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1. Introduction

So how much technological progress has there been in structures? Not much,

might be the answer. Perhaps this answer should be reconsidered; because, as

each decade passes new limits are reached in building airports, bridges, dams,

highways, oil platforms, sea barriers, skyscrapers, stadiums, towers, and tunnels.

Moreover, as new technology enables these advances, increased output per square

foot of land is realized due to benefits such as faster and better communication and

higher productivity resulting from more and better work space. Some examples

may be in order to bolster this claim.

Skyscrapers: The Home Insurance Building is generally considered to be the

world's first skyscraper. Built in Chicago in 1885 it was 10 stories tall. Compare

this with Chicago's 110-story Sears towers completed in 1974. In less than 100

years the tallest building went from 10 to 100 floors. The 443 meter Sears Tower

now plays second fiddle to the 452 meter Petronas Twin Towers in Kuala Lumpur

built in 1997. The increase in building height reflects significant advances in engi-

neering. While the Sears Towers are 200 feet taller than the Empire State Building

(circa 1931) they weigh much less, 223,000 tons versus 365,000: a testimonial to

better materials and design. Providing comfort to the occupants of a skyscraper

is a major concern. For instance, the 29th floor is taken up by five chillers that

cool the air in the building. Three of these weigh 5,000 tons a piece. , Water that

has been used in the chillers is pumped up 77 floors to four three-story high cool-

ing towers located on levels 106 to 109. As the water cascades down the walls of

the towers it is cooled by a huge fan. The tops of tall buildings are also subject

to substantial movement from wind, causing motion sickness to the occupants.
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To prevent this, two tuned dynamic dampers were installed in Boston's Hancock

Tower (1969). Here, two three ton masses of lead are set on thin layers of oil on

opposite ends of the 59th floor of the tower. They are connected to the structure

with springs and shock absorbers. These dampers serve to mitigate the sway in

the tower.

Suspension Bridges: The Brooklyn Bridge was a technological marvel when

it opened in 1883. Its center span is 486 meters long. Contrast this to Japan's

Akashi Kaikyo Bridge, opening in 1998, who's center span is 1990 meters long.

The Messina Bridge planned for the year 2006 will connect mainland Italy with

Sicily and will have a central span of 3300 meters. Long suspension bridges are

very susceptible to the vicissitudes of nature, especially wind and water. Wind-

excited vibrations at the natural frequency of the structure caused the collapse

of the Tacoma Narrows suspension bridge in Puget Sound in 1940. To protect

against oscillations, tuned mass dampers were added to the towers of Akashi

Kaikyo Bridge, the first time in a bridge. These devices contain pendulums that

rock in a direction opposite to the towers, thus dampening motion. This, together

with other innovations, should allow the bridge to withstand winds up to 290

kilometers per hour.

Tunnels: The world's longest railway tunnel spans the Tsugaru Straits in

Japan. Completed in 1988, it is 34 miles long and was dug through some of

the most difficult rock ever encountered. The rock under the Tsugaru Straits

is porous and unstable, permitting large water flows. So, before tunnelling, the

rock had to be prepared. The fissures in the rock were sealed by pumping, under

high pressure, a mixture of cement and a gelling agent into small holes that were

drilled into the rock. Digging tunnels under water is dangerous. Once, during
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construction, water flooded in at a rate of 80 tons per minute forcing a rapid

evacuation. Even today, after the tunnel has been lined, without the aid of four

pumping stations it would flood within 78 hours. Tunnelling has come a long way

from the world's first railway tunnel, the 12.3 mile Simplon Tunnel built through

the Alps between France and Italy, that opened in 1871.

Oil Platforms: At 630 feet tall and 824,000 metric tons it was the heaviest

man-made object ever moved when it was hauled out to sea in 1981. This is taller

than the United Nations Building and three times heavier than the World Trade

Center. The Statfjord B oil platform was a mammoth undertaking. One hundred

miles from shore with 200 people aboard, it needs to be able to withstand the

worst of weather. In waves of 100 feet and in wind of 100 miles per hour it is

designed to shift less than one half of an inch. It can produce 150,000 barrels of

oil a day.

The Analysis: So again, how much technological progress has there been in

structures? The answer here is that the rate of technological progress in structures

is about 1% per year, and accounts for 15% of economic growth. The method of

estimating technological progress employed here differs significantly from current

growth accounting practice. In particular, a vintage capital model is developed

where technological progress is embodied in the form of new capital goods, namely

equipment and structures. Production in the economy is undertaken at a fixed

number of locations, each using equipment, structures, and labor. Investment in

structures is assumed to be lumpy. Once a building is erected on a site it remains

there until torn down and replaced with a new and improved one. The decision

about when to replace a building is modeled in the analysis. In equilibrium some

sites will have new, efficient buildings and others old, less efficient ones. Equip-
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ment and labor are mobile across sites. By using the structure of the developed

model, in conjunction with some observations from the U.S. data, an estimate of

the rate of technological progress in structures and its contribution to economic

growth can be made.

