Liquidity and the Threat of Fraudulent Assets

Yiting Li, Guillaume Rocheteau, Pierre-Olivier Weill

NTU, UCI, UCLA, NBER, CEPR
fraudulent behavior in asset markets

in this paper:

with sufficient costly effort...

...individuals can sell, or borrow against, a “bad” asset

- Examples:
 - clipping of coins in ancient Rome and Medieval Europe
 - counterfeiting of banknotes during 1800-1850
 - identity theft
 - securitizing bad mortgages
 - cherry picking bad collateral to secure credit transactions
what we do

• Asset pricing with lack of recognizability due to the threat of fraud
 many assets differing in vulnerability to fraud

• Step 1: solve for terms of bilateral trades
 assets are used as collateral or means of payment
 different vulnerability to fraud ⇒ different collateralizability

• Step 2: solve for asset prices
 assets with identical cash flows differ in prices
 assets differ in their sensitivity to policy intervention
 open market operations resembling Quantitative Easing
 regulatory measures resembling Dodd-Frank
 assets differ in their sensitivity to shocks
 generate “flight to liquidity”
related literature

• Macro models in which assets have limited re-salability

• Private information and money
 Williamson Wright (1994), Nosal Wallace (2007) among many others

• Asset pricing when moral hazard limits pledgeability
 Holmstrom Tirole (2011) among many others

• Asset pricing with adverse selection
 Rocheteau (2009), Guerrieri Shimer (2011) among many others
the economic environment
a model with monetary frictions

- Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$:

 measure one of buyers, measure one of sellers
a model with monetary frictions

- Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$: measure one of buyers, measure one of sellers

- $t = 0$: buyers and sellers trade assets in a competitive market

- $t = 1$: buyers and sellers trade goods in a decentralized market

A buyer is matched with a seller with probability σ the buyer likes goods that the seller can produce but lacks of commitment \Rightarrow no unsecured credit \Rightarrow assets become useful as means of payment or collateral

- End of $t = 1$: assets pay off their terminal value
a model with monetary frictions

• Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$: measure one of buyers, measure one of sellers

• $t = 0$: buyers and sellers trade assets in a competitive market

• $t = 1$: buyers and sellers trade goods in a decentralized market
 a buyer is matched with a seller with probability σ
 the buyer likes goods that the seller can produce
 but lack of commitment
 \Rightarrow no unsecured credit
 \Rightarrow assets become useful as means of payment or collateral
a model with monetary frictions

• Two periods, continuum of risk neutral agents, discount $\beta \in (0, 1)$: measure one of buyers, measure one of sellers

• $t = 0$: buyers and sellers trade assets in a competitive market

• $t = 1$: buyers and sellers trade goods in a decentralized market

 a buyer is matched with a seller with probability σ

 the buyer likes goods that the seller can produce

 but lack of commitment

 \Rightarrow no unsecured credit

 \Rightarrow assets become useful as means of payment or collateral

• End of $t = 1$: assets pay off their terminal value
assets and the threat of fraud

Assets come in (arbitrary) finitely many types \(s \in S \)

- terminal value normalized to 1
assets and the threat of fraud

Assets come in (arbitrary) finitely many types $s \in S$

- terminal value normalized to 1
- supply of $A(s)$ shares
- type-specific vulnerability to fraud
Assets and the threat of fraud

Assets come in (arbitrary) finitely many types $s \in S$

- terminal value normalized to 1
- supply of $A(s)$ shares
- type-specific vulnerability to fraud

At $t = 0$ at fixed cost $k(s)$, can create type-s fraudulent assets

- have zero terminal value zero
- are undistinguishable from genuine ones
- can only be used in decentralized trades

High cost $k(s) \implies$ low vulnerability to fraud
Some interpretations

In the paper, we provide explicit models supporting these interpretations:

- Counterfeiting of money or bond

- Creating and cherry picking bad collateral

 Mortgage fraud: houses used as collateral in consumer loans
 Assets used as collateral for credit derivative contracts

