Discussion Paper 66

Institute for Empirical Macroeconomics
Federal Reserve Bank of Minneapolis
250 Marquette Avenue

Minneapolis, Minnesota 55480-0291

June 1992
SOLVING NONLINEAR DYNAMIC MODELS
ON PARALLEL COMPUTERS
Wilbur John Coleman IT*
Board of Governors of the Federal Reserve System
ABSTRACT

This paper describes an algorithm that takes advantage of parallel computing to solve discrete-time
recursive systems that have an endogenous state variable.

*] wish to thank Raymond Board, Larry Christiano, Jon Faust, Christian Gilles, William Helkie, and
Peter Tinsley for helpful comments, and the Institute for Empirical Macroeconomics for the use of
their facilities. This paper should not be interpreted as reflecting the views of the Board of Gover-
nors of the Federal Reserve System or its staff.

Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors
and not necessarily those of the University of Minnesota, the Federal Reserve Bank of Minneapolis,
or the Federal Reserve System.

Introduction

The last decade has witnessed a remarkable increase in the economic profession's
interest in solving complex dynamic general equilibrium models. Of particular note is the
recent interest in studying models that contain some sort of heterogeneity: even the simplest
of these models can become very complex very fast (see, e.g., Lucas (1980), Scheinkman and
Weiss (1986), Aiyagari and Gertler (1990), Imrohoroglu and Prescott (1991), and Coleman
(1992)). Recent efforts devoted to developing the technology to solve these models has
concentrated on developing algorithms (see, e.g., Taylor and Uhlig (199()), while
comparatively little effort has been devoted to implementing these algorithms on the most
advanced parallel computers available. To use these machines efficiently is not as
straightforward as simply compiling existing code on them, as their efficient use requires that
the code be specifically structured for parallel execution.2 This paper describes an algorithm
for solving nonlinear dynamic models that can be programmed with the structure necessary for
efficient execution on parallel computing systems. The effect of being able to use these
systems is to enlarge significantly the class of models than can feasibly be solved.

The class of nonlinear dynamic models this algorithm is designed to solve consists of
discrete-time recursive systems that may have an endogenous state variable. The first section
of this paper provides a general characterization of these systems, which is used to define a
particular nonlinear operator for which the system's solution is a fixed point. This operator is

used to define a sequence of functions that is assumed to converge to an equilibrium. For our

ZIndeed, a common experience at the Institute for Empirical Macroeconomics is for someone to
choose to run their program on a fast serial mainframe after being disappointed with the
performance of the same program on the CRAY X-MP supercomputer.

2

purpose, computing this sequence involves many independent and identical calculations and
thus forms a natural set-up for parailel computing. The particular implementation of this
algorithm, however, depends on what type of paraliel system is used. There are essentially
two types: (1) a single-instruction multiple-data (SIMD) computer, such as a CRAY X-MP
supercomputer, or (2), a multiple-instruction multiple-data (MIMD) computer, such as an Intel
iPSC/860 hypercube.3 A more readily available alternative that can approximate an MIMD
computer 15 a network of stand-alone workstations. This paper briefly describes the defining
characteristics of both SIMD and MIMD systems, and then describes versions of the algorithm
that are optimal for each system.

This paper is organized as follows. First, the nonlinear operator and associated
sequence of functions are defined. This section is followed by an example, and then by a brief
discussion on how to approximate these sequences on a digital computer. Implementations of
this algorithm are then considered for both SIMD and MIMD computers, and performance

results based on an example are presented. These sections are followed by some concluding

remarks.

The Nonlinear Operator

Let z, denote a vector of exogenous state variables at time . Assume the law of

motion for z p is Markovian and can be written as

2y = F(2p8),

where €41 consists of 1id random variables drawn from a distribution . Let X, denote a

vector of endogenous state variables and let u, denote a vector of control variables (i.e.,

3In this terminology, the standard serial computer is a single-instruction single-data (SISD)
computer.

variables chosen by economic agents, or variables, such as prices, that are set such that

markets clear), which evolve according to

Xp1= g(xr,zt,ut), U, = h(xt,zr).
The functions f and g are given, and the task at hand is to find a control function % that
satisfies a set of equilibrium conditions.

For many problems these equilibrium conditions can be written as

POpzpt) = JQG, 112, ity PRIGE,),

where X, z, and u evolve according to g, f, and % respectively. Using these equilibrium
conditions, and the laws of motion specified above, given a coatrol function /4 define the

control function Ak such that

1) Plx.z,(AR)(x,2)] = [Q1 glx,2,(AR)(x,2)).f (2.8), Al g (x,2,(Ah) (x,2)),f (2,€)]} p(de).

An equilibrium control function is a fixed point A = A(h) of the nonlinear operator A. For
this paper assume that A is well defined and that Gauss-Seidel iterations based on A (i.e.,

h = A(hn), n2z, hO given) converge to a fixed point of A. Some examples where these

n+l
properties are worked out theoretically can be found in Lucas and Stokey (1987), Coleman

(1991,1992), Greenwood and Huffman (1992), and Coleman, Gilles, and Labadie (1992).
An Example

As an example, consider the Brock-Mirman (1972) Stochastic Growth Model with

serially correlated productivity shocks. In this model z represents the productivity shock, x

represents the capital stock, and u represents consumption. The function /A(x,z) thus

represents the consumption function, and for the gross production function F(x,z) the function
glx.z,u) = F(x,z) - u

represents the capital accumulation function. Also, P(x.z,u) equals the marginal utility
function, say M(u), and Q(x,z,u) equals discounted marginal utility times the marginal rate of

transformation, say BM(u)Fx(x,z), so that (1) becomes

MIAR)x,2)] = BIM{hlg(x.z,(AR)(x,2)fz. €)1} F 8062, (AR)(x,2)) f(z,€))](dE).

This condition simply states that, at the equilibrium, households are indifferent between

consuming or investing an additional unit of output.
Approximating the Equilibrium on a Computer

Consider the following way to approximate a fixed point of A that is suitable for a
computer, First, define a grid D = ((xl.,zj), i=1,., . j=1.., nz). Second, define the
finite-dimensional set H D in which a typical element is a function / that consists of values
on the grid D along with an interpolation rule to compute the values off the grid. Third,
approximate the integral in (1) by a quadrature rule with =» € points £ and weights Wy
((e ,wk), k=1, n E))' Given an initdal function hO e H,, compute hl on the grid D such
that

n
E

(2) P[xljzj’hl(xl,zj)] =k51 Q[g(xl,zj,hl(xl,Z_])),f(z_]’ek)’ho(g(xl’zf,h1(xl’zj))’f(z‘]’£k))jwk

for i=1,.., s F=1.. . Compute values of hl off the grid according to the interpolation
rule, so that h1 € Hp. In this way a sequence {hn] is computed.4 Note that computing hl
evaluated at the grid point (x",z") is independent of computing hy evaluated at any other
grid point (x",z"). This feature allows the above algorithm to be structured so that it takes

advantage of parallel computing systems.
MIMD Computers

An MIMD computer can be thought of as a collection of processing elements (PEs) and
a network over which they can communicate (and thereby cooperate) with each other. Some
examples of a network are a ring in which each PE communicates with its two closest
neighbors, a completely connected network in which each PE communicates with all other PEs,
and a star with one central PE to which all other PEs are connected. Each PE has access to
private memory and may also have access to memory shared by each of the PEs. It is
important to note that in developing an MIMD computer the chief technological problem is
inventing an efficient network. Substantial communication between the PEs, their competition
for shared memory and the attention of a controlling PE can all contribute to a network
bottleneck. Almasi and Gottlieb (1989) present a thorough and authoritative treatment of these
issues.