A novel aspect of the analysis relative to traditional growth accounting is

the use of price data to shed information on technological progress. Gordon's [2]

data on the price for new producer durable equipment shows that there has been a

substantial secular decline in the relative price of new equipment over the postwar

period.' In constructing his price index, Gordon [2] attempts to control for the

operating characteristics of equipment that are important for production. This

suggests that there has been significant technological progress in the production

of new equipment. There is no similar series available for new structures. To

the extent that new office buildings have new and improved technology embodied

in their structures, however, they should rent for more than old ones, ceteris

paribus. A panel data set of office buildings is used in the current analysis to

estimate the rent gradient for buildings (as a function of age). A key assumption

in the analysis is that buildings are continually kept in good repair. This allows

the decline in rents with age to be identified solely with technological advance,

and not with wear and tear as well. To the extent that buildings must be kept in

good repair either because of building codes or rental contracts this assumption

may not be that stringent. The rent gradient obtained is then connected with the

rate of technological progress in structures by using various equilbrium conditions

1 Here the analysis follows the lead of Greenwood, Hercowitz and Krusell [3j who use Cordon's

[21 prices to calculate how much of postwar economic growth was due to equipment-specific

technological progress.
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arising from the vintage capital model.

Contrast this with conventional growth accounting. There an aggregate pro-

duction function and input measures are used to decompose growth into techno-

logical progress and changes in inputs. In a world where technological progress is

embodied in the form of new equipment and structures the use of capital input

measures becomes suspect. They are avoided here. Also, conventional growth

accounting is incomplete because it does not allow for the growth in output due

to capital accumulation to be broken down into its underlying sources of tech-

nological progress. The analysis here takes this factor into account by imposing

balanced growth conditions on the developed model.

2. Theory

2.1. Environment

Production is undertaken at a fixed number of locations, distributed uniformly on

the unit interval, and requires the use of three inputs: equipment, structures, and

labor. Each location has associated with it a stock of structures of a certain age

or vintage. The manager of a location must decide at each point in time whether

to replace this stock of structures or not. Equipment and labor can be hired each

period on a spot market. Let production at a location using structures of vintage

j be given by

o(j) = zke (j) °e ks (j) as l(j) 13 ,	 (2.1)

where z is the economy-wide level of total factor productivity and ke (j), ks(j),

and 1(j) are the inputs of equipment, structures and labor. Denote the number of

locations using structures of vintage j by n(j) and let the oldest age of structures
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be T. Then g n(j)dj = 1. Aggregate output is thus

y = 
JOT
 n(j)zics (7)¢e its (7 )as 1(j)13 dj.	 (2.2)

Output can be used for four purposes: consumption, c, investment in new equip-

ment, is , investment in new structures, is , and for investment in repair and main-

tenance on old structures, 	 Hence

(2.3)

Equipment is mobile and can be freely rented on an economy-wide equipment

market. The law of motion for equipment has the forme

--asks + qie .	 (2.4)
dt

The variable q represents equipment-specific technological progress. This occurs

over time at rate -yr As q increases over time a unit of forgone consumption can

purchase ever increasing quantities of equipment. Here 1 f q can be thought of as

the relative price of equipment. This price declines over time. The rate of physical

depreciation on equipment is 6e.

Imagine constructing a new building at some location. Suppose that a unit

of forgone consumption can purchase v new units of structures. Then, building

ks (0) units of new structures would cost k s (0)/v units of consumption. Let v

grow at the fixed rate -y„; this denotes structure-specific technological progress.3

2 Greenwood, Hercowitz and Krusell (1997) use this formulation to study investment-specific

technological progress. A more detailed discussion on the notion of investment-specific techno-

logical advance is contained there.
3The focus of the analysis is on balanced growth paths. So, some variables, such as aggregate

output, will grow over time at constant rates while others, for instance the interest rate, will be

constant.
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Aggregate gross investment in structures will therefore read

i s = n(0)ks (0)/v.	 (2.5)

Structures remain standing until they are replaced. While structures suffer no

physical depreciation, they must be maintained. Let the initial maintenance cost

be a fraction p(0) of the building's purchase price. These costs grow exogenously

at rate -yi, -yy as the building ages, where ryy is the economy's growth rate.

Therefore, A(j). e (7P ±i Ldi . Aggregate investment in repair and maintenance is4

= 1.0 n(j)p,(j)ks(j)1(ve-70)dj.

The question of interest here is: When should a building be replaced?

2.2. The Location Manager's Decision

2.2.1. Static Profit Maximization

At a point in time the manager of a location should hire equipment and labor to

maximize the location's profits, given his stock of structures. Consider the static

profit-maximizing decision at a location using vintage-j structures:

ir(j)	 max fzke (j) ae ks (j)N(j) 13 - re ke (j) - wl(j)},	 P(1)
keO),10)

where re is the economy-wide rental price for equipment and ILI is the wage rate.

The first-order conditions are

aezke(i)acikeUrqUY5 = re,	 (2.6)

4 Note that 1/(ve-1-0) is the price that a unit of structures cost j periods ago.
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and

Ozke(j)¢e	
loy31 w.	