- Securitization fraud

 Bad mortgages bundled inside mortgage-based securities
 Buyers are securitizers, sellers are final investors
mortgage fraud
bilateral trade under the threat of fraud
the bargaining game

For now take asset prices $\phi(s) \geq \beta$ as given

- $t = 0$: buyer chooses a portfolio of assets
 - genuine assets of type s at price $\phi(s)$
 - fraudulent assets of type s at fixed cost $k(s)$

- $t = 1$: buyer matches with seller and makes an offer specifying that
 - the seller produces q units of goods for the buyer
 - the buyer transfers a portfolio $\{d(s)\}$ of assets to the seller

- The seller accepts or rejects. If accepts:
 - the buyer enjoys the utility $u(q)$
 - the seller suffers a production cost equal to q
equilibrium concept and refinement

- Perfect Bayesian equilibrium
 sellers’ beliefs about buyer’s portfolio are not pinned down
 ... lots of equilibria, some of them arguably unreasonable

- Refinement: Inn and Wright’s (2011) “reverse order game”
 the buyer post an offer \((q, \{d(s)\})\) at \(t = 0\)
 then the buyer chooses:
 how much genuine and fraudulent assets to bring
 subject to offer \(\{d(s)\}\) being feasible

- Note: there is a proper subgame after any offer \((q, \{d(s)\})\)
 the Nash Equilibrium of the subgame pins down beliefs
equilibrium asset demands and offers

After an equilibrium offer:

- the buyer brings genuine assets with probability one
- the seller accepts the offer with probability one
equilibrium asset demands and offers

After an equilibrium offer:

- the buyer brings genuine assets with probability one
- the seller accepts the offer with probability one

Equilibrium asset demands and offers maximize buyer’s utility subject to

- seller’s individual rationality, offer feasibility
- buyer’s no-fraud IC constraint

\[
\left[\phi(s) - \beta(1 - \sigma) \right] d(s) \leq k(s)
\]

- net cost of offering \(d(s)\) genuine assets
- cost of fraud

- asset specific
- limits resalability
- depends negatively on price
asset prices and liquidity
asset prices at $t = 0$

![Graph showing asset price vs. $k(s)/A(s)$](image)

- $k(s)/A(s) =$ cost of fraud per share of asset
asset prices at $t = 0$

- **Illiquid**
- **Partially liquid**
- **Liquid**

\[k(s)/A(s) = \text{cost of fraud per share of asset} \]
asset prices at $t = 0$

- $k(s)/A(s) = \text{cost of fraud per share of asset}$
- $\xi = \text{marginal value of transaction services} = \beta \sigma (u'(q) - 1)$
asset prices at $t = 0$

- $k(s) / A(s) =$ cost of fraud per share of asset
- $\xi =$ marginal value of transaction services $= \beta \sigma (u'(q) - 1)$
asset prices at $t = 0$

- $k(s)/A(s) =$ cost of fraud per share of asset
- $\xi =$ marginal value of transaction services $= \beta \sigma (u'(q) - 1)$
asset prices at \(t = 0 \)

\[
\beta \xi + \frac{k(s)}{A(s)} = \text{cost of fraud per share of asset}
\]

\[
\xi = \text{marginal value of transaction services} = \beta \sigma (u'(q) - 1)
\]
output and liquidity at $t = 1$

output = aggregate liquidity, $L \equiv \sum_{s \in S} \theta(s)A(s)$

as long as L small enough
output and liquidity at $t = 1$

output = aggregate liquidity, $L \equiv \sum_{s \in S} \theta(s)A(s)$

as long as L small enough
output and liquidity at $t = 1$

output = aggregate liquidity, $L \equiv \sum_{s \in S} \theta(s)A(s)$

as long as L small enough

- Liquid assets: $\theta(s) = 1$
 - IC constraint doesn't bind when buyers hold and spend $A(s)$
output and liquidity at $t = 1$

\[\text{output} = \text{aggregate liquidity}, \quad L \equiv \sum_{s \in S} \theta(s)A(s) \]

as long as L small enough

- Liquid assets: $\theta(s) = 1$

- Partially liquid assets: $\theta(s) = 1$

 IC constraint binds when buyers hold and spend $A(s)$
output and liquidity at $t = 1$