The star configuration seems optimal for solving the models described here. With this
configuration, refer to the controlling PE and associated memory as the master PE and the
remaining PEs with associated memory as the slave PEs. In the context of this paper, each
slave PE loads the section of the program that computes hl(xi’zj) for a given function h()
and grid point (xi,zj). The program running on the master PE initializes /10, sends it to each

of the slave PEs (or places it into shared memory), and then sends each slave PE a different

4For the Stochastic Growth Model, Coleman (1990) describes this procedure in more detail.

value (or group of values) of the state vector (xl.,zj). A particular slave PE receives (xi,zj),
computes hl(xi’zj)’ and sends the answer back to the master PE, which immediately sends
another value of the state vector to this slave PE. In this way all the slave computers are
always active in computing hl' Once an answer is received for all the values of the state
vector on the grid, hl is completely computed. The master PE stops if convergence between
hO and hl is achieved; otherwise it replaces h() by hl’ sends the new ho to all the slave

PEs, and starts anew in computing hl.
The Example, Continued

Consider solving the Stochastic Growth Model on a master-slave system. In particular,

in the notation above, suppose M(u) = u'r, t=.5 B=095 F(x,2) = A% + (1-0)x, a = .33, &

= .1; and suppose z evolves according to z’ = pz + & p = 95, € is drawn from a
Normal(O,o’2) distribution, ¢ = .1.5 Choose 50 evenly spaced grid points for the log of the
capital stock log x in the interval [-1,4]. Choose 20 evenly spaced grid points for z in the
interval [-1.5,1.5]. Choose 5 points in the Hermite-Gauss quadrature rule that approximates
integration with respect to the Normal distribution. Use a bilinear interpolation routine on the
log of hO. Given hO’ use a secant-based routine to solve for hl on the grid and suppose
convergence between hO and h; is obtained when the log difference between the two on the
grid is less than 10'6. Finally, initialize ho to ho(x,z) = 1F(x,2), y=1- af/(1 - (1-)éP),
which initializes & so that it gives the correct value at the steady states {one for each z) in
the corresponding deterministic model.

The configuration used to solve this model consists of three SUN Sparc-2 workstations

linked via Ethernet.¢ The software program PVM (paraliel virtual machine; see Beguelin, et.

5These parameter values (except for 8, which is set to 0) are used in Taylor and Uhlig (1990).
6Ethernet communicates at a speed of 10MB per second.

al., 1991) is used to configure this network into a master-slave system (although the physical
set-up looks nothing like a star). There is no shared memory in this configuration; all
communication is achieved through messages passed between PEs (i.e., workstations). Table 1
reports the performance of this configuration when the slave PEs compute hl for 100 values

of the state vector at a time.

Table 1

Time to Solve the Stochastic Growth Model on a Master-Slave System

no. of SUN Sparc-2s7 elapsed time (in seconds)?
1 41
2 20
3 15

As Table 1 shows, for relatively few workstations the speed of the algorithm is roughly
linear in the number of workstations. That is, twice the workstations resuits in twice the speed
(half the time). Since each workstation computes one-tenth of hl at a time (100 grid points
out of 1000), we should expect this linear dependence to continue up to ten workstations.
Beyond that each workstation must receive a smaller fraction of the total number of grid
points. This leads to an increase in overall communication time (due to overhead in sending a
message), and thus we should expect some degradation in performance when more than ten

workstations are used. Many problems, however, require a grid consisting of 100,000 points

"When more than one workstation is used the host workstation acts as both the master PE and
one slave PE. When one workstation is used the PVM program is not used.

8Elapsed time refers to the difference in the time on a clock from when the program was
submitted to when it finished. During this time there were no other users on the system.

90n the other hand, if the workstations ran at different speeds or had varying degrees of excess
capacity, then reducing the number of grid points sent to each workstation would allow the
master workstation to allocate more of the load to the faster workstation (you would like all
the workstations to be done at the same time). This may even reduce the elapsed time to run
the program. In this case there is some tradeoff between communication costs and load
balancing.

(or more); based on this example we should then expect the speed to be linear in the number
of workstations for even rather large numbers of workstations.10 Also, if the time to compute
h1 for a single grid point is fairly long then the communication time becomes relatively less
important, and here again we should expect the speed to be linear in the number of

workstations for large numbers of workstations.

SIMD Computers

An SIMD computer should be thought of in a much different way than an MIMD
computer. An SIMD computer consists of an array of processing elements that operate on
different data, but at any moment in time they all must execute the same instruction. In this
way all the processing elements are always in perfect synchronization, thus avoiding the
networking difficulties encountered in building an MIMD computer. This feature is achieved,
however, at a cost of demanding much more structure on the program to exploit this
capability.

For the purposes of this paper it helps to simply think of an SIMD computer as
executing, subject to some restrictions, the innermost DO loops in a FORTRAN program a
certain number of blocks at a time. By number of blocks I mean that a 64-processor computer
executes these loops 64 blocks at a time, so that 640 iterations through the loop only takes 10
executions. This feature is referred to as vectorization. For vectorization to occur there are a

variety of restrictions (although not without exception) that an innermost DO loop must satisfy,

10Think of solving a version of Lucas' (1980) continuum-household medel with a serially
correlated monetary growth rate. Suppose we approximate the distribution of money across
households by a four parameter family, then a typical household's state vector consisis of its
money holdings, the monetary growth rate, and the four parameters of the distribution. If the
grid consists of twenty values for money, and five values for each of the remaining five state

variables, then the total grid size is 20*55 = 62,500. If this problem took fifty hours to solve
on one workstation (probably not feasible), it would take five hours to solve on ten
workstations (which can be solved overnight). It seems reasonable to say that many academic
departments have access to at least ten workstations.

10

and I will only list four of them here.1l First, there must exist a least one vector on the left
side of an equal sign. Second, the index for this vector must increment by a constant amount
after each iteration through the loop. Third, there can be no calls to a subroutine within the
loop. And fourth, there can be no conditional jump out of the loop. For this paper the last two
restrictions pose the moét difficuity.

As the largest loop usually consists of the one which loops over the grid D, to
vectorize this algorithm efficiently requires placing this loop inside all others. In this context
the loop is executed n o times, and hl (or any other function e¢valuated at each grid point)
is the vector on the left side of an equal sign. The effect of being able to vectorize these loops
is to compute hl = A(ho) n, blocks at a time, where n, is the number of processors an
SIMD computer has. Understanding how this is achieved requires going into a bit more detail
concerning how hl is computed.

