A More Timely House Price Index*

Elliot Anenberg Steven Laufer
Federal Reserve Board Federal Reserve Board
May 8, 2014

Abstract

We construct a new “list-price index” that uses the repeat-sales approach to measure house prices but for recent months uses listings data instead of transactions data. Because listings data describe the current offering price and are available essentially in real time, our index is more timely than existing house price indices in two ways. First, our index describes house values at the contract date when the price is determined rather than the closing date when the property is transferred. Because the list-price index can be more closely associated with current economic conditions, we are able to provide new insights into the impact on house prices from economic shocks such as the large swings in mortgage rates that occurred during 2013. Second, our index accurately reveals trends in house prices several months before existing sales price indices like Case-Shiller become available. In a sample of three large MSAs over the years 2008-2012, our index (i) accurately forecasts the Case-Shiller index several months in advance, (ii) outperforms forecasting models that do not use listings data, and (iii) outperforms the market’s expectation as inferred from prices on Case-Shiller future contracts.

*elliot.anenberg@frb.gov. steven.m.laufer@frb.gov. Both authors are members of the staff of the Board of Governors of the Federal Reserve System, Washington DC. We thank participants at the 2013 Annual Meeting of the Urban Economics Association, our Board colleagues, Pat Bayer, Moshe Buchinsky, Ingrid Ellen, Ed Kung, and Karen Pence for their helpful comments. All remaining errors are our own. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors.
1 Introduction

Changes in house prices have important consequences for the real economy as they affect both households’ wealth and their ability to borrow. However, the measurement of house prices differs from the measurement of the prices of other assets, such as stocks and bonds, in two important ways. First, they differ in the date to which the transaction price is attached. For financial assets, prices describe the value of the assets at the “trade date,” the date on which the buyer and seller establish a price and enter into a contract, rather than the “settlement date” when the legal transfer of the asset occurs. In financial markets, associating prices with the time of trade allows analysts to observe the reaction of the markets to macro-economic shocks by measuring changes in asset price from one day to the next or even within a day.\(^1\)

In contrast, for housing transactions, prices are typically associated with the settlement (or “closing”) date rather than the trade (or “contract”) date. Studying the effect of shocks to house prices is made more difficult because it is not possible to tell from the recorded closing date whether a particular transaction price was negotiated before or after the shock.

Second, housing differs from stocks and bonds in how quickly price measures are available. While prices in financial markets are available almost instantaneously, house price indices are reported with lags of several months. This delay is a significant information friction with measurable effects on important economic variables. We show, for example, that a release of the Case-Shiller house price index has an immediate effect on the stock prices of home building companies, despite the fact that this release contains information about housing market conditions from several months earlier.\(^2\) If the stock market is not able to overcome the reporting delays associated with house prices, it seems likely that individual homeowners, policy makers, lenders, etc. are as well, suggesting that this information friction may have much broader effects on financial markets and real economic activity.

This delay in house price reporting emerges because once a buyer and seller have found

\(^1\)In the following paragraph, we ourselves use such an event study to motivate this very paper.

\(^2\)The Case-Shiller index, developed by Bailey et al. [1963] and modified by Case and Shiller [1987] and Case and Shiller [1989], is the most widely followed measure of U.S. house price trends. The index is calculated using repeated transactions of the same house so as not to be distorted by changes in the mix of homes sold over time.
each other and agreed on a sale price, there is little incentive for either party to publicize the
negotiated price or other details of the transaction. Even once the sale price is disclosed (by
law) at the closing, which is typically a couple months following the sale agreement, there
is another delay of a couple additional months before the public record becomes available.\footnote{For example, the Case-Shiller house price index summarizing sales prices that close in month t is not released until the end of month $t+2$.}

Further, while local jurisdictions require that these documents contain the closing date, the
contract date is not recorded. In contrast, before a contract is signed, the seller has a strong
incentive to broadcast the current offering price, both as an advertisement that the house
is for sale as well as a signal to potential buyers of the likely price at which the house can
be purchased.\footnote{See Chen and Rosenthal [1996] for a discussion of the role of listing prices as a commitment device for sellers.} Thus, information on listing prices is disseminated on internet platforms
such as Multiple Listing Services (MLS) in essentially real time. On such forums, when a
sale agreement is reached, the listing is removed immediately to indicate to potential buyers
that the property is no longer available. By using information on the list prices of homes
that are delisted, we can potentially learn about the level of sale prices well in advance of
what is currently possible. By observing the date on which they are delisted, we can place
the transaction into the context of the economic conditions that prevailed at the time those
prices were actually determined.

In this paper, we develop a new house price index that exploits the informational content
of listings data to overcome these difficulties in the measurement of house prices. We con-
struct our house price measure aiming to reproduce the methodology of repeat-sales house
price indices such as the Case-Shiller. A key aspect of our methodology is that we associate
each delisting with the most recent prior sale of that property. This creates a pair of observ-
ations analogous to a pair of repeat sales in the construction of the Case-Shiller index and
other conventional repeat-sales indices. This is important because it allows us to provide a
more timely index of house price trends without sacrificing the most attractive feature of
the repeat-sales index: its ability to control for changes in the mix of homes sold over time
by partialing out a house-specific fixed effect from each price. The differences between our
“list-price index” and a standard repeat sales index are that (i) the price of second sale in
each pair is not an observed transaction price but rather an estimate based on the final list price observed before delisting and (ii) the price of that second sale is associated with the delisting date rather than the eventual closing date.\(^5\)

Our approach is complicated by the facts that the sale-to-list price ratio (i.e. the ratio of the actual sale price to the price at which the seller had listed the house) varies, both in the cross section and across time, and that many delistings do not ultimately result in transactions. However, a simple model of the home-selling problem shows how some of the variation in sale-to-list price ratios and the propensity to transact can be explained by other observable information on seller behavior, such as the time on market (TOM) and the history of list price changes. We show that the model’s predictions are consistent with the data and we use this additional information to adjust the final list price up or down, and to weight delistings according to their predicted probabilities of becoming sales. These adjustments turn out to be quite helpful for performance, as 77% of the time series variation in the aggregate list sale-to-list price ratio and 71% of the time series variation in the share of delistings that transact is explained by observable information in our listings data.

Our list-price index has several advantages relative to repeat sales index. First, because the list-price index describes house values at the time that prices are negotiated, changes in the index better reflect contemporaneous changes in macroeconomic conditions. For example, when mortgage interest rates began to climb sharply in May 2013, our list-price index for Los Angeles shows a marked slow-down in house price growth. We estimate that house price growth slowed from an annualized rate of 65% down to a rate of essentially zero. When interest rates fell following the September 2013 FOMC meeting, house prices began to grow again and rose at an annualized rate of 16% through the end of the year. In contrast, the Case-Shiller index for Los Angeles shows that house prices increased each month at a steady rate from January through September before slowing down in the final months of the year. These two results are not inconsistent, but rather reflect the consequences of the

\(^5\)Like the Case-Shiller index, our index can also be constructed to allow for both heteroskedastic errors (i.e. homes with a longer interval between sales should be downweighted because the likelihood of unobserved changes to house quality are higher) and value weighting (that more valuable homes comprise a larger share of a real-estate portfolio, and thus their appreciation/depreciation rates should be given more weight).
two alternative timing conventions for measuring prices. In this paper, we argue that the
timing of our list-price index is better suited for measuring the effects of macroeconomic
developments on house prices.

Second, because our list-price index reveals house prices sooner than indices that use
only transaction prices, we should be able to use our index to forecast more standard house
price measures. We test this hypothesis using micro data from three large, diverse U.S.
metropolitan areas over the 2008-2012 time period. During this sample period, our index
(i) accurately forecasts the Case-Shiller index several months in advance; (ii) outperforms
forecasting models that do not use listings data; and (iii) for the one MSA in which data on
futures contracts are available, outperforms the market’s expectation as inferred from prices
on Case-Shiller futures contracts. We find that correcting for variation in sale-to-list price
ratios and propensity to sell (the “adjusted list-price index”) reduces our forecasting errors
by approximately 20% relative to a simple model in which we neither adjust list prices nor
weight delistings differently (the “simple list-price index”). Although the adjusted list-price
index is more parametric than the simple list-price index, we present it as our preferred
specification because the parametric assumptions are well-grounded in theory and hold in
each of our cities individually and across different subsets of the sample period, and thus are
likely to be valid out of sample. Nonetheless, the simple list-price index also performs quite
well.

Our paper contributes to the large empirical and theoretical literature that studies various
aspects of the home-selling process. Anenberg [2011b], Carrillo [2012], and Merlo et al. [2013]
estimate various extensions of the Chen and Rosenthal [1996] model of the home-selling
problem, discussed above, using the type of micro data used in our paper. These empirical
search models highlight how and why seller choice variables like the list price and marketing
time relate to the sales price at a micro level. Genesove and Mayer [2001] and Bucchianeri and
Minson [2013] study how behavioral factors such as loss aversion and anchoring influence
seller behavior and ultimately sales prices. Hendel et al. [2009] and Levitt and Syverson
[2008] focus on how the seller’s decision to use a realtor affects the selling process and selling
outcomes. In the current paper, we exploit the relationships between seller behavior and
sales prices highlighted by these existing papers to forecast the final sales price.6

We also contribute to the literature on house price forecasting (Gallin [2008], Malpezzi [1999], Rapach and Strauss [2009], and Case and Shiller [1990], among others). The existing literature mostly focuses on the explanatory power of variables that measure macroeconomic conditions like rents, income, unemployment rates, mortgage rates, etc. An exception is a recent paper by Carrillo et al. [2012], who show that including aggregate listings variables like average TOM in standard time-series forecasting models improves forecasting performance. In our paper, listings data provide predictive power for an entirely different but complementary reason. That is, we exploit the \textit{timeliness} of listings data relative to transaction data. We are also unique in that we use the micro data on listings, rather than aggregates, to tie each individual list price to a previous sale price, as discussed above.7

This paper proceeds as follows. Section 2 describes our data sources and the particular sample we use to test the performance of our new index. Section 3 reviews the Case-Shiller sale price index methodology. Section 4 introduces our basic methodology with the simple list-price index, and discusses its advantages and potential issues. Section 5 presents theory and evidence on how and why we should use other available information on seller behavior to augment the simple list-price index and outlines our methodology for this adjusted list-price index. Section 6 studies the ability of our indices to forecast the Case-Shiller index and Section 7 concludes the paper.

6Other related papers that study the home-selling problem include Knight [1996], Genesove and Mayer [1997], Salant [1991], Anenberg [2011a], Merlo and Ortalo-Magne [2004], Horowitz [1992], Han and Strange [2013], and Haurin [1988].

7Recently, several companies have starting using listings data to forecast house prices. For example, the Trulia Price Monitor is a measure of trends in current (not necessarily final) asking prices, adjusted for changes in several observable hedonic characteristics. CoreLogic incorporates new listing prices into a time series regression model to construct a “Pending HPI” (CoreLogic, 2012). Based on our reading of their published materials, neither of these measures fully exploits the informational content of the listings data as we do in the present study.
2 Data

In this section we describe our data sources and the particular sample we use to study the performance of our new index.

Our first data requirement is the type of micro data on housing transactions used to produce the Case-Shiller index. These micro data are available for purchase from a few data vendors including Dataquick and CoreLogic. Essentially, these vendors collect data from local governments throughout the U.S. on home transactions (which in most cases are required to be publicly disclosed by law) and standardize the information into easy-to-use formats for industry professionals, investors, researchers, etc. For each home sale, these data include the sales price, the closing date, the precise address of the home, home characteristics, whether the home is single-family, as well as information about the lender, buyer, and seller. A point of emphasis for us is that these transaction data become available with a lag of several months because it takes time for a sale closing to be recorded in the public record. Furthermore, since sale agreements (i.e. when the sales price is agreed upon) typically precedes the sale closing date (i.e. when the agreement is finalized and the sales price is recorded in the public record) by one or two months, a new Case-Shiller release really summarizes price conditions from three or four months earlier.

Our second data requirement is micro data on home listings, which are available for purchase from Altos Research. For the universe of homes listed for sale on the Multiple Listing Service (MLS), the dominant platform through which homes for sale are advertised in the U.S., these data include the listing price of the home at a weekly frequency. Using the date of initial listing and the date of delisting – which occurs when there is a sale agreement or when the seller decides to withdraw the home from the market – we can infer the time-on-market (TOM). There is no variable that indicates why a property is delisted, and consequently, if it is delisted because of a sale agreement, we observe nothing about the terms of the agreement such as the sales price. In addition to the list price, the data include the precise address of the home and some house characteristics. The geographic coverage from Altos Research is expansive (it includes all 20 MSAs that comprise the Case-Shiller home price index), but they do not have listing data prior to 2008. Importantly and in
contrast to sales data, the data from Altos Research can be purchased in real time.

