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1. Introduction

Dynamic Programming (DP) is a central tool in economics because it allows us to formulate and solve a

wide class of sequential decision-making problems under uncertainty. Many economic problems can be formulated

as Markov decision processes (MDP's) in which a decision maker who is in state s t at time t = 1, , T takes

a decision di that determines current utility u(s t , d t ) and affects the distribution of next period's state st+ i via a

Markov transition probability p(st+i ts dt ). The problem is to determine an optimal decision rule 6 that solves

V (s) e max s E6 {ET- 0 Otu(st, 4)1 so = s} where E6 denotes expectation with respect to the controlled stochastic

process {s t , di} induced by the decision rule 6	 { 61,... 6T}, and E (0,1) denotes the discount factor. What

makes the problem difficult is that instead of computing a sequence of optimal decisions {do, . . , dT } that are fixed

ex ante, the optimal decision rule consists of a sequence of functions {6 1 , , 6T} that allow the ex post decision

dt to vary as a best response to the realized history of the process Ht , i.e. dt = 6t (Ht ). The method of dynamic

programming (a term coined by Richard Bellman in his 1957 text) provides a constructive, recursive procedure for

computing 6 using the value function V as a "shadow price" to decentralize a complicated stochastic/multiperiod

optimization problem into a sequence of simpler deterministic/static optimization problems.' We provide a brief

review of the main theoretical results about MDP's in section 2. We show that stationary, infinite horizon MDP's can

be viewed as multidimensional generalizations of "geometric series" whose solutions are mathematically equivalent

to computing the fixed point to a particular contraction mapping known as Bellman's equation.

Unfortunately, it is quite rare that one can explicitly solve Bellman's equation and derive analytical or "closed-

form" solutions for the optimal decision rule 6 or value function V. As a result, most interesting DP problems must

be solved numerically on digital computers. From the standpoint of computation, there is an important distinction

between discrete MDP's where the state and control variables can assume only a finite number of possible values versus

continuous MDP's where the state or control variables can assume a continuum of possible values. Discrete MDP

problems can be solved exactly (modulo rounding error in arithmetic operations), whereas the solutions to continuous

MDP problems can only be approximated to within some solution tolerance E. Approximate solution methods may

also be attractive for solving discrete MDP's that have a very large number S of possible values for the state variables,

or a large number D of possible values of the control variables.

There are two basic types of approximate solution methods: 1) discrete approximation, and 2) parametric

approximation. Discrete methods solve a finite state MDP problem that approximates the original continuous MDP

problem. Since the methods for solving discrete MDP's have been well developed and exposited in the operations

research literature (e.g. Bertsekas, 1987, Porteus, 1980 and Puterman, 1990), this chapter will only briefly review

I In finite horizon problems V actually denotes an entire sequence of value functions, V a {KT , 	, V!}, just as 45 denotes a sequence of decision
rules. In the stationary infinite-horizon case, the solution (v, 5) reduces to a pair of functions of the current state a.
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the latest developments in this area and focus instead on evaluating the ability of these methods to solve continuous

MDP problems. Parametric approximation methods treat either V or S or both as flexible parametric functions of a

finite-dimensional parameter vector a, and generally require a nonlinear optimization subroutine to find a value a*

such that the resulting parametric approximation (Va- , Oa.) "best fits" the true solution (V, 6) in an appropriate sense

(e.g. minimum mean squared error). However another possibility is to use a nonlinear equation solver to choose a*

to satisfy certain "orthogonality conditions". Thus the parametric approximation methods considered in this chapter

fall in the general class of projection methods described in chapter 6 by Judd. We also present hybrid methods that

avoid the need for optimization or solution of nonlinear equations that is required by most parametric approximation

methods. These latter methods use kernel-based "smoothers" to compute a parametric approximation (Va , Oa) using

elementary algebraic operations and a potentially noisy set of observations of the true solution (V, 5) at selected points

in the domain.

Approximate solution methods present us with a tradeoff between the desired precision E of the numerical

solution and the amount of computer time (and storage space) needed to compute it. Solution time will also be an

increasing function of any relevant measure of the size or dimension k of an MDP problem. In general, economists

are interested in using the most efficient possible algorithm for any specified values of (E, k) , especially since in many

economic problems the MDP solution algorithm is embedded or "nested" as a subroutine inside a large optimization

or equilibrium problem. Examples include computing competitive equilibria of stochastic general equilibrium models

with incomplete markets (Hansen and Sargent, 1993, Imrohoroglu and Imrohoroglu, 1993, McGuire and Pakes, 1993),

maximum likelihood estimation of unknown parameters of u and p using data on observed states and decisions of

actual decision-makers (Eckstein and Wolpin, 1987, Rust, 1994 and Sargent, 1979), and computation and econometric

estimation of Bayesian Nash equilibria of dynamic games (McKelvey and Palfrey, 1992). All of these problems

are solved by "polyalgorithms" that contain MDP solution algorithms as subroutines. The MDP subroutines are

themselves polyalgorithms consisting of individual subroutines for numerical integration, optimization, approximation,

and solution of systems of linear and nonlinear equations. Since the MDP problem must be repeatedly re-solved for

various trial sequences of {ff , 	 , speed, accuracy, and numerical stability are critical.

A great many alternative approximate and exact solution methods have been proposed in the last 30 years.

Bellman contributed to the development of both discrete and parametric approximation methods for solving MDP's

(e.g. policy iteration, Bellman 1957, and polynomial approximation, Bellman et. al. 1965). Recently there has

been considerable controversy in economics about the relative merits of discrete versus parametric approximation

methods for solving continuous MDP problems. Part of the controversy arose from a "horse race" in the 1990 Journal

of Business and Economic Statistics (Taylor and Uhlig, 1990) in which a number of alternative solution methods

competed in their ability to solve the classical Brock-Mirman stochastic growth model described in section 2.5. More

recently Judd 1993 has claimed that
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Approximating continuous-state problems with finite state Markov chains limits the range of problems
which can be analyzed. Fortunately, state-space discretization is unnecessary. For the past thirty
years, the standard procedure in Operations Research literature (see Hellman, 1963, Dantzig 1974,
Daniel, 1976) has been to approximate value functions and policy rules over continuous state spaces
with orthogonal polynomials, splines, or other suitable families of functions. This results in far faster
algorithms and avoids the errors associated with making the problem unrealistically "lumpy". (p. 3)

This chapter attempts to offer some new perspectives on this debate by comparing discrete and parametric approximation

approaches both theoretically and practically. Although there is no simple answer to the question of which approach

is best we do provide a conceptual framework and a set of numerical comparisons that we hope will help individual

researchers decide which of the myriad of available methods is best for solving their particular problems.

Our distinction between discrete and parametric approximation methods is somewhat oversimplified: dis-

cretization can be viewed as a particular kind of parametric approximation and virtually any parametric approximation

method requires discrete approximation in order to compute various integrals such as those appearing in the conditional

expectation operator E. Although discrete approximation methods ordinarily generate solutions V lying in a finite

dimensional Euclidean space R N and parametric methods produce an approximate solution Va. directly in the infinite

dimensional space B where the true solution V lives, this too is an artificial distinction since a discretized solution

V E RN can always be mapped into an element of B by interpolating the N coordinates of V. However these

are subtleties: we will see that discretization methods involve a fundamentally different solution philosophy than the

parametric methods we will be presenting in section 5. 2 The difference is easiest to see in the case of continuous infinite

horizon MDP problems. Parametric methods generate approximate solutions living in an N-dimensional submanifold

BN that is typically defined as the image of a smooth mapping 0 : AN --* BN where the set AN is generally a

compact subset of RN : Va e 0(a) E BN = 0(AN ). Depending on how we specify the set A N and the mapping

a we can obtain a wide variety of different parametric approximation methods. Parametric methods also require us

to specify a procedure for determining a particular point 1/0- E BN that "best approximates" the true solution V.

Here we see the crucial distinction between the two approaches: discrete methods such as successive approximations

and policy iteration preserve and fully exploit the fact that V is the fixed point to a contraction mapping V = r(V)
whereas parametric methods typically transform the fixed point problem into a problem of optimizing some smooth

function g(a) or of solving a system of nonlinear equations g 2 (a) = 0 for some functions g and il l that generally do

not retain the nice mathematical properties of the Bellman operator r. Section 5.4 presents an example where B N is a

linear manifold generated by linear combinations of Chebyshev polynomials (i.e. 0 is a linear transformation), and an

example where BN is a nonlinear manifold generated by the output of a single layer neural network with coefficient

vector a (i.e. 0 is a smooth nonlinear mapping). In both of these cases Va --= a (a) is easy to compute for any given

a E AN: the difficult problem is to find the vector a* such that the associated value function V0. approximately

2 We ignore the issue of approximating the optimal decision rule 6 due to the fact that it can be computed from the approximate solution for V as
shown in section 2.2.
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solves Bellman's equation. Under the least squares formulation of the approximation problem a* is defined by the

solution to the following minimization problem:

a * = argmin g(a)I va — r(va )1 2 i/J IVa(s) — P(Va)I 2 it(ds)
crEA

where and is a probability measure on the continuous state space S. Note also that evaluation of g requires

computation of multivariate integrals, both in the evaluation of I' (Va ) and in the evaluation of 1Va – F(V„,)1 2 . These

integrals cannot be computed analytically in most cases, so some sort of numerical integration routine must be employed

to repeatedly recalculate them for different trial values of a. Also, we will generally require a global minimum a*

of g to guarantee that the approximate solution Va. will be sufficiently close to the true solution V, but this may

difficult if g is not smooth or has lots of local optima.' Discrete methods do not suffer from these problems since

global convergence to the true solution is guaranteed by the fact that r is a contraction mapping. However the hope is

that a judicious choice of r/) will allow the parametric approach to provide a very accurate approximation of V using a

relatively small number of parameters N.4

A minimal requirement of any sensible solution method is that it be consistent: i.e. by increasing the number

N of grid points in a discrete approximation of V or the number of a coefficients in a parametric approximation

Va. we ought to be able to approximate the true solution arbitrarily accurately.' Consistency theorems for discrete

approximation of MDP's date back to Fox 1973 and Bertsekas 1987, but to our knowlege there are no corresponding

published results establishing the consistency of parametric methods. 6 Borrowing from standard results on the

consistency of non-parametric regression (Hardie, 1987), approximation error bounds for specific classes of functions

such as orthogonal polynomials (Rivlin, 1969), error bounds known as Kolmorgorov N-widths for more general linear

subspaces of functions (Pinkus, 1985), and approximation error bounds for nonlinear manifolds such as neural networks

(Homik, Stinchombe and White, 1993), we provide a general framework for proving the consistency of a variety of

parametric approximation methods in sections 5.2 and 5.4.

3 In this vein section 5 discusses the desirability of solving a slightly perturbed version of Bellman's equation with an approximate Bellman operator
r, that is everywhere differentiable (unlike r which has kinks at certain points V E B).

4 In some cases parametric methods allow us to exploit certain types of prior information we might have about the solution V, i.e. monotonicity,
convexity, etc. For details, see Judd, 1994.

5 Consistency of parametric methods also depends on being able to find arbitrarily accurate solutions to the associated nonlinear optimization and
multivariate integration problems.

6 There is a closely literature on discretization and parametric approximation of abstract operator equations (Cryer, 1982, KrasnosePsIdi et. al. 1982,
and Rall, 1982) which can be viewed as encompassing the methods outlined in this chapter as a special case. However this literature and the closely
related literature on approximation of collectively compact operators (Anselone, 1971 and Anselone and Ansorge, 1981) is rather abstract and it is
often easier to prove the convergence of a particular method from first principles than to verify the general sufficient conditions required for these
more general consistency results.
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Although it's comforting to know that a numerical method is consistent, there is a practical limitation to one's

ability to solve continuous MDP's arbitrarily accurately: namely, Bellman's (1957) curse of dimensionality. This is the

well-known exponential rise in the time and space required to compute the solution to an MDP problem as the number

of components (dimensions) lc ., of the state variable and the number of components k d of the control variable increases.

Although one typically thinks of the curse of dimensionality as arising from the discretization of continuous MDP's, it

also occurs in discrete MDP's that have many state and control variables. Parametric approximation methods are also

subject to their own version of the curse of dimensionality: in order to guarantee that a parametric approximation Va is

within an abitrary tolerance € of the true solution V, we must increase the dimension Na of the parameter vector a at

a sufficiently rapid rate as e —* 0. However the amount of computer time required to solve the associated optimization

problem or system of nonlinear equations increases exponentially fast as Na —* co, at least on a worst-case basis

(Nemirovsky and Yudin, 1983).

An important unresolved question is whether we can somehow circumvent the curse of dimensionality through

a clever choice of solution algorithm, perhaps for a restricted class of problems exhibiting special structure. For

example, Nemirovsky and Yudin 1978 demonstrate that the amount of time required to solve an N-dimensional convex

optimization problem only increases linearly in N on a worst case basis. A number of important developments in

theoretical computer science in the last twenty years (see, e.g. Garey and Johnson, 1983, Traub and Wo iniakowski, and

Nemirovsky and Yudin, 1983) have enabled formal proofs of lower bounds on the computational complexity of solving

various continuous multivariate mathematical problems such as nonlinear optimization, numerical integration, function

approximation, and recently, MDP problems. There are two main branches of complexity theory, corresponding to

discrete and continuous problems. Discrete (or algebraic) computational complexity applies to finite problems that

can be solved exactly such as matrix multiplication, the travelling salesman problem, linear programming, and discrete

MDP's.' The size of a discrete problem is indexed by an integer k and the (worst case) complexity, comp(k), denotes

the minimal number of computer operations necessary to solve the hardest possible problem of size k, (or 00 if there

is no algorithm capable of solving the problem). Continuous computational complexity theory applies to continuous

problems such as multivariate integration, function approximation, nonlinear programming, and continuous MDP

problems. None of these problems can be solved exactly, but in each case the true solution can be approximated to

within an arbitrarily small tolerance €. Problem size is indexed by an integer k denoting the dimension of the space

that the continuous variable variable lives in (typically Rk ), and the complexity, coMp(E, k), is defined as the minimal

computational cost of solving the hardest possible k-dimensional problem to within a tolerance of E. Complexity

theory also provides a simple way of formalizing the curse of dimensionality: we say that a discrete MDP problem

is in the class CD if comp(k) > O(Nk) for some integer N > 1, i.e. if its complexity grows exponentially fast as

the dimension k increases. Similarly a continuous MDP problem is in the class CD if carnp(e, k) >	 .lek). In

7 In the latter two problems we abstract from rounding error computer arithmetic.
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the computer science literature problems in the class CD are called intractable. 8 On the other hand, if complexity is

bounded by a polynomial in k we say that the MDP problem is in the class P of polynomial-time problems. Computer

scientists refer to polynomial-time problems as tractable.° Since a rudimentary knowledge of some basic results of

complexity theory can provide important guidance into the design of practical solution methods, we provide a brief,

self-contained review of the relevant terminology and results from discrete and continuous computational complexity

theory in section 3)°

The discrete and continuous complexity bounds comp(k) and coral*, k) depend on the model of computation

used (parallel vs. serial, real vs. Turing), the type of algorithm used (deterministic vs. stochastic), the relevant metric

for measuring the error c in the approximate solution (worst case vs. average case complexity), and the class of

problems being considered (i.e. general MDP's versus restricted subclasses where it and p satisfy certain properties).

The main results can be summarized as follows. Discrete MDP's with S states and D decisions can be solved exactly

in polynomial time using a variety of algorithms." Certain subclasses of continuous MDP's such as linear quadratic

MDP's can also be solved in polynomial time using the algebraic Ricatti equation methods outlined in section 4. In

section 5.1 we show that an upper bound on the complexity of solving a discrete MDP with S states and D decisions is

eTDS2 where c is the time cost per arithmetic operation. One can do substantially better than this by using fast matrix

multiplication algorithms of Pan 1983 and others. However the lower limit on the complexity of matrix multiplication

is not known at the present time, so it is difficult to put a lower bound on the complexity of solving finite MDP's.