Computing hl requires solving the system of equations (1) for each value of the state
vector on the grid D. To be specific, suppose hy(x.z2) is computed via Newton's algorithm.
Let T(é;x,z,ho) represent the right side minus the left side of eq. (1) for an arbitrary guess &

of hl(x,z):

T(ﬁ;x,z,ho) = JQ(g(x,2,6).f (2,8),h0[g(x,z,§),f (z,©)] u(de) - P(x,2,8).
The solution hl(x,z) satisfies T[hl(x,z);x,z,hol = (). Denote the derivative of T with respect
to & as Tl(é;x,z,ho). Given a guess hi(x,z) for the root hl(x,z) corresponding to the state

(x,z), the new guess h;(x,z) satisfies

T[hi(x,z);x,z,ho] + Tl[hi(x,z);x,z,ho][h']'(x,z) - hi(x,z)] =0.

11See CRAY-2 Computing, Introduction to (1988) for more details.

11

Suppose, also, that the derivative Tl is approximated by a finite difference. The core of the
program consists of the following steps: (i) begin with hi(x,z), (ii) evaluate T[hi(x,z);x,z,ho]
and T1 [hi(x,z);x,z,hO], and (iii) compute h‘l‘(x,z). An efficient vectorization of this algorithm
is then such that h{ is computed n blocks at a time. Specifically, an evaluation of
T[hi(x,z);x,z,ho] is performed n, blocks at a time, and given T[hi(x,z);x,z,ho] and
T1 [hi(x,z);x,z,ho], hi is computed n, blocks at a time. To satisfy the restriction that there
be no conditional jumps out of the innermost DO loop, solving for hi(x.z) for n, values of
the state vector requires that convergence be obtained for a/l these values before proceeding to
the next block.

For a given vector hi, evaluating T[hi(x,z);x,z,ho] n, blocks at a time is fairly
straightforward. As evaluating T usually involves an additional loop over n e that represents
the quadrature formula, one must place the loop over nn, inside the »n ¢ 1oop. This simply
involves looping over the conditioning information set for every possible transition to a state
next period. Also, the interpolation routine must be placed in-line to satisfy the restriction that
there can be no calls to a subroutine within the innermost loop. This is usually no problem for
simple interpolation routines such as piecewise multilinear interpolation over a uniform grid.

For a given state (x,z), denote the dimension of the control vector h(x,z) by n I If
the dimension n, is at most two then given T[hi(x,z);x,z,ho] and Tl[h{(x,z);x,z,ho] it is
fairly straightforward to compute h] within the loop over n n, (it is easy 10 invert a 2x2
matrix). If the dimension is greater than two then computing h'l’ requires solving a system of

linear equations

My =by,

for each n, where Mn and bn vary over the loop counter n = 1,..., nn, (yn corresponds to
h;(x,z) - hi(x,z), Mn corresponds to Tl[hi(x,z);x,z,ho], and bn corresponds to

-T[hi(x,z);x,z,ho]). The routine based on LU factorization of Mn to solve for Y, involves a

12

rather complicated nesting of loops and thus is not well-suited for vectorizing this problem.
An alternative is to use an iterative method to compute Yy such as the successive
overrelaxation (SOR) generalization of Gauss-Seidel's method,!2 and placing the loop for this
iterative procedure outside the one over n M. Gauss-Seidel's iterative method for solving a
system of linear equations involves writing Mn as the sum of its strictly upper triangular
portion, say Un’ and its lower triangular portion plus the diagonal entries, say Vn, so that Mn

= Vn + Un' Starting from a given y;l, the next guess y;; is computed according to

V= Ut by

Since the upper triangular portion of Vn consists of zeros, y;; can be easily computed
recursively. The SOR method involves writing Vn as the sum of its strictly lower triangular
part, Ln’ and its diagonal entries, Dn’ so that Vn = Ln + Dn. Then for a given w, the next

guess y;; is computed according to
D, + 6L)y ={(1-0)D - oU Iy’ + b .

For w=1 this method reduces to the Gauss-Seidel method. The optimal choice of @ is the
one which makes the largest eigenvalue of (DM + aJLn)°]((1—w)Dn - coUn) as small as
possible, but except for certain special cases the eigenvalues and optimal choice for @ cannot
be obtained explicitly. (Furthermore, expect for special cases one cannot guarantee
convergence to the solution yn.) It can be shown, however, that a necessary condition for

convergence is 0 < o < 2,13 and for a large class of matrices MM the optimal choice for ® is

128ee Young (1971) for a discussion of this method. The SOR method was developed to handle
very large linear systems, but as argued here it may work well in solving on a vector processor
a large number of small linear systems.

13The product of the eigenvalues of the n oy matrix (D+coL)'1{(1-w)D—wU], say H}Ll., is
equal to its determinant. Recall that the determinant of a product is the product of the

13

between 1 and 2.14 In practice, before computing a good approximation to the equilibrium
one usually experiments with the algorithm while computing a fairly crude approximation, and

during this experimentation phase one could try a few values of .

The Example, Continued

Consider again the Stochastic Growth Model along with the parameter values presented
above, but now as executed on a CRAY X-MP vector processor. Although not strictly correct,
think of this configuration as one in which n, is about eight.15 Table 2 reports performance
statistics for this set-up. Serial code refers to code written for efficient execution on a serial

computer, vector code refers to code written for efficient execution on a vector processor,

determinants, and the determinant of a triangular matrix is the product of the diagonal

n
elements, so Hli = (1-w) h. Thus, max(/”Li) < lonlyif 0< <2, and convergence of the
SOR iterations requires max(ll.) < 1.

14§ee Young (1971, ch. 6).

15The CRAY X-MP approximates vectorization through pipelining. See Almasi and Gottlieb
(1989) for a detailed discussion of pipelining. To briefly describe pipelining, a floating point
operation takes a certain number of steps (i.e., clock cycles, which are usvally between 6 and
10) to execute. Instead of executing all these steps before proceeding to the next floating point
operation, pipelining executes these steps on a vector in lock-step fashion: the first step in the
second floating point operation is performed at the same time as the second step in the first
floating point operation, and so on. The CRAY X-MP has 64 registers of high speed memory
that stores the vector which is pipelined. A true 64-processor SIMD computer would execute
all 64 floating point operations at the same time. As pipelining economizes on hardware, it is
evidently a cost-effective alternative to a true SIMD computer.

If a floating point operation took 8 clock cycles, then aside from start-up time a true
64-processor SIMD computer would take 8 clock cycles to process each vector of length 64,
On the other hand, aside from start-up time a pipelined SIMD computer would take 64 clock
cycles, which is equivalent to what a true 8-processor SIMD computer would take. This is
what led me to set n, = 8, but the start-up time to process vectors on a true §-processor SIMD

computer is likely to be significant, so n, should probably be a bit higher.

This discussion actually pertains to each processor the CRAY X-MP has, and the
CRAY X-MP has four processors. Strictly speaking, then, it is more accurate to say the
CRAY X-MP is a 4-processor MIMD computer that approximates an SIMD computer on each
processor. The MIMD capability of the CRAY X-MP is not used in this paper, although the
results of the first part of this paper suggests that both the MIMD and SIMD features of the
CRAY X-MP can be exploited--even at the same time.,

14

serial CRAY refers to the CRAY X-MP with vectorization turned off, and vector CRAY refers
to the CRAY X-MP with vectorization turned on. Code explicitly tailored to the CRAY X-MP
vector processor ran five times faster than code written for a serial computer (.5 seconds versus
2.6 seconds). Although not overwhelming, this is an appreciable gain in speed. Note also that
simply compiling existing code written for a serial computer did not take advantage of the

VECLOT Processor.

