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1. Introduction

Since Stigler (1970), economists have recognized that regulation is very often “used” by

industry to limit competition. By limiting competition, regulation should keep industry prices

“high.” But by limiting competition it may have an adverse impact on productivity as well. This

is an age-old view, the view that lack of competition will retard innovation and more generally

productivity, and Stigler (1957) presents a nice summary of it.

While regulation’s impact on prices is well studied, its impact on productivity is not. This is

the main question of this paper: Does regulation reduce productivity? We analyze regulation of the

U.S. sugar manufacturing industry during the Sugar Act period, 1934-74. Regulation dramatically

reduced competition in this industry in this period. Factories were given sales quotas, farmers were

given acreage quotas, and foreign countries were given quotas.

As Stigler (1970) also argued, there was typically more to regulation than limiting competi-

tion. Once an industry uses the political process to limit competition, some groups of the industry

with more political power may try to insert other regulations to shift the benefits of reduced compe-

tition to themselves. Stigler gave examples of how smaller firms typically benefited relative to large

firms in appropriating limited production quotas or import quotas. This phenomena was at work

here. For “voluntarily” abiding by acreage quotas, farmers were sent checks by the government.

Factories were taxed on the sugar they produced (even though they abided by quotas). We’ll call

this second feature of regulation a redistribution scheme.

The regulation of the sugarbeet manufacturing industry, then, looks similar to regulation in

many industries. A prime consequence of regulation is to limit competition in industry. In the

trucking industry, certificates were needed to enter markets. In the banking industry, firms were

often limited to single branches. In these and most regulated industries, industry uses the regulatory

process to limit competition within the industry (and from without). And this was true in the sugar

industry as well.



While regulation in the sugar industry shares features with other industries, its different in a

key aspect: it is relatively easy to study the impacts of regulation. Among other things, regulations

were not complex, productivity is easy to measure, and regulation was preceded, and followed, by

many years of no regulation.

We find that regulation significantly reduced productivity at the factory level, induced the

industry to move production location, and led to significantly higher prices than if there had been

no regulation. This is a positive analysis, normative analysis will follow.

The outline of paper is as follows. In the next section, we present some background on

the industry and regulations during the Sugar Act period. We also sketch some intuition for how

the regulations would influence industry productivity, its location and its prices. In Section 3, we

present time series evidence on these three variables, productivity, location and prices. In Section 4,

we introduce a simple model that we will use to analyze the impact of regulation. It is a model of a

factory operating in a non-irrigated area, one where farmers have no control over the sugar content

of their beets. In Section 5, we extend the model to an irrigated district, one where farmers can

influence sugar content of the beets. In Section 6, we begin our analysis of regulation, asking how

the redistribution scheme influenced industry location and productivity. In Section 7, we examine

the impact of regulations that limited competition.

2. Overview of Industry and Regulation

We set the stage here. We’ll introduce enough notation so that we can show key data in the

next section.

A. Overview of Industry.

We denote the output of the industry, that is, white-sugar, by y. For example, y might be

100-pound bags (CWTs) of white-sugar. Factories produce y using factory inputs, like labor, energy,

and capital, and sugarbeets that are typically farmed very close to the factory.
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We’ll let t denote tons of beets. The beets contain sugar. We’ll let s denote the tons of sugar

contained in the beets, or sugar-in-the-crop as opposed to in-the-bag (i.e., y). The beets typically

contain only small amounts of sugar, that is, the sugar content of the beets, q = s/t, is on the order

of 15 percent. This is a big reason why transportation costs loom large, and beets typically shipped

only short distances. Factories pay farmers for beets based on the sugar in the beets s, based on

contracts signed before the season opens.

Not all sugar in the beets will be extracted, of course, that is, y/s < 1.

B. Overview of Regulation.

From its beginnings in the 1870s until to 1934, the U.S. government’s role in the sugarbeet

industry was simple: it set a tariff that protected the industry. There was no domestic regulation

of the industry.

Government involvement in the industry dramatically changed in the Great Depression, as

it did in many industries. In 1934, the government created a very significant regulatory apparatus

under the Sugar Acts that would last 40 years, 1934-74. There were two main features of regulation.

First, the government undertook programs to control the sales of sugar in the U.S. market. Second,

and as is so often the case when the political process is used to control production, some groups

in the industry (e.g., the farmers) were able to institute programs to shift some of the benefits of

regulation toward themselves and away from other groups (e.g., the factories).

Regarding controlling sales of sugar, there was a program to limit foreign sales into the U.S.

market and a program to limit domestic sales. In particular, once the government set a sales-target

for a year (sometimes called the “consumption estimate”), it used a formula to divvy this sales

between foreign and domestic sources. To control foreign sales, it used quotas. Given foreign sugar

had to enter through ports, quotas were easy to enforce. To control domestic sales, an elaborate

regulatory apparatus was set up. Manufacturing firms were given marketing allotments. They could
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not sell more than these allotments. Since there were only about 15 firms, it was also fairly easy

to monitor sales of these firms. Still, as another way to control supply, farmers were given acreage

allotments stating how many acres they could devote to beets.

