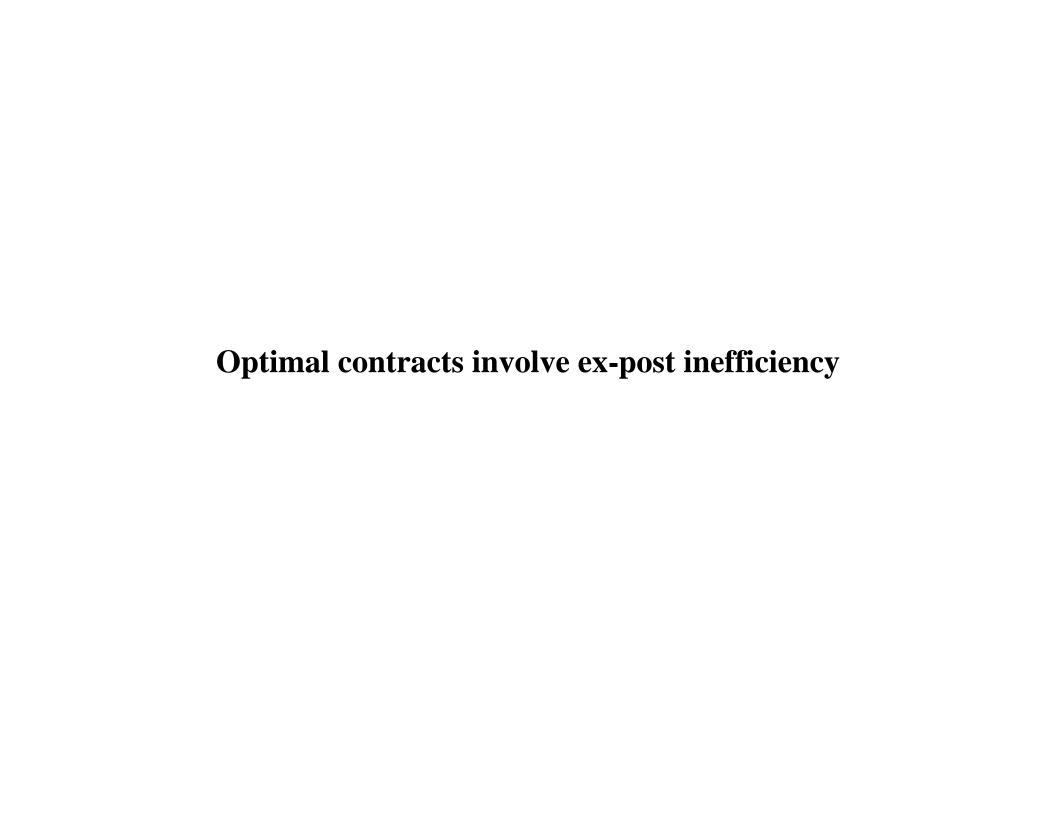
Bailouts, Time Inconsistency, and Optimal Regulation

V. V. Chari University of Minnesota and Federal Reserve Bank of Minneapolis

Patrick Kehoe
Federal Reserve Bank of Minneapolis,
University of Minnesota, and
Princeton University


Stern-Feldman Question

- Assume:
 - Government cannot credibly commit not to bail out firms

- Question:
 - How should ex ante regulation be designed taking into account government temptation to bail out ex post?

• Analysis motivated by ideas of Stern-Feldman *Too Big To Fail*

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem
- Gov't faces more severe sustainability constraint than private agents
 - Ability to improve "firesale" prices for bankrupt assets
- Given government is tempted to bail out ex post
 - Optimal to regulate contracts ex ante to reduce temptation