Table 2

Time to Solve the Stochastic Growth Model on a Vector Processor

’

set-up execution time (in seconds)16
serial code, serial CRAY 2.60
serial code, vector CRAY 2.60
vector code, serial CRAY 5.00
vector code, vector CRAY 0.47

Solving the Stochastic Growth Model did not require using the successive
overrelaxation method to solve a system of linear equations (because » h= 1). To get an idea

of the efficiency of the SOR method, consider solving

2-1 0 X 1
'1 2 ‘1 xz = 1 -
0-1 2 X3 1

Table 3 compares solving this system 6400 times on the CRAY X-MP using two different

methods. The first method is LU factorization as programmed in Press, et. al., (1988). The

16Execution time refers to the time the CRAY X-MP spent executing the program on one of its
four processors (the other three processor were not used).

15

second method is SOR with various values of @ (starting with the guess x = (1,1,1);17 note
that the solution 1s x = (1.5, 2.0, 1.5)). Convergence of the SOR method was said to obtain if
successive iterations were within 10‘6 of each other in the sup norm. As can be seen in this
table, solving the system using the SOR method with a good choice of @ (@ = 1.2) is thirty
times faster than the LU factorization method (.017 versus .480 seconds). Since the execution
time for the SOR method depends on the initial guess of the solution, it is difficult to know
how much of the increase in speed to attribute to vectorization and how much to attribute to a
good tnitial guess. Note, however, that the SOR method with vectorization turned on is seven
times faster than when vectorization is turned off (017 versus .123 seconds). Using the SOR
method in this way thus can take advantage of vectorization, and it may thus significantly

increase the speed in solving models for which » p2 3.

Tabie 3
Time to Solve a 3x3 Linear System 6400 Times on a Vector Processor

LU factorization versus the SOR method

method execution time (in seconds)
LU factorization, vector CRAY 480
SOR, w = 1, vector CRAY 036
SOR, w= 1.1, vector CRAY 028
SOR, @ = 1.2, vector CRAY 017
SOR, o= 1.3, vector CRAY 023
SOR, w= 1.2, serial CRAY 123

17In solving a particular linear system while computing hn +1° with the SOR method you can
start with a guess of the solution equal to the corresponding solution after computing hn.
After the first couple of iterations of [hn} these guesses should be reasonably accurate, so the

SOR method may even dominate the LU factorization method on a serial computer (for both
small and large » h)‘

16

Concluding Remarks

Parallel computing is an emerging technology that may make it feasible to solve
models we would not have dreamed of solving a decade ago. Whether this technology
delivers, say, a thousand-fold increase in speed over the next decade depends on both
technological innovations and on the existence of applications that can take advantage of this
technology. Indeed, given that the efficiency of an MIMD or SIMD computer depends on the
application run on these systems, the success of a technological innovation depends every bit
as much on these applications. In this light, this paper shows that a large class of models in
economics can use this technology, even in the state we see this technology embodied in

current hardware,

References

Aiyagari, Rao S. and Mark Gertler (1990): "Asset Returns with Transactions Costs and
Uninsurable Individual Risk: A Stage Il Exercise,” working paper, C.V. Starr Center
for Applied Economics, 90-43, New York University.

Almasi, George S. and Allan Gottlieb (1989): Highly Parallel Computing, The
Benjamin/Cummings Publishing Company, Redwood City, California.

Beguelin, Adam, Jack Dongarra, Al Geist, Bob Manchek, and Vaidy Sundaram (1991): "A
Users' Guide to PVM: Parallel Virtual Machine,” working paper, Oak Ridge National
Laboratory, Oak Ridge, Tennessee.

Brock, William A. and Leonard J. Mirman (1972): "Optimal Economic Growth and
Uncertainty: the Discounted Case,” Journal of Economic Theory, 4, 497-513,

Coleman, Wilbur John II (1990): "Solving the Stochastic Growth Model by Policy-Function
Iteration,” Journal of Business & Economic Statistics, 8, 27-29.

(1991): "Equilibrium in a Production Economy with an Income Tax,"
Econometrica, 59, 1091-1104.

(1992): "Precautionary Money Balances with Aggregate Uncertainty,” working
paper, Board of Governors of the Federal Reserve System.

Coleman, Wilbur John II, Christian Gilles, and Pamela Labadie (1992): "The Liquidity
Premium in Average Interest Rates,” working paper, Board of Governors of the Federal
Reserve System.

17

CRAY-2 Computing, Introduction to (1988). Minnesota Supercomputer Center, Minneapolis,
Minnesota.

Greenwood, Jeremy and Gregory W. Huffman (1992): "On the Existence and Uniqueness of
Nonoptimal Equilibria in Dynamic Stochastic Economies,” Research Department Staff
Report, 151, Federal Reserve Bank of Minneapolis.

Hildebrand, F. B. (1956): Introduction to Numerical Analysis, New York, McGraw-Hill.

Imrohoroglu, Ayse and Edward C. Prescott (1991): "Evaluating the Welfare Effects of

Alternative Monetary Arrangements,” Federal Reserve Bank of Minneapolis, Quarterly
Review, 15, 3-10.

Lucas, Robert E., Jr. (1980): "Equilibrium in a Pure Currency Economy,” Economic Inquiry,
28, 203-220.

Lucas, Robert E., Jr. and Nancy L. Stokey (1987): "Money and Interest in a Cash-In-Advance
Economy,"” Econometrica, 55, 491-513.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling (1988):
Numerical Recipes, Cambridge University Press.

Scheinkman, Jose A. and Laurence Weiss (1986): "Borrowing Constraints and Aggregate
Economic Activity,” Econometrica, 54, 23-45.

Stroud, A. H. and Don Secrest (1966): Gaussian Quadrature Formulas, New Jersey,
Prentice-Hall.

Taylor, John B. and Harold Uhlig (1990): "Solving Nonlinear Stochastic Growth Models: A
Comparison of Alternative Solution Methods,” Journal of Business and Economic
Statistics, 8, 1-17.

Young, David M. (1971): Iterative Solution of Large Linear Systems, New York, Academic
Press.

Appendix
This appendix contains some of the programs, data, and sample output that are used in
the text. Some additional programs to simulate the Stochastic Growth Model are also

included. These files are available on diskette from the author.

Short description of the files:

sgm.txt - Contains a description of the program sgm.f.

sgm.f - FORTRAN program that solves the Stochastic Optimal Growth Model.

hermit.f - Subroutine called by sgm.f that computes Hermite-Gauss quadrature points
and weights.

sgm.dat - Data read by sgm.f.

tpath.f - FORTRAN program that simulates time paths using the solution computed by
sgm.f.

gasdev.f - Subroutine called by tpath.f that returns Normal(0,1) random variates.

smpl.out - Sample output from sgm.f and tpath.f using sgm.dat.

vsgm.f - version of program sgm.f that is written for a vector processor.

vsgm.dat - Data read by vsgm.f.

