prior distribution that is uninformative, or nentral, or objective, in the
sense that those words are generally used. Two factors are at work. First, there is the well
known fact that the posterior odds ratio in favor of a hypothesis that restricts a parameter to
a single value in the presence of an improper prior distribution for that parameter under the
alternative hypothesis, must be zero (Berger and Delampady, 1987). Second, in the case of
the unit roots question, the hypotheses are about the “long run,” for which there is never
even a single complete observation. There will always be prior distributions that dominate
the data, and the macroeconomic time series record is short enough that different reasonable
prior distributions may dominate the data and imply very different posterior odds ratios.
Then again, they may not: there has not been enough attention to the construction of
informative prior distributions that the answer to this question is clear, at least to me.

In this situation pursuit of a formulation of ignorance as absence of knowledge, in the
same sense that absolute zero is absence of energy, is futile. Alternative diffuse prior
distributions for the antoregressive parameter stake out positions about relative probabilities
that matter for the posterior distribution. A mathematical as opposed to a subjective
prespecification of ignorance is arbitrary, never neutral, and can be misleading.

An alternative and more constructive path in econometrics is the development of
technology that maps informative prior distributions into posterior moments, odd ratios, and
densities. Worthy goals are to make the formulation of the prior distribution as close as
possible to the ways economists and knowledgeable individuals think about the problem, to
allow the mapping to incorporate a rich specification of the likelihood function, and to
present aspects of the posterior distribution in ways that allow the economist to understand
the mapping as well as to draw substantive conclusions. I think that the computational
methods illustrated in this research can be an important component of this process.
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Appendix A: Efficient Rejection Sampling

The general problem is to draw a sample of independent, identically distributed synthetic
random variables from a target distribution with probability density function f*(x; 9),
kernel density function f(x; 8) = k(@)f*(x; 6), and support Q. (The parameter vector ©
is given.) This is to be done by drawing synthetically from a sampling distribution with
probability density function
g*(x; o) (p% € A, K€ (2} and kernel density function g(x; &) = h-g*(x; o). The draw
is retained with probability c(c, 6) f(x; 6) / g(x; ), where

o0, 8) = {max [f(x; 8) / g(x; O)1}-1.

This procedure is widely used in the generation of synthetic random variables; Press et al.
(1986, 221-225) provide a brief overview. This Appendix takes up the problem of the
choice of ¢¢ in general and in two specific examples, given two assumptions. The first is
that the family of sampling distributions indexed by « has been fixed. In fact the choice of
this famnily is an important strategic decision, and if the performance of a rejection sampler
is unsatisfactory even with o chosen as described below, one may wish to consider another
family. The second assumption made here is that the objective in designing a rejection
sampler is to minimize computation time which is in turn inversely proportional to the
unconditional probability of retention of the draw from the sampling distribution.

The unconditional probability of retaining a draw from the sampling distribution is

la [c(a, ©) f(x; 8) / g(x; o) bt g(x; odx = h-l (e, B) fq f(x; B)dx = h-1k(B) c(e, 6).
Therefore maximization of retention probability is equivalent to maximization of c(x, 6), If
c(a, 8) may be expressed in closed form then the problem may be solved in exactly this
way. More generally, the choice of & may be expressed as the solution of the saddle point
problem

min { max flog f(x; 8) - log g(x; )]}
Given the usual regularity conditions a necessary condition for solution is that o be part of
a solution of the (k+p)-equation system

dllog f(x; 0) - log g(x; )]/dx = 0

dllog g(x; a)}/da = 0.

Conditional posterior density for p;. The target distribution has kernel density
f(x; W, ) = xS expi-(x - W2262] Ijp 1)(x).

