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Abstract

We study the effect on the growth of an economy of alternative
financing opportunities in a stochastic growth model with incentive
constraints. Efficient accumulation mechanisms are designed and com-
puted for economies that differ in their incentive structure. We show
that when borrowing is subject to information constraints, there is
a computable efficient transfer mechanism that does not affect capi-
tal accumulation and investment patterns, even though consumption
patterns and the distribution of wealth are affected. In contrast, en-
forcement constraints can severly reduce the outside financing oppor-
tunities and affect investment patterns and economic grwoth. We
adapt numerical algorithms for obtaining numerical solutions of these
models.
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1 Introduction

bur aim is to study the effect that alternative financing opportunities
may haﬁe on economic growth. To this purpose, we study different in-
stitutional and informational environments, and we analyze the effects
on growth, investment, consumption and welfare, of optimal mecha-
nisms under different incentive constraints. We abstract from other
factors that can affect growth and that are subject of analysis in the
expanding growth literature.

Standard stochastic growth models, in which a single agent must
solve an intertemporal optimization problem -see, for example, Brock
and Mirman [9]-, can be interpreted as displaying and extreme form
of lack of both commitment and communication. Under this inter-
pretation, all investment must be self-financed and smoothing of con-
sumption must take the form of self-insurance through the capital
stock, which is the only available asset. Alternatively, an Arrow-
Debreu stochastic growth model with many consumers (or countries)
and firms (see, for example, Marimon [27]) assumes perfect capital
markets based on the equally extreme assumptions of the existence
of both complete and costless commitment and commurication tech-
nologies. As a consequence of these assumptions borrowing and lend-
ing by project managers at the market interest rate is unrestricted,
idiosyncratic risks are smoothed out through costless pooling and,
furthermofe, agents never break their promises. In contrast with
these assumptions of perfect markets, the historical experience of most
economies is full of examples of credit constraints, partial forms of in-

surance and reneged contracts. For example, investors might not be



able to monitor all investments and agents might default on their
promises.

The fact that the equilibrium model abstracts from many institu-
tional or contractual elements is, in principle, a welcome simplification.
However, some of the predictions of these models are at odds with ob-
served growth patterns. We conjecture that some of these differences
between theory and observations can be explained if contractual and
organizational elements are incorporated into the growth modell.

As examples of the differences between the predictions of the stan-
dard general equilibrium growth model and the historical experience
of both domestic and international economies, consider the follow-
ing features of standard general equilibrium growth models: i) the
way contracts (for example, debt contracts) are enforced on agents
is the same, regardless of whether these agents are supposed to rep-
resent individual countries, or individual households; i) risk-averse
agents smooth their consumption and, as a result, individual consump-
tion fluctuations reflect aggregate fluctuations; iii) the distribution of
wealth has no effects on the process of capital accumulation; iv) de-
creasing return technologies imply that countries (or entrepreneurs)
with below average capital labor ratios absorb external financing and,
therefore, capital flows from countries that are rich to countries that

are poor, and v) capital flows to countries (or industries) with positive

*Of course we do not claim to be the first ones to think along these lines. For Adam
Smith [36], for example, differences in social forms of organization where the central ex-
planation underlying the divergent patterns of growth observed in different economies of
his time, such as England and Spain. Similarly, many economic historians, notably North
([30], {31]), have stressed the possible effect of the institutional and the legal environment
on economic growth. ' :



idiosyncratic productivity shocks.?

In contrast, domestic and international evidence on cross-sectional
consumption and investment patterns shows: i) patterns of invest-
ment and consumption that clearly differ for domestic households and
countries, and, for example, significant differences in the way that
countries or households can write their debt contracts; ii) consump-
tion smoothing between countries is small, and certainly lower than
across households in both high and low income areas; iii) some neg-
ative correlation between income inequality and growth; iv) a wide
spectrum of borrowing patterns across low and middle income coun-
tries, and v) finally, a high degree of self-financing in industrialized
countries (see, [4], [14], [24], [32], [39], [41}, [42], and (43]). Notice that
models of sustained growth also have severe difficulties in explaining
these facts, in particular, the rich structure of capital flows.

Since standard growth models have difficulties in accounting for
the observed patterns of capital flows they do not provide the right
framework to address issues such as the effect on economic growth of
opening a closed economy to external ﬁna.n_cing, or the properties of
the financial arrangements that should be implemented in this newly
opened economies. In contrast, the model analyzed here provides
a framework to analyze these issues, both qualitatively and quanti-
tafively, and to account for some observed patterns of international
capital flows. For example, in our model, the effect on growth of

opening an economy to external financing depends on the country’s

. Strictly speaking, iii) is true when there exists one risk neutral consumer with an
unbounded consumption set or when the country is atomless and there is no aggregate
uncertainty.



reputation, on the likelihood of its defaulting on its debt, and on the
_ legal structure that determines who are the residual claimants in case
of default. )

We analyze a model with two agents, one risk neutral (the investor)
and the other risk-averse (the manager) who owns the technology and
decides how much to invest in physical capital®. There is a Cobb-
Douglas technology for production and no disutility from labor as in
Brock and Mirman’ stochastic growth mode! [9]; the main difference
is that investment is converted into new units of capital through a
non-linear technology that is affected by stochastic shocks. We ana-
lyze the behavior of the model under four different regimes i) autarky,
where the manager does not use external financing; i) external financ-
ing with full information and full enforcement of debt contracts; iis)
external financing with partial information and perfect enforcement
of contracts and #v) external financing with perfect information but
partial enforcement of contracts.

We demonstrate that these different communication-commitment
technologies have large and very different effects on growth. The re-
sults indicate that limited enforcement can severely limit the ability of
outside financing to enhance growth, although borrowing is still useful
in order to smooth consumption against unforeseen shocks. On the
other hand, limited information permits growth levels as high as with
perfect information. In our computational experiements we show that

the growth rate in the economy with partial information can be one

3The principal-agent relationship can be interpreted literally or, following [L5], as rep-
resenting one small risk-averse agent having access to outside perfect capital markets with
a riskless security; we return to this point in Section 2.



percentage point higher than in the economy with partial enforcement.
In this paper, we always refer to growth as the transitional state from
a low initial capital stock to the steady state distribution of capital.

This paper has as a direct predecessor in Marimon [28]. There, it
is shown that alternative mechanisms imply different wealth distribu-
tions and possibly accumulation paths. Also, that in an economy with
limited communication and enforcement, the loss of efficiency due to
incentive constraints can be made arbitrarily small if the discount fac-
tor is close enough to one. It also relates to the more recent literature
that follows Bewley’s [6], [7] and Green’s [15] analysis of an exchange
economy with a continuum of agents with idiosyncratic risks (see [2],
[3]7 (16}, [22], [34],[37], and [38]).