18

19
File: sgm.txt.

The FORTRAN program sgm.f solves the Stochastic Optimal Growth Problem using
the algorithm outlined in Coleman (JBES, 1990). The problem is to solve for the
fixed point ¢ = A(c), where A is defined by

u’[(Ac)(x,z)] = beta*E{u’[c(E(x,2)-(Ac)(x,2),z')E' (£(x,z)-(Ac) (x,Z),2')},

u'(c) = c¥*(-tau), f£(x,z) = exp(z)*x**alpha + delta*x,

z' = rho¥z + q, q distributed Normal(0,sigma#*%2}.

This note defines the program’s variables and outlines the program’s flow.

Definition of Variables:

nx number of grid peints for the capital stock x.

xmin smallest grid point for the log of the capital stock.

Xmax largest grid point for the log of the capital stock.

X vector of length nx containing equally spaced grid points from
xmin to xmax for the log of the capital stock.

nz number of grid points for the productivity shock z.

zmin smallest grid point for the productivity shock.

Zmax largest grid point for the productivity shock.

z vecor of length nz containing equally spaced grid points from
zmin to zmax for the productivity shock.

ngq number of quadrature points for q used to approximate integration
with respect to the Normal(0,sigma**2) distribution.

qz vector of length nq containing the quadrature points for q.

qw vector of length nq containing the gquadrature weights for q.

azpe matrix of dimension nq by nz which equals alpha*exp(rho*z(i)+qz(j)).

kzp matrix of dimension nq by nz containing values such that z(ksp(i,jin
is the nearest grid point z less than rho*z(i)+qz(j).

tz matrix of dimension nq by nz containing the distance (between 0 and 1)
to the nearest grid point greater than rho*z(i)+qz(]j).

f matrix of dimension nx by nz that equals production at the grid pnts.

cpm matrix of dimension nx by nz containing the log of consumption c at

the grid points at the beginning of each iteration. Consumption
off the grid points is determined using bilinear interpolation.
The consumption function is initialized such that cpm(i, j)

1s correct at the "deterministic steady state" for each z, and
equals the same fraction of output for other capital stocks.

cim matrix of dimension nx by nz corresponding to the values determining
consumption after each iteration,

eps vector of length 2 containing the convergence parameters.

maxit limit imposed on the number of iterations.

Program Flow:

The main program loops over calls to the subroutine a, which succesively
computes cm = a(cpm). The program stops if em is within eps(2) of cpm. The
subroutine a uses a secant version of Newton’s algorithm to compute the root
cm(i,j) to the function in the subroutine zfun. A root is obtained if the
function in zfun is within eps(l) of zero. The function in zfun is the rhs -

lhs of the Euler equation at the top of this page. The solution em 1s written
te the file sgn.fun.

20

File: sgm.f.

¢
B T S P AN WP AR A Ay
¢ Program to solve the Stochastic Optimal Growth Model.
c Written by John Coleman (updated: April, 1992).
B £t T 23 2y TS L T MR TE R SR S A SR PRCHR (R R MR U PN S O S
C
implicit double precision {a-h,o-z)
dimension cpm(100,20),em(100,20),£(100,20),x(100),z(20),
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
common/pm/cpm,cm, £,x,z, azpe , kzp, tz,eps,qz,qw,beta, tau, alpha,delta,
* rho,sigma,xmin, dx,nx,nz,nq,maxit

c
write(¥,’(a35)') ' stochastic optimal growth model’
open(l0,file='gsgm.dat’)
read(10,*{10x,fl0.4)") beta,tau,rho,sigma,alpha,delta,eps,
* xXmin,xmax,zmin,zmax
read(10, ' (10x,1i10)') nx,nz,nqg,maxit
c
call hermit(ng,qz,qw)
scalez = sigma*dsqrt(2.040)
scalew = 1.0d40/dsqrt(3.141592654d0)
do 100 1 = 1, ng
qz(1l) = scalez¥®qz(i)
100 qw(i) = scalew*qw(i)
c
dx = (xmax-xmin)/dfleoat(nx-1)
dz = (zZmax-zmin)/dfloat(nz-1)
e

dape = 1.0d0 - alpha*beta/(1.0d0-(1.0d0-alpha)*delta*beta)
do 200 kx = 1, nx
200 ®{kx) = xmin + dfloat(kx-1)*dx
do 500 kz = 1, nz
z(kz) = zmin + dfloat(kz-1)#*dz
do 300 i =1, ng
zp = rho*z(kz) + qz(i)
azpe(i,kz) = alpha*dexp(zp)
kzp(i,kz) = 1 + dmax1(0.0d0, {zp-zmin}/dz)
if (kzp(i,kz}.ge.nz) kzp(i,kz) = nz-1
zr = zmin + dfleat(kzp(i,kz))*dz
300 tz(i,kz) = (zr-zp)/dz
do 400 kx = 1, nx

flkx,kz) = dexp(z(kz))*dexp(x(kx))**alpha + delta*dexp(x(kx))

400 cpm{kx,kz) = dlog(dape*f(kx,kz))
500 continue
c
sup = 1.0d410
do BOO numit = 1, maxit
call a
sup = 0.0d40

do 700 kz = 1, nz
do 600 kx = 1, nx
sup = dmaxl(sup, dabs(cm(kx,kz) -cpm(kx,kz)))
600 epm(kx,kz) = cm(kx,kz)
700 continue
write(6,'(al0,i5,al0,f10.4)’) 'a iter. #',numit, 'norm = ', sup
if (sup.le.eps(2)) goto 900
800 continue

21

write(*,’(a40)') ' maximum no. of iterations exceeded’
900 continue

c
open(ll,file='sgm.fun’)
write(ll,'(8£f15.6)"') ((em(kx,kz),kx=1,nx),kz=1,nz)
stop
end

¢

B T e TR VH MU T SR M SRR TR UR AR AL AU NN AU
subroutine a
c cm = a{cpm)
CREFA kA e dode e ok s s oot sk o e st s s e sk o e e ek e s e b st R o e ek
implicit double precision (a-h,o-z)
dimension cpm(100,20),cm(100,20),£(100,20),x(100),=z(20},
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
* rho,sigma,xmin,dx,nx,nz,nq,maxit
do 300 kz = 1, nz
do 200 kx = 1, nx
croot = dexp(cpm(kx,kz))
croot = dlog(croot/(f(kx,kz)-croot))
croot? = croot + eps{2)
call zfun(croot,kx,kz,zval)
call zfun{croot?, kx,kz,zval2)
if (dabs(zval2).lt.dabs(zval)) then
swap = croot
croot = croot?
croot? = swap
swap = zval
zval = zvall
zval2 = gwap
endif
do 100 numit = 1, maxit
adj = (crootl-croot)*zval/{zval-zval2)
if (dabs{adj).lt.eps(l)) goto 200
croot? = croot
zval? = zval
croot = croot + adj
call zfun{croot, kx,kz,zval)

100 if (dabs(zval).lt.eps(1)) goto 200
write(*,'(a40)') ' warning: max no. of iter. in z exceeded’
200 em(kx,kz) = dlog(f(kx,kz)/(1.0d0+dexp(-croot)))
300 continue
return
end
c

