Involuntary ('Unlucky') Unemployment and the Business Cycle

Lawrence Christiano,
Mathias Trabandt (ECB)
and
Karl Walentin (Riksbank)

Background

 There is a class of models that has received a lot of attention in central banks.

- People have used the models to place structure on discussions about monetary policy.
 - Recent: Curdia-Woodford, Gertler-Kiyotaki.
- In recent years, there has been a push to introduce labor market variables like unemployment.

What We Do:

- We investigate a particular approach to modeling unemployment.
 - Hopenhayn and Nicolini (1997), Shavell and Weiss (1979)
- We explore the implications for monetary DSGE models.
 - Simple NK model without capital.
 - Okun's law, natural rate of unemployment.
 - Standard empirical NK model (e.g., ACEL, CEE, SW)
 - Estimate the model.
 - Does well reproducing response of unemployment and labor force to three identified shocks.

Unemployment

- To be 'unemployed' in US data, must
 - be 'willing and able' to work.
 - recently, made efforts to find a job.
- Our presumption: a person has lower utility when unemployed than when employed.
 - consumption drops typically about 10 percent upon the loss of a job (Gruber, 1997, Chetty and Looney, 2006)
 - Some indicators of happiness (suicide, subjective sense of well being) deteriorate when the unemployment rate rises (Brenner, 1979; Ruhm, 2000; Schimmack et al, 2008)
- Current monetary DSGE models with 'unemployment':
 - Utility jumps when you lose your job.
 - Finding a job requires no effort.
 - US Census Bureau employee dropped into current monetary DSGE models would find zero unemployment.

What we do:

 Explore the simplest possible model of unemployment, which satisfies two key features of unemployment.

To be unemployed:

- Must have made recent efforts to find a job.
 - To find a job, household must make an effort, e, which increases the probability, p(e), of finding a job.
- Unemployed worse off than employed.
 - assume household search effort, e, is not publicly observable.
 - full insurance against household labor market outcomes is not possible.
 - under perfect consumption insurance, no one would make an effort to find a job.

Outline

Insert our model of unemployment into

Simple Clarida-Gali-Gertler (CGG) NK model.

 CEE model: evaluate model's ability to match US macroeconomic data, including unemployment and labor force

CGG Model

Goods Production:

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{1}{\lambda_f}} di \right]^{\lambda_f}, \ 1 \leq \lambda_f < \infty.$$

- Monopolists produce intermediate goods
 - Technology:

$$Y_{i,t} = A_t h_{i,t}$$

– Calvo sticky prices:

$$P_{i,t} = \begin{cases} P_{i,t-1} & \text{with prob. } \xi_p \\ \text{chosen optimally} & \text{with prob. } 1 - \xi_p \end{cases}$$

Enter competitive markets to hire labor.

CGG Model: Monetary Policy

• Taylor rule:

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t$$

- Here:
 - $\hat{\chi}_t$ output gap (percent deviation of output from efficient level)

- Efficient equilibrium:
 - Monopoly power and inflation distortions extinguished.

Households

• This is where the new stuff is......

Typical Household During Period

Draw privately observed, idiosyncratic shock, l, from Uniform, [0,1], that determines utility cost of work:

$$F + \varsigma_t (1 + \sigma_L) l^{\sigma_L}$$
.

t

After observing l , decide whether to join the labor force or stay out.

Household that stays out of labor market does not work and has utility $\log c_{\it t}^{\rm out\ of\ labor\ force}$

t+1

Household that joins labor force tries to find a job by choosing effort, e, and receiving ex ante utility

$$p(e_t) \left[\overbrace{\log(c_t^w) - F - \varsigma_t(1 + \sigma_L)l^{\sigma_L} - \frac{1}{2}e_t^2}^{\text{ex post utility in case of unemployment}} \right] + (1 - p(e_t)) \left[\overbrace{\log(c_t^u) - \frac{1}{2}e_t^2}^{\text{ex post utility in case of unemployment}} \right]$$

$$p(e_t) = \eta + ae_t$$

Household Insurance

- They need it:
 - Idiosyncratic work aversion.
 - Job-finding effort, e, may or may not produce a job.
- Assume households gather into large families, like in Merz and Andolfatto
 - With complete information:
 - Households with low work aversion told to make big effort to find work.
 - All households given same consumption.
 - Not feasible with private information.
 - With private information
 - To give households incentive to look for work, must make them better off in case they find work.