There are two main analytical results in this paper. First, once we
have characterized the set of efficient contracts for the environment
with full information and full enforcement, we show how to construct
an efficient mechanism for an environment with limited information
and full enforcement recursively using the set of efficient contracts of
the full information environment; we call this efficient mechanism the
A-transfer mechanism. In the limited information environment, in-
vestors can not monitor entrepreneur’s investment decisions and can

‘only observe past capital stocks. The A-transfer mechanism, how-
ever, preserves the optimal investment policy of the full information
environment. That is, in our context -with a risk neutral agent-, the
entrepreneur can be induced to follow the optimal investment policy if
his stream of coﬁsumption is made conditional on output -or ca.pité.l-
realizations, so that it looses the perfect insurance property of the

optimal contract with full information and full enforcement.



Second, in the environment with full information and limited en-
forcement, we assume that it is possible for the manager to take pos-
session of the capital stock and switch to autarky; if he does so, he
stays in the autarkic -regime forever. Enforcement constraints, then,
take the form of participation constraints in which the utility for the
risk-averse agent (the manager) of staying in the contract, is always
at least as high as the utility from going to the autarkic regime. With
these participation constraints, the optimal contacting problem does
not have a standard recursive structure suitable for dynamic program-
ming techniques. We show, however, that this problem can be trans-
formed into a saddle-point dynamic programming problem?*; this is
crucial in making the model computable, since it guarantees that the
solution is a time-invariant function of a few state variables. In partic-
ular, the optimal investment policy depends not only on the current
capital stock and autocorrelated shock, as in the full enforcement en-
vironment, but also on a new reputational state variable that summa-
rizes the credit record-of the manager. As a result, when, for example,
the initial capital stock is relatively low, as to require an important
inflow of oﬁtside financing, enforcement constraints are a severe lim-
itation on this ﬂcm;ur and the resulting optimal accumulation path can
be fairly close to that of an economy with self-financing. Nevertheless,
the consumption path is smoother than in the self-financing environ-
ment. Therefore, under limited enforcement external financing can be
used to smooth out cyclical variations of output, but not to maintain
a constant level of consumption along the growth path towards the

steady state.

1A full treatment of this result is included in [26].
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We illustrate, quantify and expand these analytical findings with
our numerical analysis and results. We apply the parameterized ex-
pectation approach (PEA) developed by Marcet [25]. That is, we
parameterize the conditional expectation of the optimality conditions
with flexible functional forms, and we iterate on these expectations
until they are the best prediction of the future in the series they gen-
erate. Some features of our application of PEA are novel. As described
in [25], this algorithm is suitable for finding the steady state distri-
bution of a model; however, using similar ideas to the ones found in
[29] we can solve for the transitional growth‘ path. Also, the partici-
pation constraints take the form of inequality constraints that involve
conditional expectations and that are binding in some periods and
non-binding in others. To our knowledge this is the first paper where
a dynamic model with this type of constraints is solved.

The use of computational experiments i8 crucial in obtaining sev-
eral of our results. This paper is, therefore, one example of how com-
putations can be used for obtaining results that are in essence theo-
retical: they illustrate the behavior of the economy, allow us to make
quantita.tivé statements, and enrich the analysis. For example, the
fact that growth under limited enforcement can be as slow as under
autarky is a result from our computational experiments.

The rest of the paper is organized as follows. Section 2 presents the

SPhelan and Townsend [34] have computed sequentially efficient mechanisms for sta-
tionary economies with no capital accumulation. They follow the approach of linearizing
the sequential constrainis by means of lotteries over continuation payoffs. With this ap-
proach, they can soive for the efficient mechanism by solving a large number of linear
programming problems. Our approach differs from theirs in that we do not linearize the
problem and, by constructing A-transfer mechanisms, we can limit most computations to
solving maximization problems without information constraints.



model and the theoretical results under autarky and external financ-
ing with perfect information and perfect enforcement of contracts;
these economies, with no incentive constraints, are used as bench-
mark for the model with incentive constraints. Section 3 analyzes the
model under private information and full enforcement; it defines the
,\-tmnsfer-fnechanism and proves its optimality. Section 4 analyzes
the model under partial enforcement and full information; it provides
a recursive formulation of this time-inconsistent model. Section 5 de-
scribes the computational algorithm in more detail. Section 6 presents

some numerical results.

2 Benchmark Economies: Self-financing
and External Financing without Incen-
tive Constraints

In all four environments analyzed in this paper some elements -preferences
of the agents, exogenous shocks and technologies- remain constant.
More precisely, we have two agents: agent one, who is risk averse and
decides how much to invest; we refer to him as the manager; agent
two is risk neutral and we refer to him as the investor. The technology
is described more precisely in equations (1) and (2) below. The main
difference with the usual stochastic models of capital accumulation is
that the technology that converts units of investment into unit of new
capital is non-linear and affected by productivity shocks.

However, financing opportunities differ across environments. In
this section we discuss the extreme cases of an autarkic solution and

the model of external financing with full information and full enforce-



ment.

~ With full information and enforcement and given an initial capital
stock ko and aggregate shock 6y, efficient transfer mechanisms are
obtained as a solution to a dynamic principal-agent problem. An
efficient growth mechanism, T, specifies state—contingent'investment
and transfer plans, I' = {i,, 7}, and it is indexed by (A, ko, 8p), where
A € Ry is the weight assigned to the risk-averse agent in the following

planner’s problem:

max (1-86)E, [i 8 [Au(ce) + (-m))
t=0

subject to:
¢ + de—Te = f(ky) (1)
ke = dkt_l + g('.t—l; ah 3‘) (2)

20, 120, kogiven.

Here, u(-) represents the instantaneous utility function of the risk-
averse manager, f(-) the production function, and g(-) the function
that transforms investment goods into capital goods. The variable
¢: represents consumption of the manager; 7, transfers from the in-
vestor to the manager or, alternatively, —r; can be interpreted as the
consumption the risk neutral investor obtains for his services. We
assume that both agents have the same discount factor. The exoge-
nous stochastic shocks (4,, s;) affect the productivity of investment;
where 3, is an idi;)syncratic i.i.d. shock, which, in the environment
with limited information, is private information, and 4, is a first or-

der autoregressive individual shock which is public information. Note
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that the investment technology is such that at the time the investment

decision is made the realizations of the shocks are unknown.

Assumptions The following assumptions are made: i) the utility
function u(-) is strictly concave, twice differentiable and satis-
fies the Inada conditions: u'(¢c) — +00 as ¢ — 0, uw/(c) — 0
as ¢ — 00; ii) f is concave and differentiable; iii) the exogenous
stochastic processes (f, s;) are stationary and mutually indepen-
dent; iv) d € [0,1]; v) g(-;8,8) is differentiable and concave, with
fixed range independent of (#,s); if i’ > i, then the distribution
of g(#';,-) (second order) stochastically dominates the distribu-
tion of g(i;-,-), and g(-;@,s) satisfies the Inada conditions de-
scribed in (i); and vi) there exists 8 > 0 and k such that, for all
k >k, fi(k) < 8, and, for all 8 and i, if E{g(i;-,-)[0] > (1 - d)k,
then §=1 > d + BE[g'(i;-,-)|8)].

