Questions

Q1. What does the pricing kernel look like?

- **Dispersion**: entropy
- **Dynamics**: n-period entropy and horizon dependence
- **Disasters**: entropy and high-order cumulants
 Illustration: the Vasicek model

Q2. How do these pricing kernels compare?

- Power utility
- Recursive preferences
- Habits
- Jumps and disasters
Questions

Q1. What does the pricing kernel look like?
- **Dispersion**: entropy “big”
- **Dynamics**: n–period entropy and horizon dependence
- **Disasters**: entropy and high-order cumulants
- Illustration: the Vasicek model

Q2. How do these pricing kernels compare?
- Power utility
- Recursive preferences
- Habits
- Jumps and disasters
Questions

Q1. What does the pricing kernel look like?

- **Dispersion**: entropy “big”
- **Dynamics**: n–period entropy and horizon dependence “small”
- **Disasters**: entropy and high-order cumulants

Illustration: the Vasicek model

Q2. How do these pricing kernels compare?

- Power utility
- Recursive preferences
- Habits
- Jumps and disasters
Q1. What does the pricing kernel look like?

- **Dispersion**: entropy “big”
- **Dynamics**: \(n\)-period entropy and horizon dependence “small”
- **Disasters**: entropy and high-order cumulants help with both
- Illustration: the Vasicek model

Q2. How do these pricing kernels compare?

- Power utility
- Recursive preferences
- Habits
- Jumps and disasters
Facts about excess returns (% per month)

<table>
<thead>
<tr>
<th>Asset</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness</th>
<th>Excess Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500</td>
<td>0.40</td>
<td>5.56</td>
<td>-0.40</td>
<td>7.90</td>
</tr>
<tr>
<td>Fama-French (small, low)</td>
<td>-0.30</td>
<td>11.40</td>
<td>0.28</td>
<td>9.40</td>
</tr>
<tr>
<td>Fama-French (small, high)</td>
<td>0.90</td>
<td>8.94</td>
<td>1.00</td>
<td>12.80</td>
</tr>
<tr>
<td>Pound Sterling</td>
<td>0.35</td>
<td>3.16</td>
<td>-0.50</td>
<td>1.50</td>
</tr>
<tr>
<td>5 year bond</td>
<td>0.15</td>
<td>1.90</td>
<td>0.10</td>
<td>4.87</td>
</tr>
</tbody>
</table>

- Also ... the nominal 60-month term spread is about 0.1%/month
Facts: summary

- Facts
 - “Big” excess returns, 1% \gg equity premium
 - “Small” term spreads, ±0.1%
 - Skewness and kurtosis evident

- Each tells us something about the pricing kernel
Facts: summary

- Facts
 - “Big” excess returns, 1% ≫ equity premium (dispersion)
 - “Small” term spreads, ±0.1%
 - Skewness and kurtosis evident

- Each tells us something about the pricing kernel
Facts: summary

- Facts
 - “Big” excess returns, 1% ≫ equity premium (dispersion)
 - “Small” term spreads, ±0.1% (dynamics)
 - Skewness and kurtosis evident

- Each tells us something about the pricing kernel
Facts: summary

- Facts
 - “Big” excess returns, 1% ≫ equity premium (dispersion)
 - “Small” term spreads, ±0.1% (dynamics)
 - Skewness and kurtosis evident (disasters)

- Each tells us something about the pricing kernel
Entropy
Entropy

- Conditional entropy

\[L_t(m_{t+1}) = \log E_t m_{t+1} - E_t \log m_{t+1} \]
Entropy

- Conditional entropy

\[L_t(m_{t+1}) = \log E_t m_{t+1} - E_t \log m_{t+1} \]

- Why “entropy”?

\[L_t(m_{t+1}) = -E_t \log \left(\frac{q_{t+1}}{p_{t+1}} \right) \]
Entropy

- Conditional entropy

\[L_t(m_{t+1}) = \log E_t m_{t+1} - E_t \log m_{t+1} \]

- Why “entropy”?

\[L_t(m_{t+1}) = -E_t \log (q_{t+1}/p_{t+1}) \]

- Applications

 - Entropy, \(EL_t(m_{t+1}) \)
 - Horizon dependence

\[H(n) = \frac{n^{-1} EL_t(m_{t,t+n}) - EL_t(m_{t+1})}{\text{avg over } n \text{ periods}} \] one period
Properties of entropy