output = aggregate liquidity, $L \equiv \sum_{s \in S} \theta(s)A(s)$

as long as L small enough

- Liquid assets: $\theta(s) = 1$

- Partially liquid assets: $\theta(s) = 1$

- Illiquid assets: $\theta(s) < 1$

 IC constraint binds

 buyers hold $A(s)$ but find it optimal to spend less
partially liquid assets

- Have the same $\theta(s)$ as liquid assets!
- Yet, they have a lower price

partially liquid asset prices $< \text{marginal social value of their liquidity services}$

Why?
partially liquid assets

- Have the same $\theta(s)$ as liquid assets!

- Yet, they have a lower price

partially liquid asset prices $<$ marginal social value of their liquidity services

Why?

- Because: pecuniary externality running through the IC constraint

 a high price reduces asset demand in two ways
 through the budget constraint (as usual)
 through the IC constraint, b/c raise incentive to commit fraud
two applications

(more in the paper)
budget balanced open market operations

e.g., selling Treasuries to purchase MBS
budget balanced open market operations

e.g., selling Treasuries to purchase MBS

- Using liquid assets to purchase **partially liquid** assets

 liquid assets have higher prices

 ⇒ one share of liquid asset ...

 ... buys more than one share of partially liquid assets
budget balanced open market operations

e.g., selling Treasuries to purchase MBS

- Using liquid assets to purchase partially liquid assets

 liquid assets have higher prices

 ⇒ one share of liquid asset ...

 ... buys more than one share of partially liquid assets

but liquid assets and partially liquid assets have the same $\theta(s)$

⇒ L, q, interest rates, and welfare go down
budget balanced open market operations

e.g., selling Treasuries to purchase MBS

- Using liquid assets to purchase **partially liquid** assets

 liquid assets have higher prices

 ⇒ one share of liquid asset ...

 ... buys more than one share of partially liquid assets

 but liquid assets and partially liquid assets have the same $\theta(s)$

 ⇒ $L, q, \text{interest rates, and welfare go down}$

- Using liquid assets to purchase **illiquid** assets

 difference in $\theta(s)$ large enough

 $L, q, \text{interest rates, and welfare go up}$
a flight to liquidity
concentration of demand towards liquid assets, widening of yield spreads

- Increase in σ, the probability of trade in the $t = 1$ market

 interpretation: collateral is more needed
a flight to liquidity

concentration of demand towards liquid assets, widening of yield spreads

- Increase in σ, the probability of trade in the $t = 1$ market

 interpretation: collateral is more needed

- Two effects going in opposite directions

 liquidity demand increases:

 fraud incentives increase:
a flight to liquidity

concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ, the probability of trade in the $t = 1$ market

 interpretation: collateral is more needed

• Two effects going in opposite directions

 liquidity demand increases: dominates for liquid assets, price increase

 fraud incentives increase:
a flight to liquidity
concentration of demand towards liquid assets, widening of yield spreads

• Increase in σ, the probability of trade in the $t = 1$ market

 interpretation: collateral is more needed

• Two effects going in opposite directions

 liquidity demand increases: dominates for liquid assets,
 \hspace{1cm} \text{price increase}

 fraud incentives increase: dominates for partially liquid assets
 \hspace{1cm} \text{price decrease}
 \hspace{1cm} \text{so no-fraud IC constraint binds}
a flight to liquidity
concentration of demand towards liquid assets, widening of yield spreads

- Increase in σ, the probability of trade in the $t = 1$ market
 interpretation: collateral is more needed

- Two effects going in opposite directions
 - liquidity demand increases: dominates for liquid assets, price increase
 - fraud incentives increase: dominates for partially liquid assets, price decrease so no-fraud IC constraint binds

- The set of liquid assets shrinks
 The set of partially liquid and illiquid assets expands
conclusion

- A fraud-based model of liquidity
- An explanation for price and liquidity differences
- Applications
 - open-market operations
 - flight to quality
 - regulatory measures (in the paper)
 - time varying liquidity (in the paper)