To test the performance of our list-price index, we purchased sales data from Dataquick and listings data from Altos Research for three large and diverse MSAs: Los Angeles, Phoenix, and Seattle. The Dataquick data runs from 1988-2012 and the Altos Research data runs from 2008-2012. As we describe below, our list-price index requires linking each home in the listing data to its previous sales record in the transaction data. We do so using the address, which is common to both datasets. Our index also sometimes requires linking each delisting to a current sales record, which we also do using the address. We require a match of a delisting to a current sale to have a lag of less than nine months between delisting and closing. To be consistent with the sample of home sales used in the Case-Shiller index (which is described in more detail in the next section), we drop (i) delistings that do not merge to a previous transaction, (ii) delistings where the length of time since the last transaction is less than six months, (iii) delistings that are not single-family. In the end, we are left with a large micro dataset that includes the full history of list price changes for each listing, as well as the house’s transaction history.

Figure 2 presents the Case-Shiller index for each of the MSAs over the time period in which our transactions data and listings data overlap (2008 - 2012). Like many US cities during this time period, all three cities in our sample experienced significant declines in house prices during the beginning of the sample period, although the magnitude of the decline varied considerably across cities, with Seattle experiencing a 29 percent decline and Phoenix experiencing a 45 percent decline. Our sample does not only include declining housing markets; prices rose by varying degrees in 2009 when the first-time home buyer tax credit was in effect and we have data from 2012, which is when the house price recovery started in many US cities, including the three in our sample. All three of the MSAs enter into the headline Case-Shiller 20-city composite index.

Table 1 presents summary statistics of the 978,000 single-family home listings that we can merge to a previous transaction record and that are delisted during our sample period. List prices in Los Angeles are the highest on average. A majority of listings are delisted without a list price change. The median TOM is between one and two months. Many delistings are

8Similar datasets were used by Guren [2013] and Anenberg and Kung [2012].
relisted soon after delisting: 20 percent of delistings are relisted within less than a month and 17 percent of are relisted between 2 and 6 months later. Many of these relistings may be due to sales agreements that fall through because a mortgage contingency fails or an inspection fails. However, our listings data do not provide the specific reason.

3 Case-Shiller Sales Price Index

We begin with a stylized presentation of the Case-Shiller repeat sales methodology. Our list price indices will build off of the equations and notation introduced in this section.

The Case-Shiller regression equation is

\[p_{it} = v_i + \delta_t + \varepsilon_{it}. \] (1)

where \(p_{it} \) is the log sales price of house \(i \) sold in month \(t \), \(v_i \) is a house fixed effect, \(\delta_t \) is a month effect that captures the citywide level of house prices at month \(t \), and \(\varepsilon_{it} \) is the unexplained portion of the house price. Case and Shiller [1989] interpret \(\varepsilon_{it} \) as a noise term due to randomness in the search process, the behavior of the real estate agent, or other imperfections in the market for housing. Estimates of \(\delta_t \), which we denote \(\delta^{CS}_t \), are the basis for the Case-Shiller index. For example, \(\delta^{CS}_t - \delta^{CS}_{t'} \) is interpreted as the percent change in house prices in the city between months \(t' \) and \(t \).

To estimate equation (1), Case and Shiller employ a repeat sales approach. For each home sale, they use the previous home sale to difference out the house fixed effect, \(v_i \). This gives

\[p_{it} - p_{it'} = \delta_t - \delta_{t'} + \varepsilon_{it} - \varepsilon_{it'} \] (2)

where \(t' \) denotes the month of the previous sale of house \(i \). The time effects can be estimated through weighted OLS on the pooled sample of sales pairs, where sales pairs with a longer interval between sales are downweighted to account for heteroskedasticity in \(\varepsilon_{it} - \varepsilon_{it'} \) ("interval weighting"). Case and Shiller drop (i) homes that cannot be matched to previous sales (e.g. new construction) (ii) home pairs where the interval between sales is less than six

\[^9\text{For the full methodology, see Shiller [1991] and the Case-Shiller website.}\]
months and (iii) all non single-family homes. In practice, Case and Shiller also weight each sale pair by the level of the first sale price, p_{i0}, to ensure that the index tracks the aggregate value of the real estate market ("value weighting").\footnote{Value-weighted repeat sales indices are analogous to capitalization-weighted stock market indices. In both cases, if you hold a representative portfolio, both types of indices will track the aggregate value of that portfolio.} They also use a three-month moving average index, which minimizes month-to-month noise in $\varepsilon_{it} - \varepsilon_{it'}$. This is implemented by including a pair with a sale in month t as a pair in months t, $t + 1$, and $t + 2$.

It is important to emphasize that the time subscript in equation (1) reflects the month in which the sale officially closes. The closing date lags the date when the sale price was agreed upon by a month or two on average, as we have discussed above and as we will show below. Furthermore, Case-Shiller do not release their price index for month t until the last Tuesday of month $t + 2$ because the sale prices become available with significant lags, as discussed above. Our list-price index, which we present next, reflects the value of housing at the time the time sale price is negotiated and is not subject to such significant information delays.

4 Simple List-Price Index

In this section we outline the methodology of the simple list-price index, which is the simplest way to use listings data to create a house price measure analogous to the repeat sales index described above.\footnote{We tailor our list price index methodology to track the Case-Shiller index specifically because the Case-Shiller index is currently the most widely followed measure of house price trends. Our approach could equally well be applied to track any other measures of house prices that are based on transactions data. We comment on the possibility of using listings data to generate a new house price index altogether in Section 7, but we leave that idea for future research.} Then, we will discuss the potential issues with the simple list-price index from a theoretical perspective, followed by an empirical investigation to determine which issues are important in practice. The empirical work will motivate the adjusted list-price index, which we present as our preferred index in the subsequent section.
4.1 Methodology

The simple list-price index is estimated off of the same regression equation as Case-Shiller (equation (2)), except for the second sale of each transaction pair, we substitute sales prices with the final list prices of houses that are delisted in that month.

Let \(p_{it}^L \) denote the final list price of house \(i \) that is delisted at time \(t \) and define \(\mu_{it} = p_{it} - p_{it}^L \) to be the log of the idiosyncratic sale-to-list price ratio.\(^\text{12}\) For convenience, we further define \(\mu = E(\mu_{it}) \), the expected sale-to-list price ratio, and \(\bar{\mu}_{it} = \mu_{it} - \bar{\mu} \) so that \(E(\bar{\mu}_{it}) = 0 \). Then to obtain the month-\(t \) simple list-price index value \(\delta_t^L \), we substitute into equation (2) as follows

\[
p_{it}^L - p_{it'} = \delta_t^L - \delta_{i'} + \varepsilon_{it} - \varepsilon_{it'} - \mu_{it} = \delta_t^L - \bar{\mu} + \nu_{it} \tag{3}
\]

where \(\nu_{it} = \varepsilon_{it} - \varepsilon_{it'} - \bar{\mu}_{it} \).

Rather than jointly estimating the previous house price level \(\delta_{i'} \) along with \(\delta_t^L \), we use an estimate of \(\delta_{i'} \) calculated from the transaction data alone using the Case-Shiller methodology. This means that when we estimate \(\delta_t^L \), we take \(\delta_{i'} \) as given and move it to the left-hand side of the equation.\(^\text{13}\) Finally, because \(\delta_t^L \) is an index and the absolute level of the index is arbitrary, we can drop \(\bar{\mu} \) from the equation, effectively shifting the entire index (in logs) by a constant amount \(\bar{\mu} \) relative to standard repeat sales indices. This gives our estimating equation

\[
p_{it}^L - p_{it'} + \delta_{i'} = \delta_t^L + \nu_{it}. \tag{4}
\]

Our estimate of \(\delta_t^L \), which we denote \(\hat{\delta}_t^L \), is the simple list-price index value for month \(t \). In practice, when estimating equation (4), we reproduce the interval weighting done by Case-Shiller and other repeat-sale indices, as described above.

\(^\text{12}\)Note that the time-subscript on \(p_{it} \) now refers to when the property is delisted rather than when the transaction closes. We return to this distinction when we do our repeat sales forecasts in Section 6.

\(^\text{13}\)Moving \(\delta_{i'} \) to the left hand side is a convenience that we can take because the Case-Shiller methodology uses a chain weighting procedure in which the estimate of \(\delta_{i} \) is not affected by data after time \(t \). If this were not the case, we could simply estimate \(\delta_{i'} \) along with \(\delta_{i} \).
4.2 Discussion

The simple list-price index is attractive because it exploits the timely nature of listings data without compromising the key properties of the repeat sales index. In particular, like the Case-Shiller repeat sales index, the simple list-price index accounts for changes in the mix of homes sold over time. Furthermore, the simple list-price index is as simple to compute and transparent as the Case-Shiller index and can be similarly adjusted for heteroskedasticity and value weighting. This version of the list-price index, however, relies on several assumptions. In this section, we identify those assumptions and evaluate empirically the degree to which they actually hold in the data. In the following section, we will present an alternative list-price index where these assumptions are relaxed.

We start this discussion by noting that at the time of delisting, the researcher cannot observe which transactions will close and which will not. Our index therefore uses all delistings, some of which will not ultimately result in a transaction. We introduce the random variable τ_{it} and say that the delisting of house i at time t results in a transaction if $\tau_{it} > 0$, where the threshold 0 is chosen \textit{wlog}. With this notation in hand, we examine the assumptions necessary to estimate δ_t from equation (4).

For the OLS estimator $\hat{\delta}_t^L$ to be consistent, it must be the case that

$$E(\delta_t^L \cdot \nu_{it}) = E(\delta_t^L \cdot (\varepsilon_{it} - \varepsilon_{i0} - \tilde{\mu}_{it})) = 0.$$ \hspace{1cm} (5)

We can break up this expression into several terms:

$$E(\delta_t^L \cdot (\varepsilon_{it} - \varepsilon_{i0} - \tilde{\mu}_{it})) = E(\delta_t^L \cdot (\varepsilon_{it} - \varepsilon_{i0}) | \tau_{it} > 0) \cdot Pr(\tau_{it} > 0) + E(\delta_t^L \cdot (\varepsilon_{it} - \varepsilon_{i0}) | \tau_{it} < 0) \cdot Pr(\tau_{it} < 0) - E(\delta_t^L \cdot \tilde{\mu}_{it}) = 0. \hspace{1cm} (6)$$

Equation (6) will hold if (but not only if) each of the three expressions equals zero. We consider each term separately. First,

$$E(\delta_t^L \cdot (\varepsilon_{it} - \varepsilon_{i0}) | \tau_{it} > 0) = 0,$$

which says that among delistings that are in fact sales, the error terms cannot be correlated with the time effects. This condition was already necessary for the consistent estimation of the standard repeat sales model in equation (2).
The next term,
\[E(\delta^L_t \cdot (\varepsilon_{it} - \varepsilon_{i0})|\tau_{it} < 0) = 0, \]
requires that the error terms of listings that are withdrawn and do not result in transactions satisfy the same exogeneity restrictions as the error terms for the observations of houses that do sell (equation (7)). If delisted houses that do not sell have list prices that imply higher or lower values for the level of house prices, then including these observations will bias our estimates.

The final piece of equation (6) is
\[E(\delta^L_t \cdot \tilde{\mu}_{it}) = 0, \]
which says that that the sale-to-list price ratio cannot co-vary with the time effects. A sufficient but not necessary condition would be that the average sale-to-list price ratio be time invariant (i.e. \(E_t(\tilde{\mu}_{it}) = 0 \)). The intuition behind this condition is that if variation in prices is caused by movements in the sale-to-list price ratio, we would not be able to identify this variation by looking only at list prices.

If these three conditions discussed above are satisfied, then \(\delta^L_t \) can be consistently estimated from equation (4). Our list price model makes an additional assumption that we abstracted from in the discussion above, namely that all housing transactions first appear as delistings in the MLS. In fact, not all homes that sell are listed on the MLS and if homes that are not sold via the MLS are a selected group of transactions, then the simple list-price index may be biased.