Remark The above assumptions are relatively standard in the stochas-
tic growth literature. The main exception is (v), which is intro-
duced to guarantee that in a private information environment it
is not possible ez-post to detect investment decisions with prob-
ability one from observations on the capital stock and the seri-
ally correlated shock, thereby making the problem of monitoring
investment in the private information economy interesting, As-
sumption (vi) guarantees that present discounted values are well
defined and, as it can be seen, allows for long-run growth of the
capital stock®. Nevertheless, in this paper we concentrate our

attention in the case 8 < 1, where there is a stationary state

8Jones and Manuelli [18] have similar assumptions in their growth model.
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and growth is a transitional process towards the steady state,

although our main results generalize to the case described by

assumption {v1).

2.1 The environment with self-financing (AU)

The self-financing (autarkic) solution for an economy with lack of com-
munication and commitment is obtained from the above planner’s
problem by having A = 1,7, = 0, for all t, and solving for an optimal
investment process {i;}. In addition to (1) and (2) the autarkic

problem (AU) has the following first order condition 7:

w'(e) = 6Et[3—(‘%—‘5}- Y (8d)™u' (cepns1 ) f (kepnin)] (3)
n=0

Using standard arguments one can show the existence of a time-
invariant investment policy function i%(k,#), a consumption policy

function ¢2(k,6) and a value function V2(%,8).

+ 2,2 The environment with full information
and full enforcement (PO)

When both agents observe all shocks and contracts are perfectly en-
forceable, efficient contracts are solutions to the planner’s problem
described at the beginning of this section. In addition to (1) and (2),

the first order conditions are:

1= 68, | 280 5% G ksnan) (#)

n=0

"Throughout the paper —5‘-32 represents the derivative of the function g with respect
to its first argument; notice that this derivative depends on future values of the stochastic
shocks.
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w(e) = A1 (5)

It follows that thg stationary policy {unctions (i*(), k,8), ¢"(), k, §),
7*(A, k,8)) havesome interesting properties. First, notice that ¢*(, &, 8)
= ¢(A). That is, the risk-averse agent is fully insured with a constant
stream of consumption; which only depends on A. Second, the invest-
ment policy takes the form i*(}, k, 8) = i(k, #). That is, accumulation
paths are independent of the relative weights in the planner’s problem.
This implies that growth is independent of the wealth distribution.
Furthermore, if there is a steady-state distribution of capital stocks,
and the initial capital, kq, is low with respect to the steady-state dis-
tribution, then the risk-averse ma.na.gér borrows heavily in the initial
periods in order to finance high investment levels. Finally, since the
risk-neutral agent absorbs all the fluctuations, transfers depend on A
and the current values of (k, 8). |

The optimal policies define an efficient transfer mechanism for
this environment: T'x = {i;, Ta¢}, where i; = i(k,,8;) and 7\, =
*(A, k, 8;), Given I') and an initial state (k,8), the agents’ valu-

ation of the contract is given by

n(M\k,8) = (I—G)Eoiﬁ*u(ct)=u(c(A))
t==0

aAk9) = (1= 6)Ed 8 (~rae)
t=0

Remark (Competitive transfers) Of special interest is the com-
petitive mechanism T')., where A*(kq, &) is the only value \ €
R, satisfying v3(A*(ko,80), ko,85) = 0. Using standard argu-

ments, it can be shown that, A*(ko, 8) is the inverse of the marginal

12



utility of expenditure in the competitive equilibrium in which the
agent faces a lifetime budget constraint, has property rights over
ko and an initial shock §p. The existence and uniqueness of

A*(ko,fo) can easily be derived from our assumptions.

Remark (The continuum of agents formulation) We can now briefly
describe an economy with a continuum of agents for which effi-
cient contracts can be characterized by the principal-agent for-
mulation used in this paper. To this. end, we adapt the argu-
ments in [15] to an economy with capital accumulation. Assume
there is a steady state (see the remark at the end of the previ-
ous subsection). That is, the optimal investment policy i*(k, #)
and the markovian process {8} define a transition probability
P(-|{(k,8)) € A(K x ©) and this transition probability defines
an ergodic measure it € A(K x ©); where (K x 0) is a compact
subset of R2 and A(K x ©) denotes the set of probability dis-
tributions on this subset. Now, assume agents are uniformly dis-
tributed in [0,1] and have independent and equally distributed
shocks, {(6;,8:)}. Let v € A([0,1]) denote the uniform distri-
bution of agents. Agents have homogeneous preferences. The
initial state (ko,8)s for agent a is given by e;, where the mea-
surable map e : [0,1] — K Xx O satisfies v{a : e, € M} = u(M),
for every (Borel) subset M C K x ©. Therefore the economy is
at the steady state. More generally, one can think that, at the
moment that the efficient contract is being designed, a set -of

measure one- of agents has reached the steady state. Then,
J Uk = ik, 0))duk, ) = &

13



for some constant € > 0. That is, the steady state aggregate
consumption is constant. Efficient allocations are now solutions
to a planner’s problem of the form:

— o

max (1-9) Z 5t /:\au(ca,)du(a)

=0
subject to:

f caedi(a) = ¢

It follows, that there exists a constant a > 9, such that
u'(cgt) = aA~!

Let Ay = A,a~1, then (5)is satisfied, and

(e, k, ) = T1(Xe) + 73(k,8) = c(A,) +i(k,0) - f(k)
satisfies / r1(A,)d¥(a) = 0 and / 73(k, 0)du(k, 8) = 0

Notice that the above competitive solution corresponds to a par-
ticular choice of social weights; namely: if e, = (ko,8g) then
Aa = A*(ko,8). The efficient contract is defined for any possible
agent and event, not only at the steady state. An individual
agent may not be at the steady state, however a set of full mea-
sure of agents must be at the steady state for the contract to be
feasible. By the law of large numbers, aggregation over this set
of agents reduces the contracting problem to the principal-agent

problem of our analysis®.

SHere we do not discuss some known technicalities like the right integrability definition
for a proper application of the law of large numbers.
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3 The environment with limited com-
munication and full enforcement (PI)

We proceed with the study of an economy where investments are not
observable and transfer payments can only depend on past transfers
and capital stocks. In this environment a transfer mechanism, I’ =
{i, 7¢}, makes recommendations for non observable investments and
observable transfers as a function of all past public information. We
follow Abreu, Pearce and Staccetti [1] who, in turn, follow a dynamic
programming approach in characterizing a contract as a prescription
for each event of an action and a continuation payoff contingent on
the observed consequences (output and capital stock) of the prescribed
action.