Solutions to MDP's can also be speeded up by using massive parallel processors such as the Connection Machine.

Although the dynamic programming algorithm is inherently sequential, the main work involved in solving finite

horizon problems is the computation of the conditional expectation of next period's value function for each possible

value of the current state s. This can be carried out efficiently in parallel, say, with S separate processors computing

the conditional expectations for each state s = I, , S. However, Papadimitriou and Tsitsiklis 1987 argued that

infinite horizon discrete MDP's cannot be efficiently parallelized by showing that the problem is P-complete which

8 We prefer the terminology "curse of dimensionality" since the conunon use of the term "intractable" connotes a problem that can't be solved.
Computer scientists have a specific terminology for problems that can't be solved in any finite amount time: these problems have infinite complexity,
and are classified as non-computable. However even though intractable problems are computable problems in the computer science terminology, as
the problem grows large the lower bound on the solution time grows so quickly that these problems are not computable in any practical sense.

° Here again it is important to note the difference between the common meaning of the term "tractable" and the computer science definition. Even
so-called "tractable" polynomial-time problems can quickly become computationally infeasible if complexity satisfies comp(k) > 0(0) for some
large exponent b. However it seems to be a fortunate act of nature that the maximum exponent a for most common polynomial time problems is
fairly small; typically b E i2, 31.

I ° For a recent survey of applications of complexity theory to other economic problems see Norman, 1993. Tsitsiklis 1993 provides a review of
applications of complexity theory to MDP's. Traub 1993 presents a review of recent developments in complexity theory for solving more general
continuous problems such as multivariate integration and function approximation.

" This result assumes that we index the size of the MDP by (5, D). However, section 5.1 shows that the MDP problem is in the class CD of exponential
time problems if we index the size of the MDP by (k,, Ice) where k, is the number of state variables and kd is the number of control variables.
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means, roughly speaking, that the MDP problem is at least as difficult as any other polynomial-time problem such as

linear programming (in fact the LP approach turns out to be a relatively efficient way to solve MDP's as we will see

in section 5.4). Polynomial-time problems that can be effectively parallelized are said to be in the class NC: formally,

NC consists of all problems that can be solved in poly-log time (i.e. a polynomial of log(S), where S is the size of

the problem) using an expandable massive parallel processor whose processors equal some polynomial of S. The

P-completeness of the MDP problem "means, intuitively, that such problems are as hard as any problem in P; thus,

they can be massively parallelized only if NC = P, that is if all problems in P can, and thus there are no inherently

sequential problems. Since this event is considered unlikely, P-completeness is taken as evidence that a problem is

not NC, and thus cannot be satisfactorily paralellized." (Papadimitriou and Tsitsiklis, 1987, p.442). We argue that

this result may be an artifact of the use of the Turing model of computation and the algebraic notion of computational

complexity. In section 5.3 we show that the MDP problem can be effectively parallelized by presenting a massively

parallel policy iteration algorithm that uses the parallel Newton algorithm of Pan and Reif 1985 to approximately solve

a system of S linear equations in S unknowns in 0(100)2) time using 5") processors where w < 2.376 is the best

current lower bound on the complexity of matrix multiplication.

Complexity bounds for continuous MDP's are of substantial interest in view of a recent paper by Chow and

Tsitsiklis 1991 that proves that a "one way multigrid" discretization algorithm is "approximately optimal." They do

this by showing that the multigrid algorithm (which involves solving a discretized version of the MDP by successive

approximations using a sequence of successively finer grids) asymptotically attains the lower bound on complexity.

This worst case complexity bound was previously established by Chow and Tsitsiklis 1989 and is bounded by

ct c2 
< comp(e,ks, kth <

P)2)2ks+Ld
to2)02k, -F led

for some constants 0 < c t < Q. It is an open question whether parametric approximation methods (such as polynomial

approximations of the value function) also attain this complexity bound. Some promising recent results of Barron

1992 and Hornik, Stinchombe and White 1993 show that neural networks break the curse of dimensionality problem

in the sense that the error in approximating certain families of smooth functions by a single layer feedforward neural

network with N connection weight coefficients a decreases at rate 1/a independently of the number of variables

k entering the function. However the achilles heel of this approach is the computational complexity of finding an

N-dimensional vector a that approximately minimizes the distance between the output of the neural net and the

function being approximated. We conclude that once we move outside of the class of LQ-MDP's (which are solvable

in polynomial time) one cannot avoid the curse of dimensionality for a reasonably general class of nonlinear MDP's -

at least on a worst case basis.
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However it turns out that we can break the curse of dimensionality if we use random instead of deterministic

algorithms or measure approximation error and computer runtime on an average instead of a worst case basis. An

example is multivariate integration of a function f defined on the k -dimensional unit cube [0, l] k that is r > 0 times

differentiable. The worst-case (deterministic) complexity of this problem comp(c, k) = 0(11 em) where m = k/r, ,

so the problem is in the class CD. However consider monte carlo integration of f using random uniform draws

from [0, l[ k . It is easy to see that the strong law of large numbers and central limit theorem imply that worst case

randomized complexity of the multivariate integration problem is comp'"-ran(c, k) = 0(1/c2), so the integration

problem becomes tractable once randomization is allowed. However randomization does not always succeed in

breaking the curse of dimensionality: Nemirovsky and Yudin 1983 showed that randomization doesn't help in solving

general multivariate nonlinear programming problems, Traub, Wasilikowski and Woinialcowski 1987 showed that

randomization doesn't help in multivariate function approximation, and Werschulz 1992 showed that randomization

doesn't help in solving multivariate elliptic partial differential equations or Fredholm integral equations of the second

kind.

The other way to break the curse of dimensionality is to redefine the problem and instead of measuring

approximation error and computer runtime on a worst case basis, one measures it on an average case basis with respect

to some prior probability distribution over the space of possible problem instances. Woinialcowski 1991 and 1992 has

shown that a number of linear multivariate problems such as integration and function approximation that are subject

to the curse of dimensionality on a worst case basis turn out to be tractable on average. Indeed, Woiniakowski 1991

has shown that the multivariate integration problem is strongly tractable: i.e. the average amount of time required

to approximately integrate a function over R k to within a mean square error of e is independent of the dimension k.

Mother practical example is the simplex algorithm for linear programming: although one can construct a sequence of

worst case problems for which the simplex method for solving linear programming problems requires an exponentially

increasing amount of time to find a solution, the simplex method typically behaves as a polynomial-time algorithm

for most problems encountered in practice. However average case complexity results are clearly weaker than worst

case complexity bounds since they require us to specify a "prior probability measure" over the space of possible MDR

problems and only guarantee that the mean square error of a candidate solution is less than E (where the expectation

is taken with respect to the prior probability measure). Specification of an appropriate prior can be a tricky business

since its support equals the infinite-dimensional space of problem inputs (3, u, p). Randomized complexity results are

slightly stronger n the sense that we don't have to specify a prior distribution over potential problem instances and can

still measure approximation error and computer run-time on a worst case basis. However we do have to be content with

a somewhat weaker assurance about accuracy: instead of being guaranteed of generating an approximate solution that is

within c of the true solution with probability 1, a randomized algorithm produces an approximate solution that is within

c of the true solution with probability arbitrarily close to 1. Randomized algorithms are also subject to the criticism that
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actual computers are only able to generate psuedo-random numbers using deterministic algorithms. However many

computer scientists believe that "pseudo-random computation may be viewed as a close approximation of random

computation, and that randomness is a very powerful tool for computation even if implemented on deterministic

computers" (Traub, Wasilikowski and Woiniakowski, 1988, p. 414)."

In section 5 we present recent results from Rust (1994) that proves: 1) randomization does succeed in breaking

the curse of dimensionality for the class of discrete choice processes (DDP's), i.e. MDP's with finite choice sets,

although 2) randomization cannot break the curse of dimensionality for MDP's with continuous choice sets unless the

problem has further structure, e.g. convexity. Rust's upper bound on the worst case randomized complexity of a finite

horizon DDP problem with D possible choices, T time periods and a krdimensional state variable s t is given by:

compwor_ran (e,ks) =__ 0 H
e4

The reason why randomization cannot break the curse of dimensionality for general continuous MDP's with continuous

choice sets is quite simple: since the general nonlinear programming problem is a special case of the MDP problem

when /3 = 0, the general MDP problem must be at least as hard as the general (static) nonlinear programming

problem. However Nemirovsky and Yudin 1978 have proven that nonlinear programming problems are in the class

CD regardless of whether deterministic or random algorithms are employed. In section 5.4 we conjecture that recent

results of Woiniakowski (1991,1992) imply that DDP's are also tractable on average, i.e. their complexity is bounded

by a polynomial function of the dimension 1c., where the prior probability measure on possible problem inputs is a

Wiener sheet measure. The algorithm that we believe will succeed in breaking the curse of dimensionality uses the

optimal integration algorithm of Woiniakowski 1991 (which evaluates integrands at the set of shifted Hammersley

points) and Woiniakowski's multivariate function approximation algorithm (which is based in turn on Temlyakov's

1987 kernel estimator for smooth periodic functions).

While complexity theory provides a useful general guide to the analysis of numerical methods for solving general

MDP's, most of the complexity bounds are best viewed as asymptotic results that show how solution time increases

as c 0 and k --t 00 , but which rarely provide an explicit lower bound on solution time for fixed (k, c). Numerical

examples in section 5.4 show that an exponential time algorithm such the simplex method can be significantly faster

than a polynomial time algorithm such as successive approximations for solving sufficiently small infinite horizon

MDP problems when the discount factor is close to 1. A simple analogy to econometrics may prove helpful here.

Although one can prove that the maximum likelihood estimator O Th based on TL observations is asymptotically efficient

12 Recent theoretical analyses of random number generation show that there are pseudo-random generators whose results are indistinguishable
from truly random numbers from the standpoint of "any observer who does not have enough computational power to 'understand' them. More
specifically, pseudorandom generation is perhaps the most general and natural method to reduce or eliminate the randomness required by algorithms.
Pseudorandom sequences may replace random sequences required by algorithms without changing the results in any way." (Nisan, p. 1).
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as n	 co, any estimator of the form 	 + op (1/ \ Ft) is also asymptotically efficient, where the second term

denotes noise that goes to zero in probability faster than 1/ The op (1/ term represents noise from use of other

non-maximum likelihood procedures (e.g. Bayesian posterior mean) or from noise in the approximate calculation

of the maximizing value of the likelihood. Just as we are concerned with evaluating the finite sample behavior of

various asymptotically equivalent estimators, we are also concerned with the relative efficiency and accuracy of various

numerical solution methods for fixed problems. Thus, section 5 presents the results of numerical tests comparing the

speed and accuracy of various discrete and parametric approximation methods for the suite of continuous MDP test

problems introduced in section 2.6. The test problems are some of the rare examples of continuous MDP's that have

analytic solutions for (V, 6), making it quite convenient to directly compare the speed and accuracy of the various

algorithms."

Our review of MDP's and numerical methods is necessarily selective given the space constraints of this chapter.

To provide some perspective of how our review fits into the larger literature on numerical dynamic programming and

stochastic control, it is useful to briefly review the main variations of control problems encountered in the literature:

• deterministic vs. stochastic

• Markovian vs. non-Markovian

• discrete vs. continuous time

• finite vs. infinite horizon

• linear/quadratic vs. general nonlinear problems

• discrete vs. continuous state

• discrete vs. continuous control

• discounted vs. long-run average rewards

• perfect vs. imperfect state information

This chapter focuses on stochastic control since deterministic control problems are a special case and can

generally be effectively solved using the same algorithms developed for stochastic problems. 14 We also focus

on Markovian decision processes with additively separable utility functionals. Although the method of dynamic

programming can be extended in a straightforward manner to solve finite-horizon problems with non-Markovian

uncertainty and general utility functionals (see Hinderer 1970 or Gihman and Skorohod, 1979), these methods require

keeping track of complete histories which make them computationally intractable for solving all but the smallest

13 Although many of the solution methods we present have associated error bounds that allow us to bound the maximum distance between the true and
approximate solutions, in many cases these bounds involve unknown constants which can be very difficult to evaluate.

" This is not completely true. Papadimitrious and Tsitsiklis 1987 have shown that certain deterministic MDP's are in the class NC whereas the general
stochastic MDP problem is P-complete.
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problems. We also focus on MDP's formulated in discrete rather than continuous time. While there is an elegant

theory of continuous time dynamic programming in which the value function V can be shown to be the solution

to a partial differential equation known as the Hamilton-Bellman-Jacobi (HBJ) equation (see, e.g. Doshi, 1976,

and Fleming and Soner, 1993), under very general conditions one can show that a continuous time MDP can be

approximated arbitrary closely by a discrete time MDP when the time interval is sufficiently small (van Dijk, 1984).

Indeed, the predominant solution method in the OR literature involves solving approximate discrete time formulations

of the MDP problem rather than attempting to numerically solve the HBJ equation, which frequently reduces to a

rather difficult parabolic partial differential equation (see Kushner, 1990 and Kushner and Dupuis, 1992).' 5 For this

reason, the complexity of solving continuous time MDP's is given by the same bounds as for discrete time MDP's,

but with a discount factor that is close to 1. Similarly, although there is a special theory for the solution of MDP

problems under the long-run average reward criterion, we focus on solving problems with discounted returns since a

generalization of a classical theorem due to Abel (see Bhattacharya and Majumdar, 1989, or Duna, 1989) shows that

under weak regularity conditions (1 — t(”V converges to the optimal long-run average reward as 13 tends to 1. This

implies that we can approximate the stationary optimal decision rule under long-run average rewards by solving a

discounted MDP with )3 close to 1. We also focus on problems of perfect state information, since one can always reduce

a problem with imperfect state information to a problem with perfect state information by showing that the conditional

distribution of the unobserved components of the state variable given the observed components is a sufficient statistic,

and hence is the relevant state variable for a reformulated problem with perfect state information (see, e.g. Bensekas,

1987). However while this Bayesian approach is conceptually simple, the reformulation falls prey to the curse of

dimensionality since the new state variable in the reformulated problem is a conditional problability distribution, a

multi-dimensional continuous state variable on the k-dimensional simplex. Papadimitriou and Tsitsiklis have shown

that even discrete MDP's with partially observed states are significantly harder problems than discrete MDP's with

fully observed states. Unlike the fully observed MDP which is in the class P, Papadimitriou and Tsitsiklis showed

that the partially observed MDP problem is NP-complete.' 6 Sections 4.4 and 5.6 of our review discuss non-Bayesian

learning and control algorithms for solving LQ and general MDP problems with unknown parameters, respectively.

It is an open question, however, whether these non-Bayesian methods avoid the curse of dimensionality inherent in

the Bayesian approach. The remaining subject divisions: finite vs. infinite horizon, discrete vs. continuous states and

controls, and methods for LQ vs. general nonlinear MDP's are all covered in separate sections of this chapter.

15 Chapter 9 of Fleming and Saner reviews closely related numerical methods based on solving finite-difference approximations to the HJB equations,
which Kushner and Dupuis (1992) show are closely related to methods based on solving approximate discrete time MDP's. For a review of the
general literature on numerical methods for solving PDE's, see Ortega and Voigt, 1988.