Simplified Version of Benchmark Model _____

- Agents: managers and lenders
 - Risk neutral, measure 1 of each
 - Lenders have *e* units of endowment
 - Managers exert costly unobservable effort a
- Technologies
 - Corporate technology

endowments — capital goods — consumption goods

Storage

endowments — consumption goods

Corporate Technology _____

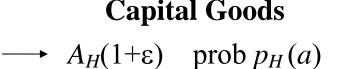
• 1 unit of goods, a units of manager effort produces capital goods

$$\begin{cases} A_H(1+\varepsilon) & \text{prob } p_H(a) \\ A_L(1+\varepsilon) & \text{prob } p_L(a) \end{cases} \text{ where } \varepsilon \sim H(\varepsilon) \text{ manager specific shock}$$

- Given capital goods, decide continue or bankruptcy
 - If continue, produce consumption goods 1:1 rate
 - If bankruptcy, two costs
 - manager suffers -B
 - use inferior technology called traditional technology

Corporate Technology

Inputs


Capital Goods

 $A_L(1+\varepsilon)$ prob $p_L(a)$

1 unit of goods

a units effort

(a unobserved)

 \mathbf{c}

Consumption Goods

Corporate Technology

$$Y_{ci}(\varepsilon) = A_i(1+\varepsilon)$$

Traditional Technology

$$Y_{bi}(\varepsilon) = RA_i(1+\varepsilon)$$

 $R \leq 1$

Manager: -B

Optimal Contract _____

- Maximize utility of manager s.t. zero profit constraint
- Set $c_H(\varepsilon) = c_H$ and $c_L(\varepsilon) = 0$
- Bankruptcy has cutoff form:
 - In low state declare bankruptcy for $\varepsilon \in [\underline{\varepsilon}, \varepsilon^*]$, continue otherwise
 - In high state no bankruptcy

Optimal Contract

$$\max p_H(a)c_H - p_L(a)BH(\varepsilon^*) - a$$

(MIC)
$$a \in \arg\max_{a} p_{H}(a)c_{H} - p_{L}(a)BH(\epsilon^{*}) - a$$

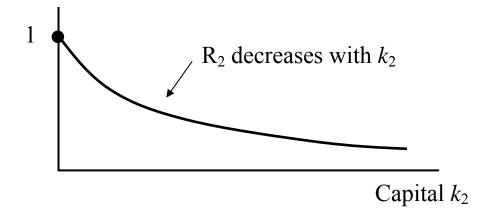
(Budget)
$$p_H c_H + 1 \le p_H A_H + p_L A_L \left[\int_{\varepsilon^*}^{\overline{\varepsilon}} (1+\varepsilon) dH(\varepsilon) + R \int_{\underline{\varepsilon}}^{\varepsilon^*} (1+\varepsilon) dH(\varepsilon) \right]$$

• Equilibrium ex-ante efficient but ex-post inefficient

Recap

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem
 - Incentive to renegotiate to avoid bankruptcy costs

Benchmark Economy: Four Alterations


- Four alterations
 - 1. Infinite repetition of static model
 - Triggers can make renegotiation costly

- 2. Variable scale in corporate technology
 - Investment k_c produces $A_i(1+\varepsilon)g(k_c)$ units of capital goods
 - Allows for inefficient level of k_c

Benchmark Economy: Four Alterations

- 3. Probability α_0 managers lose ability to turn capital goods into consumption goods
 - Gives supply of capital goods to traditional sector even if $\varepsilon^* = \underline{\varepsilon}$

- 4. Replace traditional technology R < 1 with CRS technology $F(k_1,k_2)$
 - Gives endogenous "firesale price" for bankrupt capital

Develop Private Sustainability Constraint

- If manager ever renegotiates, then believe always will
 - Benefit of renegotiation: lower costs today
 - Costs of renegotiation: worse outcomes tomorrow
 - Let U^N = utility when always renegotiate
 - Under U^N have no bankruptcy $\varepsilon^* = \underline{\varepsilon}$, but get low effort

Develop Private Sustainability Constraint

• Private sustainability constraint

$$U(a, k_c, \varepsilon^*) + \frac{\beta}{1 - \beta} U(a, k_c, \varepsilon^*) \ge \widehat{U}(a, k_c, \underline{\varepsilon}) + \frac{\beta}{1 - \beta} U^N$$