Optimal Insurance

- Relation of family to household: standard principal/agent relationship.
 - family receives wage from working households
 - family observes current period employment status of household.
- For family with given C, h:
 - allocates consumption: c_t^w , c_t^{nw}
 - c_t^w/c_t^{nw} must be big enough to provide incentives.
 - must satisfy family resource constraint:

$$h_t c_t^w + (1 - h_t) c_t^{nw} = C_t.$$

Family Indirect Utility Function

Utility:

$$u(C_t, h_t, \varsigma_t) = \log(C_t) - z(h_t, \varsigma_t)$$

Where

$$z(h_{t},\varsigma_{t}) = \log[h_{t}(e^{F+\varsigma_{t}(1+\sigma_{L})f(h_{t},\varsigma_{t})^{\sigma_{L}}}-1)+1]$$

$$-\frac{a^{2}\varsigma_{t}^{2}(1+\sigma_{L})\sigma_{L}^{2}}{2\sigma_{L}+1}f(h_{t},\varsigma_{t})^{2\sigma_{L}+1}-\eta\varsigma_{t}\sigma_{L}f(h_{t},\varsigma_{t})^{\sigma_{L}+1}.$$

Clarida-Gali-Gertler utility function:

$$u(C_t, h_t, \varsigma_t) = \log(C_t) - \varsigma_t h_t^{1+\sigma_L}$$

Family Problem

$$\max_{\{C_t, h_t, B_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t [\log(C_t) - z(h_t, \varsigma_t)]$$

– Subject to:

$$P_tC_t + B_{t+1} \leq B_tR_{t-1} + W_th_t + Transfers \ and \ profits_t.$$

 Family takes market wage rate as given and tunes incentives so that marginal cost of extra work equals marginal benefit:

$$C_t z_h(h_t, \varsigma_t) = \frac{W_t}{P_t}.$$

Observational Equivalence Result

 Because of the simplicity of the assumptions, the model is observationally equivalent to standard NK model, when represented in terms of output, interest rate, inflation:

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \frac{(1-\beta \xi_{p})(1-\xi_{p})}{\xi_{p}} (1+\sigma_{z}) \hat{x}_{t}$$

$$\hat{x}_{t} = E_{t} \hat{x}_{t+1} - (\hat{R}_{t} - \hat{\pi}_{t+1} - \hat{R}_{t}^{*}).$$

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t,$$

Observational Equivalence Result

z function: disutility of labor for family

'curvature of disutility of labor': $\sigma_z \equiv \frac{\sqrt{z_{hh}h}}{z_h}$ $\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \frac{(1-\beta \xi_{p})(1-\xi_{p})}{\xi_{p}} (1+\sigma_{z}) \hat{x}_{t}$ $\hat{x}_t = E_t \hat{x}_{t+1} - (\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}_t^*).$

$$\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_\pi \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t,$$

Unemployment Gap

 Can express everything in terms of unemployment gap:

$$u_t^g = -\kappa^{okun} \hat{\chi}_t. \qquad \kappa^{okun} = \frac{a^2 \varsigma \sigma_L^2 m^{\sigma_L} (1 - u)}{1 - u + a^2 \varsigma \sigma_L^2 m^{\sigma_L}} > 0.$$

actual rate of unemployment efficient level of unemployment $u_t^g = \underbrace{u_t^g} - \underbrace{u_t^*}$

Non-accelerating rate of inflation level of unemployment, NAIRU

Properties of the Model

• Calibrated model first....

Calibration of the Model

Parameter	Value	Description
β	1.0325	Discount factor
g_A	1.0047	Technology growth
${\xi}_p$	0.75	Price stickiness
λ_f	1.2	Price markup
$ ho_{\it R}$	0.8	Taylor rule: interest smoothing
r_{π}	1.5	Taylor rule: inflation
r_y	0.2	Taylor rule: output gap
η_g	0.2	Government consumption share on GDP

To parameterize preference and search function, set:

labor force participation rate: m=0.67 employment rate: h=0.63 unemployment rate: u=0.056

Properties

Replacement ratio

$$\frac{c^{nw}}{c^w} = 0.18$$

- Very low! In model with habit persistence in preferences, replacement ratio = 0.80.
- Cost of business cycles (in % of consumption)...