The sampling distribution used in this paper is N(v, 62) truncated to the unit interval, with
draws made as described in Geweke (1991b). (An obvious generalization is to use N(v, 12)
in place of N(v, 62), but the latter performs very well for the target distributions that arose,
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and the former leads to a much more complicated optimization problem in choosing 72.)
Let g(x; v) = expl-(x - v)2/212] Ig,33(x). The function
log [ f(x; . 62)/ g(x; V)] = s Jog(x) - (x - W)2262 + (x - v)2/262
=5 log(x) + x(U - v}/62 + (V2 - u2)/202 (A1)
is defined and concave on (0, 1].

If s62/(v-p) <1, the maximum of (A.1)isat x* = s62/(v- 1). Substituting x* for

x in (A.1), the problem is to minimize
slog[s62/(v-)1-s+(v2-p2)202.
This function is globally convex, the first order condition is vo~2 - s(v - w)-1 =0,
and the minimum is at v = %[u + (U2 + 4025)172). Expressing the first order condition in
the form v = so2/(v - 1), note that x* =v. Consequently
logle(v; 1, 62)] = -s log(x*) + (x* - W)2/262 - (x* - v)2/202
= -5 log(V) +(v - 12202 (A.2)

Hence in this case one draws x from the distribution N[%[p + (U2 + 402)1/2, 62)
truncated to the unit interval, and retains the draw with probability

v-S expl(v - 024202 exp{[(x - v)2 - (x - p)21/202} x5.
Finally, note that this case is identified by the condition so2<v - L.

If s62>v -, then (A.1) is strictly increasing on (0, 1]. Substituting x* = 1 in (A.2),
obtain (-(1 - Y2202 + (1 - v)2262, which is minimized by the choice v =1, and so
logle(v; 1, 62)] = (1 - W2/262. Hence in this case one draws x from the distribution
N(1, 6%) truncated to the unit interval, and accepts the draw with probability

exp[(1 - 1)%/262] exp{[(x - 1) - (x - )2]/262} xS.
Retention rates for some parameter combinations typical of those encountered in the
research reported in this paper are shown in Table A.1 (next page).

Conditional posterior density for v. The target distribution has kernel density

f(x; T, n) = (/2)™2 [[(x/2)]T exp(-nx),

T T
where 7 =12‘i2110g(vi) + -%.Zlvil + . Since the function log(v) +v-! is minimized at v =
= 1=

1, n 2 (T/2) + w. The sampling distribution is exponential with kernel density function
g(x; a} = cexp(-0x). The function
Qkx, o; T, ) = loglfix,; T, )/g(x; o]
= (Tx/2)log(x/2) - T log[ T (x/2)] + (et - N)x - log(e)) (A.3)

has first derivative in x,

dQ(x, o T, )/ox = (T/2)[log(x/2) + 1 - y(x/2)] + (&t - M) (A4
where y(z) = dlog[I'(z)}/dz is the digamma, or psi, function. The function log(x/2) + 1 -
Y(x/2) is monotone decreasing from e to 1 on (0, es). Since M > T/2, (A.3) therefore has
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a unique, regular maximurn defined by equating (A.4) to zero. This equation, together with
Q(x, o; T, n)da. = x - ol'=0, yields the desired solution. Substituting o =x-1in (A.3),
let x* be the solution of
(T/D)[log(x/2) + 1 - w(x/)) +x1 -1y = 0,

which may be found by standard methods. This yields

log[ c(o; T, M) = -(Tx*/2)log(x*/2) + Tlog[I'(x*/2)] + (m - C)x* - log(x*).
Hence one draws from the exponential distribution with density function x*-1 exp(-x/x*),
and retains the draw with probability

ITH2))T (x/x*) T2 T(x/2)]T exp[(ar - n)(x - x*)].

‘Retention rates for some parameter combinations typical of those encountered in the

research reported in this paper are shown in Table A.2.