(2.7)

By multiplying (2.6) by Ice (j) and (2.7) by 1(j) it is easy to establish from P(1)

that

x(j) = (1 — a s — )(3)zke(j)aeks(j)a'/(j)P.

Next, observe that (2.6) and (2.7) imply that

ke(i) = -1:1(j),

and

1 (j) — 
(Q 1'4ez(l/rere ks (jr.  1 

ln	
11 an 13

so that rents at a point in time (the return to the fixed factor, here land) can be

expressed as

r(j) = (1 — as — i3)z 1—ae—s & ce 9 13 1— °e — hi re 1—n e — P W	 ks(3)1-0.-0 . (2.10)

The profits from each location, net of any repair and maintenance costs and

investment in structures, are rebated to consumers each period.

2.2.2. The Replacement Problem

When should the manager of a location replace the structures on his site? Suppose

that at date 0 the manager has Ics,0 (0) units of new structures. 5 At what date

T should he replace his building and how much should his investment in new

5Time is indicated by subscripts. So for example, ks,t (j) indicates the amount of age-j

structures at time t.

(2.8)
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structures, ks,T (0), be at that time? Clearly, he should choose these variables

to maximize the value of the location as denoted by V (ks,o(0)). The manager's

date-0 problem can be written as

V(ko(0)) = max {1 [7r t (t) — it(t)k,, ,o(0)/vole'dt	 P(2)
Ics, T (0),T	 0

±e—`711/(ks,T(0)) — ks,T(0)/vTil,

where t represents the time-invariant interest rate. The solution dictates that

[lrT(T) — A(T)ks,0 (0)/vol— t[V(ks,T(0)) — ke,T (0)/vr] = 0,	 (2.11)

and

Vk,(ke,T(0)) = 1/vT•	 (2.12)

2.3. Equipment Rentals

At each point in time the equipment manager has Ice units of equipment that he

can rent out at re . He must decide how much to invest, is , in new equipment.

This investment can be financed at the fixed interest rate t. The optimal control

problem governing the accumulation of equipment is summarized by the current-

value Hamiltonian shown below and its associated efficiency conditions.

7t = reke — ie + A(ieq — 6ekel,

'Hie = —1 + Aq = 0,	 (2.13)

and

dA/ dt	 — 7-tke = to — re + Abe , 	 (2.14)

Observe that from (2.13) that -yA = --yq so that (2.14) can be expressed as

re = (t + Oe+7,1)14.
	 (2.15)
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This gives the rental price for equipment. This formula has a simple interpretation.

A unit of forgone consumption can purchase q units of equipment that will rent for

req. This rental income must cover the forgone interest, t, physical depreciation,

be , and the capital loss, 7q induced by the fact the price of equipment (in terms

of consumption) is falling across time.6

2.4. The Representative Consumer's Problem

Let a consumer's lifetime utility function be given by

100c In cue-fltdt.

Now, the consumer is free to lend in terms of bonds, a, earning the return I. In

addition to the interest he realizes on his lending activity, the consumer earns

labor income, w, and the profits from his locations (net of any repair and main-

tenance costs and investment in structures), foT n(j)frr(j)- p(j)ke (j)87-i /vfidj -

n(0)ks(0)/v. The law of motion governing his asset accumulation reads

da/dt w + to + fo n(j)[7r(j) - p(j)ke (j)143 /v}dj - n(0)1c,(0)/v -

The efficiency condition governing asset accumulation is

1 dc
cdt =	 P)'

(2.16)

which states the familiar condition that consumption should grow at the rate at

which the interest rate exceeds the rate of time preference.

6 A unit of equipment sells for 1/q units of consumption, and this price is falling over time at

rate rye.
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2.5. Market Clearing Conditions

At each point in time the markets for labor and bonds must clear [in addition to

the goods market as represented by (2.3)]. Consequently,

I
T 

n(j)1(j)dj = 1,	 (2.17)

and

A
T 

n(j)ke (j)dj = qa.

2.6. Balanced Growth

The balanced growth path will be uncovered using a guess and verify procedure.

To this end, conjecture that along a balanced growth path consumption, invest-

ment in equipment and structures, aggregate output, and the stocks of equipment

and structures at a location of any given age, will all be growing at constant rates.

Likewise, it seems reasonable to believe that the age distribution of structures and

the amount of labor allocated to an age-j location will be constant through time.

If so, equation (2.2) then implies that along a balanced growth path output will

grow at rate

= 7z+ ae-Ye + ast,	 (2.18)

where ryy a- (1/y)dy/dt, #yz a (1/z)dz/dt,	 [1fice(j)]dIce(j)/dt, and -y,

[1/k5 (j)]dk3 (j)/dt. Additionally, from the resource constraint (2.3), consumption,

equipment investment, structure investment, and maintenance investment will all

need to grow at the same rate as output, or would disappear relative to output.

Consumption growing at the fixed rate ryy requires that the interest rate remains
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constant at

+ 7y,
	 (2.19)

a fact evident from (2.16).