4.3 Descriptive Evidence

We next examine the empirical relevance of each potential issue with the simple list-price index in turn.

We first examine trends in the sale-to-list price ratio. Figure 3 summarizes the median sale-to-list price ratios for each city in our sample, as well as several other large cities for comparison, over time.\(^{14}\) Despite the extreme changes in housing market conditions over our

\(^{14}\)The source for Figure 3 is Zillow, which provides aggregate time series data (starting in late 2008) on sale-to-list price ratio by MSA. Results for LA, Phoenix, and Seattle are similar when we use our data.
sample period, the sale-to-list price ratio fluctuates within a band of only several percent. The variation does, however, appear to be correlated with the house price cycle, in violation of the assumptions of our simple list-price index. Periods of rising prices tend to have high sale-to-list price ratios, on average.

Another potential source of bias for the simple list-price index is the inclusion of all delistings rather than just those that lead to sales. Figure 4 shows that indeed, delistings that result in closings are a selected group of delistings that tend to have lower list prices relative to delistings that do not result in closings, and the magnitude of the list price difference is negatively correlated with the house price cycle. Figure 5 presents the share of delistings that result in a sale by quarter and city. This share is also volatile over time, with hotter markets being associated with a higher probability of sale. Figures 4 and 5 suggest that including all delistings, rather than only the ones that result in sales, will bias the index due to selection.

Finally, we investigate the potential for selection bias arising from the types of homes that are listed on the MLS. Figure 7 shows that the sales that do not appear in our listings data represent only a small minority of total sales, which is consistent with reports from the National Association of Realtors. This suggests that this type of selection should not have a large effect on the performance of the simple list-price index.

To summarize, the empirical evidence suggests two problems with the simple list-price index. First, the price-to-list ratio varies with the housing cycle so that the final list price is a good, but not unbiased, predictor of the final sales price. Second, since this price index uses all delistings rather than only the ones that result in closed transactions, it is susceptible to selection bias. We next discuss an alternative specification meant to address these issues.

\(^{15}\) We normalize each list price by \((p_{i0} - \delta_0)\) to control for differences in house quality and we stop the sample in mid-2012 to avoid censoring issues.

\(^{16}\) See for example the 2012 NAR Profile of Home Buyers and Sellers which reports that 88 percent of home sales are broker assisted.

\(^{17}\) A common reason that a sale does not appear in our listings data is that the sale represents a transfer of a foreclosed property to an investor at a foreclosure auction. This is one explanation for the fact that we find that, on average, sales prices of homes that merge to a delisting are higher than the prices of homes that do not. Other potential reasons that a sale does not merge include 1) the home is sold without the assistance of a broker, 2) the address is coded with error, preventing a successful merge.
5 Adjusted List-Price Index

In our simple list-price index, the only elements of the listings data we use are the date at which the property is delisted and the final list price. This section examines whether we can use other information available at the time of delisting that the simple list-price index does not exploit – such as TOM and the list price history – to improve the performance of the simple list-price index.

5.1 Model

We first present a model of the home selling problem that generates variation in sale-to-list price ratios and the probability of sale conditional on delisting, which is precisely the variation that is an issue for the simple list-price index. The model delivers predictions for how these outcomes should vary with observable listings variables such as TOM and the list price history. This exercise therefore gives us a theoretical motivation for why such information should be useful in constructing an alternative list-price index meant to address the limitations of the simpler version.

The model is in the spirit of Chen and Rosenthal [1996] and describes the behavior of a homeowner trying to sell her house. The model generates variation in the outcomes of interest from two sources. The first is heterogeneity in the valuation that sellers place on not selling and staying in the home, which arises in practice from factors such as employment opportunities and changes in the seller’s familial or financial situation. The second source is a finite selling horizon, which may be a good approximation of reality if things like the start of a school season or the closing date on a trade-up home purchase impose limits on the date by which the owner must sell.\footnote{See Anenberg (2011b) and Merlo et al. (2013) for examples of structural search models that impose a finite selling horizon to provide a good fit to the micro data.} We keep the model simple enough so that we can analytically derive predictions that can be tested in the data.

There are two periods and in each period t, the seller sets a list price p_t and potential buyers arrive with a probability $\alpha_0 - \alpha_1 p_t$. We assume that $\alpha_1 > 0$ so that a higher list price discourages buyers from visiting the home.
We assume that all of the bargaining power rests with the seller so that when a potential buyer arrives, the negotiated price is equal to the buyer’s reservation value. However, the list price functions as a commitment device so that if the buyer’s reservation price is higher than the list price, the seller commits to selling the house at the list price, leaving the buyer with positive surplus. Thus, when setting the list price, the seller faces a trade-off: a high list price discourages buyers from visiting a home, but a high list price results in a higher sales price conditional on a buyer arriving. This result is consistent with the empirical evidence (e.g. Merlo and Ortalo-Magne [2004]).

There are two types of buyers in the market. A fraction β are high types with sufficiently high valuation that the seller’s commitment always binds and the negotiated sale price, p^* equals the list price p_l. A fraction $(1 - \beta)$ are low types with valuation v, which is sufficiently low that the commitment does not bind and the negotiated price equals v. If the seller is unable to negotiate a sale with a perspective buyer by the end of the second period, she remains in the house, an outcome to which she assigns a value of $w_i \in [w, \bar{w}]$. We assume $v > \bar{w}$ so that the negotiation with any buyer results in an acceptable sale price and the house goes unsold only if no buyer arrives.

Model Predictions

The theoretical results suggest that variables such as TOM, the history of list price changes, and indicators of the seller’s reservation value may provide information about the heterogeneity among sellers and could therefore help us better predict variation in the sale-to-list price ratio and the probability of sale. These theoretical results are collected below. We provide proofs of these statements in the Appendix.

The model makes several predictions about how the sale-to-list price ratio and the probability of sale varies with TOM and the seller’s reservation value.

Because sellers with higher reservation values set higher list prices:

1. The sale-to-list price ratio is decreasing in the reservation value of the seller, w_i.
2. The probability of sale conditional on delisting is decreasing in the reservation value of the seller, w_i.

Because sellers with lower reservation values tend to find buyers more quickly, houses that have been on the market longer are more likely to have sellers with higher reservation values. This implies:

3. The sale-to-list price ratio is decreasing in TOM, holding fixed the size of the list price change.
4. The probability of sale conditional on delisting is decreasing in TOM.

Over time, sellers tend to adjust their list prices downward and the model makes predictions about how the size of this reduction in list price is related to the sale-to-list price ratio and the probability of sale. Because sellers with higher reservation values start out with higher list prices, this mechanically increases the measured change in the size of the list price over time. On the other hand, sellers with lower reservation values are more eager to attract a buyer and face additional pressure to lower their list prices if the homes remain unsold. Which of these mechanisms is stronger depends on the values of the model parameters and in particular on how the sellers’ reservation values compare to the valuation of an expected buyer. There are three possible cases:

Case 1 (if $\bar{w} > (1 - \beta)v$), then the size of the reduction in the list price is decreasing in the reservation value of the seller, w_i. In this case:

5a. The sale-to-list price ratio is increasing in the size of the list price reduction, holding fixed TOM.
6a. The probability of sale conditional on delisting is increasing in the size of the list price reduction, holding fixed TOM.

Case 2 (if $\bar{w} < (1 - \beta)v$), then the size of the reduction in the list price is increasing in the reservation value of the seller, w_i. In this case:

5b. The sale-to-list price ratio is decreasing in the size of the list price reduction, holding fixed TOM.
6b. The probability of sale conditional on delisting is decreasing in the size of the list price reduction, holding fixed TOM.

Case 3 (if $(1 - \beta)v$ falls within the support of the distribution of w_i), then the size of the reduction in the list price is non-monotonic in the reservation value of the seller, w_i. In this
5c. The sale-to-list price ratio is non-monotonic in the size of the list price reduction, holding fixed TOM.

6c. The probability of sale conditional on delisting is non-monotonic in the size of the list price reduction, holding fixed TOM.

Next, we test whether these predictions hold in our data.

5.2 Evidence

To summarize our empirical results, we find that the data do support the model’s predictions and that they are most consistent with Case 1 from above. That is, we show that predictions 1-4, 5a and 6a hold in our data.

Table 2 shows the results for a set of regressions with the sale-to-list price ratio as the dependent variable. We include monthly seasonal dummies and MSA fixed effects in all specifications. Consistent with the predictions of our model, homes that sell with shorter TOM have larger sale-to-list price ratios. Compared with properties that have been listed for more than six months, the sale-to-list price ratio for properties that sell within two weeks of listing is four percentage points higher according to column (1). Looking across the columns, we see that these estimates are consistent across the three MSAs and that the effects are somewhat larger before 2009.

Table 2 also shows that sellers who lower their list price have sale-to-list price ratios that are four percent larger than those who do not. Among those sellers who do lower their list prices, each percentage point decrease in the final list price relative to the initial list price is associated with a five percent increase in the sale-to-list price ratio. In the context of the model, this implies that it is sellers with lower reservation values who are making larger adjustments to their list prices, consistent with Case 1 from above.

In the regression, we also include dummy variables for whether the house is being sold by a bank that has foreclosed on the property and for whether the final listing price is lower than the home’s previous sales price. Positive values for either of these variables predict a higher sales price relative to the final list price. According to the model under Case 1, this result suggests that these are sellers with lower reservation values. This interpretation is
consistent with the findings in the literature on foreclosures and loss aversion, respectively.19

In our other main regression, we estimate the likelihood that a property is delisted because of a sale rather than because of a withdrawal by the seller for other reasons. We drop delistings in 2012 from the regression to avoid censoring issues. Results from a probit model are shown in Table 3. Properties that are taken off the market soon after they are first listed are much more likely to reflect sales compared with properties with longer TOM, consistent with prediction 1 from above. Sellers who have changed their list prices are more likely to delist their properties due to a sale, as are those who reduce prices by larger amounts relative to the initial list price. We interpret these results to mean that the sellers who make larger reductions in their list prices have lower reservation values. This is again consistent with \textit{Case 1}. Foreclosure sales and sellers who list their properties for less than the previous sales price are also more likely to sell, again consistent with the idea that these sellers have lower reservation values. We also find that there is a discrete jump down in the probability of selling at a TOM of exactly six months, perhaps because many listing contracts with realtors expire after six months.

Ultimately, the effectiveness of using the listing history to augment the simple list-price index depends on the extent to which listing history can explain the \textit{time-series} variation in the sale-to-list price ratio and sales rate. To examine this, Table 4 presents an aggregate version of the regressions in Tables 2 and 3. Each observation is a month-city combination, and the dependent variable and regressors are averages over all the delistings in a given month-city. The statistic of interest is R-squared. We find that our regressions can explain 76 percent of the variation in sale-to-list price ratio over time and 71 percent of the variation in the sales rate over time, suggesting that incorporating information on the listing history can significantly improve the performance of the simple price index.

In addition to the variation that can be captured by changes in the variables in the listing

19See Campbell et al. [2011] for evidence that banks are more motivated to sell than the typical non-bank seller. Genesove and Mayer [2001] argue that sellers are subject to loss aversion and are reluctant to re-sell their homes for less than they originally paid for it. Sellers who have posted list prices below the previous sales prices are essentially guaranteed to realize a nominal loss on the transaction. We might therefore expect that sellers would be less willing to do this unless they assigned a particularly low value to staying in the house.
data, some variation in the sale-to-list price ratio and probability of sale is attributable to macroeconomic factors, which are likely to be persistent. As a result, we would expect that the errors in our list-price index are likely to be correlated over time. In Column 3 of Table 4, we include lagged dependent variables in the regression to test the possibility of serially correlated errors and present evidence that errors are in fact serially correlated. Taking advantage of these correlations allows us to explain an additional eight percent of the variation of the sale-to-list price ratio and 11 percent of the variation in the propensity to sell.

5.3 Adjusted List-Price Index: Methodology

In this section, we outline the methodology of our preferred list-price index, which takes advantage of the additional information in the listings data in a way that is consistent with the model and evidence presented in Sections 5.1 and 5.2.

Step 1: Estimate Expected Sale Price and Probability of Sale

From the set of previous observations that are available at time t, we see which delistings resulted in transactions and, for those that did lead to sales, the sale price. Based on this data, we estimate the empirical relationship between variables that are observable at the time of delisting, such as TOM and the list price history, and the variables related to the subsequent sale of the property (including whether or not the sale occurred).