As mentioned, the second feature of regulation involved programs “redistributing” benefits of

regulation (flowing from limited supply) from factories to farmers. In particular, farmers were sent

checks from the government that were based on the sugar s they produced. They were big checks.

Also, factories were taxed on the bags of sugar y they produced. The rationale (there always is

one) for sending farmers checks was to compensate them for voluntarily abiding by the acreage

allotments.

What impact might we expect from these regulations? Let us sketch some arguments, and

later establish them in the context of a model. Lets look at this in two steps. First, we’ll assume

that there is a tariff, and consider the impact of the programs to redistribute benefits. Then we’ll

consider the impact of moving from a tariff to domestic and foreign quotas.

Assume sugar prices are fixed (at the world price plus the tariff). Again, the redistribution

scheme had government sending farmers checks for s, and taxing factories for bags y. Recall, the

factory gives farmers checks for s; the government payment is a (big) bonus on the factory check. In

effect, the government is telling one part of the manufacturing enterprise to make lots more input

(s), and another to make less output (y). Its not inconceivable that this could lead to adverse

productivity consequences. Lets sketch some.

In some areas farmers can influence s = q · t. How? This is typically achieved at the end

of the growing season, using methods that increase s, by increasing t, though decreasing q. These

growing methods were available before the Sugar Act, of course, but the government bonus created

greater incentives to pursue them. As we discuss below, lowering q will have an adverse effect on

factory productivity.

Some areas have higher s (because of better weather conditions, etc.), and the government
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bonus created greater incentives for farmers to expand there. This lead the industry to shift toward

these areas. So, there are two initial effects: factory productivity down, and changes in location.

One might also expect the bonus to influence farmer innovation, and it did. Farmers found

more ways to increase s, again typically involving decreases in q.

Next, consider the impact of moving from a tariff to domestic and foreign quotas. Since

foreign sugar was subject to quota, the domestic price was decupled from the world price. Consider

the pricing strategy of a domestic manufacturing firm. Given the firm had a fixed allotment, it had

no incentive to cut price to increase its profit. So, domestic regulations should keep prices high.

So, it is not foreign protection that should keep prices high, but foreign protection and domestic

regulations in tandem.

One might also expect factories incentives to innovate to be dulled. The return to finding

better ways to manufacture sugar and hence lower costs was limited, since firms had fixed allotments.

Also, competition was stifled, an negative effect on innovation (perhaps) over and above the influence

of a fixed allotment.

Again, the sugar act expired in 1974. The redistribution scheme was ended. The control of

domestic sugar sales was ended. Foreign quotas were kept (though the foreign quotas have been

reduced over time). Given that there is no control of domestic sales, competition has increased.

Another development was the introduction of high fructose corn syrup in the late 1970’s, which also

increased competition.

3. Productivity and Industry Location over the Century
A. Factory and farm productivity

Figures 1-6 present evidences on factory productivity over time. All the figures show a similar

pattern, that productivity is growing until the sugar act begins in 1934, and then productivity begins

to decline. So in particular, productivity continues to grow through the Great Depression. In this

version of the paper, we show productivity at the factory level for a small set of factories. But these
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factories are representative of the other factories in the industry.

Figures 1 and 2 show output (y) relative to energy use (b, which is BTU’s in Figure 1 and

Coal in Figure 2) in four factories, Oxnard (in California, owned by American Crystal), Rocky Ford

(in Colorado, owned by American Crystal), Billings (in Montana, owned by Great Western), and

Gering (in Nebraska, owned by Great Western). Energy is an important factory input (energy costs

are as large as labor costs). As seen, productivity is growing until 1934 then falls. Figure 3 shows

output relative to labor input at Oxnard and Rocky Ford Here we only have data beginning in 1929.

The pattern here is similar to that in Figure 1 and 2.

Another measure of factory productivity which is more widely available is the recovery rate

(y/t). The recovery rate is the output of sugar per ton of beets. In Figure 4, we plot the recovery

rate for Oxnard, Billings and Rocky Ford, factories we have introduced before, and a new factory

Spreckel’s #1 (in California, owned by Spreckel’s). The pattern of the recovery rate in the first 3

factories look similar to the other measures of productivity in those factories, increasing until 1934

and then falling.

In Figure 5, we present recovery rate data on 3 Midwestern factories, East Grand Fork,

Moorhead, and Crookston, all American Crystal factories, and Sidney (in Montana, owned by

Holly). These factories show a decline in recovery rate through the sugar act period, then an

increase post-1974.

In Figure 6, we show the national recovery rate. There is a clear relationship between the

national recovery rate and the sugar act. In the figure, we also plot the recovery rates of Oxnard,

Spreckel’s and East Grand Forks. Note that the recovery rates fall faster at the factory levels than

the national level. The reason is industry production during the sugar act was shifting from low

recovery rate regions (like East Grand Forks) to high ones (like California). We discuss locations in

the next section.

We would also like to present data on sugar output (y) relative to farm inputs, but they are
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harder to obtain. For now, we will present data on sugar output relative to acres. In Figure 7, we

show y/a for California. There is a noticeable reduction in the trend growth of output per acre

beginning in 1934.