16 The class NP consists of problems that can be solved in polynomial time using a "non-deterministic" computer. Essentially, this means that one
can verify the correctness of any conjectured solution in polynomial time. Many computer scientists believe that NP-problems have exponential
worst case complexity, but the answer to this question depends on the resolution of the "P NP problem" which is a famous unsolved problem
in computer science. If P NP then all problems that were previously thought to be exponential time problems (e.g. the "travelling salesman"
problem) can actually be solved in polynomial time.
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A final caveat is that the MDP framework involves the implicit assumption that decision-makers have time-

separable preferences and are expected utility maximizers. Experimental tests of human decision-making show that

neither of these assumptions may be valid (e.g. the famous "Allais paradox", see Machina, 1987). Recently, a new

theory of sequential decision-making has emerged that allows for time and state non-separable preferences (see Epstein

and Zin, 1989, and Ozaki and Streufert, 1992), and it's possible that this generalized dynamic choice theory could result

in more realistic economic models. Apart from some special cases that have been solved numerically (e.g. Hansen

and Sargent, 1993) there is virtually no theory or well developed numerical procedure for solving general versions of

these problems. However these problems have a recursive structure, so it is quite likely that many of the methods

outlined in this chapter can ultimately be adapted to solve these more general SDP's. We content ourselves with the

observation, formalized in Rust (1994), that the class of MDP's is already sufficiently broad to enable one to generate

virtually any type of decision rule (behavior) via an appropriate specification of preferences it and law of motion p.
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2. Solving MDP's via Dynamic Programming: A Brief Review

This section reviews the main theoretical results on dynamic programming in finite and infinite horizon problems.

Readers who are already familiar with this theory may simply wish to skim over this section to determine the notation

we are using, and skip directly to the presentation of numerical methods in sections 3 and 4.

Definition 2.1: A (discrete-time) Markovian Decision Process consists of the following objects:

• A time index t E It), 1, 2, ... ,	 T < co

• A state space S

• A decision space D

• A family of constraint sets {D t (st) C D}

• A family of transition probabilities {Pt+ (• 1st, dt) : B(S)	 [0, 1n."

• A discount factor (3 E (0,1) and family of single period utility functions {nt (st , dt )} such that the utility

functional UT has the additively separable decomposition: 18

UT (S, d) = E Qtut(st,dt)•	 (2.1)
t=o

The agent's optimization problem is to choose an optimal decision rule 6* = (6T	 , bp to solve the following

problem:

max	 E 6{UT(S, (1)} .-.E1 •••1
h=(803-•,8T)	 se	 sr

T

EPtut(st,ot(s0)( 
t=0

T

ript(dstist -1,6t—i(st_Opo(dso),
t=-1

(2.2)

where Po is a probability distribution over the initial state so. Stated in this fonn, the optimization problem is extremely

daunting. We must search over an infinite-dimensional space of sequences of potentially history-dependent functions

(60, ST), and each evaluation of the objective function in (2.2) requires (T + 1)-fold multivariate integration.

We now show how the method of dynamic programming can be used to vastly simplify this potentially intractable

optimization problem.

17 s(s) is the Sorel a-algebra of measurable subsets of s. For simplicity, the rest of this chapter avoids measure-theoretic details since they are
superfluous in the most commonly encountered case where both the state and control variables are discrete or under the topological and smoothness
assumptions we will be imposing later in this chapter.

18 The boldface notation denotes sequences: s = (so,... 8r). We will subsequently impose explicit toplogical structure on S and D and smoothness
conditions on {ut } and {p t } later in this section and in sections 4 and 5.
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2.1 Finite Horizon Dynamic Programming and the Optimality of Markovian Decision Rules

In finite-horizon problems (T < co), dynamic programming amounts to calculating the optimal decision rule

b* = (bg , , 4) by backward induction starting at the terminal period, T. The backward recursion must be done

for each time period t = T, T –1, , 0 and for each possible state s t . In principle, the optimal decision at each time t

might depend not only on the current state s t , but on the entire previous history of the process, i.e. rit = 6i (H1-1, st)

where Ht =-- (so, ... st_ i ). 19 However since we are dealing with MDP's it is easy to see that the Markovian structure

of p and the additive separability of UT imply that it is unnecessary to keep track of the entire previous history: the

optimal decision rule depends only on the current time t and the current state st : dt = 6L (s t ). For example, starting

in period T we have:

OT(HT _ 1 , sT )	 ar gmax UT (HT sT , dor ,	 dT),
dr EDT(sT)

where UT can be rewritten as:

UT( HT-1, ST dO • • ,dT) = E Pt ut(St, dt)
tr--0
T –1

= L fitut(st,do +137111T(sTIdT)•
2=0

It is clear that the optimal choice of thr is independent of previous history HT since dT appears only in the final

term nT(sT , dT ) on the right hand side of (2.4). Continuing the dynamic programming recursion, it is straightforward

to verify that at each time t the optimal decision rule hr depends only on s t and the current time t. A decision rule

that depends on the past history of the process only via the current state s t and time t is called Markovian. Notice also

that the optimal decision rule can always be chose to be a deterministic function of s t . Randomization can never help

and typically reduces expected utility whenever the maximizing value of (LT in (2.3) is unique.2°

The value function is the expected discounted value of utility over the remaining horizon assuming an optimal

policy is followed in thefuture. Economists recognize the value function as "shadow price" that facilitates intertemporal

decentralization of the decision process. Others have provided more colorful characterizations of the value function,

e.g. Howard (1960) described it as a "portable genius". Regardless of how it is described, the value function is a key

to obtaining the optimal decision rule as well as being of fundamental interest in its own right. The method of dynamic

Ig If past decisions are known, measurable functions of past states, di	 (Hi), j 0,	 , 2 — 1, there is no increase in information in including the
realized decisions in

2° Uniqueness of the optimal decision is a generic property in the sense that whenever multiple values of dr maximize (2.4), a slight perturbation of
uj yields a similar problem where the maximizing value is unique.
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programming calculates the value function and the optimal policy recursively as follows. In the terminal period ic
and br, are defined by:

bi,(sT) = argmax [Uy, (sT , dT )] ,	 (2.5)
drEDr(sr)

VI (sT) =	 max [uT (sT , d7')] •	 (2.6)
drEDT(sT)

In periods t = 0, ... , T – 1, VT and 61. are recursively defined by:

611 ( st) = ar gmax ru t (st, dt) + 0 f V7+ 1 (St+1, 6T+1( st+1))Pt+1(dst-Fil st, dt)],
cliEDdst)

■\( st) = max [ut (st ,dt) /3 f V7+1(st+ll ut+n st+ )) Pt+1(dst -Filst, dt)] •dieDi(st)

It's straightforward to verfiy that at time t = 0 the value function (80 ) represents the maximized expected discounted

value of utility in all future periods. Since dynamic programming has recursively generated the optimal decision rule

6* = (bp , • . • , br,), it follows that

VoT (S) = 711189X EgUT(g, (1)180 = sj.	 (2.9)

These basic results can be formalized as follows:

Theorem 2.1: Given a finite horizon MDP (T < co) that satifisfies certain weak regularity conditions (see

Gihman and Skorohod, 1979):

1. An optimal, non-randomized decision rule b* exists,

2. An optimal decision rule can be found within the class of non-randomized Markovian strategies,

3. The optimal decision rule b* =	 , 5,T ) can be computed by backward induction according to the

recursions (2.5),	 , (2.8).

4. The initial value function VT computed from the dynamic programming recursions satisfies the iden-

tity (2.9).

(2.7)

(2.8)
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2.2 Infinite Horizon Dynamic Programming and Bellman's Equation

In the infinite horizon case T = co and there is no "last" period from which to start the backward induction

to carry out the dynamic programming algorithm described in the previous section. However if the per period utility

functions tit are uniformly bounded and the discount factor 0 is in the (0,1) interval, then we can approximate the

infinite horizon utility functional U.,0 (s, d) arbitrarily closely by a finite horizon utility functional UT (s, d) for T

sufficiently large. This is a basic idea underlying many numerical methods for solving infinite horizon MDP's such as

successive approximations, all of which will be described in more detail in sections 3 and 4.

However almost all infinite-horizon MDP's formulated in economic applications have the further characteristic

of stationarity: i.e. the transition probabilities and utility functions are the same for all t. In the finite horizon case

the time homogeneity of u and p does not lead to any significant simplifications since there still is a fundamental

nonstationarity induced by the fact that remaining utility ET, 13i u(sj ,dj ) depends on t. However in the infinite-

horizon case, the stationary Markovian structure of the problem implies that the future looks the same whether the

agent is in state st at time t or in state St+ k at time t + k provided that St = St-Fk• In other words, the only variable

that affects the agent's view about the future is the value of his current state s. This suggests that the optimal decision

rule and corresponding value function should be time invariant: i.e. for all t > 0 and all s E S, (8) = b(S) and

Vt°O (s) = V(s). Removing time subscripts from equation (2.7), we obtain the following equation for the optimal

stationary decision rule 5:

6(s) = argmaxiu(s,d)+	 VG514(dslis,d)],	 (2.10)
dED(s)

where V is the solution to:

V(s) = max Ms, + 13 f V (1)p(dsi ls,d)].	 (2.11)
ciED(s)

Equation (2.11) is known as Bellman's Equation" and most of the efficient numerical methods described in section 5

focus on direct solution of this equation rather than attempting to solve an approximate finite-horizon version of the

the problem by the backward induction. Note that Bellman's equation defines V in terms of itself: i.e. it is a recursive

equation. In mathematical terminology, Bellman's equation is a functional equation and V is a fixed point to this

functional equation. Bellman's equation has the further important property, apparently first noted by Denardo (1967),

that V is the fixed point to a contraction mapping.

21 Selman was not the first to discover this equation (for example versions of it appear in prior work by Arrow et. at on optimal inventory policy),
however the equation bears his name due to Bellman's systematic application of the approach to solving a wide variety of problems.
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2.3 Bellman's Equation, Contraction Mappings, and Blackwell's Theorem

To establish the existence and uniqueness of a solution to Bellman's equation, assume for the moment the

following regularity conditions hold: 1) S and D are complete metric spaces, 2) u(s, d) is jointly continuous and

bounded in (s, d), 3) s	 D(s) is a continuous correspondence. Let B denote the vector space of all measurable,

bounded functions f: S	 R under the (essential) supremum norm, I f = sursEsl.f(01• Then B is a Banach Space,

i.e. a complete normed linear space. 22 Define the Bellman operator r: B	 B by:

r(W)(s)= tzstra) {u(s,d)+ p W(i)p(ds i ls,d)].d 

Bellman's equation can then be re-written in operator notation as:

v =r(v),

i.e. V is a fixed point of the mapping T. It is not difficult to show that given any V, W E B we have:

ir(v) — r(w)I 0 iv —

An operator that satisfies inequality (2.14) for some 0 E (0,1) is said to be a contraction mapping. The theory of

contraction mappings allows us to establish the existence and uniqueness of the solution V to Bellman's equation. In

addition, since contraction mappings have extremely nice mathematical properties, the theory has spawned many of

the solution methods and error bounds developed in section 5. Because of its simplicity and its role in the development

of various solution methods, we repeat the proof often-stated contraction mapping theorem below.

Banach Contraction Mapping Theorem: If r is a contraction mapping on a Banach Space B, then I' has a

unique fixed point V E B.

The uniqueness of the fixed point is a direct consequence of the contraction property (2.14): if W and V are

fixed points to I' then (2.14) implies that

—	 1r(v) — r(w)I pl y —	 (2.15)

Since 0 E (0,1) then only possible solution to (2.15) is IV — = 0. The existence of a fixed point is a result of

the completeness of the Banach space B. Starting from any initial element of B (such as 0), the contraction property

(2.14) implies that the following sequence of successive approximations forms a Cauchy sequence in B:

{ o,r(o),r2(o),r3(o), ..,rn (o), .}.	 (2.16)

12 Recall that a metric space S (which includes the normed linear space space B as a special case) is said to be complete if every Cauchy sequence in
s converges to a point in S.
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Since a the Banach space B is complete, the Cauchy sequence converges to a point V E B, so existence follows by

showing that Visa fixed point of r. To see this, note that a contraction I' is uniformly continuous, so:

v. um ru m.= aim r(rn-1(o)).r(v),
n—■co
	 (2.17)

i.e., V is indeed the required fixed point of r.

Blackwell's Theorem: The stationary, Markovian, infinite-horizon policy given by 6* = (6, 6,. . .) where 6 is

defined in (2.10) and (2.11) constitutes an optimal decision rule for the infinite-horizon MDP problem (2.2).

This result follows by showing that the unique solution V (s) to Bellman's equation coincides with the optimal

value function Vr defined in (2.9), which we restate below for convenience:

00
(et.s	 max Es

{	
E 13 iu(st,dt)lso =
	

(2.18)

Consider approximating the infinite-horizon problem by the solution to a finite-horizon problem with value function:

VT (s) max .E6 {E fitu(st ,dt )lso =
t=0

Since u is bounded and continuous, Er_ 0 O tu(st , ti t ) converges to Er--013tu(Stldt) for any sequences s =

(so, ) and d = (do, c1 1 ,...). Using the Lebesgue dominated convergence theorem and properties of suprema,

one can show that for each s E ,S, VT (s) converges to the infinite-horizon value function Vocc (s):

lim VDT (s) = V-00e (s)	 Vs E S.	 (2.20)
T–Hro

But the contraction mapping theorem also implies that this same sequence converges uniformly to V (since KT

1'21 (0)), so it follows that V = Ve. Since V is the expected present discounted value of utility under the policy 6* (a

result we demonstrate in section 2.4), the fact that V Vr immediately implies the optimality of 6*.

The optimality of the infinite horizon policy 6* can be proved under weaker conditions that allow u(s, d) to be

an unbounded, upper semicontinuous function of s and d, see Bhattarcharya and Majumdar, 1989. Although problems

with unbounded state spaces S, decision spaces D, and utility functions u arise frequently in economic applications,

in practice most of the computational methods presented in section 5 require bounded domains and utility functions.

We can approximate the solution to a problem with unbounded state space, decision space, and utility function via

a sequence of bounded problems where the bounds tend to infinity. Furthermore, the solution to problems with

upper-semicontinuous utility functions can be approximated as the limit of a sequence of solutions to problems with

continuous utility functions, see Gihman and Skorohod 1979, Lemma 1.8.

(2.19)
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It turns out that many of the solution methods for solving stationary, infinite horizon MDP's described in section

5 can be interpreted more broadly as numerical methods for computing fixed points to general contraction mappings.

Indeed, several of the methods involve computation of fixed points to "nearby" contraction mappings I`, that can be

viewed as perturbed versions of the Reitman operator r in the sense that for each W E B:

	

lint	 = P(W).

	

cr—■0

	 (2.21)

The parameter a can be thought of as indexing a level of "noise" intended to "smooth out" potential non-differentiabilities

caused by the max operation in the Belhnan operator. For example consider the operator 1.'„ :	 B defined by:

,(V)(s)	 azrs) [u(s, d) + an(d) +	 V (.9')p(ds1 is, d)] g(dnis),	 (2.22)

where q(dnis) is a continuous distribution function on R ks where k, is the number of elements in D (s). This operator

can be viewed as providing the expected value of the value function when choices are perturbed by small stochastic

shocks n. In the special case where n has a (shifted) multivariate extreme value distribution, the operator I', is given

by:

T,(V)(s) = cr log E exp[
1 

u(s , d) + 0 5 V( si )p(dsi 1s, d) 11 .

	

s) 
	

(2.23)
dED( 

It is straightforward to verify that for any o- > 0 the 1',(V) is a contraction mapping and a Frechet differentiable

function of V that converges to r(V) as a tends to zero. The following lemma shows that the fixed point V, to the

contraction mapping I', converges to the fixed point V of the contraction mapping 1' as a tends to zero.