1. For the sample of delistings that did sell, estimate the equation for the expected sale-to-list price ratio

 $p_{it} - p_{it}^L = \alpha_t^p + \beta^p X_{it}^p + \varepsilon_{it}^p$

 (10)

 using OLS, where X_{it}^p is the vector of observables that explain variation in the ratio and α_t^p is a time fixed effect that captures the time-series variation in the sale-to-list price ratio.

20The following methodology section describes precisely how we correct for serial correlation in our list-price index.
2. For the entire sample of past delistings, estimate the probability that a delisting results in a sale

\[Sell_{it} = I(\beta^s X^s_{it} + \varepsilon^s_{it} > 0) \]

(11)

where \(Sell_{it} \) is an indicator that equals one when a sale is observed, \(X^s_{it} \) is the vector of observables that explain variation in the propensity to sell and \(\varepsilon^s_{it} \sim N(0, 1) \). The expected probability of sale conditional on \(X^s_{it} \) is then \(\Phi(\beta^s X^s_{it}) \) where \(\Phi \) is the standard normal c.d.f.

Step 2: Estimate Serial Correlation in Sale-to-List Price Ratios

In addition to the *cross-sectional* variation in the sale-to-list price ratio that can be predicted using our above estimates of \(\beta^p X_{it} \), we also find evidence that there is predictable *time-series* variation in the time effects \(\alpha^p_t \), which capture variation in the average sale-to-list price ratio over time beyond what is implied by changes in the observable covariates. While the estimates of \(\alpha^p_t \) reveal these time effects for past data, they do not directly tell us about what we expect the average sale-to-list price to be in the current period. In order to use these estimates to help predict current price-to-rent ratios, we assume these time effects have a simple serial correlation structure.

1. Estimate the serial correlation in the estimated time fixed-effects \(\hat{\alpha}^p_t \) from the equation:

\[\hat{\alpha}^p_t = \rho_0 + \rho_1 \hat{\alpha}^p_{t-1} + e_t \]

using OLS where \(t \) denotes the month and \(\rho_1 \) measures the degree of serial correlation.

2. Let \(L \) denote the number of months since the most recent available sales data, which means that we have estimates \(\hat{\alpha}^p_\tau \) for \(\tau \leq t - L \). Then we can estimate

\[\hat{\alpha}^p_t = \hat{\rho}_0 (1 + \hat{\rho}_1 + \hat{\rho}_1^2 + \ldots + \hat{\rho}_1^{L-1}) + \hat{\rho}_1^L \hat{\alpha}^p_{t-L}. \]

(13)

This expression results from iteratively substituting into the right hand side of equation (12) until we get back to the observable (as of time \(t \)) estimate \(\hat{\alpha}^p_{t-L} \). In this equation, \(\hat{\rho}_0 \) and \(\hat{\rho}_1 \) denote the OLS estimates from (12).

21 Although we also observe time-series variation in the likelihood that delistings become sales, we explain below why it is not useful to include a time fixed-effect in equation 11.
Step 3: Estimate Adjusted List-Price Index

Based on the above calculations, we use the information that is available at the time of delisting to generate estimates of the expected sale price and probability of sale for each delisting that occurs at time t. We then use these estimates to calculate our price index.

1. From Step 2, the final estimate of the sale price for each delisting is given by

$$\hat{p}_{it} = p^L_{it} + \hat{\alpha}_t + \hat{\beta}_p X^p_{it}$$

and the final estimate of the probability of sale is

$$\hat{\pi}_{it} = \Phi(\hat{\beta}_s X^s_{it})$$

2. From these estimated transaction prices and probabilities, estimate price levels $\delta_{L,A}^t$ using the same estimating equation as we used for the simple list-price index. In this case, the equation takes the form

$$\hat{p}_{it} - p_{it'} + \delta_{it} = \delta_{L,A}^t + \eta_{it}.$$

We estimate this equation using weighted least squares, where the weighting is proportional to $\hat{\pi}_{it}$ and also depends on the elapsed time between the two transactions, as described in Section 3. Additional details are provided in the appendix.

5.4 Mortgage rates and the behavior of the List-Price Index

Because the list-price index describes house values at the time that prices are negotiated, changes in the index better reflect contemporaneous changes macroeconomic conditions. As an example, we examine the movement in house prices in 2013, during which there were several large swings in mortgage interest rates.

On May 22, 2013, Federal Reserve Chairman Ben Bernanke testified before the Joint Economic Committee of the U.S. Congress that the pace at which the Federal Open Market Committee (FOMC) had been purchasing longer-term Treasury Securities and agency mortgage backed securities could be reduced in its next few meetings.\footnote{http://www.gpo.gov/fdsys/pkg/CHRG-113shrg81472/pdf/CHRG-113shrg81472.pdf} Interest rates on
fixed-rate first mortgages, which had been 3.51 percent the week of May 16, climbed over the next few weeks to 3.98 percent in the week of June 13. Following the June 2013 meeting of the FOMC, interest rates again began to rise, reaching a value of 4.58 percent in the week of August 28, more than a full percentage points higher than they had been a month earlier. At their September meeting, the FOMC announced that they would continue the current pace of asset purchases. Between the weeks of September 12 and October 31, mortgage rates declined from 4.57 percent down to 4.10 percent.

What was the reaction of house prices to these changes in mortgage interest rates? This is generally a difficult question because of other concurrent economic developments and also because some of these changes in interest rates could have reflected changes in the broader economic outlook that could themselves have affected house prices. In its current preliminary form, our analysis is not intended to address these larger challenges but a simpler one. This simpler obstacle is that from a measure of house prices based on transaction dates, it is not possible to identify prices with the economic conditions under which those prices were determined. Instead, the prices of houses that close in a particular week will be a combination of transactions negotiated at various times over the prior several months.

Our list-price index helps resolve this difficulty. For example, the list-price index prior to the week of May 22 is based entirely on transactions for which the contract was signed and the property delisted before interest rates began to rise. Similarly, the measurement of the index a few weeks later is based on properties that were negotiated when rates were noticeably higher. As a preliminary exercise, we perform a linear fit to our list-price index for the three periods (i) before the May 22 testimony (January 1 through May 17) when rates were low, (ii) from the May 22 testimony through the September FOMC meeting (May 24 to September 13) after rates had risen, and (iii) after the September FOMC meeting (September 20 to December 27) when rates were again somewhat lower. The results are shown in Figures 11-13.

Our results show significant differences for the three regions in our sample. In Los Angeles, shown in Figure 11, we estimate that at the start of the year, house price had been growing at an annualized rate of 65 percent but in the period of higher interest rates between May and 2013.

\[^{23}\text{Data from Freddie Mac Primary Mortgage Market Survey}\]
September, the rate of growth rate fell to a value indistinguishable from zero. When interest rates fell in September, house prices began to grow again and rose at an annualized rate of 16% through the end of the year. In contrast, monthly prices as measured by the Case-Shiller index reflect the prices of transactions that closed during that month or, because of smoothing, during the two prior months. In contrast, the Case-Shiller index for Los Angeles shows that house prices increased each month at a steady rate of 20% from January through September before slowing down in the final months of the year. As we might expect, there is no observable change in house prices between the group of transactions that enter into the index for months after rates have started to rise compared to sales from earlier months.\footnote{Coincidentally, the slowdown in prices begins to appear in the later months of the year, at the same that time interest rates moved lower.}

In Phoenix, the response of prices to interest rates appears to have been less dramatic, perhaps because many of the purchases in the Phoenix market were by investors who bought properties without mortgage financing and were therefore less sensitive to mortgage interest rates. In early 2013, our Phoenix list-price index showed house price growth at an annualized rate of 43%. Growth slowed to a rate of 7% per year after interest rates began to climb and continued at approximately this same pace later in the year, even after rates had fallen. Finally, in Seattle prices did not react as dramatically following the rise in interest rates, with prices continuing to grow at an annualized rate of 18% between June and September. Prices in Seattle decreased in the last few months of the year at an annualized rate of 13%. Interestingly, looking at our list-price index, it appears that this decline began rather suddenly in the end of September. The Case-Shiller indices for Phoenix and Seattle are plotted in the upper-right panels of their respective figures and exhibit patterns similar to the ones we described above for Los Angeles.

6 Forecasting with the List-Price Index

Our list-price index is tightly connected to repeat-sales inidices such as Case-Shiller by the simple fact that the delistings that underlie our index will ultimately become the transactions on which these standard indices are based. In order to test this connection, we next show how
the information that goes into the construction of our list-price index can alternatively be used to construct a simulated version of a repeat-sales index that closely matches the Case-Shiller index but is observable several months earlier. This exercise serves two purposes. First, it shows how to use the listings data to forecast the Case-Shiller measurement of prices, which could help alleviate some of the information frictions we described in the introduction. Second, it helps establish the validity of our index by demonstrating that our index captures essentially the same information about house prices that is contained in standard repeat sales indices, while making that information available much sooner.

6.1 Motivating Empirical Exercise

We begin our forecasting discussion with a brief empirical exercise that highlights the economic significance of the information lag associated with house prices. The Case-Shiller index is released in the last week of each month, with a two-month delay to the release (for example, the index summarizing January transactions is released the last week in March). From futures contracts traded on the Chicago Mercantile Exchange (CME), we can infer market expectations about the house price levels that will be reported in upcoming releases. Based on these expectations, we can measure the surprise in the Case-Shiller index, which we calculate as the percent change in the actual index value relative to the market’s expectation of the index value on the day prior to its release. Figure 1 shows the results of an event study relating surprises in the 10-city Case-Shiller index to changes in the stock price of six different home building companies. For a sample of 25 Case-Shiller index release days for which data are available on futures prices, a one percent positive surprise is associated with

25 Futures prices are available for four releases each year starting in August 2006 through August 2013. Section 6.3.3 provides more details about these future prices.

26 Changes in stock prices are measured as the opening price on the day of a Case-Shiller index release relative to the closing price on the day before, which is the appropriate comparison because the index is always released before the market opens. We difference off the overnight change in the S&P500 index from each homebuilder stock price change. We use the companies in the Google finance homebuilding sector. The stock tickers are TOL, RYL, BZH, PHM, DHI, KBH, WLH, HXM. We drop HXM from our analysis because it is a Mexican homebuilding company, although the result still holds if this company is included.
a 0.35 percent increase in homebuilder stock prices and the effect is statistically significant.\footnote{The statement about statistical significance is robust to clustering standard errors by each release date (the t-statistic is 3.84 in this case).}

The key point of this exercise is that the Case-Shiller index release describes housing transactions that were negotiated up to four months earlier and the pricing information contained in these transactions appears to be important for valuing these companies. Yet during these intervening months, market participants were not fully able to incorporate this information. By using information that was available at the time of the contract negotiations, our list-price index can be used to mitigate this information friction.

6.2 A Simulated Repeat-Sales Index

In order to move from the list-price index, which describes the value of houses at the time of contract, to a measure that looks like a repeat sales index, we must associate a closing time to each transaction. One issue with our methodology is that even if we observe which delistings close, we do not know exactly when the closing date will be, as the lag between the delisting date \(t_i^d \) and closing date \(t_i \) is idiosyncratic. To address this uncertainty, we assume that the lag between delisting and closing dates, \(l_i = t_i - t_i^d \), is drawn from a discrete, known distribution \(C \). We estimate this distribution using the empirical distribution of \(t_i - t_i^d \). (The support of \(C \) is 0,...,270 days.) Then for each delisting, we simulate a range of closing dates by drawing from this distribution. Because the Case-Shiller index in a monthly index, each closing is assigned to the calendar month in which it falls. Once we have the dates for these simulated transactions, we use them to estimate a repeat-sales index, following the methodology of the Case-Siller as closely as possible.

This approach assumes that the lag between the delisting date and closing date has a constant, time-invariant distribution. If transactions implying different price levels differed systematically in the time between delisting and closing, this would create a problem for our estimates. To investigate this assumption, Figure 6 shows the percentiles of the distribution of \(\text{Closing date} - \text{Delisting Date} \) for delistings that result in sales over time. On average, there is a delay of about six weeks between delisting and closing. The distribution of delays does not change much over time. This suggests that the assumption of a time-invariant
distribution is a reasonable one.

We start with a forecast based on the simple list-price index, where the estimated transaction price is simply the final listing price p_{it} plus an average sale-to-list price ratio $\bar{\mu}$:

1. For each observed delisting i at time t_i^d, draw R random realizations of the time to closing: l_{itr} for $r = 1...R$, which gives a simulated transaction that closes at date $t_{itr} = t_i^d + l_{itr}$ with price $p_{itr} = p_{it}^d + \bar{\mu}$.