Table A.1

Acceptance probabilities, f(x; 1, 6) = x8 exp[-(x - W)2/202] [j0,1)X)*

s=0 §=9 =29 =99
n=.8, 0=.06 1.000 978 948 271
p=.9 c=.05 1.000 .993 .968 246
u=.95 6=.03 1.000 .994 .990 459
* Based on 1,000 acceptances
Table A.2

- Acceptance probabilities, f(x; T,n) = x/2)T¥2 [['(x/2)]-T exp(-nx)*

T=60, n=3025  .163 T=120, n=6025 .11l
T=60, n=3500  .151 © T=120,1=7000 .107
T=60, n=4000  .145 T=120, n=8000 .113
T=60, n=5000  .147 T=120, n=1000 .10l
T=60, n=1000  .130 T=120, n1=2000 .105 .

* Based on 1,000 acccpténccs
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Appendix B: Construction of the Bivariate Posterior Density for py and &
At the end of the r’th pass of the Gibbs sampler, construct

S
-] -1
Wy = oly; "y, 'J_Ezpj()'t-jﬂ -y - 1l z); = o lv; fz(yt,l -,
5
-1 -1
Zy = oly, n(t-jz:épj), zy = oly, 2-1

Wi = (05008, Zy1, = 050, zjp, = Ze = 0.
The distribution of py and & conditional on all other parameters at the end of pass r is
implicit in the regression

W = pizj, + 8z, - p1dzy, + €}, g; ~ IIDN(0, 1) t=1,..,T+D)
and the prior distribution for p;, whose dénsity is (s;l)pil[o,l). The kernel ‘density of

 this conditional posterior distribution is
- T+l * * * * ‘
P p1, 8) = expl-%tgl(wt "1z - 32y + p1823)2}p] = exp(-4Qep1, §))pS.

(The superscript' “(r)" on the left hand side reflects the fact that w* and the z), are all
p t Iy

unique to the r’th pass. We do not carry “(r)” through to the moments to avoid further
T+1
cluttering the notation.) Let m;j denote the raw moment Elz;'tz}'t, it being understood that
=

zy, = W}. Then express

Qp1, 8) = [8- Sp12H(p1) + Alpy),
where

8(p1) = K(p1yHpy),

K(p1) = mog - p1(moa+myy) + mels,

H(pn) = mpz- 2pimy;3 + pfm33,

A(p1) = mgo - 2pymg; + men - K{p1)2Hpy).
The conditional density (as opposed to the kernel) is

. 1 e
p@(p1.8) = pi(py, &)/ OI [p®)(p1,8)dddp. (B.1) .

The ten moments mjj are sufficient to evaluate the numerator of (B.1) and are recorded at
the end of pass r of the Gibbs sampler, along with the Gibbs sampled parameters p; and
& themselves. When all m passes of the Gibbs sampler have been completed, the
numetical approximation of the bivariate density at any point (pj, §) is

m
p(p1, &) = m'l )’.lﬁ(‘)(pl. 8) /d,
=
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where

| _ .
a0 = /1] exp{-3(3 - 8(p)I?H(p1) }dS)expl-1A(p1)Idpy

@m2 IH(PI) 12expl-1A(p1)1dp1.

The final integral is evaluated using a 21-point Gauss-Kronrod rule IMSL, 1989, 569-
572).

The bivariate density plots are prepared by evaluating p(p1, 8) on a 100 x 100 grid of
points. The range is determined by evaluating f(p, © , 8 at all Gibbs sampled points
(%, 8™, and determining the range of p(l) and 8® that accommodate 99% of
these points with the highest values of p(p‘”, 8®). This range is extended by 5% in each
direction, except above pp = 1.