We have not as yet attempted to construct measures of TFP for individual farm/factory

units. Our (partial) factory productivity measures (like y/n and y/b) show trend reversal, from

positive to negative growth. Our (partial) farm productivity measures (like y/a) show a slow-down

in trend. Hence, we are fairly confident that standard measure of TFP growth would show a

significant slowdown (or even decline) at the start of the sugar act in 1934.

It would be hard to imagine that TFP growth remained negative throughout the sugar act

period. We know factories introduced packaging equipment that led to significant reductions in

manning requirements. But certainly, one can imagine TFP stayed significantly below the pre-

sugar-act trend. Finally, note that there are estimates of TFP for this industry from 1957 to 1996

from Bartelsman and Gray (in the NBER four digit manufacturing industry data). They estimate

that TFP is declining from 1957 until the late 1970’s, and then shows significant growth from the

80’s on. While this is interesting, we believe their materials deflators may be biased (the quality of

materials is declining, but we think the deflators are not adjusted for that).

B. Location of industry

In Figure 8, we plot the shares of harvested acres by various regions in the United States.

Years of the sugar act are denoted by the dashed lines. In some states, farmland is typically non-

irrigated. This is true of mid-western states. Irrigated farmland itself can usefully be decomposed

into areas with extensive rainfall and more arid areas, much of the Great Plains in the former, some

of California in the latter. As can be seen, the share of the acres in the Far West rose during the

sugar act period at the expense of other areas. What is quite dramatic is the extent to which the

Midwest has grown in share of acres since the sugar act was not renewed.
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C. Sugar prices

In Figure 9, we present time series on three real sugar prices, US raw (Duty-fee-paid NYC),

Midwest wholesale refined, and World raw (Caribbean FOB). As can be seen, US sugar prices moved

with the world price before the sugar act. During sugar act, US sugar prices were fairly constant,

and did not move with the world price (unless the world price moved above the US price). After

the sugar act, US sugar prices have been falling significantly, about 2-3% a year. Note that world

prices have been fluctuating up and down during this period, with little or no trend.

4. Model of a Non-Irrigated Factory District

In this section we model the workings of a factory in a non-irrigated factory district before

the Sugar Act of 1934. The distinction between the model in this section and the next, the irrigated

district case, is that farmers here will not be able to manipulate (or influence) tons t and sugar s

per acre. As we’ll discuss below, factories in non-irrigated districts did not pay farmers based on

the sugar content q = s/t of their individual tons, but rather the district average q, on the theory

that farmers had little control over q. We begin by discussing the environment.

A. Environment

For now, consider a one period model.

Preferences

Since the sugar industry faced a price that was the world price multiplied by a tariff, py =

py,US = py,world(1 + τ), until 1934, we’ll assume that this factory faces a fixed price for its output.

Endowments

We assume that there is an existing factory, that may or may not be operated. Assume for

now that there is only one factory (in the country!).

We next turn to describe technology.
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Transport technologies and land distribution

Farmland differs in how “far” it is from the factory. In particular, farms differ in the cost

x to deliver a ton from the farm to the factory. Let A(x) denote the total number of acres such

that it costs x to deliver a ton. Sugarbeets must be grown in rotation. Hence, let a(x) denote the

number of acres where sugarbeets can be grown such that it costs x to deliver a ton. We treat a(x)

as a parameter. Obviously it is determined by transportation facilities, cropping patterns, etc. We

display this geographical abstraction in Diagram 1.

Farming and harvesting technologies

We assume farmland around the factory does not differ in quality. The production function

for one unit of such farmland, say an acre, is

(t, s) =

⎧⎪⎪⎨⎪⎪⎩
(0, 0) if nfarm < enfarm
(bt, bs) if nfarm ≥ enfarm

where nfarm is a measure of farm input. Hence, if the farmer uses input nfarm = enfarm, then he
produces bt tons of sugar beets with sugar bs. Hence, the sugar content is bq = bs/bt. The input nfarm
refers to the input of the farmer. For simplicity, we abstract from the input “farm-help”. In fact,

farm-help was extremely important in this industry. That there are only two inputs (land and labor)

is for simplification.

With this technology, the farmer has no control over tonnage and sugar (assuming the mini-

mum level of required inputs are used). Note as well that we don’t have any uncertainty. Weather,

in fact, did move around tonnage and sugar, something we will consider in the next version.

Let t(x) be number of tons whose cost of delivery is x dollars. Hence, t(x) = a(x) · bt.
For the harvesting technology, we simply assume the cost of harvesting t tons is charv · t.
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Factory processing technology

As beets are delivered to the factory, the factory can process them in bunches, depending

on their quality q. While all beets are of the same quality here, let us, to be consistent with what

follows in the irrigated section below, consider processing the tons from x, that is, t(x), separately

from other tons. We will present the technology and then offer an extended discussion of it.