2. To mimic the smoothing approach of Case-Shiller, generate three copies of each simulated closing and each prior sale by adding 0, 1, and 2 months to the time subscript on the current and previous sales price, respectively.

3. We take as given the level of the Case-Shiller house price index at the time of the previous sale, $\delta_{CS}^{t'}$. Then, using the simulated transactions, estimate price levels δ_t from

$$p_{itr} - p_{it'} + \delta_{CS}^{t'} = \delta_{t_{itr}} + \eta_{itr}$$

using weighted least squares. Again following the Case-Shiller methodology, the weighting depends on the elapsed time between the two transactions and also the initial sales price, as described in Section 3.

Constructing a forecast based on the adjusted list-price index rather than the simple list-price index follows the same steps with two adjustments:

1. Rather than using the marked-up final listing price $p_{itr} = p_{it}^d + \bar{\mu}$, use the expected sale price $p_{itr} = p_{it}^d + \hat{\alpha}_{itr} + \hat{\beta}^p X_{itr}^p$ that we estimated in the construction of the adjusted list-price index

2. Multiply the weight on each simulated transaction by the probability of sale: $\hat{\pi}_{itr} = \Phi(\hat{\beta}_s X_{it}^s)$

In constructing these forecasts, it is important to bear in mind that the transactions that close in a particular month come from delistings that are observed over a fairly large time period. If the distribution of lag times between delisting and closing has support of $[0,270]$ days, then sales that contribute to a particular month’s price index may be delisted
as early as 270 days before the start of the month and as late as the last day of the month. In practice, our forecast at time t of the price level in month t' is based on all delistings observable at time t that could possibly close in month t'.

6.3 Forecasting Performance

In this section, we report the performance of both our simple and adjusted list price indices over the sample period. We consider the ability of both indexes to forecast the Case-Shiller HPI at various horizons, which we calculate as the number of weeks from the date of the last observed listings data until the end of the month we are trying to forecast. For example, at a horizon of one week, we observe all listings information for the first three weeks of the month and we are trying to forecast the HPI based on all transactions that will close in that month. Given that closing dates lag agreement dates by several weeks, at this horizon we should observe close to the entire universe of delistings that would contribute to the Case-Shiller index for that month. At longer horizons, an increasing share of the the sales are from properties for which we have not yet observed delistings. However, even five months into the future, we find that our index still has significant predictive power. The ability of our index to predict prices so far into the future occurs because some transactions take a significant amount of time to close and also because the smoothing process causes sales that close in a given month to affect the price index for the two subsequent months as well.28 Because the level of the Case-Shiller index is not released until almost two months after the end of that month, we can sensibly write down “forecasts” for the HPI of months that have already ended but for which price data has not yet been released. These forecasts will have negative forecast horizons.

At each date, and for each each MSA, we re-estimate the parameters β_p, β_s, $L(l)$, ρ_0, and ρ_1, based on the set of observations available as of that date. The estimates of β_p and β_s based on the full sample are shown in Tables 2 and 3, respectively. The parameters governing the serial correlation of the time-fixed effects, ρ_0 and ρ_1 are estimated to be 0 and 0.91, respectively.

28Recall that the Case-Shiller price index in month t actually reflects sales in months t, $t - 1$ and $t - 2$.

28
6.3.1 Absolute Performance

Table 5 summarizes the absolute performance for both the simple list-price index and the adjusted list-price index at various horizons. The number of months ahead of the Case-Shiller release of that month’s HPI is reported in the second column. Since the Case-Shiller index level itself has no meaning, we forecast the change in the index level relative to the latest available index value associated with each forecasting horizon. Thus, a forecasting error of x means that the list-price index under/over estimates the percent change in sales prices by $100 \times x$ percentage points.

The adjusted list-price index performs well, even at forecasting horizons of up to 12 weeks, which is five months in advance of the Case-Shiller release. The root mean square error (RMSE) associated with a forecasting horizon of 12 weeks is .031, the mean absolute error (MAE) is .023, and the adjusted list-price index explains over 50 percent of the variation in the five month percent change in the Case-Shiller index. Not surprisingly, performance improves as more listings information about the month we are trying to estimate becomes available. When the forecasting horizon is 0, the RMSE is .011 and the MAE is .009. Even the simple list-price index, despite its issues discussed in Section 4, performs well. When the forecasting horizon is zero weeks, the RMSE is .014 and the MAE is .012. Relative to the simple list-price index, the adjusted list-price index delivers improved performance of about 20 percent.

Figures 8-9 show additional detail for select forecasting horizons for the adjusted list-price index. The figures show that the index performs well (i) in each MSA individually, (ii) over the entire sample period, and (iii) during turning points. For example when sales prices started to come out of their multi-year slump in early 2012, list prices did so as well, albeit not to the same extent as sales prices in LA and Seattle. In addition, when sales prices ticked

29 Performance is based on a comparison of our list-price index to a Case-Shiller HPI that we estimate using our transaction data from Dataquick. We do this rather than using the actual Case-Shiller index because Case-Shiller does not fully disclose how they deal with outliers and weighting to account for heteroskedasticity. In this way, forecasting error is due to the failure of the list price to predict the sales price, rather than any differences in the way we are handling outliers and weighting. Our computed Case-Shiller HPI is very close to the headline index, but not quite as smooth.
up in 2009 due to the Obama administration’s first time home buyer tax credit, our list-price index moved up as well. The largest forecasting errors occur in LA during the house price slump in late 2011 and in Seattle when prices started appreciating rapidly in 2012.

6.3.2 Discussion

We want to make clear that our index achieves excellent performance at forecast horizons of four or five months even though we are not doing any forecasting in the usual sense. In other words, we are not extrapolating any trends or projecting relationships forward. Rather, we are simply processing data on seller behavior in a novel way and exploiting the long lag between when seller behavior is observed and when the corresponding sales price index is released.

We should also emphasize that our sample period covers one of the most volatile time periods in U.S. housing market history, and one of the most volatile sub-markets (i.e. Phoenix). During such a period of heightened volatility, one might expect list prices to be the least informative about sales prices, as sellers may have difficulty assessing their home values when market conditions are changing so drastically. The fact that our index performs so well during this time period gives us confidence that performance may also perform well in market conditions where list prices might be more informative about the final sale prices.

6.3.3 Relative Performance

In this section we address two outstanding questions about performance. First, does listings information provide any additional explanatory power for short-run house price changes relative to a forecasting equation that does not using listings data? And a second, more challenging question: is the informational content of the listings data that we exploit already known to market participants?

To address the first question, we report the performance of an alternative short-run

30 Part of the reason for the success of our index at longer horizons of four or five months is that, as discussed above, the Case-Shiller index value is smoothed using the index value from the two previous months. As discussed above, our methodology replicates this smoothing approach.
forecast calculated based on the following AR(3) specification:

$$\Delta_{j,t} - \Delta_{j,t-L} = \rho_0 + \rho_1(\Delta_{j,t-1} - \Delta_{j,t-2}) + \rho_2(\Delta_{j,t-2} - \Delta_{j,t-3}) + \rho_3(\Delta_{j,t-3} - \Delta_{j,t-4}) + X_{j,t} + \epsilon_{j,t}$$

(18)

where \(L\) is the appropriate lag-length associated with the forecast horizon of interest, \(\Delta_{j,t}^{CS}\) is the Case-Shiller index for city \(j\) in month \(t\), and \(X_{j,t-L}\) is a vector of controls including city dummies, seasonal dummies, national mortgage rates, and state level unemployment rates.\(^{32}\)

Table 6 presents the results, where equation (1) is estimated using the full sample of index values available for Los Angeles, Phoenix, and Seattle (i.e. 1988-2012). The gains in performance from the adjusted list-price index are large and statistically significant. The adjusted list-price index delivers 48 percent and 50 percent improved performance in terms of RMSE and MAE, respectively, for an estimate of Case-Shiller five months in advance. To evaluate statistical significance, we test the null hypothesis of forecast error equality against the one-sided alternative that the adjusted list-price index error is lower. Our test statistic is a panel version of the Diebold-Mariano test statistic with a bartlett kernel (see Diebold and Mariano [2002]).

To address the second question, we compare the performance of our index with the performance of the market’s expectation as implied by the prices of futures contracts for the Case-Shiller index over our sample period. Futures contracts trade on the Chicago Mercantile Exchange for each individual city in the 10-city Case-Shiller composite, as well as for the composite as a whole. Contracts extending 18 months into the future are listed four times

\(^{31}\)For example, when the forecasting horizon is five weeks, we set \(L = 2\) because our list-price index would be available two months before the Case-Shiller index.

\(^{32}\)One might be concerned that we are omitting some key observable fundamental in equation (18). This seems unlikely because the fundamental would need to be available and to vary at a very high frequency given the short forecasting horizons we are considering. Furthermore, the explanatory power of any fundamental is weakened by the idiosyncratic lag between the agreement date and the closing date for a sale price. That is, house prices that close in period \(t\) actually reflect fundamentals from an unknown distribution of periods before \(t\). Finally, we note that the literature has emphasized the role of search frictions and momentum in explaining house price dynamics, which may be best captured in the reduced form by the AR terms in equation (18).
a year (February, May, August, November). Each of these contracts trades on a daily basis until the day preceding the release day of the Case-Shiller index value for the contract month, at which point there is a cash settlement. We interpret the price of the contract (i.e. the midpoint of the bid-ask spread) on day t as the market’s expectation of the house price index $S - t$ days into the future, where S denotes the settlement day (i.e. the day that the index value is released). This interpretation is supported by the motivating exercise depicted in Figure 1, which shows that surprises in the index level measured relative to these futures prices shift around stock prices in the expected way.

Of our three cities, only Los Angeles is contained in the 10-city composite and therefore has futures traded on the CME. We obtained daily price history for each of the 20 futures contracts for Los Angeles that expired during our sample period. Table 7 shows that the RMSE of the futures prices decline over time as the expiration date approaches. This is to be expected if traders are incorporating new information that arrives over time into their expectations. Table 7 also summarizes the performance of the adjusted list-price index for Los Angeles compared to the performance of the futures market for Los Angeles over our sample period. The detail for a few select forecasting horizons is presented in Figure 10. At a forecasting horizon of five weeks, the RMSE from our adjusted list-price index represents a 50 percent improvement over the forecast implied by the CME futures. For all of the forecast horizons considered in Table 7, we can reject the null hypothesis of no improvement in favor of the alternative hypothesis that the performance of the adjusted list-price index is superior.\footnote{In evaluating statistical significance for a given forecasting horizon, here we ignore the possibility that forecast errors may be serially correlated and we thus test for significance using a differences in means test. We make this assumption because the futures contracts are spaced three months apart, and thus the data that contributes to the forecast of one observation is essentially orthogonal to the data that contributes to the forecast of another observation.} This suggests that the information we exploit in our index is novel and not already known to the market.
7 Conclusion

In this paper, we have presented a new “list-price index,” which attempts to fully use the information contained in listings data in order to more timely measure of house prices. Our approach takes advantage of listings data to address several limitations of traditional repeat-sales indices. First, the listings data are available several months before the records of the actual transactions, allowing us to construct a measure of house prices that is available with almost no delay. Second, the listings data contain information about the contract date at which the buyer and seller negotiate the price and allow us to associates the measure of the house’s value to this date. In working towards these goals, our methodology includes two novel aspects that let us fully us the listings data to measure house prices. First, we link each listing to its previous sale in a manner that is fully analogous to a standard repeat-sales index and accounts for the composition of houses that are sold each month. Second, we adjust for differences between the list prices and the expected transaction prices by exploiting other information in the listings data, such as time on market and the history of list-price changes. While the timing of our index is its primary advantage, the last two points are important because ultimately it is the transaction prices not the list prices that are the standard measure of house values.

By using listings data, our list-price index is able to measure prices at the time of contract and to report these prices with almost no delay. The cost of relying exclusively on listings data for some of the home sales, however, is that we do not actually observe the transaction price. Alternatively, if one were willing to wait for access to the recorded transaction details, one could observe the actual transaction price and simply assign that price to the contract date, which would be available from the (now older) listings data. This approach would associate the price to the point in the transaction process where the value of the house was actually determined, but would not be able to observe that price data until several months later. For applications that do not require having price information as quickly, such an approach may be preferable.
References

A Model Derivations

This section provides proofs of the model predictions outlined in Section 6.1. We start with a series of propositions.