In general, consider a mechanism I’ that recommends actions {z;}
and let z represent the current observable state; z may include all
the past history of observables or, in a recursive problem, 2 can be a
finite vector of state variables. Given z, the current action z affects
the distribution of tomorrow’s state z’. If the agent’s current payoff
is given by m(z) and the present value, at z, of the contract I is
v(z), then the mechanism (contract) is said to be sequentially incentive

compatible if for every state z :

v(2)

(1= 6)7(2) + 6E (g v(2")
> (1 - 8)(2) + 6E(z,0v(2)

I is said to be a sequentially efficient mechanismif it is sequentially
incentive compatible and it is not Pareto dominated by any other

sequentially incentive compatible mechanism.
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The A-transfer mechanism

In addition to observable transfers, natural candidates as state
variables are (k, 8), but these variables are not enough in order to de-
sign an incentive compatible mechanism. Recall that in the full infor-
mation environment 7y; = 7°(A, ks, 6;) guarantees a constant stream
of consumption. With private information, if the manager is offered
the contract that is optimal under full information (as in section 2),
he will under-invest, since 7(i,7,k) = u(f{(k) + 7 — i). To create the
right incentives, let the state variable be z = (A, k,8). Then, ex-post
pfesent values can be associated with altern#tive A values of the social
planner’s problem with full communication, and the agent is rewarded
or punished along each observed history by changing the weight . We
call this type of mechanism a A-transfer mechanism and show that it
is a sequentially efficient mechanism.

As we have seen, in the full communication-commitment environ-
ment, agents can perfectly smooth their consumption and investment
is independent of the weight, A, given to the representative agent in
the planner’s problem. The A-transfer mechanism for an economy with
limited communication and perfect enforcement induces a less smooth
pattern of consurﬁption. Ex-ante homogeneous agents have an ex-post
unequal distribution of wealth. We will show that investment, how-
ever, is not affected by the presence of information constraints, and
the process of capital accumulation is the same as in the economy with
full information.

The A-transfer mechanism exploits the downward sloping property
of the Pareto frontier in the full information and full enforcement (PO)

problem. With a downward sloping Pareto frontier, if agent one has

16



weight A and the state is (k,8) then for agent i = 1, 2, there is a
unique value w; such that w; = v;(A, k,8). The inverse problem is also
well defined. That is, given a value w; and a state (k,8) there is a
unique A satisfying ﬁ;(A, k,0) = w;.

The A mechanism is recursively constructed as follows. If the cur-
rent state is z = (A, k,8), then the recommended current actions are
i(k,8) and (), k,0); i.e., the efficient actions of the PO problem with
A. The efficient level of investment, the current shock, and the unob-
servable shocks, determine tomorrow’s capital and observable shock
(k',6'). The A-transfer mechanism completes the definition of tomor-
row’s state by means of a function h(.) which determines tomorrow’s
A’; we will specify this function in the next paragraph. This implies
that, 2/ = (h(A, k,0,K,60'),k',8"). In other words, while in the full
information environment, A is constant and the manager’s value of an
efficient contract is 5;(A) = vy(A, &, 9), for all (k,8), in the private in-
formation environment, the A-transfer mechanism prescribes recursive
revisions of A and, therefore, the manager’s present values of his future
stream of consumption are also revised -say, from %,(A\) = vy(A, k,8)
to B (N) = ny (N, K, ).

We now define h(:). The main idea is that the risk averse man-
ager should bear some of the fluctuations that in the full information
environment are solely absorbed by the risk neutral investor. Let
99(A K, 0,K'8) = v(A, K, 80") = E(ii)k0yv2( M, K, ). That is, 9(-)
is the investor’s deviation of the realized value of utility from the
conditional expected value of utility in the full information efficient

17



contract one period before. Define,

h(X, k,8,K,0") = 571 (51(A) + A"L.da(A, &, 8, K, 8'))

In other words, if the current state is z = (k, A, #) and, after the
recommendation to follow the optimal action, the observed state is
(k',8') then the manager should suffer (gain) a deviation from #;(\)
of A=1.55(A, k,8,k/,8). That is, agent one is punished or rewarded
with the deviation of agent two’s utility in the PO problem, properly
weighted by A-1. .

The A-transfer mechanism induces the manager to solve the plan-
ner’s problem at every state and, therefore, the planner’s Bellman’s
equation becomes the manager’s incentive compatibility condition.
Furthermore, since, by optimality, the planner’s solution can not be
improved at any state the A-transfer solution can not be improved
upon. These are the twoideas behind the proof of the following propo-

sition.

Proposition 1. The A-transfer mechanism is a Sequentially Efficient
Mechanism for an economy with limited communication and full en-

forcement.

Proof. The mechanism is resource feasible since it defines a sequence
of feasible actions (from the corresponding PO problems). We now
show that it satisfies the incentive compatibility constraints. Let the
current state be 2z = (A, £,6), then the A mechanism is sequentially-

incentive compatible if
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n(Ak,8) = (1-8)n(i(k,0),7(\k,0), k) +

8 Eir,o),00 01 (R(X, K, 8, K, 8), ', 8)
(1= 8)x(i,m(7 k,8), k) +

SE; 001 (A, k,0,K,8"), K, 0

v

By construction, the last inequality is simply:
7(A) 2 (1-8)x(3,r(A k,8),k) + 6E(;,k',) [t‘}l(A) + A7 (A, K, 0, K, 9’)]
(1= 8)r(s, (A, k,8), k) + 0 (A) +
A“&E,.(;'k',) [vg()i, k', 9') - E(,-(,,'g),,,_g)vg(A, k’, 9')]

Using the fact that v(A, K/,8) = 5,()),the last inequality can be

expressed as:

Al(L - O)m(i(k, 0),7(\,5,0),k) + SEGinaeam(d K, 0)] +
(1= 8)(-r(\k8) + EEuupuam(d k8]
2 A [(1- 8)x(,r(M k,0),k) + SEG4aymn () K,09] +
[(1=8)(=m(\k,0) + SEg,q0(r k.09

This inequality says that in the full information and enforcement
(PO) problem with weight ), at the state (k,9), i(k,0) is the best
feasible action. By optimality of i(k,8) the inequality is satisfied.
This argument, however, not only shows that the A-transfer mecha-
nism is sequentiaily—incentive compatible, but almost demonstrates its

efficiency. We now complete this argument.
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Suppose there exists a sequentially incentive compatible mecha-
nism I'* that Pareto dominates the A-transfer mechanism. Let (v}, v3)
be the present values attained through I'* (for a given state (ko, 8)).
Let A = 37" (v]) and use the initial condition z = (), kq, 8o) to recur-
sively define the A-transfer mechanism. Notice that by construction
agent one has the same present value for both contracts. Therefore,
Pareto dominance reqﬁires that v; > vg(A, ko, o). But this is not pos-
sible, otherwise we obtain a contradiction with the Pareto optimality
of the solution to the full information and enforcement (PO) problem

“with weight A.