Factory output is I(x) · y(x). I(x) is an indicator function which states that we must employ

enough repair staff to maintain machines or output is zero, that is,

I(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if nrepair < δt(x)

1 if nrepair ≥ δt(x)

where nrepair(x) is repair labor. If I = 1, then production is

y(x) = e[bq, nprod(x)/t(x)] · s(x) = e[bq, z(x)] · s(x)
where nprod(x) is the production labor devoted to processing beets from a distance x, z(x) =

nprod(x)/t(x) is the “effort” per ton, and e[bq, 0] = 0, ez[bq, z] > 0, ezz[bq, z] < 0, ez[bq, 0] = ∞ and

e[bq,∞] < 1. With z fixed, one might imagine that y/s = e[q, z] would increase as q increases. That

is, the higher the sugar content, the higher the extraction rate, for fixed z. So, we assume eq > 0.

Again, that we only have two factory inputs, nprod(x) and nrepair(x), is for simplicity.

The function e[bq, z(x)] is an extraction function. Starting with sugar in the crop s, the

factory extracts e[bq, z(x)] · 100 percent, or produces e[bq, z(x)] · s. The function has constant returns
in (nprod(x), t(x)), that is, double nprod(x) and t(x), double y. Keeping nprod(x) and t(x) fixed,

increasing q increases y for two reasons: s increases, and extraction increases (assuming eq > 0).

Why add repair labor? First, this will mean that the factory will not want to process tons

below some minimum quality, an important property to have. Second, note that if the factory starts

processing tons of lesser quality, its productivity may well decrease (see below for discussion).

Factory output is then y =
R
I(x) · y(x). There is of course a capacity constraint, say,R

t(x) = T ≤ T , but we’ll ignore it for now.
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B. Planning Solution

Consider a “planner” who maximizes industry surplus, that is industry revenue, py · y, less

industry costs, the sum of factory costs, farm costs and transportation costs, taking as given the

output price py and the input prices (which are given below). In particular, he takes as given the

price of a unit of land, pL. This is the value of land in its next best alternative.

Think of two stages, the farming and the manufacturing. We’ll define value functions at each

stage. Let Vfact({s(x), t(x)}) be the value at the processing stage given we have t(x) tons from

distance x, those tons having sugar s(x), where x ∈ X (where the subscript 00fact00 is short for

factory). Here, as will be shown, total tons T =
R
x∈X t(x)dx is a sufficient state variable, that is,

we can write the value function as Vfact(T ). This is because all tons have the same sugar content.

Let Vfarm be the value at the farming stage (where the subscript 00farm00 is short for farm).

Processing stage

We start at the last stage. Again, we process tons separately. Let vfact(t(x)) be value of t(x)

tons from x. we have that

vfact(t(x)) = max
nprod(x),nrepair(x)

revplan(t(x))− cosfac(t(x))

where revenue of the planner is revplan(t(x)) = py · I(x) · y(x) and where factory costs are cosfact =

[nprod(x) + nrepair(x)] · pn,fact, where pn,fact is the cost of factory labor. If we process tons (i.e.,

nrepair(x) = δ · t(x)), then the first order condition for nprod(x) is

pyez[bq, z(x)] · bq = pn,fact(1)

so, z(x) does not depend on x, say z(x) = zplan , and nplan(x) = zplan · t(x). Define the constant

vfact by

vfact = {pye[bq, zplan] · bq − pn,fact · [zplan + δ]}.

[We need assumption A1, vfact > 0]. Then vfact(t(x)) = vfact·t(x). Hence, Vfact(T ) = vfact·
R
t(x)dx.
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Farming stage

The planner farms the closest acres first, so the choice of planner is how far to farm, that is,

Xplan = [0, xplan]. The problem is

Vfarm = max
xplan

Vfact(T )− cosfarm(xplan)− costran(xplan)

where cosfarm(xplan) =
R xplan
0 {[pL + pn,farm · enfarm] · a(x) + charv · t(x)}dx is farming costs (where

pn,farm is alternative value of the farmer’s labor), and where costran(xplan) =
R xplan
0 x · t(x)dx is

transport costs, and where T =
R xplan
0 t(x)dx. The marginal farm, on a per acre basis, is

vfact · bt = [pL + pn,farm · enfarm] + [charv + xplan] · bt.(2)

[We need assumption A2, vm · bt > [pL+ pn,farm · enfarm] + charv · bt}, that is, at acre x = 0, its worth
farming]. This gives us the solution for xplan, which is

xplan = vfact − [
pL + pn,farm · enfarmbt ]− charv

C. Market Solution

Early in the industry’s history, there were attempts to run the factory and farms as one

integrated unit as above. This arrangement was proved to be inefficient. The industry learned that

beets had to be grown in rotation with many other crops. Hence, if the beet factory wanted to own

its beet farms, it needed to engage in a wide spectrum of farming activities. Running an integrated

operation, perhaps because of managerial diseconomies, was not common.

Rather than integrated production, the industry moved to a model where factories purchased

beets from farmers under contracts that were signed before the growing season began. This alter-

native has dominated. (footnote: mention coops).