Appendix C: Some Computational Details

Gibbs sampling passes. Sensitivity to initial conditions in the Gibbs sampler can be
reduced by discarding some of the initial passes. There is no evidence of such sensitivity in -
this study: even with absurd starting values, Gibbs sampled values in the next pass are
typically within the 99% highest posterior density region that emerges at the conclusion of
the process. Nevertheless, 200 initial passes were discarded in all cases. For the study of
sensitivity to parameters of the prior distribution (Table 1), 2,000 passes were employed; for
the posterior odds ratios and moments (Table 2), 10,000 passes were used; and for the
posterior densities, 5,000 passes were made. In the presence of severe serial correlation
every s’th pass (s> 1) can be retained and the intermediate passes discarded, but there is
no evidence of severe serial correlation for the posterior densities in this study. Rough
rangés of relative numerical efficiencies for the parameters are as follows:

Y 50-2.0 G .03 -.08
d 40-1.2 v 03-.10
P1 15-.70 POR,nexts .20-.60
P2, .. » P5 15-.80 POR,p1=1 40-12

The relation between relative numerical efficiency and serial correlation is discussed in
‘Geweke (1991a). |
Computation of numerical standard errors.- At the completion of all m passes, the
sample | g(()(i))}"f‘_l is available. The spectral density at frequency zero, S(0), for this
series is estimated by prewhitening {g(6@))™ i=1> Smoothing the periodogram around the
frequency =0, and then recoloring. '
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Prewhitening is accomplished using a filter of order 10. This filter is obtained by
solving the Yulc-WaJker equations for thc autoregressive representation of order 10, using

estimated autocovariances #(k) = m'l 2 %(60) Em)8(8UX) - Br) in lieu of the unknown

true autocovariance function r(k). These estimates render the 11 x 11 variance matrix R =
[i‘(h-J D] positive semidefinite by construction and positive definite as a practical matter.
This leads to the estimated autoregressive representation

, 10 )
g0®) - g, = Eﬁk[g(eﬁ"" - Bml + ¢,

where the 8x are obtained by solvmg the Yule-Walker equations using R. The

characteristic equation 1 - 2 axz& = 0 will have no roots with modulus less than one,

and as a practical matter these roots will all have modulus greater than one.
. , 10 .
The periodogram of the prewhitened sequence [g(6() - Zm] - kle'ik[g(e(l'k) - Bml is

computed at the harmonic frequencies @j =2nj/m using the fast Fourier transform, and the
ordinates around =0 are smoothed with a Danjell window of width 20 ordinates. This
yields the estimate $*(0) of the spectral density of the prewhitened sequence. The

2 A A 10
estimate $(0) of S(0) for the original sequence is §(0) = §*(0)/(1 - kzlak)z The

numerical standard error for gp, is then constructed from §(0) as described in Section
3.2. |

. Software and hardware. Code is written in Fortran 77, making extensive use of the.
IMSL mathematical libraries. Execution was carried out on a Sun 4/40 IPC using 8 mb
memory. Execution time is nearly proportional to the product of sample size and the total
number of Gibbs sampling passes. For 10,000 passes (the number used to produce Table
2) execution time ranged from seven to ten minutes.
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Table 1
Sensitivity of Some Posterior Moments to Some Parameters of the Prior Distribution
P.OR.infavorof = ------ p1---—--- - ®X 100-mm  mee- V-nneee
p1=1 Next s Mean s.d. Mean s.d. Mean s.d.

Real GNP, s=0

Base case* 27 30 851 (076) 3.070 (0.286) 54 (3.1
sd. (p2)=10 4. 34 863 (076) 3.053 (0.316) 57 (4.2)
sd. (p2)=25 25 32 861 (070). 3.074 (0.310) 63 (3.8)
s.d. (p2)=005 2.5 3.8 880 (065) 3.096 (0.338) 58 (3.3)
sd. (p=5 25 3.2 856 (076)  3.049 (0.295) 48 (3.7
w=.05 3.1 34 862 (077)  3.043 (0.372) 22, (18)

®=1.0 1.8 27 842 (071)  3.056 (0246) 272 (1.15)
65=1.0 2.9 30 850 (075) 3.067 (0.319) 56 (3.3)
o5=104 151 9.20 9905 (.0095) 106 (102) 7.6 (4.5
8=.03,65=05 3.6 3.27 860 (074)  3.062 (0.323) 59 (3.8)
5=.03118, 5 2.3 829 (070)  3.1180 (0001) 47 (3.1)
o5=104