4 The Environment with Full Infor-
mation and Limited Enforcement (PC).

Enforcement constraints are very different from the information con-
straints in the previous section. We now study the case in which
society (or the investor) has full commitment and the system of prop-
erty rights establishes that, when the manager breaches the contract,
he can take possession of the existing capital si:ocl_c, but he will then
be prevented from e;'er re-entering the social mechanism. That is, the
current reservation value for the manager is the utility of the autarkic
solution given the current capital stock and productivity shock. In
this environment, a contract can be enforced only if the utility the
manager derives from the contract is, at each point in time, at least
as high as the utility from autarky; this means that the manager will
have to be compensated so as to make his utility high enough at every

period.
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With participation constraints, the set of efficient mechanisms for
-an economy with limited enforcement and full information can be
parameterized by (A, k, M,#), where the state variable M accounts
for the past periods in which the participation constraints have been
binding. The participation constraint is a non-standard constraint in
dynamic programming. Nevertheless, we show how the problem can
be cast in a recursive framework, where the solution is given by a time-
invariant function of the natural state variables and the pseudo-state
variable M. This approach of making recursive the characterization of
the optimal contract has independent interest since it can be applied
to other non-recursive problems.

Optimal allocations can be found by maximizing a planner’s prob-
lein giving different weights to each agent, subject to participation

constraints on agent 1, so that we have to solve

Program 1
»
{c..f.?ﬁ‘i}e:o(l ~ 8§)Eg 1g§=:0‘5*[,\u(.:,) ~ 1y |
subject to: ¢ — 1 + i = f(ky) (6)
kis1 = dky + g(i¢, 0441, 8¢41) and (7
(1~ HELY Fuleerd] 2 V*(ks, 60 (®)

=0
for all t, where V¢ i the value function under autarky. Equations

(6) and (7) are the technology constraints, and equation (8} is the
participation constraint that makes the utility of the first agent in
every period at least as large as the utility he would obtain from

switching to an autarkic regime from time t onwards.
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The dynamic programming characterization of Program 1 is not
trivial, and our treatment is of independent interest to study prob-
lems with expectational constraints. To realize the special features
of Program 1 let us recall that a standard dynamic program has the

following form:

Program 2

{max Eo Z 5‘1‘(2’.‘:, i1y St)

Tilizo t=0

s.t. z¢ < T(zi-1,8¢), z-1 given. (9)

(see, for example, (23] ) where z; is.a vector of finite length, s; a
stochastic shock and the functions r and I' are known and independent
of the choice for ;. Unfortunately, the participation constraint (8) is
not a special case of (9): even though the conditional expectation
in the left side of the participation constraint is a function of past
state variables, this function depends on the whole stochastic process
{ce}2o . In other words, the function I should not depend on the
choice of the endogenous variables, but the conditional expectation in
equation (8) does.

The next Proposition states that Program 1 can be rewritten in’
a way that the objective function and the constraints are recursive.
A similar approach canr be used in most problems with expectational
constraints and time inconsistent solutions, for example, [35] applies
similar ideas to-a model of optimal taxation. The general idea is to
introduce expectational constraints in the objective function of the

Lagrangean. This will be useful in order to characterize the form of
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the solution and, perhaps more importantly, to calculate the numerical
solution of the problem since, by casting the solution in a recursjve
framework, we know that the solution is a time invariant function of
a small set of state variables.

The following proposition states formally this equivalence.

Proposition 2. The solution to Program 1 is the saddle point of the

following Lagrangean:

Program 3

L= (1= 8B 3 6{(A + Mioa)ules) - ret

t=0
,u,[u(ct) - Va(kiv 9‘)/(1 - 6)]}

subject to, (6)- (7), pe 20,

Mt = Mg_l + Ht and M_l =0. (10)

where 4, is the Lagrange multiplier of the participation constraint
at time t. In Program 3 we minimize with respect to {u;} and maxi-

mize with respect to {e;, ky, i, 72}, -

Proof. By the usual arguments, the solution to Program 1 is the
saddle point of

Program 4

L= EoZét{Au(Cg) - T+

t=0

BAEAS u(cuss)] - Vo(kn 8/(1 - 8)]}

i=0

subject to the technology constraints (6) - (7) and
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e 2 0

Program 4 has conditional expectations in the return function so
that it is not yet of the form of program 2. We finally obtain Program
3 by using the law of iterated expectations to eliminate the symbols E;,
rearranging the objective function, and introducing the law of motion

for M; as constraint (10).

Notice that both the return function and the constraints in Pro-
gram 3 are of the form of standard dynamic programs like Program 2
where the feasible set at t is a known function of the past. Arguments
adapted from standard dynamic programming, [26] show that the op-
timal decision for the control variables at time t is a time-invariant
function of the state variables (k¢, M;—1,8;). Program 3 displays the
unusual feature of having Lagrange multipliers in a constraint.?

Equation (10) can be viewed as a constraint that the planner
imposes on himself in order to follow the optimal path. Given that
only k; and &; enter in the return function and in the constraints at
time t of the original Program 1, it would be physically possible for the

planner to re-set M;_1 = 0 at any point in time, and this is what the

SSee [10] for a similar use of these multipliers and [26] for a description of how this
approach can be applied to many other models. Kydland and Prescott {21] showed how
some time inconsistent models could be placed in a recursive framework in a problem of
optimal taxation. They alsc had past Lagrange multipliers determining future decisions,
and they used the expression 'pseudo-state variable’ to denote these Lagrange multipliers.
Unlike in our case, though, their Lagrange multiplier was the one in the budget restriction
of the agent (u'(ct)) and their problem was only recursive after the initial period . In
models with uncertainty their approach seems to lose some recursive properties and it is
not clear how it would apply to a restriction on the value function as in the PC model.
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planner would do if he reoptimized at time t. However, the optimal
path set at the initial period calls for a scrupulous observation of (10),
and resetting M at a later date is suboptimal. This is another version
of the time—iﬁconsistehcy problem of Kydland and Prescott [20].

The first order conditions of the problem are
6‘[()0: + Mg)ﬂ’(Cg) - 1] ={ ’ (11)
d
6=1 = 8Edra =5 = 0 (12)

FU (k) = 8Bdrens] + - m g /1= O =0 (1)

BIELY u(eess)] - V(e /(1= 6)] > 0 (14)
B

WIELY u(eens)l = Vo(kaB) /(L6 =0 (15)
j=0

the technology constraints (6) and (7), the law of motion for M,
(10), the participation constraint and u; > 0. In equations (11) to
(15), 7: represents the Lagrange multiplier of constraint (7).