- Best one shot deviation
 - Stop all bankruptcy
 - \circ But evaluate change at original "firesale price" R_2

$$\widehat{U} = \alpha_1 [p_H(a)A_H + p_L(a)A_L]g(k_c) + R_2 \widehat{k_2} - a - k_c$$

 $\hat{k_2}$ = only exogenously liquidated capital

Bailout Authority

- Instruments: Lump sum transfers, $T_L(\varepsilon)$, to firms in low state, financed by lump sum taxes on firms in high state
- Chooses transfers/taxes after action a chosen
- Can "bribe" firms to avoid bankruptcy
 - \circ Effectively bailout authority can choose ε^*

No Commitment by Bailout Authority

• Add sustainability to bailouts constraint

$$U(a, k_c, \varepsilon^*) + \frac{\beta}{1 - \beta} U(x) \ge \widehat{U}^G(a, k_c, \underline{\varepsilon}) + \frac{\beta}{1 - \beta} U^N$$

- Best one shot deviation
 - Stop all bankruptcy
 - \circ Evaluate change at new "non-firesale" price \tilde{R}_2

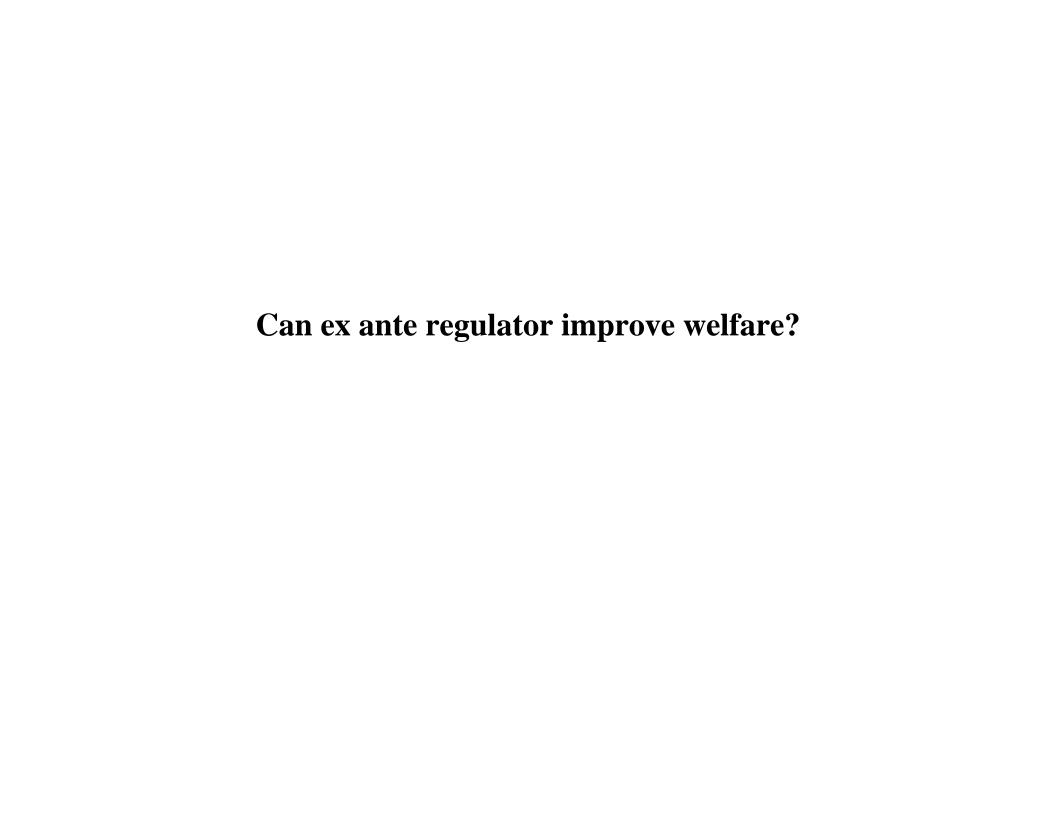
$$\hat{U}^{G} = \alpha_{1} [p_{H}(a)A_{H} + p_{L}(a)A_{L}]g(k_{c}) + \tilde{R}_{2}\hat{k}_{2} - a - k_{c}$$