Real GNP, s=9 :

Base case* .89 81 906 (064) 3.063 (0.422) 6.4 (3.9)
sd(pp=10 1.1 92 913 (062) 3.060 (0.439) 5.6 (3.4)
sd.(pp=25 .68 81 907 (062) 3.072 (0416) 7.1 (438)
s.d.(p2)=.005 1.1 .86 915 (055)  3.11 (041) 6.1 (3.3)
sdpp=5 12 - .96 915 (063) 309 (0425 50 (3.3
®=.05 1.03 90 911 (064)  3.018 (0495 21. (23)

w=1.0 3 -7 895 (067)  3.069 (0.370) 3.1 (1.4)
65=1.0 1. a7 901 (066) 3.079 0.434) 58 (3.6)
65=10 19. 2.550 9912 (.0088) 104 (10-2) 87 (5.0)
8=.03,05=.05 .7 74 900 (063) 3.07 (0.40) 58 (3.7
8=3.1180, 30 50 879 (063)  3.1180 (0001) 52 (3.0)
G.s=10'4 _

*Configuration of prior parameters for the base case: for pj (j =2, ..., §) priors are independent
zero-mean normal, with standard deviations declining geometrically from 0.5 for p2 to0 0.1 for
ps; for 8, prior is normal with mean d=0 and standard deviation 6g=.5; for v, prior is
exponential with parameter @ =25 (mean ! = 4.0). The prior density for py is (s+1)p]
on the unit interval.
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Table 2

Posterior Odds Ratios and Moments for Six Macroeconomic Time Series*
...... v -———— )

P.O.R. in favor of

pi=1 Next s

Real GNP

=11/12 24 2.917
s=-3/4 10.1 3.534
s=0 23 3.14
s=9 87 79
s=29 99 87
$=99 1.21
Nominal GNP
s=-11/12  108. 2.9693
s=-3/4 46. 3.827
s=0 11.1 6.23
s=9 1.66 1.44
s=29 1.21 1.03
s=99 1.23
Real per capita GNP
s=-11/12 17. 2.9088

=-3/4 7.9 3.489
s=0 2.1 272
s=9 .68 72
s=29 1.1 .88
s=99 1.22
Unemployment :
s=-11/12 17. 2.890

=-3/4 6.1 3.402
s=0 1.8 2.19
s=9 67 .64
§=29 1.18 .87
$=99 1.030

1.29

Mean s.d.

848 (.075)
848 (.075)
856 (.074)
904 (.064)
9602 (.0368)
9902 (.0104)

9405 (.0370)
9431 (.0368)
9435 (.0366)
9551 (.0324)
9714 (.0242)
9902 (.0098)

.834
834

(077)
(077)
839 (077)
894 (.069)
9588 (.0391)
9901 (.0104)

.803
807

(089)
(.089)
810 (.088).
882 (075)
9576 (.0413)
9903 (.0102)

33

3.057 (0.295)
3.057 (0.297)
3.055 (0.297)
3.057 (0.427)
3.072 (0.625)
3.106 (0.842)

5.611 (0.593)
5.611 (0.623)
5.611 (0.644)
5.680 (0.697)
5.785 (0.804)
6.00 (1.03)

1.766 (0.274)
1.770 (0.271)
1.758 (0.288)
1.755 (0.412)
1.758 (0.634)
176 (0.88)

-1.14
-1.14
-1.15
-1.25
-1.35
-1.32

(1.06)
(1.07)
(1.09)
(1.58)
(2.36)
.97

5.66

5.6
6.2
6.7
74

5.9
6.2
5.8
6.0
6.0
59

s.d.