CHFFF R I K F Tk d otk T ok A d e R Rk sk s ek e sl e s ke e e e ko ok
subroutine zfun(ecroot,kx,kz,zval)
c input: state (kx,kz), guess croot. output: zval = rhs - lhs of foc
CHF AR ARk ek drtok Aol S A bk sk ok bt sk sk b s e s e e ek ek
implicit double precision (a-h,o0-z)
dimension cpm(lOO,ZO),cm(lOO,ZO),f(lOO,ZO),x(lOO),z(20),
* azpe(2l.20),k2p(21,20),tz(21,20),eps(2),qz(21),qw(21)
common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
* rho,sigma,xmin,dx,nx,nz,nq,maxit
¢ = £(kx,kz)/(1.0d0+dexp(-croot))
xpe = £(kx,kz) - ¢
xp = dlog(xpe)
kxp = 1 + dmax1(0.0d0, (xp-xmin)/dx)
if (kxp.ge.nx) kxp = nx-1

100

Xr = xmin + dfloat(kxp)*dx

tx = (xr-xp}/dx

w = 0.0d40

*
*
*

do 100 i = 1, ng
cp = tx*ez (i, kz)*epm(kxp,kzp(i,kz))
+ (1.0d0-tx)*tz(i kz)*cpm(kxp+l ,kzp(i,kz))
+ (1.0d0-tx)*(1.0d0-tz(1,kz))*cpm(kxp+l,kzp(i,kz)+1)
+ tx*(1.0d0-tz (i, ,kz))*cpm(kxp,kzp(i, kz)+1)
cp = dexp(cp)
dfxp = azpe(i,kz)¥*xpe**(alpha-1.0d0)+delta
w = w + cp¥*(-tau)y*dfxprqw(i)
zval = beta®w - c**(-tau)
return
end

22

File:

0000

hermit.f.

subroutine hermit(nn,x,a)
Computes nn points x and weights a for Hermite-Gauss quadrature
that approximates integration with respect to exp(-x#**2).
This program was copied from Stroud and Secrest, Gaussian
Quadrature Formulas, Prentice-Hall, 1966.
implicit double precision (a-h,o0-z)
dimension x(50),a(50Q)
eps = 1.04-10
fn = nn
nl =nn - 1
nZ = {(nn + 1)/2
ce = 1.7724538509%gamm(fn) /(2,0d0%*nl1)
s = (2.0d0*fn + 1.0d40)**0.16667d0
do 10 1 =1, n2
if (i-1) 10, 1, 2

¢ largest zero

Xt = s%%3 - 1,85575/s
goto 9
if ¢i-2) 10, 3, 4

second zero

Xt = xt - 1.14d0*fn**0. 42640/t
goto 9
if (1-3) 10,5,

¢ third zero

~ 0

e leRN-el

10

20

Xt = 1.86d0%xt - 0,.86d0%x(1)
goto 9
if (i-4) 10,7.,8

fourth zero

xt = 1.91d0*xt - Q.91d0*x(2)
goto 9

all other zeros

Xt = 2.0d0%*xt - x(i-2)

call hroot(xt,nn,dpn,pnl,eps)
x{i) = xt

a(i) = cc/dpn/pnl
ni-=nn-1+1

x(ni) = -xt

a{ni) = a(i)

continue

do 20 i =1, mn
x(i) = -1.0d0%*x(i)

return
end

subroutine hroot(x,nn,dpn,pnl,eps)
implicit double precision (a-h,o-z)
iter = 0

iter = iter + 1

call hrecur(p,dp,pnl,x,nn)

d = p/dp

X=x -d

if (dabs(d) - eps) 3,3,2

if (iter - 10) 1,3.,3

dpn = dp

return
end

subroutine hrecur{pn,dpn,pnl,x,nn)
implicit double precision (a-h,o-z)
pl = 1.0d0
p=x
dpl = 0.040
dp = 1.0d0
dolj=2, nn
fj =]
fj2 = (£j - 1.080)/2.040
q = x¥p - E£j2*pl
dq = x*dp + p - fj2*dpl
pl = p
P=4d
dpl = dp
dp = dq
continue
pn = p
dpn = dp
pnl = pl
return
end

double precision function gamm(x)

implicit double precision (a-h,o0-z)

gam(y) = ((({(((0.035868343d0%y - 0.193527818d0)*y
* + 0.482199394d0)*y - 0.756704078d40)*y + 0.918206857d0)*y
* - 0.897056937d0)*y + 0.988205891d0)*y - 0.577191652d0)*y + 1.0d0
zZ = X

if (z) 1,1,4

gamm = 0.0d0

write(2,%) =z

format(2x,1%arg error for gamma ,el5.6)

goto 14

if (z - 70.040) 6,1,1

if (z - 1.040) 8,7,9

gamm = 1,040

goto 14

gamm = gam(z)/z

goto 14

za = 1,040

z =12z - 1,0d0

if (z - 1.040) 13,11,12

gamm = za

goto 14

za = za%z

goto 10

gamm = za*gam(z)

continue

return

end

File:

beta
tau
rho
sigma
alpha
delta
epsl
eps?
xmin
xXmax
zmin
Zmax
nx
nz

nq
maxit
nt

sgm. dat,

.95
.50
.95
.10
.33
.90
.0d-8
d-4
1.0d0
4.0d40
-1.5d0

1.540
50
20

OO OQOO0OCOo

L

1000
16000

25

26

File: tpath.f.

c
CRFTRRRTARHREERTAT TR R AL T AT R dd R Ao b st e e d s ok ek b s sk e ki o
¢ Program to simulate time paths for the Stochastic Optimal Growth Model
B T o S SRRSO SRR W AEAE AR AnS
C
implicit double precision (a-h,o0-z)
dimension cm(100,20),eps(2),v(ﬁ),vmin(h),vmax(h),vmean(4),stdev(4)
character*8 vname(4)

data vname/’' x',’ z' K 'c(x,z)','f(x,z)'/

c
open(l10,file="sgm.dat’)
read(10, ' (10x,£10.4)") beta,tau,rho,sigma,alpha,delta,eps,
* xmin,xmax,zmin,zmax
read(10, ' (10x,i10)') nx,nz,nq,maxit,nt
open(ll,file="sgm. fun')
read(11,’' (8£15.6)') ((em(kx,kz),kx=1,nx),kz=1,nz)
dx = (xmax-xmin)/dfleat(nz-1)
dz = (zmax-zmin)/dfleoat(nz-1)