Next, note that the law of motion for equipment in balanced growth reads

 gig
7e == – be+ ---

ke

Thus, 'Ye can be constant if and only if qiefk, is too. This can only be true when

7e = 7q + 7y,
	 (2.20)

Analogously, is /y = [re(0)k,(0)/d/y can only remain fixed if

	

if s = ryv +
	

(2.21)

where, as must be obvious by now, 'yq  (1/q)dq/dt and 7, rz (1/v)dv/dt.

The rate of growth in output, as a function of the underlying sources of tech-

nological progress, can now be uncovered by substituting (2.20) and (2.21) into

(2.18) to obtain

1	 a,	 as
7y =

	

	7z,•	 (2.22)
 1 – a, – a, + 1 – – as 7q + 1 – a, – as

In turn, using this in (2.20) and (2.21) gives

1	 1 as	as
ere — 	 -yz	 (2.23)

1 – a, – a,	 1 – a, – a s 1̂g+ 1 – a, – as

and
1	 ae	 1 – a,

'Ys –

	

	 	 7,,.(2.24)
1 – a, – as 7z + 1 – a, – as -rq+ 1 – de – as

Equation (2.22) is the key for opening the door to growth accounting. Not surpris-

ingly, the contribution of equipment-specific technological progress to economic
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growth will be larger the bigger is equipment's share of income, a,, relative to that

of the nonreproducable factors, 1— a, — a,. The contribution of structure-specific

technological progress to growth depends in a similar way on structure's share of

income, as . Observe that stocks of equipment and structures grow at a faster rate

than output, since a, < 1 — as and as < 1 — a,.

Next, it is easy deduce from (2.15) and (2.7) that the factor prices r e and w

will grow at rates

Ire = v

and

= -Yr

By using the above two conditions, in conjunction with (2.22), in (2.10), it is

easy to show that, when the stock of structures is held fixed, profits on a building

will rise over time at rate

(
1 — a, — as —	 1	 1 — a, — as —	 a,

= 	 )( 	 )7z	 )y1 — —	 1 — a, — as	1 — a, —	 )( 1 — a, — a, q
,	 a,

1 — a, —	 )( 1 — a, — a,)7

(2.25)

Observe that profits grow at a rate less than output. This, together with rising

maintenance costs, motivates the replacement of buildings. The location man-

ager's replacement decision is driven by the lure of profits. For a given stock of

structures, profits are forever being squeezed by rising labor costs. To increase

these dwindling profits the manager must replace his old structure with a new

and improved building.
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Now, consider the economy's cross section of buildings at a point in time. It

is easy to calculate from (2.10) that the percentage change in rents as a function

of age, or the rent gradient 58 , should be given by

as
6, - 	  S)	 (2.26)

1 - as -

since the stock of structures declines at rate ry a as a function of age (while factor

prices remain constant). This formula plays a starring role in the analysis. It

is a measure of obsolescence in buildings. In the absence of depreciation, a new

building rents for more than an old one only because it offers more efficiency units

of structures. Figure 2.1 plots the rent gradient as derived from (2.10).7 As can

be seen, at a moment in time rents are a decreasing function of a building's age.

The rent gradient shifts out over time due to growth in the economy.

Along a balanced growth path the profits of an age-j building will grow at

rate 7y , a fact readily apparent from (2.10). Since T is constant it then fol-

lows that V(Ics,0(0)) = e-7u 7V(ks,T (0)). Furthermore, note that k s,0 (0)/vo =

C7Jk8,2-(0)1vT , This allows the first-order condition (2.11) to be written as

[0-7'70 (0) - e e7m-1-70Tp (0)ks,o(0)/vol - te7Yr (V(ks,0(0)) ks,o(0)/710] = 0, (2.27)

where everything has now been expressed in terms of date-0 values. From P(2) it

is easy to calculate that

70 (0) fr e-(‘-7 -aidt - #(0)[11/40 (0)/voi fo e-(L-7A-70idt

1 _

700)(1 - €-(4-er)T]i(t - ry„-)	 €-(`-70Tks,0(0)iv0
1- e-- (t-79 )T	1- e-(1-70T

7The figure uses the calibration discussed in Section 3.

V (ks,0(0)) - 1 -

e-(`-7Y)Tks,o(0)/vo
(2.28)
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P(0)[ks,o(0)/vo][1 - e-(`-7y.-TOT)/(t - 7A - 7y) 
1	 e—(6--yy)T

Likewise, from P(2) it is easy to see that in balanced growth

[1 - C (`-7-)Thrks ,o(0)	 [1 - e"-(t-70-7071/1(0)
Vics( ks,o(0)) =	 (t - 7,r)	 (t -	 - 7,)	 '

where

__=P___ 
Irks,0(0) =	 ad-ce-13.3'-arsre,01-arawo	 ksio (0)

ae +	 /

so that the first-order condition will read

(2.29)

(2.30)

	

143 (ks,o(0))	 1/vo . 	 (2.31)

The model is almost complete except that the date-0 market clearing wage rate

needs to be computed. The age distribution of structures over locations will be

uniformly distributed on the interval [0, TI. The labor market clearing condition

(2.17) can accordingly be rewritten as (1/T) Cl(j)dj = 1. Substituting (2.9) into

this condition and using the fact that Ics,o(j) = Ics,0 (0)e-7si yields

	

Pl-aeacetezo(-1 o 	 'ks o(0 )Q1re	 1/(1-11`), 
1 _ e-Tas7,/(1-ae-0)	 1(1,e—o)/(l—as).