3.5)
(3.5)
3.5
(3.7
(3.70)
(4.26)

- (1.94)

(1.74)

Q:90)

(19
(1.82)
(1.87)

(3.65)
3.7
(3.5)
3.9
(4.0)
4.3)

(3.3

G.6
3.5)
(3.5)
(37
38)



P.O.R. in favor of

pi=1 Nexts
Consumer prices
=-11/12 1.67x1032.99735
=-3/4 5.3x102 3.9827
s=0 133. 9.530
s=9 14.8 2716
=29 5.24 2.44
$=99 2.34 1.437
Velocity
s=-11/12 2.8x162 2.9807
s=-3/4 91. 3.887
5= 21. 7.29
s= 3.0 1.78
s=29 1.62 1.26
=99 1.25 1.060

Table 2 (continued)

P1 x100 v
Mean s.d. Mean s.d. Mean s.d.
9945 (.0047) 1.103 (0.631) 2,67 (1.14)
9946 (.0045) 1.093 (0.608) 270 (1.15)
9949 (0044 1.12 (0.62) 2.59 0.99)
9949 (.0044) 1.119 (0.630) 2.67 (1.09)
9949 (0044) 1.12 (0.63) 278 (1.27)
9962 (0034) 117 0.67) 251 (1.06)
9621 (.0293) -0.963 (0.400) 78 (4.5
- .9628 (.0287) -0.966 (0.392) 72  (3.8)
9623 (.0288) -0.970 (0.386) 77 44
9688 (.0257) -0.967 (0.418) 7.8 (4.3)
9779 (0199) -0.931 (0.456) 80 (4.6)
9910 (.0093) -0.856 (0.541) 73 (@1

*For the posterior odds ratios and posterior expectations, at most the rightmost digit is
uncertain because of the innacuracy of the numerical approximation, as indicated by the
numerical standard error which was computed but is not reported here.



Key to Figures 1 through 18

These figures each have four panels. The upper right panel and the two lower panels each
present a prior density (thin line) and a marginal posterior density (heavy line) for the
parameter indicated on the horizontal axis. All of these densities are proper.and normalized,
i.e., they integrate to one. The upper left panel presents highest posterior density regions
for the joint distribution of the trend coefficient, 3, and the autoregressive coefficient, pj.
The correspondence between the numbered contour lines and the probabilities for this panel
is as follows.

- Interior(s) of contour line(s) numbered -- has posterior probability --
1 99
2 95
3 90
4 75
5 .60
6 40
7 25
8 10
9 .05

10 .01
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Figure 2
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Figure 4
Posterior Densities for Nominal GNP, s =0
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Figure 5
Posterior Densities for Nominal GNP, s=9
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Prior and posterior densiues

Figure 6
Posterior Densities for Nominal GNP, s =29
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Figure' 7
Posterior Densities for Real per capita GNP, s =0
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Figure 8
Posterior Densities for Real per capita GNP, s =9

Real Per Capita GNP, 8 = 9
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Figure 10
Posterior Densites for Unemployment, s =0
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Prior and posterior densities
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Figuré.' 11
Posterior Densities for Unemployment, s =9
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Figure 12

Postertor Densities for Unemployment, s =29

Unemployment Rate, 8 = 29
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Posterior Densities for Consumer prices, s =0

Consumer Prices, 8 = 0
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Figure 14
Posterior Densities for Consumer prices, s=9
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Figure< 15
Posterior Densities for Consurmer prices, s =29

' Consumer Prices, 8 = 29 w0 Consumer Prices, s = 29
0.M2 — o7 -
4 B
&< 0005 -1 im -
4 i |
¥
] i
ST — zs —
] ] —
0.97 ——T T T 7T T T T T T ¢ T 1 0o T T T T T 5 T 1 T 71T
-100 20.0 ®D 500 -108 &0 VI =0 80
-
? [
Consumer Prices, s = 20 o8 Consumer Prices, s = 29

Prior and posterior denxilies

- 50



2.0

Prior and postorior densilies
s

Posterior Densities for Velocity, s =0

Velocity, s = 0

Figure 16
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Figure 17
Posterior Densities for Velocity, s=9
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