The variable M, is an accumulation of past multipliers; roughly
speaking, if the participation constraint has been binding very often
in the recent past, then M, will be high. The role of M, in Program
3 is to shift the weight A given to agent 1 in the objective function of
the planner; when the.partii:ipation constraint is binding, the optimal
path calls for augmenting this weight; this increase is maintained for
all future periods and consumption is higher forever, Therefore, when-
ever (8) is binding, the planner compensates agent 1 by increasing his
consumption to a certain level and leaving consumption at this level

until the participation constraint binds again.
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Characterization of Equilibrium in the PC model
In this sub-section we parameterize the function that converts in-

vestment into new capital goods as:

906 841, 5441) = a(Beqr + 8p41 )i/ (1 + iy) + bsey1

Consumption of agent 1 satisfies

’u’(Cg) = ll(A + Mt)s (16)

so that ¢; depends only on (A + M,). Assuming that the shocks
bave bounded support, there exists a finite constant V such that
V.2 Vé(ky,8;) with probability one, so that M, and ce will grow
until M; reaches a level such that -

u(e) 2 V; | (17)

this inequality means that the utility of keeping consumption constant
for the whole future is higher than the upper bound on autarkic util-
ity. If M reaches this level, consumption will not change, since the
participation constraint will never be binding again and M, will be
constant from then on.

We can now study the behavior of investment. With the above
functional form for g, the first order conditions (12) and (13) reduce

to
m .
(1+ 3',_:)2 = §Ei[(8¢41 + 3¢41)a E(M)’akffj!n] - (18)

=0

© v .
SE(Beny + 6d)Y ey ;i Hitl 16
t(Beq1 + S141 )aj=20( dY uy 41 Treiar /( )|
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It is clear that the Euler equation for the case with full enforce-

" ment and full information (4) is exactly like (18) without the second

conditional expectation that depends on future y's. We conclude that

investment is lowef in periods when the participation constraint is

likely to be binding in the near future; in this case, the second expec-

tation in equation (18) has a high absolute value, and the left hand
side must go down.

We have seen that when M, reaches a high enough level the par-
ticipation constraint will never again be binding, so that the second
expectation in the right side of (18) vanishes and it becomes (4).
Therefore, from this period on investment will always be equal to the
level of optimal investment with full enforcement. Hence, the steady
state distribution for capital accumulation of the limited enforcement
model is the same as in the PO model. In the initial periods, however,
when the constraints are binding and M, is growing, the behavior of
investment can not be determined analytically and we will resort to

simulations of the model. These are described in section 6.

5 An Algorithm for Solving the Growth
Model with Incentive Constraints

We will explain here how to obtain numerical solutions for the various
models in this paper. There are four models that we want to solve:
autarky equilibrium (AU), Pareto Optimal with full communication
and full enforcement (PO}, the model with participation constraints
(PC) and under private information (PT).

*  We use the following functional forms:
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fke} = k¢
9ity ety Se41) = a(Bagr + 841 )it/ (1 + is) + bsepy
u(ee) = /(1 + 1)
logf; = plog8;..; + ¢:

where £, is i.i.d.

5.1 Solving the Autarkic and Pareto Optimal
equilibria

The AU model has the following first order conditions:

. 8 oo ,

o] = SEL=5L 3 (6dY el s ikihl (19)
1=0

ctir=k® (20)

kepr = dke + g(ie, 0441, 9¢41) (21)

To solve this model numerically we use the parameterized expectation
approach (PEA). Since there is only one expectation to approximate,
the model can be solved quite easily. We substitute the expectation in
the right side of (19) by a parameterized function of the state variables
P(8, ke, 8:). We chooge Yina ﬂeijle. way 80 as to approximate the

conditional expectation arbitrarily well. In particular, we choose

V(B ke, 6s) = ezp( Pa(log(ky), log(¥:))

for a given n, where P, is a polynomial of degree n. The parameters

3 are the coefficients in the polynomial. We can, in principle, increase
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the degree of the polynomial until we have a reasonable approximation
to the conditional expectation. This functional form is convenient
because it is strictly positive, as is the conditional expectation that it
intends to approximate.

We want to find the parameter 3y with the following property: if
agents use Jy in order to form the expectations of the Euler equation,
then (B, k¢, 8¢) is the best predictor among functions (., k¢, ;).

The mechanics for finding 3 are the following:

-Step 1 - fix B. Substitute the conditional expectation in (19) by
¥ to obtain:

c}(8) = §9(B, k(B), by). (22)

-Step 2 - obtain a long series of the endogenous variables that
solves (20), (21) and (22)° for this particular §; call this series
{cd(B),id(B), kd(B)}

-Step 3 - for this series calculate the expressions inside the con-
ditional expectation of (19)!! and perform a non-linear regression of
these variables on (., k(3), 8:); let S(B) be the result of this regres-
sion. '

-Step 4 - finally, use an iterative scheme to find the fixed point of
S, and set By = S(fy) 13.

1%Note that this is quite simple: c,(§) can be solved directly from (22), i;(8) from (20)
and kg+1(ﬂ) from (21)

1Note how the sums 322 | (§d) ] Hakf’;,-‘ can be calculated very efficiently using back-
ward recursion. .

12For more detailed description of this approach see {25]. For details on the implemen-
tation of the algorithm in a simple growth model see [13].
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The solution for consumption, investment and capital is given by

{ee(B1)rie(Br), ke Br)}

The solution to t_he PO model does not présent any additional dif-
ficulties. It can be found by applying Steps 1 to 4 to the corresponding

first order conditions of that model.

5.2 Solving for first periods with a low initial
capital

The scheme just described car, in principle, approximate the true
equilibrium at the steady state distribution arbitrarily well as the
length of the simulation and the degree of the polynomial go to infinity.
Hﬁwever, if the economy starts at a very low capital stock ko, the By
from long run simulations may not be a good approximation to the
conditional expectation during the first few periods, as the capital
stock grows from ky to the steady state distribution. For example, in
the first few periods marginal productivity of capital is very high and
the long run simulations will not take this into account. This would
be a problem in our paper because we are particularly interested in
analyzing growth ‘of the economy in the initial periods.

To avoid this problem we find a different policy function (a diﬂ"erent.
By) for the initial periods by, instead of running a long realization of
the process, finding many realizations of a given (short) length T,
starting each realization at ko. Step 2 is modified as follows:

Step 2b - Obtain a large number N of (independent) realizations
of length T, that solve (20), (21) and (22); each initial capital is
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fixed at kg 13,
" To obtain arbitrary accuracy in S(3), welet N — oco. Here, T is
selected to be long enough for the economy to get in the range of the
steady state distribution. In our model, and for the parameters we
selected, T = 50 was appropriate.
Then we proceed with Step 3 and 4 as before.
One final modification is needed. In the conditional expectation
we find discounted sums of future variables, like
o
Z(:)(&d)‘akf';f,_lc;'+'-+1;
these are used in the non-linear regression of Step 4. Since for
t4 i > T the model is close to the steady state distributions, we
could run simulations of length T + T, where T" is large so that the
truncated sum is close to the infinite sum, and the k.4, for witch
t+i > T are calculated with the steady state 3y . This is not a good
solution, however, because it requires long simulations, as T may have
to be quite large. -
Instead, we note that for ¢t < T, the expectation in the right side

of (19) can be rewritten as

a — ; am
Ey( g:tl [[2(6 d)""?-n-j“"tﬁl]"‘

=0

(6a) T Eryq[D> (6 d)j"’}‘+1+idk%;§+5 D
=0

The expectation conditional on information at 7 + 1 involves only

variables at the steady state distribution, so we can parameterize it

13A gimilar approach was used in Marshall [29] to solve a model with a non-stationary
forcing process.
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a8 a polynomial function of the state variables, and find the parame-
ters in this polynomial by running (only one) regression, with a long
simulation at the steady state J;.