- Dispersion: entropy bound

\[EL_t(m_{t+1}) \geq E(\log r_{t+1} - \log r_t^1) \]
Properties of entropy

- Dispersion: entropy bound

\[EL_t(m_{t+1}) \geq E(\log r_{t+1} - \log r_t) \]

- Dynamics: horizon dependence

\[H(n) = -E(y_t^n - y_t^1) \]
Properties of entropy

- Dispersion: entropy bound

\[EL_t(m_{t+1}) \geq E(\log r_{t+1} - \log r_t^1) \]

- Dynamics: horizon dependence

\[H(n) = -E(y^n_t - y^1_t) \]

- Disasters: high-order cumulants

\[L_t(m_{t+1}) = \kappa_2(\log m_{t+1})/2! + \kappa_3(\log m_{t+1})/3! + \kappa_4(\log m_{t+1})/4! + \cdots \]

\[\text{normal term} + \text{high-order cumulants} \]
What the pricing kernel looks like

- Dispersion
 - Entropy $\geq 0.01 = 1\%$ a month

- Dynamics
 - Horizon dependence $\leq 0.001 = 0.1\%$ a month

- Disasters
 - Something besides the normal distribution
Vasicek model: an example

- Pricing kernel

\[
\log m_{t+1} = \log m + a(B)w_{t+1} \\
= \log m + a_0 w_{t+1} + a_1 w_t + a_2 w_{t-1} + \cdots
\]

\(w \sim \text{NID}(0, 1)\)

- Interest rate

\[
y^1_t = -\log E_t(e^{\log m_{t+1}}) = -\log m - a_0^2/2 - a_1 w_t - a_2 w_{t-1} - \cdots
\]

- ARMA(1,1) for \(\log m_t\) is AR(1) [Vasicek] for the interest rate

\[
a_{j+1} = \phi a_j, \quad j \geq 1
\]
Vasicek model: properties

- Partial sums
 \[A_n = a_0 + a_1 + a_2 + \cdots + a_n \]

- Entropy
 \[EL_t(m_{t+1}) = a_0^2/2 = A_0^2/2 \Rightarrow a_0 \text{ “big”} \]

- Horizon dependence
 \[H(n) = n^{-1} \sum_{j=1}^{n} (A_{j-1}^2 - A_0^2)/2 \Rightarrow a_j \text{ “small”} \]
Vasicek model: moving average coefficients
Vasicek model: horizon dependence

Graph:
- **Y-axis:** Entropy and Horizon Dependence
- **X-axis:** Time Horizon in Months

- **Lines:**
 - Entropy per period
 - Negative yield spread
 - Positive yield spread
 - Entropy lower bound
 - Horizon dependence upper bound
 - Horizon dependence lower bound

Notes:
- The graph illustrates the relationship between entropy and horizon dependence over time, with distinct periods and yield spreads highlighted.
Representative-agent models

- Additive power utility
- Recursive preferences
 - Bansal-Yaron with persistent consumption growth
 - ... and stochastic volatility
- Habits
 - Ratio habits
 - Difference habits
 - Campbell-Cochrane
- Jumps and disasters
Recursive preferences

Preferences

\[U_t = \left[(1 - \beta)c_t^\rho + \beta \mu_t(U_{t+1})^\rho \right]^{1/\rho} \]
\[\mu_t(U_{t+1}) = \left(E_t U_{t+1}^\alpha \right)^{1/\alpha} \]
\[\alpha, \rho \leq 1 \]

Interpretation

\[EIS = 1/(1 - \rho) \]
\[CRRA = 1 - \alpha \]
\[\alpha = \rho \Rightarrow \text{additive power utility} \]
Consumption and pricing kernel

- Consumption growth

\[\log g_t = g + \gamma(B) \nu^{1/2} w_t \]
\[\{w_t\} \sim \text{NID}(0, 1) \]
Consumption and pricing kernel

- Consumption growth

\[\log g_t = g + \gamma(B)v^{1/2}w_t \]
\[\{w_t\} \sim \text{NID}(0, 1) \]

- Pricing kernel

\[\log m_{t+1} = \text{constants} \]
\[+ \left[(\rho - 1)\gamma_0 + (\alpha - \rho)\gamma(b_1) \right] v^{1/2}w_{t+1} \]
\[+ (\rho - 1)\gamma_1 v^{1/2}w_t + (\rho - 1)\gamma_2 v^{1/2}w_{t-1} + \cdots \]
Consumption and pricing kernel