Proposition 1 *In the second period, sellers with higher reservation values post higher prices than sellers with lower reservation values.*

Proof. Working backwards, we consider the the second period problem of a seller with valuation w_i. If she posts a list price p_2, a buyer arrives with probability $\alpha_0 - \alpha_1 p_2$. Of these buyers, a fraction β will be high types, resulting in a sale at price p_2 and a fraction $1 - \beta$ will be low types, resulting in a sale at price v. With probability $1 - (\alpha_0 - \alpha_1 p_2)$, no buyer arrives and the seller is left with value w_i.

The seller’s problem

$$V_2(w_i) = \max_{p_2} (1 - \alpha_0 + \alpha_1 p_2) w_i + (\alpha_0 - \alpha_1 p_2)(\beta p_2 + (1 - \beta) v)$$

is solved by

$$p_2(w_i) = \frac{1}{2\alpha_1 \beta} (\alpha_1 w_i + \alpha_0 \beta - \alpha_1 (1 - \beta) v)$$

The derivative with respect to w_i,

$$\frac{dp_2}{dw_i} = \frac{1}{2 \beta} > 0$$

so that the posted list price p_2 is higher for sellers with larger values of w_i.

Proposition 2 *In the second period, sellers with higher valuations receive, on average, lower sale prices relative to their list prices compared to sellers with lower valuations.*

Proof. Conditional on a buyer arriving, the expected sale price is

$$E p^* = \beta p_2 + (1 - \beta) v$$

The ratio of the expected sale price to the list price is given by

$$\mu_2 = \frac{E p^*}{p_2} = \beta + (1 - \beta) v / p_2$$
which is a decreasing function of the listing price. This happens simply because when the
list price is not a binding constraint, the sale price is determined by the buyer’s valuation.
If listing price is higher, it will be higher relative to that valuation and the sale will occur
at a smaller fraction of the list price. The derivative of this ratio of expected sale price to
list price with respect to the seller’s valuation,
\[
\frac{d\mu_2}{dw_i} = -(1 - \beta)vp_2 \frac{dp_2}{dw_i} = -(1 - \beta)vp_2 \frac{1}{2\beta} < 0.
\]
Because they post higher list prices, sellers with higher valuations receive, on average, a
lower sale price relative to that list price.

Proposition 3 In the second period, sellers with higher valuations are less likely to sell their
homes than sellers with lower valuations.

Proof. The probability that the house is sold is equal to \(\alpha_0 - \alpha_1 p_t\), which is a decreasing
function of the listing price. Since \(\frac{d\mu_2}{dw_i} < 0\), this implies that sellers with higher value of \(w_i\)
are less likely to sell their homes.

Proposition 4 The results in Propositions 1-3 hold in the first period as well.

Proof. Moving backwards to the first period, the seller faces the same problem except
that if a buyer does not arrive in this period, the seller enters the second period so that the
value of not selling is \(V_2(w_i)\) rather than \(w_i\). All of the above equations continue to hold
with the substitution \(V_2(w_i)\) for \(w_i\).\(^{34}\) Given the above solution for \(p_2(w_i)\), we can write
\[
V_2(w_i) = \frac{1}{2\alpha_1\beta} (\alpha_1 w_i + \alpha_0 \beta - \alpha_1 (1 - \beta)v)^2 + (1 - \alpha_0)w_i + \alpha_0 (1 - \beta)v
\]
so that
\[
\frac{dV_2(w_i)}{dw_i} = \frac{1}{\beta} (\alpha_1 w + \alpha_0 \beta - \alpha_0 (1 - \beta)v) + 1 - \alpha_0 = \alpha_1 p_2(w_i) + (1 - (\alpha_0 - \alpha_1 p_2(w_i))) > 0,
\]
\(^{34}\)This requires a further assumption that \(v > V_2(w_i)\), i.e. that it is still optimal to accept an offer from
a low-type buyer rather than reject that offer in hopes of matching with a high-type buyer in the second
period. This assumption will hold if \(w_i\) is sufficiently low that the risk of not matching in the second period
outweighs the potential gain of meeting a buyer willing to pay the second-period asking price.
which means that $V_2(w_i)$ is a strictly increasing function and the results we derived for the second period also hold in the first period. That is, sellers with higher values of w_i have higher list prices, lower sale-to-list price ratios, and lower probability of sale in the first period as well.

Proposition 5 *Sellers lower the list price in the second period, i.e. $p_2 < p_1$.*

Proof. Consider the behavior of a seller who fails to attract a buyer in the first period and must now set a new list price in the second period. The change in list price from period one to period two is

$$p_2(w_i) - p_1(w_i) = \frac{1}{2\beta} (w_i - V_2(w_i)).$$

In the second period, the seller receives value w_i if no buyer arrives but a strictly higher value if one does. This implies $w_i - V_2(w_i) < 0$ so that from the above equation, the new list price is always lower than the original.

Proposition 6 *If $\bar{w} < (1 - \beta)v$, then the decline in list prices, $p_1 - p_2$, is larger for sellers with higher reservation values. If $w > (1 - \beta)v$, then it is the sellers with lower reservation values that decrease their list prices more.*

Proof. The derivative of the change in list prices with respect to the seller’s reservation value is given by:

$$\frac{d}{dw_i} \left(p_1(w_i) - p_2(w_i) \right) = \frac{1}{2\beta} \frac{d}{dw_i} (V_2(w_i) - w_i) = \frac{\alpha_1}{2\beta} ((1 - \beta)v - w_i).$$

If $\bar{w} < (1 - \beta)v$, then $(1 - \beta)v > w_i$, the derivative is positive, and the decline in list prices is larger for sellers with higher values of w_i. Alternatively, if $w > (1 - \beta)v$, then $w_i > (1 - \beta)v$, the derivative is negative, and it is the sellers with lower reservation values that decrease their listing prices more.\(^{35}\)

\(^{35}\)The intuition for this result is as follows. The seller in the first period is forward looking. A seller with a higher valuation knows that in the second period, she will set a higher list price in order to capture the higher benefit of matching with a potential buyer willing to pay that list price. A consequence of this higher list price is that it becomes less likely that she will attract a buyer in the second period. In particular, there is a lower probability that she will attract a low-type buyer and a higher probability that she will instead receive
In summary, the model characterizes differences in seller behavior as arising from differences in sellers’ reservation value. Sellers with higher reservation values will have lower sale-to-list price ratios and lower probability of sale. The relationship between reservation values and the size of list price changes depends on the the sellers’ reservation values relative to the expected value of matching with a buyer who is unwilling to pay the list price. If the range of sellers’ reservation values is high compared to this expected value, then sellers with higher reservation values will lower their list prices more over time. If sellers’ reservation values are lower, then it is sellers with relatively lower reservation values who will make larger reductions in list prices.

Generally, we will not observe the seller’s reservation value and must rely on observable measures such as TOM and list price changes. First, we consider the effect of TOM. In the model, a longer TOM means we are considering a seller in the second period rather than the first. In the second period, some sellers are able to sell their homes and some withdraw, having not met a buyer. In the first period, sellers only delist their homes if there is a sale. This means that by construction, the probability that a delisting is a sale is higher in the first period. This is consistent with the data if we find that delistings with shorter TOM are more likely to result in sales. With regard to the sale-to-list price ratio, there are two changes in the second period relative to the first. The first change is that all sellers who are still in the market will lower their list prices. This increases the expected sale-to-list price ratio. The second change is a difference in composition. Sellers with higher reservation values will post higher prices and be less like to match with a buyer in the first period and will therefore make up a larger fraction of sellers in the second period. Because these sellers tend to have lower reservation value \(w_i \). If \(w_i \) is high compared with the expected benefit of matching with a low-type buyer \((1 - \beta)v\), this increases the value of reaching the second period. This makes the seller with the higher valuation marginally raise her list price in the first period in order to increase the probability of reaching the second period. This higher price in the first period makes the size of the list price change larger. Conversely, if \(w_i \) is low compared with the expected benefit of matching with a low-type buyer \((1 - \beta)v\), then a lower probability of matching with a low-type buyer decreases the value of reaching the second period. In this case, the seller with the relatively higher valuation will set a slightly lower list price in the first period in order to decrease the chance of reaching the second period. In this case, sellers with higher valuations will have smaller decline in list prices between the two periods.
sale-to-list price ratios relative to sellers with lower valuations, this change in composition will have the opposite effect. Over-all, the effect of TOM is ambiguous. However, if we control for the size of the list-price change, differences in TOM should capture only this composition effect. In this case, the model predicts that, after controlling for the changes in list-price, sellers with greater TOM are more likely to have lower sale-to-list price ratios.

As described above, the model is ambiguous about which types of seller make larger changes to their list prices over time, and therefore it does not have clear predictions about whether sellers who have lowered their list prices more will have higher or lower sale-to-list price ratio and whether they will be more or less likely to sell. The model allows for several possible cases. As shown above, if sellers’ reservation values are sufficiently below the valuation of the low-type buyers, then sellers with higher reservation values adjust their prices more. In this case, sellers with higher reservation values adjust their prices more and we would expect that larger list price changes are associated with both lower sale-to-list price ratios and lower probabilities of sale. Alternatively, if sellers’ reservation values are closer to the valuations of buyers, then it is sellers with lower reservation values make the larger changes in list prices. In this case, we would expect that larger list price changes are associated with both higher sale-to-list price ratios and higher probabilities of sale.
This figure shows the response of the stock prices of six different home-building companies to surprises in the Case-Shiller index upon its release. The surprise is measured as the difference between the released index value and market expectations based on futures contracts traded on the Chicago Mercantile Exchange. The figure shows a sample of 25 different Case-Shiller index release days for which data are available on futures prices. Changes in stock prices are measured as the opening price on the day of a Case-Shiller index release relative to the closing price on the day before. We difference off the overnight change in the S&P500 index from each homebuilder stock price change.
Figure 2: Case-Shiller House Price Index

This figure shows the Case-Shiller House Price Index for Phoenix, Los Angeles and Seattle over the time period in which our transactions data and listings data overlap (2008 - 2012). The index in each city is normalized to 1 in January 2008.
Figure 3: Median Sale-to-List Price Ratio

This figure shows median sale-to-list price ratios for each city in our sample, as well as several other large cities for comparison, over time. The data are from Zillow.
Figure 4: List Price of Withdrawals Relative to List Price of Sales

This figure shows the difference between the median log list price of houses that are withdrawn in a given quarter-year relative to the median log list price of homes that are sold. Withdrawals are defined as delistings that do not result in closed transactions, while sales are delistings that do. An estimate of time-invariant house quality is partialed out of list prices, as discussed in the main text.
Figure 5: Share of Delistings that Result in Sales

This figure shows the share of delistings that are observed to lead to sales in each quarter in each city.