[Taiy s i (1 — 0e — i(3)'

The solution to the model's balanced growth path is now completely charac-

terized. To see this note that equations (2.10), (2.15), (2.19), (2.22), (2.24), and

(2.27) to (2.32) represent a system of 11 equations in the 11 unknowns iro(0),

re,o, 7y 73 , T, V(ks,o(0)), 14,(ks,o(0)), Irks,o(0), ks,0(0),

8 Equations (2.10) and (2.15) at time zero read 7r 0 (/) = (1 - a, - 0)z° ae Jae

rorrTicisnto e ks,o(i) r÷%1=7 and r, ,0 = (t+.5e + #y9 ) /q0.

wo = (2.32)

and wo.8
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Last, it was stated that the replacement of structures was driven by the lure

for profits. For a given stock of structures, profits are squeezed over time for two

reasons: rising real wages and maintenance costs. To see the important role that

profits play in replacement, assume that there are no profits, because production

is governed by constant returns to scale, and that buildings can be maintained cost

free. It is easy to deduce that in this situation structures will never be replaced.

Proposition 2.1. (No Replacement): If cr e + as + = 1 and p(0) = 0 then

T= oo.

Proof. Observe that in this situation Trk,,o(0)ks,o(0) = wo(0), since 1—a e --0 = a,.

Using (2.28) and (2.29) this then implies that Vk.,(ks,0 (0))1c3,0 (0) = V(ks,0 (0)) so

that V(ko(0)) = ks,0(0)/vo. The right-hand side of (2.27) will therefore always

be strictly positive so that there does not exist a finite T satisfying this equation.

Hence, in balanced growth path it must transpire that T oo. ■

3. Measurement

3.1. Estimation

There are three parameters that need to be estimated — the rent gradient, 5,,

maintenance costs for newer buildings, 0, and the growth rate in maintenance

costs, -f . To do this, was obtained data from the Building Owners and Managers

Association International (BOMA). The data used for the estimation is based

on a panel covering approximately 200 office buildings across the United States

from 1988 to 1996. 9 The data set includes information on age, location, size,

9This data was assembled by BOMA International with the names and addresses removed.
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rent, and several categories of expenses. Clearly, office buildings are only part of

the private sector's nonresidential stock of structures. So, hopefully the extent

of technological progress in office buildings reflects the amount of technological

advance in the broader aggregate. In any event, this is all of the data that could

be found.

Summary statistics for the sample are given in Table 1. The average size

building is 312,403 sq. ft.; the smallest being 15,683 sq. ft. and the largest

2,529,269 sq. ft. The oldest building was built in 1868 and the newest 1987.

(Each building was in every year of the 9-year sample).

Table 1

Variable Mean Std. Dev. Minimum Maximum

size (square feet) 312,403 330,065 15,683 2,529,269

repair and main./s.f. (1996) $1.42 $0176 $0.353 $5.40

rent/s.f. (1996) $15.23 $6.93 $1.52 $56.6

age 25.9 22.2 2 128

floors 16.0 13.4 2 80

Figure 3.1 plots the kernel estimate of (the In of) rent per square foot as a

function of age. As can be seen in the figure, the decline in rent is monotonic

until the building is approximately 46 years old. Then there is a sharp increase,

returning to a monotonic decline a few years later. This may reflect extensive

remodelling or refurbishing of a building. To the extent that this is the case,

it could in essence be considered a new or different building. Therefore, the

estimating equation is based on a restricted sample of those buildings 46 years

old or younger. Figure 3.2 plots the kernel estimate of (the In of) repair and

maintenance as a function of age. Repair and maintenance costs rise over time.
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Rent as a Function of Age

2.7

2.8

2.4 
10
	

40	 50	 80	 70	 80

Age years

Figure 3.1:

Repair and Maintenance as a Function of Age

0.7

0.6

8 0.5

0.4

eit 0.7

• 0.2
03

-0.0•
-0.1

a.2

O 10	 20	 30	 N	 oa	 60	 70	 80

Age — Yews

Figure 3.2:

20



Given that the data set contains observations on the same buildings over time,

an obvious choice would be to use an estimator that controls for the building-

specific effects. That is, a fixed effects estimator with buildings as the unit of

observation. Now, the rent gradient is a measure of how the rent on a building

changes as the building ages by one additional year. However, to determine the

value for the rent gradient, 63 , a building fixed effects estimator would essentially

turn the age variable into a time trend, and would remove all of the cross section

variation in age. This is because as one year passes the age of the building also

increases by one year.