No Commitment by Bailout Authority

• Proposition: Equilibrium with bailouts worse than private equilibrium

- Key idea: Sustainability with bailouts *tighter* than private sustainability
 - Government temptation

$$\hat{U}^{G} = \alpha_{1} [p_{H}(a)A_{H} + p_{L}(a)A_{L}]g(k_{c}) + \tilde{R}_{2}\hat{k}_{2} - a - k_{c}$$


Private temptation

$$\hat{U} = \alpha_1 [p_H(a)A_H + p_L(a)A_L]g(k_c) + R_2 \hat{k}_2 - a - k_c$$

• Tighter for government since $\tilde{R}_2 > R_2$ so

$$\widehat{U}^G - \widehat{U} = (\widetilde{R}_2 - R_2)\widehat{k}_2 > 0$$

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem
- Gov't faces more severe sustainability constraints than private agents
 - Ability to improve "firesale" prices for bankrupt assets

Can ex ante regulator improve welfare?

Yes

Why: Regulation reduces temptation to bailout

Ex Ante Regulator _____

• Instruments: Lump sum transfers, $T_L(\varepsilon)$, to firms in low state, financed by lump sum taxes on firms in high state, and a tax on k_c

• *Proposition:* Regulator improves welfare relative to equilibrium with bailouts

Best Bailout Equilibrium _

- Maximize manager's utility subject to
 - Manager's incentive constraint
 - Resource constraint
 - $\circ F_1(k_1, k_2) = 1$ and
 - Sustainability constraint

$$U(a,k_c,\varepsilon^*) + \frac{\beta}{1-\beta}U \geq \widehat{U}(a,k_c,\underline{\varepsilon}) + \frac{\beta}{1-\beta}U^N$$

and

• Return in corporate technology = Return in traditional technology

Regulator's Problem is More Relaxed _

- Maximize manager's utility subject to
 - Manager's incentive constraint
 - Resource constraint
 - $\circ F_1(k_1, k_2) = 1$ and
 - Sustainability constraint

$$U(a,k_c,\varepsilon^*) + \frac{\beta}{1-\beta}U \geq \widehat{U}(a,k_c,\underline{\varepsilon}) + \frac{\beta}{1-\beta}U^N$$

Regulator's Problem is More Relaxed ___

- Maximize manager's utility subject to
 - Manager's incentive constraint
 - Resource constraint
 - $\circ F_1(k_1, k_2) = 1$ and
 - Sustainability constraint

$$U(a,k_c,\varepsilon^*) + \frac{\beta}{1-\beta}U \geq \widehat{U}(a,k_c,\underline{\varepsilon}) + \frac{\beta}{1-\beta}U^N$$

- Regulator has higher ε^* , lower k_c than bailout authority
- Intution: ε^* more important than k_c for incentives

Can Have Symmetric Instruments _____

- Add tax on k_c to bailout authority instrument
 - \circ No incentive to alter k_c ex post
 - \circ With tiny tax distortions, strict incentive not to alter k_c
- Key to our results
 - Time inconsistency problem, not difference in instruments

Interpreting equilibrium with debt and equity_

- Face value of debt = $A_L(1+\varepsilon^*)g(k_c)$
- Equity is residual claimant
- In bankruptcy: debt gets liquidation value, equity 0
- Regulatory equilibrium implemented with
 - Tax on returns to corporate technology
 - o cap on debt to value

$$\frac{debt}{value} \le \left(\frac{debt}{value}\right)^r$$

- Optimal contracts often involve ex post inefficiency
 - Implies time inconsistency problem
- Gov't faces more severe sustainability constraint than private agents
 - Ability to improve "firesale" prices for bankrupt assets
- Given government is tempted to bail out ex post
 - Optimal to regulate contracts ex ante to reduce temptation