Lemma 2.1: Suppose {Fa } are a family of contraction mappings on a Banach space B indexed by a single

real parameter a that satisfies condition (2.21). Then the fixed point V, = To(VV) tends to the fixed point

V. = r(V) as a —■ 0 and satisfies the error bound:

11/2, - VI 5.. 
Ira(v) — r(v)1

(1— P)

The proof of this lemma is a simple application of the triangle inequality:

— VI = R",(V,) — r(v)1

(vc) rer(v)1+ irc (v) — F(V)1	 (2.25)

OIV, — VI + 11"„(V) —r(V)I.

A closely related example of a perturbed problem arises from homotopy or "path following" algorithms that compute

value functions Vs to MDP's for different values of 0, When = 0 we have a static optimization that is generally

relatively easy to solve (such as is the case whenever D(s) is a finite set for each s E S), and asp increases

monotonically towards 1 we get a sequence of increasingly difficult dynamic problems. The idea behind the path

(2.24)
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following algorithm is to solve the value function 'VA, for a sequence pn, /3 using the solution as the starting

value in some algorithm for finding the solution 17)97, at On. We conclude this section by presenting several fundamental

error bounds for contraction mappings that will be key to establishing error bounds and convergence of several of the

numerical methods presented in section 5.

Lemma 2.2: Let I" be a contraction mapping on a Banach space B with fixed point V = 12(V). If W is an

arbitrary element of B the following inequalities hold:

1W – r(w)I 5. (1 +0)117 – WI (2.26)

1r(V) – V1	 P"W(w) — wl/(1 — 0) (2.27)

1r+1 (V) – V1	 )3 Th lr+1 (V)– r(V)1/(1 – )3) (2.28)

jrn+i (V) – VI < 13Ir (V) – VI (2.29)

Error bound (2.26) shows that if W is close to the fixed point V then W must also be close to r(W). Error bound

(2.26), known as an a priori error bound, shows the converse result: the maximum error in a sequence of successive

approximations {V.} starting from W is a geometrically declining function of the initial error 1W — r(W)I. These

two inequalities will be the keys to establishing the convergence of the various parametric approximation methods

presented in section 5. Inequality (2.28) is referred to as an a posteriori error bound: it enables us to bound the

maximum distance of 1/. 4. 1 to the fixed point V in terms of the (observable) change in the value function from iteration

n to n + I. We state this bound for completeness, since in section 5 we will show that in the special case where I' is

the Bellman operator one can derive a much sharper a posteriori error bound known as the McQueen-Porteus error

bound. The final bound, (2.29), provides an upper bound on the rate of convergence of the method of successive

approximations. Generally, the following limiting relationship obtains:

IV,i	VI+i — 

lim 	  = P.
	 (2.30)

n—■oo 114„, — 171

and we say that the method of successive approximations converges linearly to V with convergence ratio 15S. The final

lemma is a useful result that implies that the fixed point to Bellman's equation always lies within a maximum distance

K of the origin.

Lemma 23: Let r be a Bellman operator. Then we have:

: B(0, K)	 B(0, K),

where B(0,	 C B is the ball centered at 0 with radius K given by:

lut(s,d)I 
K	 max sup sup ,

±€{1,...,T) sEs dE pt (s)	 – 0)

(2.31)

(2.32)
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2.4 A Geometric Series Representation for MDP's

Stationary, discounted infinite-horizon MDP's have a beautiful algebraic structure that directly generalizes

simple geometric series, prompting Lucas's (1978) observation that "a little knowledge of geometric series goes a long

way." (p. 1443). Since many of the numerical methods presented in section 5 directly exploit this algebraic structure,

we provide a brief review here. To avoid technicalities, we first present the basic results for the case of finite MDP's

where, without loss of generality, both the state space S and the decision space D can be identified as finite sets of

integers, S = {1,... , N} and D (s)	 {1,	 , #D(s)}. In this framework a feasible stationary decision rule 6 is an

N-dimensional vector satisfying 6(s) E {1, , D(s) }, s = 1, , N, and the value function V is an N-dimensional

vector in the Euclidean space RN . Given 6 we can define a vector us E RN whose i th component is u(i,6(0), and

an N x N transition probability matrix Es whose (i, j) element is p(jli 3 O(i)) = Pr{st4.1 = jIst = di = 6(i)}.

The Bellman equation V 1"(V) simplifies to:

V (3) = r(V)(s).-. maw [u(s,d)+ E V (si)p(sils,d)1.
1<d<D(s)

Given a stationary, Markovian decision rule 6* = (6,6,...), define the associated value function V6 E RN' as the

vector of expected discounted utilities under policy 6. It is straightforward to show that V5 is the solution to a system

of N linear equations in N unknowns, or in matrix form:

s(V8) 7,- us + f3E8V6.

It turns out that this equation can always be solved by simple matrix inversion:

1/5 = — 0E8]1716

	

= 116	 E6u6 + R Z Esu6 + 133 EgU6 + • • •

The last equation in (2.35) is simply a geometric series expansion for V8 in powers of /3 and Ed. As is well known

= (E6 ) k is simply the k-stage transition probability matrix, whose (1, j) element equals Pr {s t+k = jist = 8},

where the presence of 6 as a conditioning argument denotes the fact that all intervening decisions satisfy d t+j =

6(st+j), j 0, , k. Since fik Eh.eu6 is the expected discounted utility received in period k under policy 5, formula

(2.35) can be thought of as a vector generalization of a geometric series, showing explicitly how V6 equals the sum of

expected discounted utilities under 6 in all future periods. Note that since Eise is a transition probability matrix (i.e. all

of its elements are between 0 and 1, and its rows sum to unity), it follows that dim k_,,,.3 13k 4 = 0, which guarantees

that the geometric series representation in (2.35) is convergent and therefore that tha S x S matrix [I — (3 E 5] is

invertible for any Markovian decision rule 6 and all p E [0, 1). Although this is indeed a simple result in geometric

(2.33)

(2.34)

(2.35)



22

series, economists will recognize that this same algebraic structure appears in input-output theory (Leontief, 1966) and

mathematicians will recognize this as a special case of the more general theory of M-matrices.23

In fact, the basic geometric series representation for Vs in (2.35) also holds in problems where the state and

decision spaces are infinite sets, although mathematicians refer to the series expansion (2.35) as a Neumann series

instead of a geometric series in this case. When the state space S has infinitely many elements E8 is no longer

represented by a transition probability matrix, but by a special kind of linear operator known as a Markey operator

given by:"

E5(V)(s) = f V(1)p(ds'is,Ms)) 	 (2.36)

Using the standard definition of a norm ILI of a linear operator L : B B,

ILI = sup
iL(V)1

,	 (2.37)
voo

it is straightforward to verify that the linear operator E8 has unit norm, 141 = 1. It is also easy to verify that the

operator Ei = E6 (.85) is also a Markov operator. By induction, it follows that Ed = .E6(4-1 ) is also Markov

operator. Furthermore using the definition of the operator norm it is easy to see that

IEs < IE8 Ik ,	 (2.38)

which implies that the Neumann series expansion in equation (2.35) is convergent. Banach's Theorem (Theorem 4.4.3

of Kantorovich and Aikilov, 1982) then implies that the inverse operator [.1 – f3E6] -1 exists and is a bounded linear

operator on B. Thus, the value function V8 is well-defined even when S is infinite, a result that also follows directly

from the fact that the operator G8 defined in (2.34) is a contraction mapping.

In section 5 we will establish error bounds and prove the convergence of discretization methods as the number

of states S used in the finite approximations tend to infinity. The basic idea is to approximate the Markov operator E6

on an infinite-dimensional function space B by an N x N transition probability matrix on the ordinary Euclidean space

R r , and show that this implies that the solution V8 E B from equation (2.35) can be approximated by appropriately

interpolating the vector solution for Vx on Rh'.

23 See Berman and Plemmons, 1993 for a general characterization of necessary and sufficient conditions for matrices of the form 1— A to be invertible.
These theorems subsume the Hawkins-Simon 1949 condition that guarantees that /im a_ 00 A" = 0 provided that certain conditions on the principal
minors of A are satisfied.

24 If the state space consists of a countably infinite number of points, then E6 can be represented as an infinite matrix.
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2.5 Examples of Bellman's Equation for Specific MDP's

We now provide several concrete illustrations of MDP's that arise in typical economic problems, showing how

the theory in the previous sections can be used to solve them. Although we stressed in the introduction that analytical

solutions to DP problems are rare and non-robust (in the sense that small perturbations of the problem formulation

leads to a problem with no analytic solution), we present analytical solutions in order to provide a "test bed" of

problems to compare the accuracy and speed of various numerical solution methods presented in section 5. Examples

2 and 3 reflect two polar extreme types of infinite-horizon problems that arise in economic applications: continuous

choice versus discrete choice problems. Since continuous choice problems require optimization over a continuum of

possible decisions d E D(s), they are typically much more difficult to solve than discrete choice problems. In order

to differentiate these two cases we will use the notation d E D(s) to denote the case of discrete choice (where D(s)

contains a finite or countably infinite number of possible values), and c E D (s) to denote the case of continuous choice

(where D(s) contains a continuum of possible values, such as a convex subset of Euclidean space).

Example 1: A trivial problem. Consider a problem where it(s,d) = 1 for all d E D(s) and all s E S. Given that the

utility function is a constant, it is reasonable to conjecture that V* is a constant also. Substituting this conjecture into

Bellman's equation we obtain:

V*	 max [1 +	 V*p(ris i s, (1)),	 (2.39)
dED(s)

the unique solution to which is easily seen to be v* 1/(1 — p). This is the well known formula for a geometric

series, V * = [1 + /1+ 02 + • • •] which is clearly equal to expected utility in this case since is is identically equal to 1.

This provides a simple and basic test of any solution method for infinite horizon MDP's: the method should return a

value function identically equal to 1/(1 — /3) whenever we input a utility function that is identically 1.

Example 2: A problem with continuous state and control variables. Consider the problem of optimal consumption

and savings analyzed by Phelps (1962). In this case the state variable s denotes a consumer's current wealth, and

the decision d is how much to consume in the current period. Since consumption is a continuous decision, we will

use c( rather than dt to denote the values of the control variable, and let w t to denote the state variable wealth.

The consumer is allowed to save, but is not allowed to borrow against future income. Thus, the constraint set is

D(w) = I < c < w}. The consumer can invest his savings in a single risky asset with random rate of return

1.1-it is an HD process (i.e. idependently and identically distributed over time) withi marginal distribution F. Thus,

p ( dwt+iiwt, ct) = F ((dwt+11(int — ct)). Let the consumer's utility function be given by u(w, c) 	 log(c). Then

Bellman's equation for this problem is given by:

co
V*(w) = O % [log(c) + f V* (R(w — c))F(dR)1	 (2.40)



24

Working backward from an initial conjecture V 0 we see that at each stage Vt has the form, Vt (w) = A t log (w) + Bt

for constants At and Bt . Thus, it is reasonable to conjecture that this form holds in the limit as well. Inserting the

conjectured functional form V . (w) A00 log(w) + Boo into (2.40) and solving for the unknown coefficients Aoo

and Boo we find:

Ao, 1 /( 1 — 0)

Boo = log(1 — /3)/(1- 13) + p log(13)1(1 — /3)2 +	 {log(R))1(1 — /3)2,
	 (2.41)

and the optimal decision rule or consumption function is given by:

b* (w ) = ( 1— 0)w.
	 (2.42)

Thus, the logarithmic specification implies that a strong form of the permanent income hypothesis holds in which

optimal consumption is independent of the distribution F of investment returns.

Example 3: A problem with discrete control and continuous state variable. Consider the problem of optimal

replacement of durable assets analyzed in Rust (1985,1986). In this case the state space S R +, where st is interpreted

as a measure of the accumulated utilization of the durable (such as the odometer reading on a car). Thus s t = 0

denotes a brand new durable good. At each time t there are two possible decisions {keep,replace} corresponding to

the binary constraint set D (s) {0, 1} where d t 1 corresponds to selling the existing durable for scrap price P and

replacing it with a new durable at cost P. Suppose the level of utilitization of the asset each period has an exogenous

exponential distribution. This corresponds to a transition probability p is given by:

J.	 st)}1 — expl—A(dst+— st

P(dst+ilst,dt) =	 1 — exp t—A(dst+1— 0)1

0

if dt = 0 and s t+ > at

if dt = 1 and s t+J. > 0

otherwise.

(2.43)

Assume the per-period cost of operating the asset in states is given by a function c(s) and that the objective is to

find an optimal replacement policy to minimize the expected discounted costs of owning the durable over an infinite

horizon. Since minimizing a function is equivalent to maximizing its negative, we can define the utility function by:

—c(st)	 if dt = 0
u(st,dt) =

— —	 c(0)	 if dt = 1.
	 (2.44)

Bellman's equation takes the form:

V* (s) max{ — c(s) + p I 00 
V* (8 1 )A expt—A(s` — ands' ,

- [13 -	 - c(0)	 4- f V * ( 3 1 )A expl
(2.45)



(2.48)

(2.49)

(2.50)
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Observe that V* is a non-increasing, continuous function of s and that the second term on the right hand side of (2.45),

the value of replacing the durable, is a constant independent of s. Note also that P > P implies that it is never optimal

to replace a brand-new durable s = 0. Let 7 be the smallest value of s such that the agent is indifferent between

keeping and replacing. Differentiating Bellman's equation (2.45), it follows that on the continuation region, [0, 7), V*

satisfies the differential equation:

	

V*' (s) –d(s) + Ac(s) + A(1 – Thr(s).	 (2.46)

This is known as a free boundary value problem since the boundary condition:

	

V*(7) = [I' – P] +175 (0) = –c(7)+ OV*(7) =	 (2.47)

is determined endogenously. Equation (2.46) is a linear first order differential equation that can be integrated to yield

the following closed-form solution for V*:

	V * (s) = maxi-±—Y)- -±-7) +	 cl(V)	 fie—A(1-0)("Idyi,
I 1 13' 1 —13 	 1 — /13

where 7 is the unique solution to:

	

II - 1-1= J7 	
/3	 Lie–A(1-13)9(1Y.1 – 

It follows that the optimal decision rule is given by:

	

(0	 if s E	 71
*(s) =

	1 	 if s > 7.

2.6 Discrete and Continuous Decision Processess

In this chapter the terms "discrete" and "continuous" refer to both the state and control variable. However

for analytical purposes, there is a major difference in the nature of solution strategy for MDP's with discrete control

variables versus MDP's with continuous control variables. We now define two subclasses of MDP's: discrete decision

processes (DDP's) and continuous decision processes (CDP's) and derive a stochastic Euler equation characterizing

the optimal decision rule in the latter class of problems.

Definition 2.2: A Discrete Decision Process is an MDP satisfying:

• The decision space D is a finite set, and for each s E S we have D(s) C D.

Definition 2.3: A Continuous Decision Process (GDP) is an MDP satisfying:25

25 This is a slight generalization of a class of problems analyzed in chapters 9 and 10 of Stokey and Lucas, 1989.
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• The decision space D is a subset of R m .

• The state space S is the product space S = Y x Z, where Y is a closed subset of .11-1 and Z is a closed subset

of RK

• D(s) = D (y, z) is an upper hemicontinuous correspondence which is increasing in its first argument: y < y'

D(y, z) C D(yi , z).

• D(•,.) is convex in its first argument: i.e. for all z E Z and all y, y' E D if c E D (y, z) and c' E D(V, z) then

Oc + (1 — 60)ci E D(Oy + (1 — 8)y', z) for all E 10,11.

• The transition probability p(dst-0 . 1 st, et) factors as:

p(dst+iist , ct) = P(dYt+i, dzt+ilYt, zt,ct) = I {dyt + i = r(yt , ct , zt+i)}q(dzt-ulzt).	 (2.51)

where gel z) is a weakly continuous function of z, and r is a continuously differentiable function of (y, c).