So, the variable bredicted in the regression of Step 3 for these

periods is

P T-t _ i _
(93?:1 [[Z(M)"-‘?ﬁﬂ“kﬂjﬂ-l] + (6d) = 19"* (B, k141, 0741)]
j=0

where 1 is the result of the non linear regression described in the

previous paragraph.

5.3 Solving the Problem with Full Informa-
tion and Limited Enforcement.(PC)

Now we discuss how to solve the model with ﬁmited enforcement nu-
merically with PEA, where agent 1 (the manager) is guaranteed at
least as much utility as in the autarkic equilibrium in every period,
and where both agents observe all the shocks. This model is harder
to solve than the previous ones because of the presence of inequality
constraints that are binding in some periods and non-binding in oth-
ers. Further, we now have one additional expectation to parameterize
and the additional state variable M,.

From our discussion of section 4 we see that the following equations
have to be satisfied:

et —Te+ i = fke) (23)

kepr = dke + (3, 0441, 841) (24)
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pe |ulee) + Et[f: §u(es ;)] — Vo(ke,8:)/(1 - 8)| =0, (25)

=1
wle) = /(A + pe + M) : (26)
M= My + py (27)
(L+4)? = SE((8e41 + Se41)a f(:)(&d)j[akf_;}ﬂ,l - (28)
i=
Bt j+1 gzﬂjﬂ 3
t+j+1

With these equations we can solve the model following steps 1,
25, 3 and 4 of Subsection 5.2. Only step 2b, which involves solving
for the endogenous series, is now more cumbersome. This is because,
in addition to the above equations, we need to guarantee that the
inequality conditions for i and the participation constraint (8) are
satisfied.

After paraineterizing the conditional expectations in equations (25)
and (26) the abovesystem provides six equations to solve for (e, Te, Key S, ey M),
To solve for ¢; and u, we proceed as follows: first try the case where
the participation constraint (8) is non-binding, so that u; = 0, and ¢,
is given by equation (26). For this solution, we check if the participa- _
tion constraint is satisfied; if it is, we go on to solve for the remaining
variables; otherwise we know that u; > 0, so that the large bracket
in (25) is equal to zero, which provides an equation to solve for con-
sumption; then we can find p, from (26). It is easy to check that x,
will be positive ﬁy construction.

In this model the steady state distribution for investment is the

same as in the PO problem with full enforcement, so the only inter-
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esting part to solve is in the first few periods as the capital stock and
M, grow to their steady state distributions. Then the scheme we use
for the initial periods described in section 5.2 becomes crucial. |
Finally, note that the expression inside the conditional expectation
of (28) involves the derivative of V'*. Because the productivity of
investment is not known at the time investment is realized, the usual
formula for the derivative of the value function does not apply (see
(23] for this formula). In appendix 1 we find an expression for this

derivative that is easy to compute.

5.4 Solving the model with informational in-
centive compatibility constraints (PI)

In Section 3 we saw that in order to find the equilibrium with the
incentive compatible contract at a given period, for a given value of
the contract, we have to find the point in the Pareto Optimal frontier
that gives the same value for the full information full enforcement
model. Then the manager takes the same decision as he would take
at that point in the PO frontier, and the continuation payoffs are
calculated using the value functions of both agents at that point of
the PO frontier. Hence, we need to have the decision functions and
value functions readily available at many points of the PO frontier.
We first solve the PO problem for 1000 lambdas between zero and
one. At each lambda, we calculate the By that corresponds to the
expectation involved in the Euler equation and the By involved in the
conditional expectation of the value function to calculate |

Ba(ke, Bea1s A, 85, 0141} = 02( X, Kega, 0e41) — Eeva(A, kegry 0e41))
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This is then used to calculate the continuation payoffs as described

“in Section 3.

6 Characterization of Equilibria and
Simulation Results

In this section we characterize the behavior of the four models. We
use mainly simulations that are plotted in Figures 1 to 7 at the end
of the paper; also, the main results are summarized in Table 2. Those
features of the models that we could characterize analytically were
described in sections 2, 3 and 4 and we will often refer to them. The
series plotted in Figures 1 to 7 correspond to a simulation using the
same realization of the exogenous shocks for all series. In order to see
results that do not depend on a given realization the reader is referred
to Table 2, which reports calculations of some important population

moments of the model.

The values of the parameters used in the simulations are described
in Table 1,

TABLE 1

L

I R
marginaﬁr-oductiv_itT of capital a=.15
risk aversion parameter of the manager y==3
discount factor 6=.95
autocorrelation parameter of log(8,) p= .95
standard deviation of innovation of log(8;) | ¢. = .03
standard deviation of s o, = .03
mean of s §=.2
undepreciated proportion of capital d=.9
constant in investment function a=.6

e ——

Given the choice of d and 4, one period can be interpreted

as one year. Most values of the parameters are within the usual
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range that is used in neoclassical growth models, with the ex-
ception of the standard deviations, which are higher than usual.
We chose as initial capital kp = 1, in order to obtain growth
rates of around 3 o_r 4% for the first fifteen periods, which seems
reasonable for developing countries.

With our numerical results, we hope to illustrate the behavior
of the model and detect the magnitude of the impact on growth
and utility of alternative communication and commitment envi-
ronments.

In Figures 1 to 7, the last two letters identify the environ-
ment, so *-au’ denotes autarky equilibrium, *-po’ Pareto optimal
allocation with full information and perfect enforcement, '-pc’
participation constraints and ’-pi’ private information, while the
first few letters identify the series that is being plotted. For exam-
ple, kpo’ denotes capital in the Pareto Optimal allocation, 'clpc’
consumption of agent 1 (the manager) in the model with partic-
ipation constraints and so on. For these figures, we plot the first
40 periods as representative of the initial periods, and periods
200 to 240 as representative of the steady state distribution.
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TABLE 2

Mean of Growth  Utility of the Mean of Capital  Increase in
Model Rate of Qutput Manager in Steady State Consumption

Autarky 2.88% -0.386 2,57
PO 3.90% -0.358 2.53 3.84%
pPC 2.91% -0.383 2.53 0.39%
PI 3.90% -0.36 2.53 3.55%

Note: ”Mean of the growth rate of output” refers to the mean during the
first fifteen periods across independent realizations. The utility of the man-
ager is measured at time zero and using many independent replications of
the model, conditioning on kg = 1 but drawing the initial shock 4y from the
steady state distribution. The "Increase in consurnption” refers to the per-
manent increase in consumption that would equal the present value achieved
in the autarkic environment with the present values achieved in the other
environments.