Recall we are assuming that there is an established factory (and only one). Hence, on the

processing side, there is a fixed factor: the factory. There is another fixed factor: namely, the land

close to the factory. Because of these fixed factors, economic profits are earned. Farmers close to the
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factory, and the factory owners, could likely give good reasons why they deserved the lion’s share

of economic profits.

Here is how the market worked. Beets were purchased under contracts signed before the

growing season began. If both sides signed the contract, then (i) farmer agrees to grow beets on

certain amount of acres and (ii) the factory agrees to buy tons from those acres, at price specified

in contract (note: the same price applies to each farmer).

The contract (if signed by both parties) pays farmers for each ton of beets. The contract

typically pays (per ton of beets)

pB() = θ · py · qavg

where θ ∈ [0, 1], and where qavg is the average quality delivered over all beets in the factory district.

Since all the beets are the same, qavg = bq. The parameter θ is like the farmer’s share of industry
revenue. If extraction was perfect, that is, e = 1, then y = s = q · t, industry revenue is py · y, and

farmer revenue is θ · py · q · t = θ · py · y.

In addition, factories also subsidize some of the transportation to the factory. Typically, the

contracts call for the factory to pay transportation from railway depots to the factory. Farmers

pay transportation from their farm to the depots. This feature is common across areas, and over

decades and decades. In our model, if the cost is x, we assume that the factory pays σ ·x, σ ∈ (0, 1).

So, the contract is a (θ, σ) pair.

Outline of Analysis (for given (θ, σ))

To begin our analysis, lets assume that a pair (θ, σ) has been chosen. We ask: How many

acres will be contracted? Lets sketch our approach first, then fill in the details.

Given (θ, σ), a farmer can decide if he would like to sign a contract with the factory. Let

xfarm(θ, σ) denote the “marginal” farmers, that is, those farmers that are indifferent to signing.

Farmers at x < xfarm(θ, σ) will want to sign. The factory can also decide what farmers it would
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like to sign contracts with. Let xfact(θ, σ) denote the “marginal” farmer that the factory would like

to sign. It would like to sign farmers at x < xfact(θ, σ). The contracted acres, given both sides have

to sign, will be the lesser of what the factory wants and the farmers want. That is, the contracted

acres are xcont(θ, σ) = min[xfarm(θ, σ), xfact(θ, σ)].

Farmers problem (for given (θ, σ))

Lets assume that at each x, there are a(x) farmers, that is, one farmer per unit of land. We’ll

assume that the farmer owns the land. For simplicity, we assume the farmer works the land growing

sugarbeets or rents out the land, but the rented land cannot be used to grow sugarbeets. Hence,

the land rents at price pL. (We could introduce a rental market for beet land. Beet land would rent

for more than pL. We could calculate beet land rental rates from the farmers profit at x. But a

beet rental market would not change the analysis below).

A farmer at x has revenue

revfarm(x) = [py · θ · bq] · bt
and costs, cosfarm(t(x)) and (1− σ) · costran(t(x)). The xfarm(θ, σ) is

[py · θ · bq] · bt = [pL + pn,farm · enfarm] + [charv + (1− σ) · xfarm] · bt(3)

where pL + pn,farm · enfarm is the opportunity cost of the farmer. We denote the xfarm(θ, σ) by

xfarm(θ, σ), which can be written

xfarm(θ, σ) =
1

1− σ
{py · θ · bq − [pL + pn,farm · enfarmbt ]− charv}

We plot xfarm(θ, σ) in Diagram 2 as a function of θ. Denote the solution to xfarm(θ, σ) = 0 as

θmin(σ). xfarm(θ, σ) is increasing in θ beyond θmin(σ).

Factory problem (for given (θ, σ))

We process tons separately. Let πfact(t(x)) be value of t(x) from x. We have that

πfact(t(x)) = max
nprod(x),nrepair(x)

revfact(t(x))− cosfact(t(x))− σ · costran(t(x))
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where revfact(t(x)) = I(x) · py · [y(x) − θ · s(x)], that is, if I = 1, then the factory sells to market

py · y(x), and pays farmer py · θ · s(x), and where cosfact(t(x)) and costran(t(x)) are as above. Recall

the factory is paying some of the transport. If we process (i.e., nrepair(x) = δ · t(x)), then the first

order condition for nprod(x) is

pyez(bq, z(x)) · bq = pn,fact(4)

so, z(x) is identical to the planner’s, that is, z(x) = zplan. We have

πfact(t(x)) = {py[e(bq, zplan)− θ] · bq − [zplan + δ] · pn,fact} · t(x)− σ · x · t(x)

For each θ, we can ask: from what distance is the factory willing to purchase beets? That is, we

can solve πfact(t(x)) = 0. Call the solution xfact(θ, σ), which can be written

xfact(θ, σ) =
1

σ
{py[e(bq, zplan)− θ] · bq − [zplan + δ] · pn,fact}

We plot xfact(θ, σ) in Diagram 2. Denote the solution to xfact(θ, σ) = 0 as θmax(σ). xfact(θ, σ) is

decreasing in θ up until θmax(σ).