• For each (y,z,c) there exists an M x J matrix h(y, c) satisfying:

Or (y, c, z)	 Or(y,c,z) lb( c)•	 (2.52)
Oy	 ac	 9'

• The utility function u(s, c) = u(y, z, c) is a strictly concave function of its first and third arguments for each

z E Z and strictly increasing in its first argument for each (z, E Z x D.

The interpretation of this class of problems is that the the state variable st (yr, xt) consists of two components:

an "endogenous" state variable yt and an "exogenous" state variable z t . The exogenous state variable is so named

because its law of motion y(dzi+lizt) is unaffected by the agent's decisions cg. The exogenous state variable

yt is affected by the agent's decisions, but in a particular way: with probability 1 the value of y ti. i is given by

yt+1 = r(yt ,ct , zt+ i ) •26 Bellman's equation for this class of problems is given by:

V*(s) = V* (y, z) = max fit(y, z,c) + 13 V* (r(y,	 zi)q(di ),z)] .
cED(y,z)

Lemma 2.4: Let 6* be the optimal decision rule and V* be the value function for the continuous decision

process given in (2.53). If y e int Y and 6(y, z) E int D(y, z), then V(y,z) is a continuously differentiable in

y at the point (y, z) with derivative given by:

OV(y, z)	 Ou(y, z,6* (y,z))	 thi(y , 2, 6* (y , z)) h(y, 6 . (y z)).
Oy	 Oy	 Oc

26 The Stokey-Lucas (1989) model is a special case when y,+ 1 = e t with probability 1.

(2.53)

(2.54)
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The proof of the Lemma 2.4 is a straightforward extension of the proof of Theorem 9.10 of Lucas and Stokey

(1989). The intuition behind (2.54) is quite simple: it is just a special case of the "envelope theorem". To see this,

note that the first order conditions for optimality from (2.53) are:

	

Ott(y,z,c)	
P 

I OV (r , c,(y	 z'), z') Or
(,

 c, zi ) 1(dzt iz) = 0,
ac	 011	 ac

where c = 6* (y, z) is the maximizing value of c in (2.53). Differentiating the value function in (2.53) with respect to

y and substituting in the optimal decision rule 6 . (y, z) on the right hand side we obtain:

	

OV (y, z)	 (On(y, z ,	 f OV (r (y , c,	 z i) ar(y,c, ) q(dz,iz))ab*(?, z)
ay

	

ac	 Dy	 ac

au(y, z,c) +Qf OV (r(y,c, z ? ), ,z 1 ) Or (y , c, zi) 
q(dz

,
tz).

	

ay	 ay	 ay

The first order condition (2.55) implies that the first term of the second equation in (2.56) is 0 when evaluated at

c = b* (y, z). Using assumption (2.52) and the first order condition (2.55), we can substitute for the last term in (2.56)

to yield the result (2.54).

If equation (2.54) holds for all points (y, z) E Y x Z, we can substitute the right hand side of formula (2.54)

for the term DV (r(y, c, z')/ay appearing inside the integral in (2.55) to obtain a general form of the stochastic

Euler equation:

au(y, z,0 = , , c' ) On(y1 , z', „
c )

ar (yi ,c, z ) iz),
ac

+ f {On(y1
ay ac

q(dz (2.57)

where c = b* (y, z), = r (y, 6* (y, z), x i ), and ci = 6* (V, z 1 ). The Euler equation is simply a first order necessary

condition characterizing the optimal decision rule 6 . (y, z). It says that the change in expected discounted expected

utility from a small change in c will be zero when c = 6* (y, z). The remarkable feature of the first order condition for

this class of problems is that the impact on expected discounted utility can be evaluated only in terms of the value of

marginal utility in period t and the expected discounted value of marginal utility in period t + 1: it is not necessary to

consider the impact on marginal utility on all future periods t + 2, t + 3, ... Notice that (2.57) is a recursive formula

characterizing the optimal decision rule 6*, similar to the recursive characterization of V* in Bellman's equation

(2.53). It is not immediately apparent, however, that this particular functional equation is any simpler to solve than the

functional equation (2.53) characterizing V. Indeed, the solution to (2.57) generally can't be formulated as the fixed

point to a contraction mapping, and therefore may not have the nice mathematical solution properties that contraction

mappings enjoy. Nevertheless we will show in section 5 that the stochastic Euler equation can serve as a basis for

effective computational methods. The key restriction that limits the applicability of the method is the assumption that

6* (c, z) is always an interior point of the constraint set. In cases when the maximizing value of c in (2.53) occurs on

(2.55)

(2.56)
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the boundary of the constraint set, the first order conditions to (2.53) take the form of inequalities rather than equalities,

so that the standard form of the Euler equation (2.57) is no longer valid.

Example 1 Consider Phelp's model of optimal consumption and saving in example 2 of the previous section. This is

an example of a continuous decision process with exogenous shocks since the HD investment return process Pi t} is a

special case of the Markovian exogenous state variable { z t} given in (3.38), where g(dzi lz) = F(dz i). The endogenous

state variable is current wealth w. Thus the state variable in this problem is s = (w, z), and the control variable c is

consumption, and the law of motion for the endogenous state variable is w t+i = r Dub et, zt+1) = zt+t (we — et )•

The h function in this case is given by le(w, = —1, and the utility function is given by u (C) , independent of the state

s. One can also verify that Phelp's problem also satisfies all of the other regularity conditions listed in our definition

of a CDP. The stochastic Euler equation (2,57) for this problem takes the form:

ut (5 . (w)) /3 Jxi ui (6* (z i (w — 6* (w)))F(dzi).	 (2.58)

Note that in this case, the assumption that the exogenous state variable is HD implies that the optimal decision rule

6* is a function only of tu t . It is straightforward to verify that the stochastic Euler equation does indeed hold in the

special case u(c) = log(c). Substituting log(c) and the optimal decision rule 6* (wt ) = (1 — /3)wt into (2.58) we get:

0 = (1 —1/3)w 01 (1—
z

)111F(dzi)

a I
(1 —1 0)w P j (1 — (z1 (w — (1 — i3)w)

1	 1
— )(3)w	 ( 1 — /8)/0

F (dzi )	 (2.59)

Example 2 Consider the Brock-Mirman (1972) stochastic growth model. This problem has been a sort of canonical

test problem for the effectiveness of various numerical methods in a problem with multidimensional continuous

state variables. The state variable for this problem is s t = 22) where the endogenous state variable kt is the

current capital stock and the exogenous state variable z t is interpreted as a "technology shock" with Markov transition

probability q(dzi+ l tzt ). Output is produced by a production function f (k, z) which is increasing and strictly concave

in k and increasing in z. Capital and output are assumed to be the same commodity, so the existing capital stock

k and current period output f (k, z) can be either reinvested or used for current consumption c. Thus the constraint

set is given by D (k, z) = {HO < c < f (k, z) + k} , and the law of motion r for the next period's capital stock is

kt+ i = r (kt, ct, 22+1) = .1( kt, 22+1) + kt ct . The value function V* for this problem can be written as:

V* (s) = V*(kz) =	 max	 [u(c) + 13 I V* (f (k,	 k — c, z)g(dzilz)].
0<c< fik,z)+k

(2.60)
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Since this specification of the stochastic growth problem meets all the regularity conditions of the previous Lemma,

the value function is differentiable and the stochastic Euler equation (2.57) for this problem takes the form:

ILI 	 (k, z)) =	 72 (6* ( f (k,	 k — 6* (k, z ),2))h(f(k, z) 	 k — 6* (k, z	 q(dzilz),	 (2.61)

where in this case the function h defined in (2.52) is given by h(k, z) + of (k, z)/ 8k]. In certain cases the

Euler equation can be used to derive closed-form solutions for 5*. For example suppose that u(c) = c, f (k, z) = zk a ,

a E (0, 1), and specifying the technology shock {z/} as a log-normal process I og (z/+1) = p log(zt) + Et, where Et is

distributed N(0, o- 2 ). Then as Tauchen (1990) noted, we can solve the stochastic Euler equation for 6* to obtain:

6* (k,	 zka + k
zP a2 	 1-a

k 2(1 — 13))
(2.62)

Note that the Euler equation has enabled us to obtain a closed-form solution for the optimal decision rule in a problem

with two continuous state variables and one continuous control variable, even though it would not have been possible

to deduce this directly from Bellman's equation. We will use this particular case as a further test problem in section 5

since it provides a direct way of judging the accuracy of various solution methods in the case of a multi-dimensional

problem.
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3. Numerical Solution Methods for General MDP's

Applying dynamic programming to solve general MDP problems forces us to confront a number of complications

that are absent in LQ problems. First, the certainty equivalence principle no longer holds, so we need to specify the full

conditional probability distribution p(s i Ls,d) instead of only its first two conditional moments in the LQ case. Second,

since the value function V (s) is an unknown nonlinear function of s (as opposed to a quadratic function in the LQ

case), virtually all solution methods require some sort of numerical integration to compute its conditional expectation

f V (si )p(dsi Is, d). Third, the optimal decision rule d 8(s) is generally not a linear function of s, so in general we

need to resort to numerical optimization to compute the maximizing value of d for any given state s E S.

This section surveys the main solution methods for general MDP's. The nature of solution methods differ

according to whether the problem involves a finite or infinite horizon and whether the state and control variables are

continuous or discrete. We will consider each of these cases separately, beginning with the easiest case first. The final

part of this section will consider "learning algorithms" for solving MDP's with partially observed states or unknown

parameters in preferences u or beliefs p.

3.1 Discrete Finite Horizon MDP's

The main numerical algorithm for solving finite horizon MDP's is simple backward recursion using equations

(2.5), , (2.8) of section 2. The integration operator in the finite state case reduces to simple summation over the S

possible states in the state space:

Vt1 ( 8) = dactifs) {ut(s, + E vt24:, (d)p(sils,d)].
s=1

Assume for simplicity that the choice sets D(s) contain a common finite number of possible decisions D. Then it is

easy to see that computation of (3.1) for each state s requires a total of 2(D S + D) additions, multiplications, and

comparison operations, or a total of 2 (D52 + DS) operations to compute the entire time t value function KT , Thus the

total operation count in carrying out the dynamic programming procedure is is 2T(D S2 + DS), which is dominated

by the squared term for problems where S is large. Note that the storage requirements are also 0(T D S 2), representing

the space required to store the transition probabilities {pt(sqs,d)}. Thus the complexity of solving discrete finite

horizon MDP's is 0(T DS2), which implies that it is a member of the class P of polynomial time problems if we

measure the size of the problem by the number of discrete states S. Papadimitriou and Tsitsiklis 1987 proved that the

MDP problem is P-complete (in the Turing model of computation) by showing that a known P-complete problem, the

Circuit Value Problem, reduces to and thus can be solved as a special case of a general discrete finite horizon MDP

problem. As discussed earlier, this implies that the MDP problem is a member of an equivalence class of the "hardest"

polynomial time problems including linear programming. Since many computer scientists believe that P � NC,

(3.1)



31

the finding that the MDP problem is P-complete is taken as strong evidence that the problem cannot be effectively

massively parallelized. However if we measure the size of the discrete MDP problem by the dimension of the state

variable st rather than by the total number of states S, then it is easy to see that the MDP problem is subject to the curse

of dimensionality, and thus in the class CD of exponential-time problems. For example, suppose there are k s state

variables each taking on S possible values. Then the total number of states is S kd , which increases exponentially in k,,

Similarly if there are kd control variables each of which takes on D possible values, then the total number of decisions

is Dkd which also increases exponentially in k d . When problem size is measured this way, the MDP problem is not

even NP-complete since the time required to verify a candidate solution produced by a "nondetenninistic computer"

increases exponentially rather than polynomially in k d or lc,. We summarize this discussion as:

Theorem 5.1: The finite horizon discrete MDP problem is P-complete if problem size is measured by the

pair (D, Sy) representing the total number of possible decisions and states in the MDP. If problem size is

measured by the pair (kd, ks), resulting in an MDP problem with (D kd ,Skd) decisions and states for some

D and S > 0, then the MDP problem is in the class CD of exponential-time problems. In the latter case,

the MDP problem is not even NP-complete since the amount of time required to verify a candidate solution

to the MDP increases exponentially in (k d , k,,,).

Notice that the main bulk of the work required to solve a discrete finite horizon MDP is computing the

conditional expectations of the value function for each possible combination of the state s, decision d, and time period

t: the remaining summation and maximization operations are of order 0 (TDS) which are negligible compared to the

O(TDS2 ) operations needed to compute the conditional expectations. There are four main ways to speed up the latter

calculations: 1) exploiting special "sparsity structure" of the Ip t (.3/ s, till arrays, 2) using fast matrix multiplication

algorithms, 3) using massive parallel processors, and 4) using parameteric methods to approximate solutions to MDP's

with huge numbers of states and controls.

Many economic problems such as the optimal replacement problem and the optimal consumption and saving

problems presented in section 2 have transition probabilities that are sparse and often have a highly recursive structure.

For example, by restricting the distribution of investment returns to a finite interval one obtains a discrete representation

of the consumption/savings problem with a banded transition probability matrix p. In general it is important to fully

exploit one's a priori knowledge of the economic problem to reduce the time and storage requirements of the DP

algorithms but determining the best way to do this gets more complicated in problems with multidimensional state

variables. In order to apply formula (3.1) one must recode the multidimensional state vector s t to have a linearly

ordered discrete state representation s = 1, , S. By doing this coding in the right way one can obtain a representation

for the finite state transition probability matrix that has a desirable sparsity pattern that substantially reduces the burden

of computing the conditional expectation of the value functions in (3.1). Rust (1991) provides an example of this

approach in the case of an MDP model of optimal retirement behavior where the state variable st has seven components,
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i.e. k, = 7. It turns out that for this problem any coding procedure yields a matrix representation for pt (s` I s, d) that is

a direct product of a circulant matrix C, a banded matrix B, and a dense matrix D. Depending on how one orders these

component matrices to form the overall transition probability matrix p one obtains various sparsity patterns which are

more or less amenable to rapid computation on parallel and vector computers. It turns out that the optimal ordering

for a vector processor like the Cray-2 is p=COB D, which yields an upper block triangular representation for p

(for details see Rust, 1991). This strategy is even more effective for solving infinite horizon problems by the policy

iteration approaches presented in the next section since policy iteration involves solution of systems of S equations in

S unknowns, which takes 0(.93 ) time using standard methods. Relative to naive policy iteration methods that treat

p as a dense matrix, Rust 1991 shows that using the optimal ordering p= CeBOD fully exploits the sparsity

pattern of p and rests in speedups of 0(c 3 ) where c is the order of the circulant matrix C. For the retirement problem

considered in Rust 1991, this amounts to a speed up of 27,000 times relative to naive policy iteration algorithms that

don't exploit the structure of p.

The other ways of speeding up the solution to discrete MDP problems - massive parallelism and fast matrix

multiplication - also speed up the solutions to discrete infinite horizon MDP's and will be discussed in more detail

when we discuss algorithms for solving infinite horizon MDP's in section 5.4. The use of parametric methods to

approximate a discrete MDP with a large number of states and controls will be deferred to our discussion of solution

methods for continuous MDP's in section 5.2. However it is perhaps more honest to speak of potential speedups

since these approaches have not yet been widely applied, at least in economic applications. The use of fast matrix

multiplication algorithms has been especially limited even though the speed-ups from using these algorithms are getting

increasingly large. For example, the number of operations required to multiply two n x 71 matrices using standard

matrix multiplication algorithms is 2n3 - n2 . Strassen's 1972 algorithm computes the product in 4.73 2 - 837 operations,

Pan's 1980 algorithm requires 0(7/2195 ) operations, and as of 1987 the best known algorithm is due to Coppersmith

and Winograd and requires only 0(3 2376 ) 2376 ) operations. However these fast matrix multiplication algorithms have larger

space requirements and higher fixed costs relative to the conventional matrix multiplication algorithm. For example,

Strassen's algorithm requires 11/3m2 memory locations which exceeds the 371 2 locations needed for conventional

matrix multiplication, and Pan's algorithm requires 24 operations to multiply two 2 x 2 matrices compared to only

8 operations required by the conventional algorithm. However when 11 = 128 the traditional algorithm requires

2,097,152 operations versus 823,723 for Strassen's algorithm and 797,184 for Pan's algorithm." The other not to be

neglected fixed cost is the programming effort required implement these more complicated methods: this may in fact

be the major reason why these methods have not been applied so far.