Consumption growth

\[\log g_t = g + \gamma(B)v^{1/2}w_t \]
\[\{w_t\} \sim \text{NID}(0, 1) \]

Pricing kernel

\[\log m_{t+1} = \text{constants} \]
\[+ \left[(\rho - 1)\gamma_0 + (\alpha - \rho)\gamma(b_1) \right]v^{1/2}w_{t+1} \]
\[+ (\rho - 1)\gamma_1v^{1/2}w_t + (\rho - 1)\gamma_2v^{1/2}w_{t-1} + \cdots \]

Critical term: \(\gamma(b_1) = \gamma_0 + b_1\gamma_1 + b_1^2\gamma_2 + \cdots \)
Power and recursive preferences: moving average coefficients

![Graph showing moving average coefficients for different orders, with labels for Power Utility and Bansal–Yaron models.](image-url)
Recursive preferences: entropy and horizon dependence
Model summary

[Graph showing entropy and horizon dependence for different variables (V, PU, BY1, BY2, BY3, RH, DH, CC, PJR).]

- Entropy values range from approximately 0.00 to 0.05.
- Horizon dependence values range from approximately -6 to 6.

Legend:
- Entropy lower bound
- Horizon dependence upper bound
- Horizon dependence lower bound
Answers to questions

Q1. What does the pricing kernel look like?
 - Substantial dispersion: entropy $\geq 1\%$ monthly
 - Limited horizon dependence: $\leq 0.1\%$ monthly
 - Probably not normal
 - Useful diagnostics for any model

Q2. How do representative-agent models compare?
 - It is easy to get lots of entropy
 - But it often generates too much horizon dependence
 - All this conditional on parameters

Q3. What’s next?
 - Heterogeneous agents?
 - Business cycle models?
Related work (some of it)

- **Bounds**
 - Alvarez-Jermann, Bansal-Lehmann, Hansen-Jagannathan

- **Recursive preferences**
 - Preferences: Epstein-Zin, Kreps-Porteus, Weil
 - Asset pricing: Bansal-Yaron, Campbell, Hansen-Heaton-Li

- **Habits**
 - Abel, Campbell-Cochrane, Chan-Kogan, Constantinides, Heaton, Sundaresan

- **Jumps and disasters**
Derivation of the Entropy Bound

- **Fundamental Theorem of Asset Pricing**
 \[E_t(m_{t+1} r_{t+1}) = 1, \]
 \[E_t \log m_{t+1} + E_t \log r_{t+1} \leq \log(1) = 0, \text{ with equality iff } m_{t+1} r_{t+1} = 1 \]

- **Risk-free rate**
 \[\log r^1_{t+1} = - \log E_t(m_{t+1}) = -L_t(m_{t+1}) - E_t \log m_{t+1} \]

- **Subtract from above:**
 \[L_t(m_{t+1}) \geq E_t(\log r_{t+1} - \log r^1_{t+1}) \]

- **Unconditional entropy:**
 \[L(m_{t+1}) = EL_t(m_{t+1}) + L(E_t(m_{t+1})) \]

- **Therefore,**
 \[L(m_{t+1}) \geq E(\log r_{t+1} - \log r^1_{t+1}) + L(E_t(m_{t+1})) \geq E(\log r_{t+1} - \log r^1_{t+1}) \]

the bound is tighter
Entropy and HJ bounds (App A.2)

- **Entropy: High-return asset**
 \[\log r_{t+1} = - \log m_{t+1} \]

- **Max excess return over time (iid)**
 \[L(m_t, t+n) = n \left[k^1(1) - \kappa_1 \right] \]

- **Excess log-return (normal)**
 \[\log r_{t+1} \sim \mathcal{N} \left(\log r^1_{t+1} + \kappa_1 t, \kappa_2 t \right) \]
 \[E_t(\log r_{t+1} - \log r^1_{t+1}) = \kappa_1 t \]

- **HJ: High-return asset**
 \[r_{t+1} = \alpha_t - \frac{m_{t+1}}{\text{Var}_t(m_{t+1})^{1/2}} \]

- **Max SR over time (iid)**
 \[\frac{\text{Var}(m_t, t+n)}{E(m_t, t+n)^2} = e^{n[k^1(2) - 2k^1(1)]} - 1 \]

- **SR (normal)**
 \[SR_t = \frac{e^{\kappa_1 t + \kappa_2 t/2} - 1}{e^{\kappa_1 t + \kappa_2 t/2} \left(e^{\kappa_2 t} - 1 \right)^{1/2}} \]