Contracted acres (for given (θ, σ))

Again, contracted acres are xcont(θ, σ) = min[xfarm(θ, σ), xfact(θ, σ)]. Contracted acres are

the dotted line in diagram 2. Let θ = θplan solve xfarm(θ, σ) = xfact(θ, σ). Note that at θ = θplan,

xcont(θ, σ) = xplan. When θ < θplan, farmers “determine” contracted acres, when θ ≥ θplan, the

factory does.

Model of (θ, σ) choice

We will model the factory as a monopsonist. Note that the factory could extract all the profits

from the farmers by paying all the transportation (that is, choosing σ = 1), so that all farmers are

alike, and then driving θ low enough so that farmers are indifferent between growing beets and

renting out land at pL. We know the factory does not do this (that is σ < 1 in all contracts), so it
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cannot be a perfectly price discriminating monopsonist. So, we will model the factory as choosing

a uniform θ, subject to the condition that it pays some of the transportation charges (again, the

railroad charges).

Before we present this maximization problem, let us consider why the factory does not choose

σ = 1, and a very “low” θ? First, there are other reasons why different farms may be high or low

profitability in beets (besides the farm’s x value) and these may not be observed by the factory.

This may lead the factory to choose σ < 1. Or there may be pressure from farm groups to keep

σ < 1.

Again, we assume that the factory takes σ as given, and chooses θ to maximize its profits.

Denote the factory’s profits by Πfact(θ, σ). Then

θfact = argmax
θ
Πfact(θ, σ)

s.t. σ = fσ
What can we say about θfact? Diagram 3 reproduces the contracted acre diagram in its upper half,

the bottom half plots profits of the factory and farms. Consider factory profit, Πfact(θ). When

θ = θmin, the factory gets no tons and the profit is zero. As θ increases, there are two effects. First,

farmers deliver beets and profit increases. Second, the payment to infra-marginal farmers increases,

and profits fall. Profit reaches a maximum at θ = θfact, θfact < θplan. This result is simply that a

monopsonist pays less than the efficient level. We also plot total farm profits, Πfarm(θ). Note that

industry profit, Πind(θ) = Πfact(θ) +Πfarm(θ), equals Vfarm, at θ = θplan.

We have been examining a few issues that might tell us whether our model of the θ choice

is a reasonable one. We have been looking at periods when there were significant decreases in the

prices of alternative crops in the pre Sugar Act period. In these periods, there would be significant

reductions in pL, the alternative value of the land. In the model, with large decreases in pL, the

curve xfarm(θ, σ) would shift out. One might also expect θfact(pL) to decrease in the model. What
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would happen to contracted acres in the model depends on how much θfact(pL) decreases, and how

much xfarm(θ, σ) increases. During these periods, sugarbeet factories did increase their purchases

of beets, and did reduce θ.

We also have the actual contracts, hence we know θ. We can estimate θfact and θplan, and

then compare them to the actual θ. θplan is simple to calculate, and equals

(1− σ)(pyeq − (z + δ)pn,fact) + σ[(pL + pn,farm · enfarm)/bt+ charv]

pyeq

= e(z) · (1− cosfact
rev

+ σ(
cosfact + cosfarm

rev
− 1))

From our work thus far, we estimate θplan to be about .57. The actual θ’s are in the range of

.45− .48, quite a bit lower than θplan. We have not yet estimated θfact.1

5. Model of an Irrigated Factory District

In this section we model the workings of a factory in an irrigated factory district before the

Sugar Act of 1934. The distinction between the model in this section and the last, the non-irrigated

district case, is that farmers here will be able to manipulate (or influence) tons t and sugar s per

acre. Factories in irrigated districts typically paid farmers based on the sugar content q = s/t of

their individual tons. We begin by discussing the environment.

A. Environment

The only change in the environment is in the farming technology. The production function

for one unit of farmland, say an acre, is

(t, s) =

⎧⎪⎪⎨⎪⎪⎩
(0, 0) if nfarm < enfarm

(t+ f(w), s+ γ · f(w)) if nfarm ≥ enfarm
where nfarm is farmer labor input and w is irrigation effort, where f(0) = 0, f 0(w) > 0, f 00(w) < 0,

and f 0(0) =∞. Hence, if the farmer uses input nfarm = enfarm, then he produces t(w) = t+ f(w)

1The reader can skip the next section on the irrigated factory district and move to the section on regulation, if
he/she wants to see our analysis of regulation in the non-irrigated factory district.
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tons of sugar beets with sugar s(w) = s+ γ · f(w). If nfarm = enfarm, sugar content of the beets is
q(w) = s(w)/t(w), and

q0(w) =
f 0(w)

t(w)2
[γ − q] · t.

Hence, if γ < q, q = s/t, then irrigation will increase s(w) but decrease q(w).

To be more precise, w is irrigation effort at the end of the growing season. It was well known

in the industry that irrigating late in the season would decrease quality, that is, q0(w) < 0. Hence,

contracts often had clauses that prohibited irrigation after some date, though this was hard to

enforce. There is also a large agronomy literature estimating q0(w). Hence, we assume that γ < q,

q = s/t.