27 These figures are taken from table 2.4.2 of 1Cronsp, 1985.
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Massive parallel processing is just beginning to be applied in computational economics. Note that the backward

recursion approach to solving DP problems is inherently sequential and cannot be parallelized. However, the majority

of the work is the O(DS 2 ) operations necessary to compute the conditional expectations of the value function, and

this can be parallelized. For example, if one has access to an expandable massive parallel processor with S-processors,

then each separate processor can compute the (3.1) for each state s = 1, , Se, so that the MDP problem can now be

solved in 0(T D S) time on a parallel processor as opposed to 0(T D S 2 ) time on a standard "von Neumann machine".

However it is an open question as to whether having access to more than S processors will allow further acceleration

in the solution time. The results of Papadimitriou and Tsitsiklis 1987 suggests that significant additional speedups

are not possible, if by "significant" we mean an algorithm that can solve the MDP problem in polylog time using a

polynomial number of processors. However in section 5.3 we show that we can in fact solve discrete infinite horizon

MDP problems in 0 (log(S) 2) time using 0(S") processors, where cu is the best available lower bound on fast matrix

multiplication (currently w = 2.376). This does not contradict Papadimitriou and Tsitsiklis since the algorithm we

present solves the MDP problem approximately rather than exactly and is based on the real instead of the Turing model

of computation.

3.2 Continuous Finite Horizon MDP's

Recall that continuous MDP's are problems for which the state st or control dt can assume a continuum

of possible values. For concreteness, we will assume here that the state space S is a compact, convex subset of

k,-dimensional Euclidean space Rks , and each constraint set D(s) is a compact, convex subset of a k d-dimensional

Euclidean space Rkd . The solution {V, 6} (see equations (2.5) to (2.8) of section 2) lies in an infinite-dimensional

space, and clearly can't be stored in a digital computer. At best the solution can be approximated at a finite number

of points, perhaps using interpolation to determine the solution at other points. As mentioned in the introduction,

there are two main approximation strategies: discrete approximation and parametric approximation. Since the former

approach is conceptually simpler, we will present it first.

Discrete approximation methods compute the value functions VT and decision rules 6T at a finite grid of

points in the state space S and constraint sets at(s). There are many variants of discrete approximation, but the

general structure can be described as follows. Assume that we have carried out the discretization from time periods

T ,T —1, , t +1 and we now wish to compute an estimate of the value function CC at time t. Discretization amounts

to replacing the continuous-state version of the backward induction step

(s) = F (V7+1 )(8) a- max	 d) +$ J +	 VtT_Filsi )pt + i (dsi , d)),	 (3.2)dEDt(s)
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(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

by a discretized equivalent

Vt1 ( 9 ) = 1\ 1■477+1)(s ) r-7- max Nit( 8 , (1 ) + 0 E c471i(sopt+i(skis,d)1.
dEDt(s)

Thus, we can view discrete approximation as replacing the true Bellman operator I' by an approximate "discrete"

Hellman operator tN, but otherwise the backward induction process is identical. If we restrict attention to the finite

set of grid points in, , 8,1, then t N can be viewed as a contraction mapping on R" that generates a discretized

value function TV' which lives in RN . However, one can also view the approximate operator I" jy• as a mapping on

the infinite-dimensional space B since f'N is self-interpolating: i.e. we can evaluate F N (VtT ) at any point s in the

ifif t+1 ■Sk I 718–)d)continuous state space S and not just at the finite set of grid points {s i ,... , sN }. Thus, 1 (  satisfies weak

regularity properties (i.e. is a measurable or continuous function of s for each grid point sk) then the approximate

Bellman operator is mathematically completely well defined as a contraction mapping directly on B: I N : B –t B.

This interpretation turns out to be a key insight to establishing the consistency and rate of convergence of various

discrete approximation methods.

7– 1I	%tT+11 .+1

	

In the course of backward induction approximation errors generally compound: i.e. VT	 > 11

The following Lemma provides a simple sufficient condition guaranteeing that if4T – VjT I < c uniformly for all

t E

Lemma 5.1: Suppose there exists an integer N(6,0) such that for all NN(e,13) we have:

- r(w)1 5 -

uniformly for all W E B satisfying:

Iut(s,d)i
K	 max sup sup , n,

sES dEDt (s) 1 1 P

If we begin the backward induction using any estimate of the terminal value function IV satisfying:

IvT -It? <_ E,

1 14' 1 � KI(1– 0),

then VtT is uniformly within e of I/1 for all t:

T —max I vt - VtT I <

kr--1
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Proof: We prove the result by induction on t. Starting at t = T — 1 suppose we choose N and gi satisfying (3.4),

(3.5), and (3.6). Then we have:

wT - 4-1 I = N(V ) r(4)1
= r'N(V)— tN(vf) + rN( q) -r(4)1

tN(q) — PN(11F)1 + I tN(V2T ) — r(v1)1
	

(3.8)

5_ PE ± (1 — e

= C.

This argument can be repeated for each t = T — 1, T — 2, ... ,1 provided we can show that for each t we have

IV/ I <	 (3). However this follows follows from Lemma 2.3.

Lemma 5.1 shows that the problem of proving the consistency of various discrete approximation methods

reduces to the problem of proving that the approximate Bellman operator l' N converges to 1' uniformly for V E

BO, K):

tim sup 11'N(v)—r(v)1-=	 (3.9)
N—'00 IVI<K

In order to compare the computational requirements of various discrete approximation methods we will also need to

determine the rate of convergence of UN to P.

We now provide a brief overview of four different discrete approximation methods that we analyze in this section.

The key problems in finding an effective discretization procedure are 1) choosing the N grid points {s 1, ..• ,SN}
at which to evaluate VT+) in the summation in (3.3), and 2) choosing an appropriate discretized version ii j4. 1 of the

Continuous transition probability pt+1. It turns out that the first problem is the most difficult. We will consider four

different strategies for selecting the grid points {s i. , , s N }: 1) uniform grid, 2) quadrature abscissa, 3) random

draws from S, and 4) "optimal" grid points. The first two methods are subject to the curse of dimensionality of

multivariate integration discussed in section 3: i.e. the number of grid points N required to approximate the Bellman

operator I' defined in (3.2) to within a maximum error of E is N 0(1/Si. ) where k, is the dimension of the

state vector s. Furthermore the worst case complexity bounds established by Chow and Tsitsiklis 1989 show that

the general MDP problem is in the class CD. That is, it is impossible to get around the curse of dimensionality,

at least worst case basis using deterministic methods. The last two discrete approximation methods do succeed in

breaking the curse of dimensionality, however only for the subclass of discrete decision processes (DDP's), i.e. MDP's

with finite choice sets and continuous multidimensional state space S. Rust (1994) developed a simple monte carlo

integration algorithm and proved that the (randomized) worst case complexity of finite horizon continuous DDP's is
compwor•ran (6, 168) = 0(1/64). Notice that 1/€4 = 1/€2 x 1/c2 where 1/€2 is the order of the number of operations

required by monte carlo integration in order to estimate an integral to within an expected absolute error of E. It is
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interesting to note that the MDP problem, which is both nonlinear (due to the presence of the max operator in the

Bellman equation), and infinite-dimensional (since it effectively requires calculation of a continuum of integrals for

different conditioning values (s, d)) nevertheless enjoys the same rate of convergence as is achieved in monte carlo

integration, i.e. the expected absolute error decreases (uniformly) at rate 1/1H independent of the dimension k,. We

have not yet established the lower bound on the complexity of DDP's using random algorithms. However Bakhvalov

1959 and Novak 198'7 have proven that the lower bound on the randomized complexity of multivariate integration of

r -times differentiable functions is compw°r-ran (e, ) = 9(1/0') where m = 2k,/ (2r + k,). Note that r 1 for

the class of Lipschitz continuous DDP problems that we consider, so that use of Bakhvalov's integration algorithm

yields a reduction in the exponent m from 2 to 2/(2/k +1). We conjecture that these results can be used to derive lower

bounds on the complexity of DDP's. The final approach, "optimal grid points" uses deterministic instead of random

placement of the grid points. We shall consider two possibilities for 1st , , sN I: 1) the Hammersley points, and 2)

the hyperbolic cross points. Woiniakowski 1991 and Paskov 1992 have shown that these grid points are asymptotically

"optimal" in the sense that they attains the average case complexity bound for multivariate integration in the limit as

N co. Recall that calculation of average case complexity bounds requires a specification of a prior distribution

over problem elements. The standard choice of prior in this literature is "Wiener sheet" measure. Under this prior, the

average case complexity of multivariate integration is given by:

compavg -det (e, ks)	 (1 /09 (1) (ks –1)/2)
	

(3.10)

We show that Wiener sheet measure can also be adapted to provide a prior distribution over utility functions u t and

transition probabilities Pt, and we conjecture that these average case complexity bounds can be adapted to derive lower

bounds on the average complexity of DDP's.

In order to prove the consistency and asymptotic properties of the various discretization procedures presented

below we need to impose some additional regularity conditions on the state space S and the functions {u , p t It =

1, ... ,T). The following assumptions are stronger than necessary to prove many of the results stated below, but we

will impose them here in order to simplify the proofs and unify the exposition. In particular, the assumption that the

state and control spaces are subsets of the k, and kd-dimensional unit cubes is without loss of generality: as long as

the original S and D sets are compact, one can always do a change of coordinates to map these sets into the unit cubes.

(A1)S is a Borel subset of [0, 1] iO3 ; Di (s) is a compact subset of [0, I] kd Vs E S, and tit E {1,... ,T}.

(A2)pt (d8/ 1,9,d) has a continuous and uniformly bounded density with respect to Lebesgue measure on S

for each t E {1, , T}, d E DT (s) and s E S.
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(A3) = 1... , T} is Lipschitz continuous family of functions with Lipschitz bound Ku .28

(A4){N it =1,... ,T} is a Lipschitz continuous family of functions, with Lipschitz bound Kr

(A5)The mapping s D(s) is a Lipschitz continuous correspondence.29

Uniform grid points. Following the recent approach of Chow and Tsitsiklis 1991 partition the k,-dimensional cube

llks into equal subcubes of length h on each side. Assuming that 1/h is an integer, this results in a total of

N = (1/10 ki subcubes. Let S h denote the partition of S induced by this partition of the unit cube. If Dt(s) contains

an infinite number of points for any s, do a similar discretization of the choice sets, using a partition of [0, 11 kd into

N = (1/ h) i'd equal subcubes of length h on each side, which induces a corresponding partition on D t (s) which we

denote as Dt,h (s). Finally, let sk denote an abritrary element (grid point) in the kth partition element of Sh and let

k(s) denote the partition element of Sh that contains a given point a E S. Define discretized utility and transition

probabilities by:
ut7h(s,d) = ut(sk(a),d)

pt (sk(?) s k(s) , d)	 (3.11)
Pt,n(sils,d)= pt(sk(,?)18k(,),d)dsi

where the normalization of the second equation insures that pm is a well defined transition probability density on S.

Note that (3.11) defines ut,h and Pt,h as discrete step function approximations to u t and pt ." This is primarily for

notational convenience: in practice one would probably want to use spline interpolations so that u t,h and pt,h are also

Lipschitz continuous functions of (s', s, d). Given these objects, we can define the discrefized, Bellman operator by

1)2,4(8)d€
th(V)( s ) = max fut,h( s ,d)+fi f V (g )P( t+n,h( si l s , d)dsi l

= max	
N

N

d) — E V (s k)Nt+1.),h(s ki s k(s), d)),de,,,,(3) 	
k=1

where the second equality holds whenever V is a step function taking value V(s k) in partition element k. 31 The

following consistency result for the uniform discretization procedure, adapted from Theorem 3.1 of Chow and Tsitsiklis

1991, is given below:

28 Lipschitz continuity means that Its (3,	 — ne(d,d5I < Ka l(8,	 — (s', d')I, for all feasible pairs (a, d) and (a', d').

29 This means that for any 8, s' ES and any d' E D t (e) there exists some d e D,(s) such that — d' I < ins — 'I.

3° In some cases we win need to do numerical integration just to determine the values of a, as can be seen from formula (3.11).

3 ' Note that in this case P h should be regarded as an operator on the Banach space B of bounded measurable functions of a under the essential
supremum norm rather than the space of all continuous, bounded functions of a.

(3.12)
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Theorem 5.2: There exist constants K1 and K2 such that for all h sufficiently small and all V E B we have:

(Ki + px2w1) 
Irv) - l'h (V)I <	 (3.13)

Notice that in order to obtain consistency, we must choose h sufficiently small, say h < E. This implies that the

discretized MDP requires S = 0(1/€) k° states and D = 0(1/ s) kd decisions. Recalling that O(TDS 2) operations

are required to solve a discrete, finite horizon MDP, it follows that using the uniform discretization to compute an

EP s kd )&approximation to the continuous finite horizon MDP problem requires 0(T /	 ) operations, so this method

is subject to the curse of dimensionality.

Quadrature abscissa. Following the approach of Tauchen and Hussey 1991, consider the problem of approximating

the integral of a function g : S	 R with respect to a weighting function to : S	 R by choosing N grid points

, sN and corresponding weights 	 , wN } such that

g(s)to(s)ds E g(sk)wk•	 (3.14)
k=1

The weighting function will typically be a probability density function representing an "importance sampling" weight-

ing reflecting the analyst's a priori lmowledge about the parts of the state space that are most important for calculating

the integral. In the special case ks = 1 the Gaussian quadrature formula determines { s , , sN} and I w i, • • • , wN1

by forcing (3.14) to be exact for all polynomials of degree less than or equal to 2N — 1. " The resulting grid points

and weights depend only on the weighting function w(s) and not the function g(s) being integrated. Notice that the

weights {wi,	 , w NI generally do not satisfy w k = (.0(sk), although they are all guaranteed to be positive. Applying

Gaussian quadrature to approximate the conditional expectation of the value function V we obtain

	

f V (si )pt (si Is, d)dslsk	 wk•	 (3.15)(si)=	 'V (I) Pasits ' d) ta(i)ds ` 	 V( ) Pl(818 ' d)
ca(sk)k=1

The quadrature weights and abscissa allow us to define an N-state Markov chain with state space equal to the quadrature

abscissa {si , . , sN } with transition probability pt,N defined probability by a simple normalization:

	

1,	 , N.	 (3.16)
pt (si ls j , d)lui co (s i ) . 	 i ' k =

PiN (.9 kiS , d) 	 Pt(Ski8l,d)Wklai(sk)

Now we can define a discretized Bellman operator TN : B —+ B (where in this case B is the Banach space of

continuous functions on S under the sup norm) by:

f N( V)(s) = max [at(s,d)+ p E V (SOPPr+1(8493(011
dEDns) k=1.