Figure 6: Lag Between Delisting and Closing Dates

This figure shows the 25th, 50th, and 75th percentiles of the distribution between closing dates and delisting dates for delistings that result in closed transactions. Closing date is when ownership of the house is transferred from the seller to the buyer, and the transaction is recorded in the public record.
Figure 7: Share of Sales Transactions Appearing in the Listings Data

This figure shows the share of sales in each quarter and in each city that can be linked back to a listing in the MLS database.
Figure 8: Zero-weeks-ahead Forecast of List-Price Index

The thick lines in the figure show the two-month change in house prices based on a repeat-sales index calculated following the Case-Shiller methodology. The thin lines show the forecast of this two-month change based on adjusted list-price index at a forecasting horizon of zero weeks, which is two months prior to the release of the Case-Shiller Index. Changes are calculated as the index value (which is the log of the price level) minus the index value two months before (which is the log of the price level from two months before).
Figure 9: Five-weeks-ahead Forecast of List-Price Index

The thick lines in the figure show the four-month change in house prices based on the repeat sales index calculated following the Case-Shiller methodology. The thin lines show the forecast of this four-month change based on adjusted list-price index at a forecasting horizon of five weeks. Changes are calculated as the index value (which is the log of the price level) minus the index value four months before (which is the log of the price level from four months before).
Figure 10: Forecast Errors of List-Price Index and CME Futures

The thick lines in the figure show the forecast error associated with futures prices on the Chicago Mercantile Exchange (CME) 8, 10, 14 weeks ahead of the Case-Shiller release. The thin lines in the figure show the forecast error associated with the adjusted list-price index computed 8, 10, 14 weeks ahead of the Case-Shiller release. Forecast errors are calculated as the predicted index value (which is the predicted log of the price level) relative to true index value (which is the log of the price level). Results are for Los Angeles only.
Figure 11: 2013 Los Angeles House Prices

The three vertical lines on each panel show the dates of Chairman Ben Bernanke’s May 22 testimony to Congress and the the May and September FOMC meetings. The upper-left figure shows the weekly estimates of our simple and adjusted list-price indices for Los Angeles during 2013. The solid lines show linear fits to the adjusted index for the three time periods demarcated by the May 22 testimony and the September FOMC meeting. The upper-right panel shows the monthly Case-Shiller house price index for Los Angeles. The lower panel shows the interest rates on 30-year conforming fixed-rate mortgages as measured by the Freddie Mac Primary Mortgage Market Survey.
Figure 12: 2013 Phoenix House Prices

The three vertical lines on each panel show the dates of Chairman Ben Bernanke’s May 22 testimony to Congress and the May and September FOMC meetings. The upper-left figure shows the weekly estimates of our simple and adjusted list-price indices for Phoenix during 2013. The solid lines show linear fits to the adjusted index for the three time periods demarcated by the May 22 testimony and the September FOMC meeting. The upper-right panel shows the monthly Case-Shiller house price index for Phoenix. The lower panel shows the interest rates on 30-year conforming fixed-rate mortgages as measured by the Freddie Mac Primary Mortgage Market Survey.
Figure 13: 2013 Seattle House Prices

The three vertical lines on each panel show the dates of Chairman Ben Bernanke’s May 22 testimony to Congress and the May and September FOMC meetings. The upper-left figure shows the weekly estimates of our simple and adjusted list-price indices for Seattle during 2013. The solid lines show linear fits to the adjusted index for the three time periods demarcated by the May 22 testimony and the September FOMC meeting. The upper-right panel shows the monthly Case-Shiller house price index for Seattle. The lower panel shows the interest rates on 30-year conforming fixed-rate mortgages as measured by the Freddie Mac Primary Mortgage Market Survey.
Table 1: Summary Statistics for Delistings

This table shows summary statistics for houses that are delisted from the MLS databases between 2008-2012. The table describes 442,746 delistings in Los Angeles, 381,595 delistings in Phoenix and 154,050 delistings in Seattle. \(I[\cdot] \) denotes the indicator function.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Final List/Initial List Price</th>
<th>Number of List Price Changes</th>
<th>Days on Market</th>
<th>[House Relisted Within 1 Month]</th>
<th>[House Relisted Within 2 to 6 Months]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.89</td>
<td>0</td>
<td>189000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0.96</td>
<td>0</td>
<td>275000</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
<td>0</td>
<td>399999</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>1.00</td>
<td>1</td>
<td>649000</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>1.00</td>
<td>2</td>
<td>1100000</td>
<td>182</td>
<td>1</td>
</tr>
<tr>
<td>Phoenix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.84</td>
<td>0</td>
<td>79900</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0.93</td>
<td>0</td>
<td>114000</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
<td>0</td>
<td>169900</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>1.00</td>
<td>1</td>
<td>274900</td>
<td>104</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>1.00</td>
<td>3</td>
<td>450000</td>
<td>176</td>
<td>1</td>
</tr>
<tr>
<td>Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.83</td>
<td>0</td>
<td>155700</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0.92</td>
<td>0</td>
<td>219900</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0.98</td>
<td>1</td>
<td>315000</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>1.00</td>
<td>2</td>
<td>475000</td>
<td>154</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>1.00</td>
<td>3</td>
<td>699950</td>
<td>246</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2: Variation in Sale-to-List Price Ratio

The sample is all delistings that sell. Change List Price equals one if the seller adjusted the list price at least once before delisting. \(I[\cdot]\) denotes the indicator function.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I[Days on Market < 14]</td>
<td>0.0433***</td>
<td>0.0437***</td>
<td>0.0452***</td>
<td>0.0418***</td>
<td>0.0692***</td>
</tr>
<tr>
<td></td>
<td>(0.0008)</td>
<td>(0.0016)</td>
<td>(0.0013)</td>
<td>(0.0012)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>I[14 < Days on Market < 45]</td>
<td>0.0266***</td>
<td>0.0354***</td>
<td>0.0255***</td>
<td>0.0263***</td>
<td>0.0467***</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0015)</td>
<td>(0.0012)</td>
<td>(0.0012)</td>
<td>(0.0013)</td>
</tr>
<tr>
<td>I[45 < Days on Market < 90]</td>
<td>0.0166***</td>
<td>0.0207***</td>
<td>0.0182***</td>
<td>0.0147***</td>
<td>0.0305***</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0015)</td>
<td>(0.0012)</td>
<td>(0.0011)</td>
<td>(0.0013)</td>
</tr>
<tr>
<td>I[90 < Days on Market < 180]</td>
<td>0.0057***</td>
<td>0.0090***</td>
<td>0.0085***</td>
<td>0.0033***</td>
<td>0.0109***</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0014)</td>
<td>(0.0012)</td>
<td>(0.0011)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>(Final List Price/Initial List Price)*I[Change List Price=1]</td>
<td>-0.0494***-0.0809***-0.0514***-0.0463***-0.0736***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0038)</td>
<td>(0.0095)</td>
<td>(0.0059)</td>
<td>(0.0069)</td>
<td>(0.0058)</td>
</tr>
<tr>
<td>I[F]inal List Price > Initial List Price]</td>
<td>0.0192***</td>
<td>0.0121***</td>
<td>0.0222***</td>
<td>0.0186***</td>
<td>0.0153***</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0040)</td>
<td>(0.0019)</td>
<td>(0.0017)</td>
<td>(0.0024)</td>
</tr>
<tr>
<td>I[Change List Price=1]</td>
<td>0.0381***</td>
<td>0.0770***</td>
<td>0.0411***</td>
<td>0.0323***</td>
<td>0.0660***</td>
</tr>
<tr>
<td></td>
<td>(0.0035)</td>
<td>(0.0090)</td>
<td>(0.0049)</td>
<td>(0.0064)</td>
<td>(0.0054)</td>
</tr>
<tr>
<td>I[Final List Price < Previous Sales Price]</td>
<td>0.0225***</td>
<td>0.0139***</td>
<td>0.0312***</td>
<td>0.0164***</td>
<td>0.0193***</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0007)</td>
<td>(0.0004)</td>
<td>(0.0005)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Foreclosure Dummy</td>
<td>0.0058***</td>
<td>0.0050***-0.0122***</td>
<td>0.0228***</td>
<td>0.0167***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0013)</td>
<td>(0.0007)</td>
<td>(0.0007)</td>
<td>(0.0008)</td>
</tr>
</tbody>
</table>

Seasonal Dummies: X X X X X
MSA Dummies: X
LA sample: X X X
Phoenix sample: X X
Seattle sample: X X X
Years less than 2010 only: X

Observations: 384422 61785 170140 152497 142231
R-squared: 0.051 0.041 0.061 0.053 0.079

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table 3: Variation in Probability of Sale

The sample is all delistings. Change List Price equals one if the seller adjusted the list price at least once before delisting. The dependent variable, “Sell”, equals one if the delisting results in a closed transaction. \(I[\cdot] \) denotes the indicator function.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I[\text{Days on Market} < 14])</td>
<td>0.3467***</td>
<td>0.4739***</td>
<td>0.3803***</td>
<td>0.2569***</td>
<td>0.4136***</td>
</tr>
<tr>
<td></td>
<td>(0.0027)</td>
<td>(0.0050)</td>
<td>(0.0040)</td>
<td>(0.0045)</td>
<td>(0.0039)</td>
</tr>
<tr>
<td>(I[14 < \text{Days on Market} < 45])</td>
<td>0.3080***</td>
<td>0.4089***</td>
<td>0.3059***</td>
<td>0.2613***</td>
<td>0.3502***</td>
</tr>
<tr>
<td></td>
<td>(0.0028)</td>
<td>(0.0061)</td>
<td>(0.0042)</td>
<td>(0.0046)</td>
<td>(0.0043)</td>
</tr>
<tr>
<td>(I[45 < \text{Days on Market} < 90])</td>
<td>0.2159***</td>
<td>0.2900***</td>
<td>0.2228***</td>
<td>0.1713***</td>
<td>0.2339***</td>
</tr>
<tr>
<td></td>
<td>(0.0032)</td>
<td>(0.0074)</td>
<td>(0.0049)</td>
<td>(0.0048)</td>
<td>(0.0049)</td>
</tr>
<tr>
<td>(I[90 < \text{Days on Market} < 180])</td>
<td>0.0683***</td>
<td>0.0731***</td>
<td>0.0771***</td>
<td>0.0504***</td>
<td>0.0691***</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0050)</td>
<td>(0.0038)</td>
<td>(0.0038)</td>
<td>(0.0036)</td>
</tr>
<tr>
<td>((\text{Final List Price}/\text{Initial List Price}) \cdot I[\text{Change List Price}=1])</td>
<td>-0.1410***</td>
<td>-0.2862***</td>
<td>-0.1531***</td>
<td>-0.1083***</td>
<td>-0.2742***</td>
</tr>
<tr>
<td></td>
<td>(0.0117)</td>
<td>(0.0268)</td>
<td>(0.0173)</td>
<td>(0.0193)</td>
<td>(0.0167)</td>
</tr>
<tr>
<td>(I[\text{Final List Price} > \text{Initial List Price}])</td>
<td>0.0027</td>
<td>-0.0493***</td>
<td>0.0043</td>
<td>-0.0098</td>
<td>-0.0117</td>
</tr>
<tr>
<td></td>
<td>(0.0054)</td>
<td>(0.0182)</td>
<td>(0.0089)</td>
<td>(0.0074)</td>
<td>(0.0090)</td>
</tr>
<tr>
<td>(I[\text{Change List Price}=1])</td>
<td>0.1527***</td>
<td>0.2520***</td>
<td>0.1582***</td>
<td>0.1491***</td>
<td>0.2819***</td>
</tr>
<tr>
<td></td>
<td>(0.0111)</td>
<td>(0.0248)</td>
<td>(0.0163)</td>
<td>(0.0185)</td>
<td>(0.0153)</td>
</tr>
<tr>
<td>(I[\text{Final List Price} < \text{Previous Sales Price}])</td>
<td>0.0577***</td>
<td>0.0074***</td>
<td>0.1016***</td>
<td>0.0378***</td>
<td>0.0849***</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0035)</td>
<td>(0.0022)</td>
<td>(0.0020)</td>
<td>(0.0020)</td>
</tr>
<tr>
<td>Foreclosure Dummy</td>
<td>0.1889***</td>
<td>0.1515***</td>
<td>0.1270***</td>
<td>0.2451***</td>
<td>0.2370***</td>
</tr>
<tr>
<td></td>
<td>(0.0019)</td>
<td>(0.0056)</td>
<td>(0.0030)</td>
<td>(0.0028)</td>
<td>(0.0029)</td>
</tr>
<tr>
<td>(I[90 < \text{Days on Market}] \cdot I[\text{Change List Price}])</td>
<td>0.1195***</td>
<td>0.1858***</td>
<td>0.1390***</td>
<td>0.0838***</td>
<td>0.1263***</td>
</tr>
<tr>
<td></td>
<td>(0.0035)</td>
<td>(0.0083)</td>
<td>(0.0054)</td>
<td>(0.0053)</td>
<td>(0.0052)</td>
</tr>
<tr>
<td>(I[\text{Days since last price change} < 30])</td>
<td>0.0625***</td>
<td>0.0914***</td>
<td>0.0856***</td>
<td>0.0222***</td>
<td>0.0844***</td>
</tr>
<tr>
<td></td>
<td>(0.0023)</td>
<td>(0.0048)</td>
<td>(0.0034)</td>
<td>(0.0039)</td>
<td>(0.0033)</td>
</tr>
<tr>
<td>(I[\text{Days on Market} = 180])</td>
<td>-0.1131***</td>
<td>-0.1025***</td>
<td>-0.1203***</td>
<td>-0.1087***</td>
<td>-0.1227***</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td>(0.0086)</td>
<td>(0.0068)</td>
<td>(0.0057)</td>
<td>(0.0054)</td>
</tr>
<tr>
<td>Seasonal Dummies</td>
<td>X X X X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSA Dummies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LA sample</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Phoenix sample</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Seattle sample</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Years less than 2009 only</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Observations</td>
<td>624113</td>
<td>108736</td>
<td>246894</td>
<td>268483</td>
<td>294536</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Table 4: Variation in Average Sale-to-List Price Ratio and Fraction of Sales

Each observation is a MSA-month. All variables are averages over all of the delistings in the MSA-month. Change List Price equals one if the seller adjusted the list price at least once before delisting. \(I[] \) denotes the indicator function. For example, \(I[Sell]\) in MSA \(j \) in month \(t \) is the share of all delistings that result in sales in MSA \(j \) in month \(t \).