B. Market Solution

The contract in an irrigated district typically paid (per ton of beets)

pB() = θ · py · qi

where θ ∈ [0, 1], and where qi was the sugar content of farmer i’s beets (of course, there was testing

of many different tons, since each ton may have differed in quality).

Farmer problem (for given (θ, σ))

Consider farmer at x. Let πfarm(x) be value at x. We have that (assuming nfarm = enfarm)
πfarm(x) = max

w(x)
revfarm(x)− cosfarm(x)− σ · costran(x)

where revfarm(x) = py · θ · s(w), where

cosfarm(x) = [pL + pn,farm · enfarm] + charv · t(w) + pw · w

and costran(x) = (1− σ) · x · t(w).

The first order condition for w(x) is

f 0(w)[py · θ · γ − (charv + (1− σ) · x)] = pw.(5)
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We assume that γ > charv/py · θ, so watering is optimal at x = 0. Call the solution ew(x). ew(x) is
obviously a function of θ. ew(x) is decreasing in x. Irrigation has benefits and costs. One of the costs
is that it leads to extra tonnage that needs to be transported, and this cost is larger the further

away a farm is from the factory. Since ew(x) is decreasing in x, q( ew(x)) is increasing in x.

We have that

πfarm(x) = py · θ · s( ew(x))− (charv + (1− σ) · x) · t( ew(x))− pw · ew(x)− [pL + pn,farm · enfarm]
Next, solve πfarm(x) = 0 for the xfarm(θ, σ). Is there a solution to this equation? Write the

equation as

xfarm(θ, σ) =
1

1− σ
{py · θ · q( ew(x))− [pL + pn,farm · enfarm − pw · ew(x)

t( ew(x)) ]− charv}.

The left hand side is the identity equation in x. Assume the right hand side exceeds 0 at x = 0.

Since the right hand side decreases in x (until farmer’s choose not to water at all), there is a solution,

and its unique, denoted xfarm(θ, σ). It has the same shape as the non-irrigated case, xfarm(θ, σ)

increasing in θ beyond θmin(σ).

Factory problem (for given (θ, σ))

The factory takes as given how sugar content varies with x. That is, if the factory signs with

a farmer at x, it knows how the farmer will irrigate. In order to simplify expressions, lets introduce

the following notation. Let eq(x) = q( ew(x)), et(x) = t( ew(x)) and es(x) = et(x) · eq(x). We process tons
separately. Let πfact(et(x)) be value of et(x) from x. We have that

πfact(et(x)) = max
nprod(x),nrepair(x)

revfact(et(x))− cosfact(et(x))− σ · costran(et(x))
where revfact(et(x)) = I(x) · py · [y(x) − θ · es(x)], that is, if I = 1, then factory sells to market

py · y(x), and pays farmer py · θ · es(x), and where cosfact(et(x)) and costran(et(x)) are as above. Recall
the factory is paying some of the transport. If we process (i.e., nrepair(x) = δ · et(x)), then the first
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order condition for nprod(x) is

pyez(eq(x), z(x)) · eq(x) = pn,fact(6)

so that “effort” depends on x, namely ez(x) = z(eq(x)). We have that:
πfact(et(x)) = {py[e(eq(x), ez(x))− θ] · eq(x)− [ez(x) + δ] · pn,fact} · et(x)− σ · x · et(x)

For each θ, we can ask: from what distance is the factory willing to purchase beets? That is, we

can solve πfact(et(x)) = 0. Is there a solution to this equation? Write the equation as
xfact(θ, σ) =

1

σ
{py[e(eq(x), ez(x))− θ] · eq(x)− [ez(x) + δ] · pn,fact}

The left hand side is the identity equation in x. Assume the right hand side exceeds 0 at x = 0.

The right hand side is increasing and concave in x (until farmer’s choose not to water at all, when

it does not change in x), and there is a solution, and its unique, denoted xfact(θ, σ).

What is the slope of xfact(θ, σ) with respect to θ? We present some conditions under which

it is decreasing. Given x, we want ∂πfact(et(x))/∂θ < 0. Sufficient conditions are:
∂(θ · eq(x))

∂θ
> 0

and

∂(pye(q, z(q)) · q − [z(q) + δ] · pn,fact)
∂q

> 0

Under these conditions, xfact(θ, σ) is decreasing in θ up until θmax(σ).

6. Regulation’s Impact: “Redistribution” Scheme

In this section, we begin studying the impact of industry regulation. In this section, we look

at the impact of the redistribution scheme by itself. That is, we will assume that the industry faces

a tariff (as in the pre Sugar Act period) and then introduce the scheme. We first look at how the

scheme influences contracted acres, then productivity and finally innovation.

The distribution scheme works as follows. The government sends the farmer a check equal

to λ · s. The government also taxes the factory an amount τ · y.
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A. Contracted acres

In this section, we will show that the scheme increases contracted acres within a non-irrigated

district, and will increase it more in non-irrigated districts with higher sugar content and finally will

increase it the most in irrigated districts.