(3.17)

32 Multivariate quadrature, 	 > 1 is more involved. See Tauchen and Hussey 1991 and Stroud, 1971 for a description of various extensions of the
quadrature approach to multidimensional problems.
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where AN (s) denotes a finite choice set with N points, a discretized version of Dy(s) using the same procedure

defined for the uniform discretization procedure above. 33 Adapting Tauchen and Hussey's Theorem 4.2 we have:

Theorem 53: There exist constants K1 and K2 such that for all V E B = C[0,11 and all N sufficiently large

we have:

1r(v) - tN (v)1 s (Ki (31(2)/N.	 (3.18)

Note that this is the same basic bound as obtained in the case of uniform discretization (Theorem 2) with 1/N playing

the same role as the grid size parameter It. Thus, just as in the case of uniform discretization, the quadrature approach

produces a consistent estimate of the true value function V. Note that although Gaussian quadrature possesses several

optimum properties (Davis and Rabinowitz, 1975) the ecomplexity of the quadrature algorithm is the same as uniform

discretization. More generally, the number of grid points required for a k 3 -dimensional quadrature procedure to

approximate an integral of an arbitrary once differentiable function to within c is N = 0(1/eks ), the same as for

uniform discretization." Thus, use of a quadrature rule does not break the curse of dimensionality of the continuous

MDP problem, at least on a worst case basis.

Indeed, the results of Chow and Tsitsiklis 1989,1991 indicate that the 0 (Tic (2ks+kd) ) complexity bound is also

also a lower bound on the complexity of the general MDP problem and that their uniform discretization procedure is an

approximately optimal algorithm." Thus there is no algorithm that is capable of breaking the curse of dimensionality

of solving general MDP's, at least using deterministic algorithms and measuring complexity on a worst case basis. We

can think of their lower bound as consisting of a product of the lower bounds on complexity of three "subproblems"

encountered in approximate solution of a general MDP: 1) a (3(1/€k ') worst case complexity bound for approximate

solution of the nonlinear optimization problem that determines the optimal decision rule d 6T (s) for any s E S, 2)

a 0( licks ) worst case complexity bound on the approximate calculation of the integral of VT for any (s,d), and 3)

a e(i/Ek•) complexity bound on the approximation of the function I"( VtT ) from information of its values at a finite

number of points	 , sNl.

Random points from S. Results by Yudin and Nemivorski 1978 and Traub, Waslikowski and Woiniakowski

1988 show that randomization does not succeed in breaking the curse of dimensionality for the optimization and

approximation subcomponents of the MDP problem, so that use of random algorithms will not succeed in breaking

33 Of course there is no reason beyond notational simplicity to require that the number of points N used for the quadrature abscissa equals the number
of points for the choice set discretization as long as both tend to infinity and the maximum grid size of the discretization of D tends to zero as
N cc.

3' See Traub, Wasilikowski and Wotniakowski 1987. This result assumes that the function being integrated has are least one derivative that is bounded
in tip noun. If the function has p > 1 derivatives, then the number of grid points needed for an capproximation of the integral is given by
N = 0(1/e'") where 772

35 Chow and Tsitsiklis's results are for infinite horizon MDP's, although their approach extends in a straightforward method to finite horizon MDP's.
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the curse of dimensionality of solving general finite horizon MDP's. However randomization does break the curse of

dimensionality of the multivariate integration problem. Rust (1994) used this result to construct a variant of backward

induction using a "random Bellman operator" that does suceed in breaking the curse of dimensionality for a subclass

of DDP's, i.e. the class of MDP's with finite choice sets defined in section 2.6. The basic idea it to use monte carlo

integration rather than a deterministic integration algorithm such as quadrature or uniform discretization. Monte carlo

integration of a function g : S —■ 1? with respect to a probability density a, : S	 R is given by:

1 N
f g(s)w(s)ds	 E g(s k ),	 (3.19)

k=1

where s i , , spr} are IID draws from the density w. Under very weak conditions (i.e. g is absolutely integrable

with respect to w), the strong law of large numbers implies that the sample average converges with probability 1 to its

expected value, which is the integral on the left hand side of (3.19). More significantly, the Central Limit Theorem

implies that the sample average converges to the sample mean at rate 0 p(11a) independently of the dimension k,

of the state space S. For this reason economists have recently been attracted to monte carlo methods. To our knowlege

Wolpin and Keane 1993 is the first actual application of the monte carlo approach to compute solutions to large scale

continuous finite horizon MDP's. Since their approach also involves the use of parametric approximation of the value

function we will defer a discussion of their approach to the section on parametric approximation methods below.

Let {si,	 , eN } be I1D draws (with respect to Lebesgue measure) from the k,-dimensional unit cube10, 11ks

We can use these random draws to define the random Bellman operator fpr: B B (where B = C'10, 11". ) by

R
rN(v)(s)	 mar (u( (s,d)+	 E V (s k )p( (s k is,d)1,	 (3.20)

dEpiv(s) k=1

where Div (s) denotes the discretized choice set used in the uniform discretization approach above. Note that in general

that pt (sk I sj ,d)/N does not define a transition probability over the sample points {sk,...,8N}: the probability does

not sum to 1. In some cases it is helpful to define a modified form of the random Bellman operator, t N , with

a legitimate transition probability pt,N defining the conditional expectation operator which is guaranteed to be a

contraction mapping with probability 1:

N

rN( V)( s ) = mar [ut (s,d) + — E V ( sk)P(t+1),N(ski s , d)1,
deDr (s) k=i

where p N is defined by:
d)/N,sjsktt

N
p 

Pt,N( skI s.d) —

	

	 (3.22)
Ei=1Pt(si(s,d)IN

A simple application of the strong law of large numbers shows that the denominator of (3.22) converges with probability

1 to the constant 1, so the modified version of isN using the transition probability Pt,N converges to the same limit as

the original definition in (3.20).

(3.21)



Theorem 5.4: The random operators rN and rN are consistent: i.e. VV. E B we have:

Pr lim ir(v) - FN(V)1 =	 = 1,
N

{
lim

—np

o	 Ir(v) - f'N(v)I = 01 = 1.N—■cc

The proof of Theorem 5.4 is given in appendix 1.

Although Theorem 54 establishes the consistency of the the randomized discretization method (3.20), it tells

us little about its computational complexity. In order to determine this we need to establish the rate of convergence of

the randomized estimate t N (V) to the true solution r(V), we need to establish the rate of convergence. The Central

Limit theorem can be used to show that for any fixed (s, d) we have

N (s,d) — h(s, d)j	 2,	 (3.24)

where 2 is Gaussian random variable with mean 0 and variance a 2 . The function 11,N and it entering (3.24) are given

by

hN (s, = ut(s, +	 E V (sk )pt + i (s k ls, d)
k=1	 (3.25)

h(s, d) = u t (s, d) + # I V (.91 )pi+ 1 (s is, d)dsi

Since the (stochastic) rate of convergence of itN(s,d) to h(s, d), is Op (1/ Arg) independent of the dimension k,

of the state space randomization succeeds in breaking the curse of dimensionality associated with multivariate

integration problem. However the randomization does not solve the curse of dimensionality of the kd-dimensional

constrained optimization problem in (3.20). It is easy to see, therefore, that the randomized algorithm requires 0 (Ticm)

operations to compute an 6-approximation (which in the randomized case means that EfitN (V) - r(v)12 } < C),

where m = kd + 2. This is better than the worst case complexity of the deterministic algorithms which have an

exponent m = kd + 2k, but still doesn't succeed in breaking the curse of dimensionality for general MDP's with

continuous choice sets {Dt}.

Rust (1994) has shown that randomization does break the curse of dimensionality for the class of DDP's. To

simplify exposition, we will assume that there is a common finite choice set D in each state s E S.36

Theorem 5.5: Randomization breaks the curse of dimensionality of solving DDP's: i.e. the worst case

complexity of the class of randomized algorithms for solving the DDP problems satisfying (Al), , (AS) is

given by:
compwor-ran(e ks) = 0 (_)

4

41

(3.23)

(3.26)

36 This assumption is without loss of generality since we can always transform a DDP problem with state dependent choice sets a (a) into an
equivalent problem with a state independent choice set D by defining ut (a, d) to be a very large negative number for any d E Dt (a).
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33 Discrete Infinite Horizon MDP's

As mentioned in section 2, the solution to infinite horizon MDP problems is mathematically equivalent to

computing a fixed point to Bellman's equation V = T (V). We briefly review the standard methods use to compute

this fixed point for discrete MDP's with finite state space and choice sets.

Successive Approximations. " Starting with an initial guess Vo of the solution of Bellman's equation, one simply

iterates the Bellman operator

Vk-4-1 = r (vk) = rk (vo),	 (3.27)

stopping the iterations at the smallest k such that Iv, — Vk_ l l< E where c is a pre-defined solution tolerance. In the

case wher Vo = 0, this method is equivalent to solving an approximate finite-horizon problem by backward induction.

Using the contraction property, it is easy to show that the error at the kth iteration satisfies:

Ivk — v*I5_ Ok 114 — vol/ (1 — 0),	 (3.28)

i.e. the sequence IVO converges geometrically at rate (3 to the fixed point V* .38 In problems where decision intervals

are relatively short (such as monthly or weekly), the relevant value of /3 will be very close to one, implying that

successive approximations will converge unacceptably slowly. Indeed, using tha a priori error bound (2,27) we find

that T successive approximation steps are required to obtain an c-approximation, where T is given by:

T = 0
( 1	 1°g ( 	1 ))log(P)	 (1 — 0)e

(3.29)

Acceleration via McQueen•Porteus Error Bounds. In certain circumstances the method of successive approxima-

tions can be significantly accelerated by employing the McQueen-Porteus Error Bounds:

r k (V) + b ke < V* < rk (v)-E bk e,	 (3.30)

where a denotes an 5 x 1 vector of 1 's, and:

12k = P1(1 — (3)7nin Irk (v) — r k— ' (v))

bk = s3/(I — p)snox[rk (v) — rk-1(7)].
	 (3.31)

The contraction property guarantees that No and bk approach each other geomerically at rate f3. That fact that the fixed

point V* is bracketed within these bounds suggests that we can obtain an improved estimate of V* by terminating the

iterations (3.27) when 1 -gk — bk I < c, setting the final estimate of V* to be the median bracketed value:

17k rk (vo) + ( 6k -12-	 c.	 (3.32)

37 The method also goes by names value iterations, contraction iterations, backward induction, or simply dynamic programming.

38 This is sometimes referredto as linear convergence since (3.28) implies that the ratios of approximation errors satisfy I tt — V' I/ Wk _ 1 — V*1 < /3.
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Bertsekas (1987) p. 195 shows that the rate of convergence of 11-41 to V* is geometric at rate i31 A2 1, where A2 is

the subdominant eigenvalue of P6.. Thus, in cases where I A2 l< 1, the use of the error bounds can lead to significant

speed-ups in the convergence of successive approximations at essentially no extra computational cost. However in

problems where 196. has multiple ergodic sets, 1A 2 1--= 1, and the error bounds will not lead to an appreciable speed

improvement as illustrated in computational results in table 5.2 of Bertsekas (1987).

Policy Iteration Methods. In relatively small scale problems (S < 500) the method of Policy Iteration is generally the

fastest method for computing V* and the associated optimal decision rule 6* provided the discount factor is sufficiently

large (13 > .95). The method starts by choosing an arbitrary initial policy, 60. 39 Next a policy valuation step is carried

out to compute the value function Vso implied by the stationary decision rule h. This requires solving the linear

system (2.35). Once the solution Va t, is obtained, a policy improvement step is used to generate an updated policy 61:

6 1 (s) = argmax	 , + 13 E V 60 ( g)p(sls, d)).	 (3.33)
1<d<D(s)	 s':=1

Given di one continues the cycle of policy valuation and policy improvement steps until the first iteration k such that

bk = 4-1 (or alternatively Vs, = Tisk_d. It is easy to see from (2.35) and (3.33) that such a Vsk satisfies Bellman's

equation (2.33), so that by Theorem 2.3 the stationary Markovian decision rule 6* 6k is optimal. Policy iteration

always generates an improved policy, i.e. Vs, > Vok _, . To see this, note that by definition of the policy improvement

step we have:

Gs,(V6,_,)(8)	 max (u(s, d) 0 E Vok_i (8 1 )p(5 Is ,d)]
1<d<D(s)	

s'=1

(3.34)
[u(s,6k_1(8)) + > Vek-1 ( 81 )P(SI I S ' 6k-1(s))

s' =1
= Vsk _ i (s)•

Since the operator G6 is monotonic, we have:

V8 k-1 < G ak (v6k_i)<•-•<GCk(V6k-i), 	 (3.35)

and since G 6 is a contraction mapping it follows that:

pip4noo G lik (17 k _ 1 ) = Vok > V6 k _	 (3.36)

Policy iteration always generates a strict improvement in Vok , since if Vok = 118k _, the method has already converged.

Since there are only a finite number D(1) x • • • x D (S) of feasible stationary Markov policies, it follows that policy

iteration always converges to the optimal decision rule 5* in a finite number of iterations.

39 One obvious choice is 50 (s) argmax < dc r, ( , ) [u(s d)].
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Policy iteration is able to discover the optimal decision rule after testing an amazingly small number of trial

policies ak : the method typically converges in under 20 iterations. However the amount of work per iteration is larger

than for successive approximations. Since the number of algebraic operations needed to solve the linear system (2.35)

for Vsk is of order .93 , the standard policy iteration algorithm becomes impractical for S much larger than 1,000." To

solve very large scale MDP problems, it seems that the best strategy is to use policy iteration, but to only attempt to

approximately solve for V5 in each policy evaluation step (2.35).

The method of modified policy iteration uses N successive approximation steps to compute an approximate fixed

point Vg G 5(V5 ) rather than computing the exact solution V5 = [I — Per 'us. The successive approximations

iterations for the operator G5 can be further accelerated by using the McQeen-Porteus error bounds described above.

The following Theorem of Puterman and Shin (1978) shows that asymptotically, each modified policy iteration is

equivalent to performing N 1 successive approximation steps.

Theorem 5.6: Let e be an optimal policy for a stationary discounted MDP problem, and let 5k be the decision

rule generated at step k of the modified policy iteration algorithm that uses N successive approximation

steps as an approximate solution for Vh. It

Um 1 P8k —7/-■00

then
1Vn+1 V* 1	 N+1lzrrt 	 ,	 —n—' 03	 — V*1

Thus, modified policy iteration can be thought of as an accelerated form of successive approximations. It can be

effective in problems where # is relatively low, although in problems where is close to 1 it tends to suffer from

the same slow convergence properties as successive approximations. However our numerical results in section 3.5

demonstrate that when the McQueen-Porteus error bounds are used to accelerate the iterations, the method retains

the rapid convergence properties of standard policy iteration, but the amount of work required in each (approximate)

policy evaluation step is much less.

Policy iteration by state aggregation methods computes the exact solution ¶g to a lower dimensional version

of (2.35) that groups each of the S elemental states of the original problem into M aggregate states. In an aggregation

step we choose a partition of the state space S i ,... , 9M (methods for choosing the partition will be described shortly).

If aggregate state i has Ni elements, we can define a transition probability matrix P5 on the aggregated state space by:

1
Ps(i ,i) - AT E E P(sIls,6(5))-

sesi s'ESj

(3.37)

(3.38)

4° Supercomputers using combinations of vector processing and multitasking can now solve dense linear systems exceeding 1,000 equations and
unknowns in under 1 CPU second. See for example, Dongarra (1986).
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Let 176 be an M x 1 vector of the average utilities in each of the M aggregate states. Then if M is sufficiently small,

one can use standard Gaussian elimination algorithms to rapidly compute the exact solution vg [I – OP 8] 1Tis to

the M-state problem. In a disaggregation step we use vs of to construct an approximation of the S-state value function

V6. The partition Si , ... , S m can be represented by an S x M partition matrix W defined by:

	

1 

1	 if i E Si

0 otherwise. (3.39)

Using W we can then compute an approximate solution Vs = WiTs to the original problem (2.35). Notice this

approximate solution will be a step function equal to vs(i) for each elemental state s E Si.