C

¢ *%*%*¥ initialize variables to compute summary statistics
nvars = 4
do 100 1 = 1, nvars
vmean(i) = ¢.0d40
vmin(i) = 1.0d10
vmax (i) = -1.0410
100 stdev(i) = 0.0d0
X8 = (xmin+xmax)/2.0d40
zs = (zmin+zmax)/2.0d0
Cc
¢ ¥¥** simulate time series of length nt
idum = -1
do 500 n =1, nt
¢ *%F%%k compute new values of variables
v(l) = xs
v(2) = zs
kx = 1 + dmax1(0.0d0, (xs-xmin)/dx)
if (kx.ge.nmx) kx = nx-1
Xr = xmin + dfloat(kx)*dx
tx = (xr-xs)/dx
kz = 1 + dmax1(0.0d0, (zs-zmin)/dz)
if (kz.ge.nz) kz = nz-1
zr = zmin + dfloat(kz)*dz
tz = (zr-zs)/dz
¢ = tx¥*tz¥em(kx,kz) + (1.0d0-tx)*tz*cm(kx+l,kz)
* + (1.0d0-tx)*(1.0d0-tz)*cm(kx+1,kz+1)
* + tx*(1.0d0-tz)*cm(kx, kz+1)
v(3) = ¢
c = dexp(c)
y = dexp(zs)*dexp(xs)**alpha + delta*dexp(xs)
v(4) — dlog(y)
¢ *¥*¥%% compille summary statistics
do 600 i = 1, nvars
viean(i) = vmean(i) + v(i)
if (v(i) .1t. vmin(i)) vmin(i)
if (v(i) .gt. vmax(i)) vmax(i)
600 stdev(i) = stdev(i) + v(i)#**2
¢ ¥¥%F* compute next period’'s values of the state variables

v(i)
v(i)

I

27
xs = dlog(y-c)
zs = rho*zs + sigma*pasdev(idum)
500 continue
C
¢ Wkddd compute summary statistics
do 800 1 = 1, nvars
vmean(i) = vmean(i)/dfloat(nt)
800 stdev(i) = dsqrt(stdev(i)/dfloat(nt)-vmean(i)**2)
c
write(#,'(/25%,a20)') 'summary statistics'
write(®,’'(/10x%,4al5)') (vname(i),i=1,nvars)
write(*,’'(/a8,4f15.4)*) ‘mean’, (vmean(i),i=1,nvars)
write(*,’'(a8,4f15.4)') 'min',(vmin(i),i=1,nvars)
write(*,'(a8,4£15.4)') 'max’,(vmax(i),i=1,nvars)
write(¥*,'(a8,4f15.4)') ’'sd’, (stdev(i),i=1,nvars)
return
end

File:

11

gasdev.f.

double precision function gasdev(idum)
Returns a Normal(0,1) random variate (idum < Q0 for first call).
This program was copied from Press, Flannery, Teukolsky, and

Vetterling, Numerical Recipies, Cambridge University Press, 1988.

implicit real*8 (a-h,o0-z)
data iset/Q0/
if (iset.eq.0) then
vl = 2,0d0*ranl(idum) - 1.0d0
v2 = 2.0d0*%ranl(idum) - 1.0d0
r = vl%%2 4 v2®%2
if (r.ge.l) goto 1
fac = dsqrt(-2.040*dlog(r)/x)
gset = vl*fac
gasdev = v2*fac
iset =1
else
gasdev
iset =
endif
return
end

gset

o

double precision funetion ranl({idum)
implicit real*8 (a-h,o0-z)
dimension r(97)
parameter (m1=259200,ial=7lh1,ic1=5h773,rml=l.OdO/ml)
parameter (m2=134456,1a2-8121,1c2=28411,rm2=1,0d0/m2)
parameter (m3=243000,1a3=4561,ic3=51349)
data iff ,0/
if (idum.1t.0 .or. iff.eq.0) then
iff =1
ixl = mod(icl-idum,ml)
ixl = mod(ial*ixl+icl,ml)
izx? = mod(ixl,m2)
ixl = mod(ial*ixl+iel,ml)
ix3 = mod(ixl,m3)
do 11 j =1, 97
ixl = mod(ial*ixl+icl,ml)
ix2=mod(ia2*ix2+ic2,m2)
r(j) = (dfloat(ixl) + dfloat(ix2)*rm2)*rml
continue
idum = 1
endif
ixl = mod(ial*ixl+icl,ml)
ix2 = mod(ia2*ix2+ic2,m2)
ix3 = mod{ia3*ix3+ic3,m3)
j=14+ (97%ix3)/m3
if (j.gt.97 .or. j.lt.l) pause
ranl = r(j)
r(j) = (dfloat(ixl) + dfloat(ix2)*rm2)*rml
return
end

28

File:

ORI I TV L T T T U U T

smpl.out.

stochastic optimal

iter.
iter.
iter.
iter.
iter.
iter,
iter.
iter.
iter.
iter.
iter.
iter.
iter.
iter.
iter.
iter.
iter.
iter.

mean
min
max
sd

HHHFH RN RERH

[T - R R Y

norm
norm
norm
norm
norm
norm
norm
norm
norm
norm
norm
nornm
norm
norm
norm
norm
norm
norm

1.1528
-.2480
2.8203

L4443

growth model

.0695
.0511
.0378
.0280
.0205
.0149
.0106
L0074
.0050
.0033
.0021
.0013
.0007
.0004
.0002
.0002
.0001
.0001

summary statistics

z

-.0069
~-1.1442
1.1893
.3218

c{x,z)

.1372
-1.2460
1.7877
.4386

f(x,z)

1.4619
.0658
3.1249
A428

29

30

File: wvsgm.f.

c

B T L T R S P U SR TR S SUUC U SO AU I
¢ Version of the program to solve the Stochastic Optimal Growth Model

c that is written for a vector processor computer.

c Written by John Coleman (updated: April, 1992).
CRAFRF Rk v e o de sk st ok Ak s ek e ke s e e ke sk b e e e e e e e e s o o

c
implicit double precision (a-h,o-z)
dimension cpm(2000),em(2000),£(2000),x(100),z(20),
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
common/pm/cpm,cm, f,x,z,azpe,kzp,tz,eps,qz,qw,beta, tau,alpha,delta,
* rho,sigma,xmin,dx,nx,nz,ns,nq,maxit, nvec

write(*,'(a35)’) ' stochastic optimal growth model’
open(10,file='vsgm.dat’)

read(10, ' (10x,£10.4)") beta,tau,rho,sigma, alpha,delta,eps,
* xmin,xmax,zmin, zmasx

read(10, ' (10x,i10}’) nx,nz,nq,maxit,nvec

ns = nx*nz

call hermit(nq,qz,qw)
scalez = sigma*dsqrt(2.0d40)
scalew = 1.0d0/dsqrt(3.1415926544d0)
do 100 i = 1, nq
gz(i) = scalez¥qz(i)
100 qw(i) = scalew*qw(i)

dx = (xmax-xmin)/dfleat(nx-1)
dz = (zmax-zmin)/dfloat(nz-1)

dape = 1,040 - alpha*beta/(1.0d0-(1.0d0-alpha)*delta*beta)
do 200 kx = 1, nx
200 ®{kx) = xmin + dfloat(kx-1)*dx
do 500 kz = 1, nz
z(kz) = zmin + dfloat(kz-1)+*dz
de 300 i =1, ngq
zp = rho*z(kz) + qz({i)
azpe(i,kz) = alpha*dexp(zp)
kzp(i,kz) = 1 + dmax1(0.0d0, (zp-zmin)/dz)
if (kzp(i,kz).ge.nz) kzp(i,kz) = nz-1
zr = zmin + dfloat(kzp(i,kz))*dz
300 tz(i,kz) = (zr-zp)/dz
do 400 kx = 1, nx
k = kx + nx*(kz-1)
f(k) = dexp(z(kz))*dexp (x(kx))**alpha + delta*dexp(x(kx))