6.1 Autarky versus Full Information Full Com-
mitment

We first compare the PO environment with an autarkic environ-
ment (AU). We already argued that consumption of the manager
is constant in the PO equilibrium, while the investor absorbs all -
the shocks.

When the initial capital stock is low relative to the steady state
distribution, in an economy with external financing the manager
can borrow heavily at the beginning to enhance his investments
and attain faster growth than he would have attained in an autar-

kic environment (see Figures 1 and 3). Table 2 tells us that with .
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external financing growth can go from 3% to 4%. However, the
mean of the steady state distribution of capital and investment
(see Figures 2 and 4 and Table 2) is not significantly different
between the two environments, even though the need to use cap-
ital as the only asset for self-insurance under autarky causes the
mean of capital to be higher in an autarkic regime. Also, we see
that investment is more volatile in the Pareto Optimal case; this
is, then, an example where an increase in volatility of investment
is not undesirable.

Consumption for the manager is constant in the full informa-
tion - enforcement environment. In contrast, in an autarkic envi-
ronment with low initial capital stoc!;, consumption grows with

the capital stock and fluctuates in response to random shocks.

6.2 Private information (PI) vs. autarky (AU)

and vs. full information with full enforcement
(PO)

We showed in Section 3 that the A-transfer mechanism preserves
the investment decisions of the full information-enforcement en-
vironment when investment decisions are observable. Therefore,
capital accumulation paths for the PI coincide with the PO-paths
of Figures 1-4. Figures 5 to 7 display the behavior of consump-
tion and utility of the manager (respectively cl- and vall- ), and
of transfers.

Consumption" is affected by the presence of informational in-
centive constraints, although the nia.na.ger can smooth his con-

sumption much more than in an autarkic environment and, there-
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fore, attain higher payoff. Also, it is interesting to note that, even
“though the manager starts out with a very high utility, in the long
run he can be worse off under private information than under au-

tarky.

6.3 Limited enforcement with full informa-
tion (PC) vs. autarky (AU) and vs. full en-
forcement with full information (PO)

In section 2 we proved that, in the steady state distribution, the
capital and investment series under participation constraints were
equal to the capital accumulation in the PO model and that con-
sumption of agent 1 was constant; thereby, transfers absorbed all
the shocks. During the first few periods, however, the behavior
of the model PC is quite different from the full optimum. We are
reporting the series that correspond to a A that makes expected
discounted transfers at ¢t = 0 to be equal to zero, so these series
correspond to the equilibrium contract.

In the PC environment the path of capital accumulation (and
investment) in the first few periods is very similaz to the autarky
equilibrium (see Figure 1). This is remarkable since we saw that
private information did not have any effect on growth. In fact,
in a given realization, the capital stock can even be lower with
participation constraints for certain periods (see Figure 1) ; then,
it is possible for the utility of the manager to be lower under
participation constraints than in autarky in certain periods (see
Figure 7). Notice that this does not mean that the participation

constraints are violated in these periods: since capital can be
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smaller under participation constraints, the value for agent 1 of
moving to autarky after a few periods is lower than if he had
started out in autarky.

In the model with partial enforcement, even though borrowing
from the investor does not help in growing at a faster rate, it does
help the manager smooth out consumption against unforeseen
shocks. Figure 5 shows how consumption of the manager grows
much more smoothly under participation constraints than under
autarky, even though the consumption levels are similar at any
point in time. So, in the PO model, borrowing and lending was
used for smoothing along the growth path and against unforeseen
shocks, but in the PC model it only serves the latter purpose.

‘The fact that in this model external financing can be used
to smooth out consumption against unforeseen shocks makes it
possible to have a gain in utility with respect to autarky; the gain
is equivalent to an increase in consumption of 0.39% in the first
period and leaving consumption constant thereafter, so that the
utility gain from external financing under limited enforcement
is very small. Clea;ry, with a higher degree of risk-aversion or
increasing the randomness in the economy, it would be possible
to increase the utility gain in the PC model relative to the AU
model.

Figure 7 tells us that transfers in the PC model are negligible
(of the order of 1% the level of total consumption), while transfers

under PI have a similar pattern to the optimal transfers.



Appendix 1

Computing the Derivative of the Value Function in Au-
tarky

In order to apply PEA to the model with participation con-
straints we need to calculate the values inside the conditional
expectations of equation 18, so we need to calculate the deriva-
tive of V4. It is convenient to express this derivative in terms
only of conditional expectations and functions of variables of the
model; we now derive such a formula based on the ideas of Ben-
veniste & Scheinkman. In the rest of this appendix, all variables
correspond to the autarky equilibrium so that the superscript ’a’
on the variables is suppressed.

The Bellman equation for the autarkic problem is

Ve(ki, 0:) = ma ]}(1 = 8)u(er) + SEV2(dke + 9, 0e41), 0041) }
subject to the production constraint. The first order conditions of
the maximization problem in the right hand side of the Bellman

equation

w(ce) = SE[V (kew1, 0141)

gl (29)

where the primes denote derivatives with respect to the first ar-

gument of each function involved in this expression.
Letting f(k,,8;) be the optimal decision function for invest-

ment under autarky, we have the following identity
Vo(ke, 8:) = (1 — 8)ulky — f(k:, 0:)]+
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OBV dk + g(f(ke,00)), Oesn, Se41]-

" Differentiating both sides with respect to capital we have
V¥ (ke 8e) = (1 — 8)u'(ce)akd™" — f'(ki, 0:)] + 6 E,

[V (ksr, Oer1)ld + gly (i) £ (ke, 61)]].
Using 29 this reduces to

Va,(kf, 0t) = (1 - J)U’(Cg)ak?_l + adEt[V“(kg...l, GH.I)],
and, by recursive substitution we have

Vo(ke, 8) = (1 = 8)EL3(6d)n (cenr)akEH],

=0
which is the formula that we are seeking. Note that we can ap-
proximate this derivative by parameterizing the conditional ex-
pectation as a polynomial, and that we can obtain an approxima-
tion to this derivative by running one non-linear regression after

solving the model with autarky 4.

14 Another approach would have been the following two-step procedure: first approxi-
mate the value function as a conditional expectation of future discounted utilities, and
then take the derivative of this approximated value function. The second step here is
problematic: if we use a polynomial to approximate the value function there is no reason
to believe that the derivative of the poiynomial will be close to the derivative of the value
function. This procedure would be justified only if we used cubic or quadratic splines to
approximate the value function. :
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Figure 5, Consumption of the Manager, initial periods
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