Bertsekas and Castaflon (1989) have shown that a better approach is to use Wvs as an additive correction in an

iterative procedure that takes an initial estimate V and generates a more accurate solution V that avoids the jaggedness

of the step function approximation Wil8 . In this case the appropriate formula for "7,6 becomes:

u6 (i) =	 [G 8 (V) (8) – V (.01.	 (3.40)

To see why (3.40) is apprporiate, suppose there exists an M x 1 vector y that solves the equation

V5 = V+ HTY,	 (3.41)

where V6 is the solution to (2.35). Using the equations G 5 (V) = u8 + OP8 V and V6 G5(Vs) = u 6	 136V8 we

have:

– OP81(/8 – V) = G5(V) – V.	 (3.42)

Multiplying both sides of (3.42) by (W I W) 1 WI and substituting Wy = (V5 – V) in the left hand side we obtain:

(W/ W) 1 W1 [I – 138]W y = (WI W)–ir (G8 (V) – V).	 (3.43)

Notice that since W is a partition matrix, (W/14) –1 is an M x M diagonal matrix whose ith diagonal element is

liNi . It follows that the solution to equation (3.43) can be written as:

vs = [I — 115 6] -1 174,	 (3.44)

where I is the M x M identity matrix and its is given by (3.40). Thus. (3.44) is the appropriate form of the aggregation

step when the aggregation term 117 7 6 is treated as an additive correction to an intial S x 1 estimate V as in (3.41). An

alternative formula for the disaggregation step can be found by applying G 6 to both sides of the equation V6 = V -1-WT 6

yielding:

V6 -r= G6(V6)± 131'514 7 77 .	 (3.45)
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Bertsekas and Castafton show that by interspersing a number of successive approximation steps V t+i = Go (Vt)

between each pair of aggregation/disaggregation steps (3.44) and (3.45), one can guarantee that the method will

converge to the fixed point Vg. Thus, in the initial stages the additive correction term Wiis succeeds in shifting an

initial estimate V to a neighborhood of V5, and this estimate is refined by a small number successive approximation

steps. This cycle is then repeated, and as the resulting sequence converges to V* it is easy to see from (3.40) that

the additive corrections Wi7,5 in (3.41) converge to O.

The aggregate states can be chosen on basis of a fixed partition of the state space, or can be chosen adaptively

after each aggregation step k in order to minimize the residual variation in Gs(Vk) — Vk. One way to do this is to

divide the total variation A = max[Go(Vk ) — Vk.] — rain[G8 (Vk ) — VkJ into M equal intervals, assigning states

with residuals G6(Vk)(s) —14(s) in the highest interval to aggregate state 1, states with residuals in the next highest

interval to aggregate state 2, and so on, i.e.

s E Sk if Go(V)(s)— V(8)-12— (k —1)A E (0, AI,

where b = mm[Gs(Vk)-14]•

3.4 Numerical Illustration of Alternative Solution Methods

C
O

(3.46)                            
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Figure 3.1: Comparison of Discrete vs. Continuous Value Functions in Auto Replacement Problem
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As an illustration, we used each of the above methods to to solve a finite-state version of the automobile

replacement problem presented in Example 3 of section 2.5. The parameters of the finite-state problem were chosen to

match the analytical solution given in (2.35) in the case where A = .5, = .95. c(s) = 200s, and 1— P = 100, 000.

Calculating the optimal stopping boundary -y in (2.36), we see that it is optimal to replace the automobile when

st > 7 = 52.87. The corresponding value function is plotted as the solid line in figure 3.1.

An approximate discrete-state version of the problem was solved using S = 100 states and the same discount

factor, cost function, and replacement costs. The exponential specification (2.30) for p(•lst, dt ) in the continuous case

was approximated with a 12-point probability distribution in the discrete case, using a simple continuity correction.

Thus, each of the 12 mass points were computed as the probability an exponential random variable falls within plus or

minus .5 of the integer values j that s t assumes in the discrete case:

p(s t+i = st j i stt dt) =

A
5

A exp — Ay dy	
j = o

i+.5
A exp –AY dy	 j = 1, ... , 10	 (3.47)

b–.5

j = 11.10.5 
A exp—AV dy

The discrete-state value function (computed by policy iteration) is plotted as the dotted line in figure 3.1, with one dot

for each point in the state space. One can see from figure 3.1 that the discrete-state value function approximates the

continuous-state version quite closely: the maximum absolute deviation between the two functions was 1164, and the

maximum percentage deviation was just over 1%. Figure 3.1 also plots an interpolated value function solved with

only S = 10 states. The maximum error in this case is 3553, representing a 1.8% deviation. One can see that even

very coarse discretizations are able to do a good job of approximating a continuous underlying value function. This

provides some insight into the potential effectiveness of solution methods based on state aggregation.

Tables 3.1 and 3.2 present a comparison of six alternative solution algorithms used to solve the 100 state

replacement problem. n The tables present the number of iterations and CPU times required by each algorithm to

compute an estimate of V* to within a tolerance of 1164, the maximum deviation between the continuous and discrete-

state formulas for V. 42 The modified policy iteration algorithm used N = 20 successive approximation steps to

compute an approximate fixed point of 5. The McQueen-Porteus error bounds were employed to test for convergence

41 Each of these methods were programmed in Gauss and run on an IBM 386/SX computer. The code, also written in Matlab and C, is available from
the author upon request.

42 Successive approximations were terminated when the crude estimate of the maximum deviation between lf and V* (3.28) was less than 1164.
Successive approximations with error bounds were stopped when the more refined McQeen-Porteus error bounds (3.30) indicated that the maxium
deviation of V, and V* was less than 1164. The various policy iteration algorithms were terminated at the first iteration k such that 4 =
although in the case of the approximate policy iteration algorithms, additional steps were continued until the McQueen-Porteus error bounds for the
operator I` indicated that the estimated value function Vb k was within 1164 of irV.
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1. Successive Approximations 114 48.9 571.7 26.5 30.6
2. Error Bounds 65 29.7 503.4 1141.0 48.5
3. Policy Iteration 6 46.1 1.1E-3 1.1E-2 5.8E-11

4. Modified Policy Iteration 5 21.8 52.3 301.4 8.6
5. Fixed State Aggregation 6 31.4 20.9 336.0 8.8
6. Adaptive State Aggregation 8 171.8 40.4 291.2 7.7

Table 3.1: Comparison of Solution Methods 13 = .95

Method Iterations CPU Seconds 1 V- V* 1 13 - b V- r(V) 1

1. Successive Approximations > 10,000 > 4,600 > 30,000 1.1E-8 3.0
2. Error Bounds 166 75.7 4.4E-1 114.5 5.7r3
3. Policy Iteration 8 71.0 2.9E-7 2.9r7 1.5E-11
4. Modified Policy Iteration 11 50.0 174.9 219.4 2.9E -2
5. Fixed State Aggregation 10 51.9 3.4 93.8 4.7E-3
6. Adaptive State Aggregation 15 1296 2.4E-1 58.4 2.9r3

Table 3.2: Comparison of Solution Methods Q = .9999
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and produce an improved final estimate of V6 . 43 The state aggregation methods used M = 10 aggregate states. The

fixed state method simply partitioned the states into 10 equal groups, Si = {10*(1-1) + 1, , 109}. The adaptive

state aggregation method partitioned the states endogenously, according to the magnitude of the residuals G 6(V) — V

as given in (146). In both of the aggregation methods, we set a relatively loose inner convergence tolerance: iterate

Vk was deemed to be a sufficiently good approximation of the fixed point V5 = G 5(1/6 ) if the McQueen-Porteus error

bounds 4, EA, for the operator G5 satisfy Sk — 6kr < 30000(1 — O)//i. As soon as the policy converged (6 k = 610_1),

additional policy evaluation steps were carried out with a tighter convergence tolerance of 500(1 — OW until the

resulting estimate for Vo k was within 1164 of V* (computed via the McQueen-Porteus error bounds for 1'). Table 3.2

presents a comparison of the six methods in the case where /3 = .9999.

Figure 3.2 illustrates the convergence trajectories of 4 of the algorithms. Successive approximations converges

to V* from below, reflecting the fact that it is solving a finite-horizon approximation to the infinite-horizon problem.

Policy iteration converges to V* from above, reflecting the fact that each successive policy 6 / represents an improvement

over the previous policy as established in (3.36). Convergence to V* under the error bounds and modified policy

iteration procedures is not necessarily monotonic. In the former case one can see that the addition of the correction

term (S + 012 quickly translates the iterates 14 into a region much closer to V* (compare the first iterate Vl using the

error bounds correction to the the second iterate V2 under successive approximations). Once in a general neighborhood

of V*, successive approximations succeed in "bending" V t into the precise shape of V*. Modified policy iteration is

not monotonic because approximating the fixed point V5 = G5(176) by N successive approximation steps implies that

each iterate Vk = CZ. (Vk_ j. ) will be an underestimate of the true solution Vs k . Thus, the sequence {Vk } generated

by modified policy iteration is essentially the same as under policy iteration, but translated downward. In this case the

sequence {VA,} ended up converging to V* from below. Note also the inexactness of the approximate solutions under

modified policy iteration imply that more iterations are required to get close to V* in comparison to policy iteration.

Overall the results indicate that in this problem the method of policy iteration using an approximate rather

than exact solution to the inner fixed point problem V6 G6 (V5 ) are generally the fastest solution methods. In the

early stages of policy iteration, it is not necessary to solve (2.35) exactly to insure rapid progress towards V* and

the optimal decision rule 6*. Since the decision rules 6k are the results of finite maximizations, 14 does not have to

be an extremely precise estimate of V* to insure that the corresponding policy 61 coincides with 6*. However once

Ot = 6* (which is indicated by the fact that 6t does not change in successive steps of the policy iteration) one can

set finer tolerances for the approximate solution of V6. = G6 . (V5.) in (2.35) to generate a more accurate estimate of

V* and insure that the solution 6k really does correspond to the optimal decision rule 6*. The Bertsekas-Castanon

43 More precisely, one successive approximations step Ye, = r(v20 ) was performed using the operator l` after 20 successive approximations
steps Vs+ = G ii k (Vs) were performed with the operator Ga k The final estimate of 176, in modified policy iteration step k is then given by:

Vk 4421 + (3+ k) /2 where 6 and b are the McQueen-Porteus error bounds for the operator r.
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adapative state aggregation procedure was not effective in this particular problem. We noticed that the adaptively

chosen states typically varied quite substantially over successive aggregation steps. The variations in the membership

of the aggregate states frequently resulted in an approximate disaggregate solution G 6(V) + [3115 Wki 6 that would tend

to move away from the fixed point V6 , requiring a large number of intervening successive approximations steps to

move the solution back towards Vs . Use of a fixed set of aggregate states performed much more effectively in this

problem, reflecting our ability to closely approximate a continuous value function using very coarse discretizations as

demonstrated in figure 3.1. 4 ' The McQueen-Porteus error bounds are also a very cost-effective method for accelerating

convergence. They can be used in conjunction with methods 4 and 5 to yield improved estimates of V* between

successive policy valuation steps.

3.5 Algorithms for Computing Fixed Points to General Contraction Mappings

In section 4 we will encounter contraction mappings which are closely related to, but distinct from the

contraction mapping P defined by Bellman's equation (2.10). An example of such a mapping is 4': B —■ B defined

by:

xlt (V)(s,	 = xt(s, d) + I log[ E exp{V (s i , )}]p(dst s , d),	 (3.48)
d' ED(?)

where B is the Banach space of all measurable, bounded functions V: S x D 17 under the essential supremum norm,

I ' 100.45 By the Contraction Mapping Theorem, a sure-fire algorithm for computing the fixed point to any contraction

mapping 'P is the method of successive approximations:

Vk = ,P(vh_ i ) = wk(vo).	 (3.49)

Successive approximations for general operators 4' can be accelerated using the McQueen-Porteus error bounds (3.30),

(3.31) just as in the case of the Bellman operator P. However a faster method is to approximate the fixed point V*

using Newton-Kantorovich iterations:

Vk+l Vk — v — @U1-d(' — *)(vre),
	 (3.50)

where I denotes the identity operator on B, and 41/ (V) denotes the derivative of 4' evaluated at the point V E B.

47 An argument exactly analogous to the series expansion argument used to proved the existence of [I — (3136]-1

" However in less structured problems it may not be clear how to choose the aggregate states, and in problems with multiple ergodic classes use of
a fixed set of aggregate states is typically ineffective. In these problems, Bertsekas and Castarion (1989) have found that the adaptive aggregation
method can outperform the modified policy iteration algorithm.

r The essential supremum is defined by IV I ra = inf {M: IF s, d)1 < M for almost all (s, d) ES x D I.

r The (Gateaux) derivative is defined by /V (V0)( V) = + W) t(170)jit. For each Vo E B we require that V(Vo) E L(B, B), the
space of all continuous linear operators from B into itself. If the above limit is uniform for all V such that IV I = II (V0 ) is known as the ?label
derivative (evaluated at the point Vo).
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can be used to establish that the linear operator — (V)1 -1- exists, is continuous, and has a convergent Neumann

series expansion provided that I Ii (V)I E (0,1)." h is easy to see that when is a contraction mapping, we have

TI(V)1‹ /3. 50 Thus, the iterations defined in (3.50) are always well-defined. Kantorovich's Theorem guarantees that

given a starting point Vo in a domain of attraction of the fixed point V* of W, the Newton-Kantorovich iterations will

converge to V* at a quadratic rate:

Theorem 3.1 (Kantorovich): Suppose that W has continuous first and second derivatives satisfying IT" (V)l<

K, then for any initial point 1/0 satisfying 
II — 

4/(Vp)1= rj < (1 —13) 2 I(2K), the iterations (3.50) satisfy:

	

1	 2k

I Vi V* 1 IC 2k ( ( 1
2 
_ o
.Kii 

)2) (1 113)2/1('	 (3.51)

Equation (3.51) shows that provided we start the Newton-Kantorovich iterations from a point Vo sufficiently close to

V*, convergence will be extremely rapid, since (3.51) implies that:

	

I 14+1 —	 K'IVk — V*I2,	 (3.52)

for a constant K'. The rate of convergence can be further accelerated by using a quasi-Newton method which involves

evaluating in (3.50) at the intermediate point Wk = al7k + (1 — a)*(Vt ) for a E (0, I). Werner (1984) showed

that evaluation at the point a = 1/2 typically improves the speed of convergence (by reducing the constant K' in

(3.52)) in comparison to the standard Newton-Kantorovich iteration.

Thus, Newton-Kantorovich iterations yield rapid quadratic rates of convergence but are only guaranteed to

converge for initial estimates Vo in a domain of attraction of V* whereas successive approximations yields much

slower linear rates of convergence rates but are always guaranteed to converge to V* starting from any initial point

Vo E B. This suggests the following a hybrid method or polyalgorithm: start with successive approximations, and

when the McQueen-Porteus error bounds indicate that one is sufficiently close to V*, switch to Newton-Kantorovich

iterations to rapidly converge to the solution. It is interesting to note that the policy iteration algorithm is actually

equivalent to the Newton-Kantorovich method (Puterman and Brumelle, 1978, 1979). However, in the case of policy-

iteration the domain of attraction is the entire space B = RS: no initial successive approximation iterations are

necessary to guarantee convergence.

49 This result is known as Ranch's Theorem, see Kantorovich and Akilov, 1982, p. 154.

se The noun AI of a linear operator A E L(B, B)is defined by IA = aliP11/1(17 )1: IVI = 11.
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