Therefore, the specification used consists of a cross section time series with the

age of the building, the In of repair and maintenance expenditures, total square

footage, and dummy variables for time, region, and whether the building is located

downtown or in the suburbs. If repair and maintenance expenditures counteract

the effects of physical wear and tear, then the coefficient on age in the regression

captures the effect of depreciation due to obsolescence alone. The results for 6,

are given in Table 2.
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Table 2

Dep. Var.: In (Rent/ft)

Variable* Estimate

(Std. Error)

constant 1.55

(0.133)

age -0.015

(0.001)

size (sq. ft.) 0.092

(0.011)

downtown 0.059

(0.024)

r 2 .38

* plus time and regional dummies

Table 3

Dep. Var.: In (Rep. and Maint./ft)

Variable* Estimate

(Std. Error)

constant -2.27

(0.152)

age .	 0.020

(0.001)

size (sq. ft.) 0.155

(0.012)

downtown 0.111

(0.028)

r2 0.45

* plus time and regional dummies

The value of 0 was chosen to represent the ratio of repair and maintenance to

rents in newer buildings. From the data the number for buildings 5 years old or

younger was calculated. The value of 0 is 0.055. To obtain a parameter estimate

for ryµ a similar approach was taken as for 68 . The results are reported in Table

3.10

10The fact that expenditures on repair and maintenance begin to decline with age suggests

that such expenditures may be endogenous, i.e., at some point less and less is spent, and the
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3.2. Calibration

The model's parameters are assigned either (i) on the basis a priori information

about their values or (ii) so that the model's balanced growth is consistent with

certain features displayed in the U.S. data over the postwar period."

3.2.1. A Priori Information

1. y9= 0.032. This number represents the average annual decline in the rel-

ative price of equipment price for the postwar period based on data taken

from Gordon [21.12

2. 6, = 0.12. This is an estimate of average depreciation rate for equipment

used in constructing NIPA's equipment stock figures.'

3. p 0.68. Labor's share of income, as estimated from the NIPA for the

period 1959-1996. Here labor income is defined as total compensation of

employees in nominal terms. Income is taken to be nominal GDP minus

nominal gross housing product.

4. = 0.055. This is the estimate from Section 3.1

5. ryp = 0.020. Again, as estimated from Section 3.1.

building is allowed to deteriorate. Therefore, the estimation is based on the sample where

expenditures are increasing, since the maintained assumption is that this is the amount it would

take to keep the building in its original condition. Note that since expenditures are increasing

over time it costs more each year to keep up the building.

I1 Gooley and Prescott [1] provide a guide to calibration within the context of the standard

neoclassical growth model.

12As computed by Greenwood, Hercowitz and Kruse11 [3].

13 Again, as calculated by Greenwood, Hercowitz and Krusell [3].

23



3.2.2. Restrictions on Balanced Growth

Parameter values still need to be determined for a„ a„ p(0), -y„, ry z and p. These

six parameters will be pinned down using six long-run restrictions from the data.

1. Over the postwar period 1959-1996 output-per-manhour worked in the U.S.

economy has grown at an average rate of 1.22%. Again, nominal output

is measured as nominal GDP minus nominal gross housing product. Since

the numeraire in the model was consumptions goods, this series was divided

through by the implicit price deflator for personal consumption expenditures

on nondurables and nonhousing services. Total private sector manhours was

calculated as an annual average of average weekly hours of total private

production or nonsupervisory workers multiplied by the number of civilians

employed. If the model is to be consistent with this fact, then

ryy = 0.0122.	 (3.1)

2. In the U.S. the equipment-investment-to-GDP ratio averaged 7.3% for the

period 1959-1996. Using the law of motion for equipment it is easy to see

that in balanced growth date-0 investment in equipment is given by i e,0 =

(7y + 7q+ be)ke,o1q0 . Now, from (2.8) it apparent that ke,0 = f n(j)ke,o(j)dj

(aew)/(fre,o) f 1(j)dj = (aew)/(fire,o) (since the supply of labor is one).

Finally, date-0 GDP is given by wo/O. Hence, the following restriction on

the model's balanced growth path obtains:

ie	 ae— =	 0.073.
y	 re,0

(3.2)
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3. The ratio of structure investment to GDP in the U.S. economy is 4.1% (for

the 1959-1996 sample period). If this restriction is imposed on the model

then"
is	 (k,(0)/tio)/T

0.041.	 (3.3)
worn

In a world with investment-specific technological progress conventional mea-

sures of capital stocks are flawed since adjusting for quality improvements

is difficult. Therefore, measures of (ke/q)/y and (ks /v)/y taken from NIPA

are likely to be unreliable. Nominal investments, however, do not suffer

from this problem so that isiy and i s jy can be measured with reasonable

accuracy.

4. The average age of buildings in the sample is 26 years. Now, recall that the

lure of profits was a central factor in the firm's replacement decision. Thus,

the returns to scale, as given by a s and as , should be critical in determining

T. The following restriction on the average age of buildings is added to the

model's balanced growth path:

1 IT
0 

dj = — = 26.

	

2	
(3.4)

5. In Section 3.1 it was found that the average ratio of repair and maintenance

to rents in newer buildings is 0.055. This dictates the following condition on

14 Repair and maintenance is netted out of GNP in the National Income and Product Accounts.

Ideally this should be added back to GNP, because it is a type of investment spending. Since

a series on repair and maintenance for structures wasn't available this couldn't be done here.