Limited Information Model Full Information Model

Technology Shock Only

0.52% 0.57%

Government Spending Shock Only

0.11% 0.13%

Monetary Policy Shock Only

0.07

Put this all into a medium-sized DSGE Model

- Habit persistence in preferences
- Variable capital utilization.
- Investment adjustment costs.
- Wage setting frictions as in Erceg-Henderson-Levin.
- Parameterization:
 - prices reoptimized on average every 2.7 quarters
 - wages reoptimized on average every 4 quarters.

Finding

 Model with unemployment fit to VAR-based impulse responses turns in same performance as CEE model without unemployment.

 When we add unemployment and labor force, model matches estimated responses in labor force and unemployment.

Figure 1: Dynamic Responses of Non-Labor Market Variables to a Monetary Policy Shock Real GDP Inflation (GDP deflator) Federal Funds Rate 0.4 0.2 0 0.2 0.1 -0.2 -0.4-0.1 -0.6 -0.2 0 5 5 10 10 5 10 **Real Consumption** Real Investment Capacity Utilization 0.2 8.0 0.6 0.5 0.1 0.4 0.2 -0.5 -0.2-0.1 10 10 10 0 5 0 5 0 5 Rel. Price of Investment Hours Worked Per Capita Real Wage

0.05

-0.05

-0.1

-0.15

0

5

10

0.3

0.2

0.1

-0.1

0

5

10

- VAR Mean —— Standard Model —— Involuntary Unemployment Model

0.2

0.15

0.1

0.05

0

5

10

VAR 95%

Figure 2: Dynamic Responses of Non-Labor Market Variables to a Neutral Technology Shock Real GDP Inflation (GDP deflator) Federal Funds Rate 0 0.1 0.6 -0.2 0 0.4 -0.4-0.10.2 -0.6 -0.2 0 -0.8 -0.3 0 5 10 5 10 0 5 10 Capacity Utilization **Real Consumption** Real Investment 0.5 1.5 0.6 0.4 0.5 -0.5 0.2 -0.5 10 0 5 10 10 5 5 0 0 Rel. Price of Investment Hours Worked Per Capita Real Wage 0.4 0.4

0.3

0.2

0.1

10

VAR 95%

5

-0.1

-0.2

-0.3

0

0.3

0.2

0.1

10

VAR Mean —— Standard Model —— Involuntary Unemployment Model

5

0

5

10

Unemployment Rate Labor Force 0.1 Monetary Shock 0.05 -0.1 -0.2**Unemployment Rate** Labor Force Neutral Tech. Shock 0.15 0.1 0.1 0.05 -0.1 -0.05 **Unemployment Rate** Labor Force 0.15 Invest. Tech. Shock 0.1 0.05 -0.1 -0.05 -0.2 VAR 95% —— VAR Mean —— Involuntary Unemployment Model

Figure 4: Dynamic Responses of Labor Market Variables to Three Shocks

Micro Implications of Model

- Model: consumption premium higher in booms.
 - Have time series evidence on cross-household variance, V, of log consumption.
 - Heathcote, Perri and Violante (2010) show V is procyclical in three of past 5 recessions.

$$V_t = (1 - h_t)h_t \left(\log\left(\frac{c_t^w}{c_t^{nw}}\right)\right)^2.$$

- Model: search intensity lower in recessions
 - Consistent with evidence on 'discouraged workers'

Conclusion

 Integrated a model of 'involuntary unemployment' into monetary DSGE model.

• Results:

- Obtained a theory of the Okun's gap, NAIRU
- Able to match responses of unemployment and labor force to macro shocks.
- Raises several empirical questions.
- Why introduce unemployment?
 - A policy variable of direct interest.
 - Can differentiate between labor markup shocks and labor supply shocks.
 - By bringing in more data, get a more precise read on output gap and 'natural interest rate' (Basistha and Startz (2004))
 - By bringing in more data, get a better read on unobserved shocks and may improve forecasts.