400 cpm(k) = dlog(dape*f(k))
500 continue
c
sup = 1.0410
do 800 numit = 1, maxit
call a
sup = 0.0d0

do 600 k = 1, ns
sup = dmaxl(sup, dabs(cm(k)-cpm(k)))
600 cpm(k) = cm(k)

write(6,(al0,15,al0,f10.4)') 'a iter. #' ,numit, 'norm = ', sup
if (sup.le.eps(2)) goto 900

31

800 continue
write(*,'(a40)') ' maximum no. of iterations exceeded’
900 continue

c
c open(ll,file='sgm.fun’)
c write(ll, ' (8£15.6)') ({cm(k),k=1,ns)
stop
end
C

B U UM R NUSUSUARFUUN SO SUSCRE RS
subroutine a

c cm = a(cpm)

R Rk SRR e A R R ek ok R R ke R e A e e s A e v e s b oo
implicit double precision (a-h,o0-z)
dimension cpm(2000),cm(2000),£(2000),x(100),z(20),

* azpe(21,20),kzp(21,20),t2(21,20),eps(2),qz(21),qw(21)
dimension croot(2000),croot2(2000),2val(2000),zval2(2000)
common/pm/cpm,cm, £,%,z,azpe,kzp, tz,eps,qz,qw,beta, tau,alpha,delta,

* rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec
do 100 k = 1, ns

croot(k) = dexp(cpm(k)})
croot(k) = dlog(croot(k)/(£f(k)-croot(k)))
100 croot2(k) = croot(k) + eps(2)
call zfun(croot,zval)
call zfun(croot2,zvall)
do 200 k = 1, ns
if (dabs(zval2(k)).gt.dabs{zval(k))) goto 200
swap = croot(k)
croot(k) = croot2(k)
croot2(k) = swap
swap = zval(k)
zval(k) = zval2(k)
zval2(k) = swap
200 continue
nbk = 1 + (ns-1)/nvec
do 500 nk = 1, nbk
nl = 1 + {(nk-1)*nvec
n2 = min0{nl+nvec-1,ns)
do 400 numit = 1, maxit
conv = 0.0d0
znorm = (.0d0
cedir$ shortloop
do 300 k = nl, n2
adj = (croot2(k)~croot(k))*zval(k)/(zval(k)«zvalZ(k))
conv = dmaxl(conv, dabs(adj))
znorm = dmaxl(znorm, dabs(zval(k)))
croot2(k) = croot(k)
zval2(k) = zval(k)
300 croot(k) = croot(k) + adj
if (conv.lt.eps(2) .or. znorm.lt.eps(2)) goto 500
call zfuns(croot,nl,n2,zval)
400 continue
write(#*,’(a40}*’) ' warning: max no. of iter. in z exceeded’
500 continue
do 600 kK = 1, ng

600 cm(k) = dlog(f(k)/(l.0d0+dexp(~croot(k))))
return
end

c

C*********************************‘k'k**';’c*********‘:’c***********‘:’c***********

32
subroutine zfuns(croot,nl,n?,zval)
¢ input: state (kx,kz), guess croot. output: zval = rhs - lhs of foe
gFddddehed ek ke h kR R R A A AR R ks R R S st des sk e e s ek s ok keok
implicit double precision (a-h,o0-z)
dimension cpm(2000),em(2000),£(2000),x(100),2(20),
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
dimension croot(2000),2val{2000)
dimension ¢(2000),xpe(2000),kxp(2000),tx(2000),w(2000)
common/pm/cpm,cm, £,x,z,azpe, kzp,tz,eps,qz,qw,beta, tau,alpha, delta,
* rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec
cdir$ shortloop
do 100 k¥ = nl, n2
e(k) = £(k)/(1.0d0+dexp(-croot(k)))
xpelk) = £(k) - c(k)
xp = dlog(xpe(k))
kxp(k) = 1 + dmax1(0.0d40, (xp-xmin)/dx)
if (kxp(k).ge.nx) kxp(k) = nx-1
xr = xmin + dfloat(kxp(k))*dx
tx(k) = (xr-xp)/dx
100 w(k) = 0,0d0
do 300 1 = 1, ngq
cdir$ shortloop
do 200 k = nl, n2
kz = 1 + (k-1)/nx
11 = kxp(k) + nx*(kzp(i,kz)-1)
iz =411 + 1
i3 = 42 + nx
id = i3 - 1
cp = tx(k)*tz(i,kz)*cpm{il)
%* + (1.0d0-tx(k))*tz(i,kz)*cpm(i2)
+ (1.0dO-tx(k))*(l.OdO-tz(i,kz))*cpm(i3)
* + tx(k)*(1.0d0-tz(i,kz))*cpm(is)
cp = dexp(cp)
dfxp = azpe(i,kz)*xpe(k)**(alpha-1.0d0)+delta
200 w(k) = w(k) + cp*¥(-tau)*dfxprqw(i)
300 continue
cdir$ shortloop
do 400 k = nl, n2

*

400 zval(k) = beta*w(k) - c(k)**(-tau)
return
end

c

c

Cxannunﬁanxw*xrx““ﬁnl\ﬁnxﬂnKAJ\JSNK?ﬂ'x‘ﬁ'?\'ﬂnnx)cxnnnnxacxuxxwxﬁ“nnKAAKKKKK?;W‘Kﬁ

implicit double precision (a-h,o-z)
dimension cpm(2000),cm(2000),f(2000),x(100),z(20),
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
dimension croot(2000),zval(2000)
dimension c(2000),xpe(2000),kxp(2000),tx(2000),w(2000)
common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
* rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec
do 100 k = 1, ns
c(k) = £(k)/(1.0d40+dexp(-croot(k)))
xpe(k) = £(k) - (k)
Xp = dlog(xpe(k))
kxp(k) = 1 + dmax1(0.04d0, {(xp-xmin) /dx)
if (kxp(k).ge.nx) kxp(k) = nx-1
Xr = xmin + dfloat(kxp(k))*dx

tx(k) = (xr-xp)/dx
100 w(k) = 0,040
do 300 1 = 1, nq
do 200 k = 1, ns
kz = 1 + (k-1)/nx
il = kxp(k) + nx*(kzp(i,kz)-1)

i2 =il + 1

i3 = i2 + nx

i4 =13 - 1

cp = tx(kK)*tz(i,kz)*cpm(il)
* + (1.0d0-tx(k))*tz(i,kz)*cpm(i2)
* + (1.0d0-tx(k))*(1.0d0-tz(i,kz))*cpm(i3)
* + tx(k)*(1.0d0-tz(i,kz))*cpm(is)

cp = dexp{cp)
dfxp = azpe(i,kz)*xpe(k)**(alpha-1.0d0)+delta

200 w(k) = w(k) + cp*¥(-tau)*dfxp*qw(i)
300 continue
do 400 k = 1, ns
400 zval(k) = beta*w(k) - c(k)**(-tau)
return

end

33

File:

beta
tau
rho
sigma
alpha
delta
epsl
eps2
xmin
Xmax
Zmin
ZmMax

nz

nq
maxit
nvec

vsgm.dat,

.95
.50
.95
.10
.33
.90
d-8
.0d-4
1.0d0
4.0d0
-1.540

1.5d0
50
20

CooC0oC0OO

1000
64

34