Some sensitivity analysis showed that for reasonable estimates of repair and maintenance the

results barely changed.
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P(0):
vo(0)iro 

y(0) = 0.055 x

	

	 (3.5)
kso(0)

6. The estimation results from Section 3.1 show that a one year increase in a

building's age reduces its rent by 1.5%. Recall that the rent gradient is a

measure of obsolescence of structures. Hence, it should provide useful infor-

mation for calculating -y,. Using the rent gradient formula (2.26), together

with (2.21), leads to the last restriction.

(1 — a, -- p)	 (1 — a, -- 0)
7v —	 0.5 79 =	 x 0.017 —	 (3.6)

as	as

Counting establishes that equations (2.10), (2.15), (2.19), (2.22), (2.24), (2.27)

to (2.32), and (3.1) to (3.6) represent a system of 17 equations in the 17 unknowns

lr0(0),	re,o,	 T, V(k,,o(0)), Vh,(1c9,0(0)), ir9s,o(0), k, 0 (0), /Do, ae , a,, p(0),

-y, and p. The results will now be reported.

3.3. Findings

Values of 0.10 and 0.15 are found for a, and a s , respectively. This implies that

ae + as + 13 = 0.93, so pure rents (before maintenance costs) are about 7% of

income. The rate of time preference, p, has a value of 0.072. This yields an

interest rate of 8.4%, a number somewhat larger than that of 6.9% calculated

by Cooley and Prescott [1] for the 1954-1992 period.' Cooley and Prescott's [1]

number is probably too low for the purposes here, though, since they included the

value of land in the definition of the physical capital stock which works to reduce

their estimated return on capital.

I5 Note that 10% is the interest rate that Taubman and Rasche (5] used in their study of office

buildings.
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The rate of technological progress in structures is found to be 1% a year; that,

is 'ft, = 0.01. Consequently, a forgone unit of consumption can purchase 1% more

efficiency units of structures each year. This is smaller than the 3.2% estimated for

equipment, but casual empiricism suggests that technological progress has been

much less in the building sector. The rate of neutral technological progress is

0.43%, or ryz = 0.0043.

The contribution of each source of technological progress to economic growth

can be calculated using (2.22) as follows:

ae/(1 — a, — ash,

	

fa — 	 q = 0.37,
7y

as/ ( 1— ae — ask/ 

	

fv = 	 — 0.15,

and
1/(1 — a, — as}-y

	

= 	 z = 0.48,
7y

where f9 , b, and h denote the fractions of output growth that is accounted for

by equipment-specific, structure-specific and neutral technological progress. As

can be seen, structure-specific technological progress accounts for 15%. Overall

investment-specific technological progress, or technological progress in the capital

goods sectors, generates sixty percent of overall growth.

3.3.1. Capital Stock and Depreciation Measures

The numbers in the NIPA imply that the real stock of structures per manhour

worked grew at an annual rate of 0.75% over the 1959-1996 period. The current

analysis suggests, on the basis of equation (2.21), that it grew at 2.2% over this

period. Likewise, the NIPA figures indicate that the annual growth rate in the
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stock of equipment per manhour worked was 2.5%. The estimate obtained from

(2.20) is 4.42%. The failure to incorporate technological progress in the production

of new capital goods, or neglecting the terms q, -yq , v and ry v in (2.4), (2.20),

(2.5), and (2.21), has significant consequences for the measurement of the effective

capital stock.

The numbers in the NIPA do not measure physical depreciation, as is conven-

tionally assumed in macroeconomics. The NIPA measures are based on straight-

line depreciation over the economic service life of an asset (and not its physical

service life). Hotelling [4] introduced the concept of economic depreciation, defin-

ing it to be the rate of decline in the value of the asset over time. Let Ho(j) be

the date-0 present value of rents (net of maintenance costs) for an age—j building

until the next replacement date T — i. 16 Now, imagine constructing an annual

measure of depreciation. The annual rate of economic depreciation that transpires

between year 0 and year —1 is simply given by [IIo(j) — (j — 1))/II_ 1 (j — 1).

The rate of straight-line depreciation would be (1/T)/11 — (j — 1)/71; note the

importance of the replacement date, T, in this formula. Table 4 gives these depre-

ciation rates for selected ages of a building. Observe how the rate of depreciation

grows slowly at first and then accelerates rapidly toward the end of the building's

life.17

16 That is, 110 (j) = foT—J [wt (j + t) — p(j + Oks,_3 (0)/ v_j je —tt dt. Assume that at the time of

construction the owner purchases the structure and obtains a lease to the land for T years. The

date-0 cost and benefit of doing this would be 110(0).
17 The rate of economic depreciation is very low early on. Taubman and Rasche [5] constructed

a similar table to argue that tax laws allowed depreciation allowances that were too generous,

because of this fact.
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Table 4