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Log (Sale Price) - Log (List Price)</th>
<th>(2) Log (Sale Price) - Log (List Price)</th>
<th>(3) Log (Sale Price) - Log (List Price)</th>
<th>(4) Log (Sale Price) - Log (List Price)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>\text{Days on Market < 14}</td>
<td>)</td>
<td>-0.3817</td>
<td>0.0398</td>
</tr>
<tr>
<td></td>
<td>(0.5267)</td>
<td>(0.0286)</td>
<td>(0.4339)</td>
<td>(0.0237)</td>
</tr>
<tr>
<td>(</td>
<td>\text{14 < Days on Market < 45}</td>
<td>)</td>
<td>-0.5224</td>
<td>-0.0384</td>
</tr>
<tr>
<td></td>
<td>(0.5561)</td>
<td>(0.0322)</td>
<td>(0.4609)</td>
<td>(0.0258)</td>
</tr>
<tr>
<td>(</td>
<td>\text{45 < Days on Market < 90}</td>
<td>)</td>
<td>-0.4494</td>
<td>-0.0534*</td>
</tr>
<tr>
<td></td>
<td>(0.5813)</td>
<td>(0.0294)</td>
<td>(0.4821)</td>
<td>(0.0235)</td>
</tr>
<tr>
<td>(</td>
<td>\text{90 < Days on Market < 180}</td>
<td>)</td>
<td>-0.4437</td>
<td>-0.0575</td>
</tr>
<tr>
<td></td>
<td>(0.2928)</td>
<td>(0.0351)</td>
<td>(0.2365)</td>
<td>(0.0281)</td>
</tr>
<tr>
<td>(</td>
<td>\text{Final List Price/Initial List Price}</td>
<td>)</td>
<td>1.8978</td>
<td>-0.0148</td>
</tr>
<tr>
<td></td>
<td>(1.5354)</td>
<td>(0.0576)</td>
<td>(1.2410)</td>
<td>(0.0462)</td>
</tr>
<tr>
<td>(</td>
<td>\text{Final List Price} > \text{Initial List Price}</td>
<td>)</td>
<td>2.0232</td>
<td>1.2296***</td>
</tr>
<tr>
<td></td>
<td>(1.5438)</td>
<td>(0.1670)</td>
<td>(1.2418)</td>
<td>(0.1761)</td>
</tr>
<tr>
<td>(</td>
<td>\text{Change List Price=1}</td>
<td>)</td>
<td>-2.9932</td>
<td>-0.0714</td>
</tr>
<tr>
<td></td>
<td>(1.8285)</td>
<td>(0.0537)</td>
<td>(1.4800)</td>
<td>(0.0433)</td>
</tr>
<tr>
<td>(</td>
<td>\text{Final List Price < Previous Sales Price}</td>
<td>)</td>
<td>0.1016</td>
<td>0.0109</td>
</tr>
<tr>
<td></td>
<td>(0.1083)</td>
<td>(0.0156)</td>
<td>(0.0897)</td>
<td>(0.0125)</td>
</tr>
<tr>
<td>Foreclosure Dummy</td>
<td>1.0187***</td>
<td>0.1224***</td>
<td>0.9325***</td>
<td>0.0908**</td>
</tr>
<tr>
<td></td>
<td>(0.3038)</td>
<td>(0.0499)</td>
<td>(0.2443)</td>
<td>(0.0401)</td>
</tr>
<tr>
<td>(</td>
<td>\text{90 < Days on Market} \ast \text{Change List Price}</td>
<td>)</td>
<td>0.4321</td>
<td>1.1767</td>
</tr>
<tr>
<td></td>
<td>(0.8933)</td>
<td>(0.0109)</td>
<td>(0.0763)</td>
<td>(0.0286)</td>
</tr>
<tr>
<td>(</td>
<td>\text{Days since last price change < 30}</td>
<td>)</td>
<td>1.2442***</td>
<td>0.5348</td>
</tr>
<tr>
<td></td>
<td>(0.4518)</td>
<td>(0.0156)</td>
<td>(0.0897)</td>
<td>(0.0125)</td>
</tr>
<tr>
<td>(</td>
<td>\text{Days on Market = 180}</td>
<td>)</td>
<td>-1.0428</td>
<td>-0.7992</td>
</tr>
<tr>
<td>Seasonal Dummies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MSA Dummies</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2-month Lag of Dependent Variable</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Observations</td>
<td>144</td>
<td>174</td>
<td>144</td>
<td>174</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.715</td>
<td>0.759</td>
<td>0.818</td>
<td>0.846</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

*** \(p<0.01 \), ** \(p<0.05 \), * \(p<0.1 \)
Table 5: Forecasting Performance of Simple and Adjusted List-Price Indices

The forecast horizon is measured from the date of the last observed listings data until the end of the month we are trying to forecast. The second column shows the number of months until the release of the the Case-Shiller house price index for the month we are forecasting. The index is released with a two-month delay. We forecast changes in the Case-Shiller index (i.e. changes in the log of the price level). RMSE abbreviates root mean square error; MAE abbreviates mean absolute error. Each observation is a MSA-month.

<table>
<thead>
<tr>
<th>Forecast Horizon (Weeks)</th>
<th>Adjusted Index</th>
<th>Simple Index</th>
<th>Adjusted Index/Simple Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>MAE</td>
<td>R-squared</td>
</tr>
<tr>
<td>-3</td>
<td>0.011</td>
<td>0.009</td>
<td>0.650</td>
</tr>
<tr>
<td>-2</td>
<td>0.011</td>
<td>0.009</td>
<td>0.649</td>
</tr>
<tr>
<td>-1</td>
<td>0.011</td>
<td>0.009</td>
<td>0.649</td>
</tr>
<tr>
<td>0</td>
<td>0.011</td>
<td>0.009</td>
<td>0.648</td>
</tr>
<tr>
<td>1</td>
<td>0.015</td>
<td>0.012</td>
<td>0.706</td>
</tr>
<tr>
<td>2</td>
<td>0.016</td>
<td>0.013</td>
<td>0.696</td>
</tr>
<tr>
<td>3</td>
<td>0.016</td>
<td>0.013</td>
<td>0.687</td>
</tr>
<tr>
<td>4</td>
<td>0.016</td>
<td>0.013</td>
<td>0.669</td>
</tr>
<tr>
<td>5</td>
<td>0.020</td>
<td>0.015</td>
<td>0.714</td>
</tr>
<tr>
<td>6</td>
<td>0.021</td>
<td>0.016</td>
<td>0.691</td>
</tr>
<tr>
<td>7</td>
<td>0.022</td>
<td>0.017</td>
<td>0.658</td>
</tr>
<tr>
<td>8</td>
<td>0.023</td>
<td>0.018</td>
<td>0.628</td>
</tr>
<tr>
<td>9</td>
<td>0.027</td>
<td>0.020</td>
<td>0.656</td>
</tr>
<tr>
<td>10</td>
<td>0.028</td>
<td>0.021</td>
<td>0.627</td>
</tr>
<tr>
<td>11</td>
<td>0.030</td>
<td>0.023</td>
<td>0.565</td>
</tr>
<tr>
<td>12</td>
<td>0.031</td>
<td>0.023</td>
<td>0.539</td>
</tr>
<tr>
<td>13</td>
<td>0.035</td>
<td>0.026</td>
<td>0.556</td>
</tr>
<tr>
<td>14</td>
<td>0.037</td>
<td>0.028</td>
<td>0.507</td>
</tr>
<tr>
<td>15</td>
<td>0.041</td>
<td>0.030</td>
<td>0.415</td>
</tr>
<tr>
<td>16</td>
<td>0.043</td>
<td>0.032</td>
<td>0.333</td>
</tr>
<tr>
<td>17</td>
<td>0.048</td>
<td>0.035</td>
<td>0.368</td>
</tr>
<tr>
<td>18</td>
<td>0.051</td>
<td>0.037</td>
<td>0.300</td>
</tr>
<tr>
<td>19</td>
<td>0.053</td>
<td>0.040</td>
<td>0.227</td>
</tr>
<tr>
<td>20</td>
<td>0.056</td>
<td>0.041</td>
<td>0.147</td>
</tr>
<tr>
<td>21</td>
<td>0.059</td>
<td>0.044</td>
<td>0.213</td>
</tr>
<tr>
<td>22</td>
<td>0.062</td>
<td>0.046</td>
<td>0.152</td>
</tr>
<tr>
<td>23</td>
<td>0.063</td>
<td>0.047</td>
<td>0.116</td>
</tr>
<tr>
<td>24</td>
<td>0.065</td>
<td>0.049</td>
<td>0.054</td>
</tr>
</tbody>
</table>
Table 6: Forecasting Performance of Adjusted List-Price Index Relative to Alternative Forecasts

Forecasting regression is an AR(3) with seasonal dummies, MSA dummies, controls for changes in national mortgage rates, and controls for changes in state level unemployment rates estimated on the entire history of Case-Shiller values for Los Angeles, Phoenix, and Seattle. Each observation is a MSA-month. The first column shows the number of months until the release of the the Case-Shiller house price index for the month we are forecasting. The index is released with a two-month delay.

<table>
<thead>
<tr>
<th># Months in advance of Case-Shiller</th>
<th>Root Mean Square Error</th>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forecasting Regression</td>
<td>Adjusted Index</td>
</tr>
<tr>
<td>2</td>
<td>0.015 **</td>
<td>0.011</td>
</tr>
<tr>
<td>3</td>
<td>0.026 **</td>
<td>0.015</td>
</tr>
<tr>
<td>4</td>
<td>0.038 **</td>
<td>0.020</td>
</tr>
<tr>
<td>5</td>
<td>0.051 **</td>
<td>0.027</td>
</tr>
<tr>
<td>6</td>
<td>0.056 **</td>
<td>0.035</td>
</tr>
<tr>
<td>7</td>
<td>0.072</td>
<td>0.048</td>
</tr>
<tr>
<td>8</td>
<td>0.080</td>
<td>0.059</td>
</tr>
</tbody>
</table>

*, **, *** denotes that we can reject the null of forecast error equality in favor of the alternative that the forecast error of the adjusted list-price index is lower at the 1, 5, and 10 percent levels according to the Diebold-Mariano test.
Table 7: Forecasting Performance Relative to CME Futures

The forecast horizon is measured from the date of the last observed listings data until the end of the month we are trying to forecast. The second column shows the number of months until the release of the the Case-Shiller house price index for the month we are forecasting. The index is released with a two-month delay. Performance for both the adjusted index and the Chicago Mercantile Exchange (CME) futures prices is for Los Angeles only. Futures contracts extending 18 months into the future are listed four times a year. Each of these contracts trades on a daily basis until the day preceding the Case-Shiller release day for the contract month. We use the price of the futures contract relative to the realized index value to calculate performance. Only the months in which a CME contract exists are used to calculate the performance of the adjusted list-price index.

<table>
<thead>
<tr>
<th>Forecast Horizon (Weeks)</th>
<th># Months Ahead of Case Shiller</th>
<th>Root Mean Square Error</th>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Adjusted Index</td>
<td>CME Futures</td>
</tr>
<tr>
<td>-3</td>
<td>2</td>
<td>0.013</td>
<td>0.022</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>0.013</td>
<td>0.023</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0.013</td>
<td>0.033</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0.012</td>
<td>0.035</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.019</td>
<td>0.041</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.019</td>
<td>0.042</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.019</td>
<td>0.043</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.019</td>
<td>0.045</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0.024</td>
<td>0.047</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.025</td>
<td>0.057</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.025</td>
<td>0.058</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0.026</td>
<td>0.058</td>
</tr>
</tbody>
</table>

*, **, *** denotes that we can reject the null of forecast error equality in favor of the alternative that the forecast error of the adjusted list-price index is lower at the 1, 5, and 10 percent levels according to the Diebold-Mariano test.