Age (years) Econ. Dep., % St. Line Dep., % Physical Dep. %
1 1.89 1.92 0.83

5 1.97 2.08 0.94

15 2.29 2.63 1.30

30 3.55 4.35 2.10

40 6.52 7.69 2.90

50 32.1 33.3 4.00

51 49.1 50.00 4.13

52 100.00 100.00 4.26

Mean Dep. 6.63% 7.24% 1.93%

Note that the average rates of depreciation, both economic and straight line, are

somewhat higher than the 5.6% used for structures in the NIPA.18,1°

With an additional assumption, the rate of physical depreciation occurring

over time can be calculated. Suppose that the stock of structures for an age-j

building follows the law of motion dk,(j)/ clj = --6(j)ks(j)+ v_fini (j), where v_j

denotes value that v had j periods ago.20 Here a dollar of repair and maintenance

investment can offset one dollar of depreciation, where the latter is measured in

terms of the original cost of the building. (Recall that the original cost for a

18 0nce again, as calculated by Greenwood, Hercowitz and Krusell [3].
19 A weighted average is used to calculate the mean rates of depreciation in Table 4. The

weights are based on the purchase prices for the buildings of various ages.
2°This law of motion only holds when ks (j) < ka, _j (0); that is, investment in repair and

maintenance cannot be used to augment the scale of the original structure. Also, note that repair

and maintenance is effected with the same level of efficiency, as the original investment in

structures was.

•
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unit of structures was 1/v_ 2 ). Under the maintained hypothesis that repair and

maintenance expenditures exactly offset physical wear and tear in each and every

period it will transpire that 5(j) = v_ii,m (j)/ks (j) = v_24,(j)/k5,_;(0) = p(j).

The physical depreciation rate is shown in the last column of Table 4. Note that

different models of the depreciation process will lead to different estimates of the

rate of physical depreciation. For a new (one-year old) building this is 0.8% while

it steadily rises to 4.3% for an old (fifty-two year) structure. Observe that physical

depreciation, measured this way, is considerably less than economic depreciation.

3.3.2. Statistical Robustness

The analysis hinges on the estimated value for the rent gradient. How sensitive

are the results to this parameter? To answer this question note that the model

defines two mappings	 and F„ such that, = F v (53) and f, = F.„(8 3 ); that is,

the model returns values for the rate of structure-specific technological progress

and its contribution to economic growth, given an estimate for the rent gradient.

It turns out that (numerically) these mappings are monotonically decreasing in

5s. In other words, the steeper the rent gradient is (or the smaller is 50, the

faster is the pace of structure-specific technological progress and the larger is its

contribution to growth. Now, in Bayesian fashion suppose that one has some

beliefs about the value of 5 3 , as summarized by a probability distribution. This

will imply some associated beliefs about the rate of structure-specific technological

progress and its contribution to growth. Specifically, Pr[-y„ >	 = Pr[63 < 1-1,71(x)]

and Prff, > = Pr[83 < FiT i (x)]. The estimate of the rent gradient is a

normally distributed random variable with mean 0.015 and standard deviation

0.001. Take this for the belief over 5s . Given this belief, what do the distributions

•
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Figure 3.3:

for Pr[y t, x] and Pr[ft, > x] look like?

Figures 3.3 and 3.4 plot the distributions for Pr[-y > x] and Nit, > xj. As

can be seen from Figure 3.3, the probability that structure-specific technological

progress is greater than 0.50% is very high. But it is almost certainly true too

that it is less than equipment-specific technological progress. Likewise, Figure 3.4

shows the odds that structure-specific progress accounts for at least 10% of growth

are excellent; yet, that it contributes more than 20% to growth looks remote.
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4. Conclusion

The analysis here takes a different route to measuring technological progress than

the one typically travelled by growth accountants. Price data is used to shed infor-

mation on the sources of economic growth. Over the postwar period, the relative

price of equipment has fallen dramatically. This suggests that there is techno-

logical advance in the equipment-producing sector of the economy. Similarly,

rents decline with the age of a building, holding fixed factors such as repair and

maintenance. Perhaps this is because new buildings embody new and improved

technology in their structures. By casting the analysis in a general equilibrium

setting, a link can be established between the observed rent gradient and the rate

of technological progress in buildings. Likewise, the tie between the decline in the

relative price of equipment and equipment-specific technological progress is made

explicit. Similarly, the connection can be derived between, on the one hand, the

observed data on the average age of structures, the structures investment-to-GDP

ratio and the equipment investment-to-GDP ratio, and on the other one hand,

the implied shares of structures and equipment in GDP and the interest rate.

The upshot of the analysis is that the rate of structure-specific technological

progress is about 1% a year. This implies that 15% of economic growth can be

attributed to structure-specific technological progress. Given that it is also found

that equipment-specific technological progress accounts for 37% of growth, the

conclusion is that about 52% of economic growth is due to technological progress

embodied in the form of new capital goods.

The National Income and Product Accounts compute the rate of economic de-

preciation for capital goods, and not the rate of physical depreciation as is typically
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assumed. The current analysis assumes that structures are kept in good condition

through repair and maintenance. This assumption may not be that unrealistic.

Building codes, for instance, regulate the condition of business structures. Due

to technological progress buildings eventually become obsolete, however, and are

replaced. The model generated a rate of economic depreciation of about 6.6%,

not far from the 5.6% used in the NIPA. Future work may be better able to de-

compose the rate of economic depreciation into the rate of obsolescence and the

rate of physical depreciation.
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