Within a non-irrigated district

In the beet contracts, the price used to pay farmers was the net price, that is, the price of

sugar net of any taxes, pnet = (py − τ). Hence, the farmer’s revenue becomes:

revfarm(x) = pnet · θ · bs+ λ · bs = [(py − τ) · θ · bq + λ · bq] · bt
Hence, xfarm(θ, σ) becomes:

xfarm(θ, σ) =
1

1− σ
{[py · θ + (λ− τ · θ)] · bq − [pL + pn,farm · enfarmbt ]− charv}

Hence, xfarm(θ, σ) expands if λ > τ · θ. As for parameter values, λ ≈ 0.8, τ ≈ 0.5, while θ ≈ 0.45,

so xfarm(θ, σ) shifts out in Diagram 2.

The factory revenue becomes:

revfact(t(x)) = I(x) · (py − τ) · [y(x)− θ · s(x)]

The factory has a new effort level, denoted zplan(τ), which is decreasing in τ . xfact(θ, σ) can now

be written

xfact(θ, σ) =
1

σ
{(py − τ)[e(bq, zplan(τ))− θ] · bq − [zplan(τ) + δ] · pn,fact}

xfact(θ, σ) shifts down in Diagram 2.

Whether or not contracted acres expand or contract depends on the initial θ, and whether

or not it changes with the redistribution scheme. Recall our model implies θ = θfact. At θ = θfact,

contracted acres is determined by xfarm(θ, σ). Hence, if θ does not change, contracted acres expand
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as xfarm(θ, σ) shifts out. This case is drawn in diagram 4 (where we have not drawn the xfact(θ, σ)

curve shifting down to keep things simple).

There is a good reason to focus on this case, of θ = θfact not changing. As part of the Sugar

Act, the government became involved in the price determination for beets. That is, the Sugar Act

gave the government the right to hold meetings and offer advice on the determination of θ and other

contract aspects. Hence, the government frowned on reductions in θ.

It is also worthwhile thinking about the factory incentives assuming the government was not

effective in frowning on reductions in θfact. If the factories were free to choose θfact, there would be

a new θfact(τ). Suppose xfarm(θ, σ) still determines contracted acres. Then there are two effects,

first, a lower θfact(τ) would tend to lower contracted acres, but the shifting xfarm(θ, σ) would tend

to increase contracted acres.

Across Non-Irrigated Districts

In this section, we ask how acreage expansion would compare across non-irrigated districts

with different bq. Before we do that, we address a key point. Why would two factory districts with
different sugar contents coexist? In other words, why isn’t one district lower cost than the other, so

that factories within that district would be replicated?

There are increasing costs in each district. A major reason for increasing costs, especially

before 1950’s, was the difficulty of acquiring farm labor. Sugarbeet farming was a labor intensive

process. Factories had to look far and wide to supply farms with labor.

So, how do contracted acres change in two districts as we change (λ− τθ)? Note that λ and

τ are the same across districts. Typically, θ’s were very close. Hence, we can treat (λ − τθ) as a

parameter common across factories. We have that:

∂xfarm
∂(λ− τθ)

=
q̂

1− σ

So, xfarm shifts out more in the higher sugar content area. So, assuming θ = θfact, and this doesn’t

22



change, the areas with higher bq would expand more. The percentage change in acres in a district,
where xfarm and x0farm denote the initial and new levels of acres, is given by:

R x0farm
xfarm a(x)dxR xfarm
0 a(x)dx

so that if we assume a(x) and xfarm are the same across the two factories, the share of acres in the

high sugar content district increase.

Across non-irrigated and irrigated Districts

In the irrigated districts, xfarm(θ, σ) satisfies:

xfarm(θ, σ) =
1

1− σ
{[py · θ + (λ− τ · θ)] · q( ew(x))− [pL + pn,farm · enfarm − pw · ew(x)

t( ew(x)) ]− charv}

Recall ew(x) = ew(x, λ− τθ). There are two effects on xfarm(θ, σ) as we change (λ− τ · θ).

First, there is the direct effect fixing ew(x), which is the same effect as in non-irrigated districts.
This effect is:

∂xfarm

∂(λ− τθ)

¯̄̄̄
ew fixed

=
q( ew(x))
1− σ

where this derivative is evaluated at x = xfarm. In irrigated districts, average sugar content of the

beets is typically larger than the sugar content in non-irrigated areas. For example, in California

sugar content averaged about 18%, while in Minnesota it averaged about 12%. Moreover, we know

that sugar content is increasing as we move away from the factory, so that the sugar content of

x = xfarm(θ, σ) is higher than the average. Hence, the sugar content of x = xfarm(θ, σ) in irrigated

districts is significantly higher than the sugar content in non-irrigated districts.

Second, the farm at x = xfarm(θ, σ) has the option of changing its irrigation policy, which

has another effect on the profits at x = xfarm(θ, σ). The farm at x = xfarm(θ, σ) would only change

its policy if it increases profits, which in fact it would. So the second effect is in the same direction.

Hence, marginal acres expand more in irrigated districts than in non-irrigated.
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B. Productivity

In this section, we examine the impact of the redistribution scheme on productivity in both

non-irrigated and irrigated districts.

For factory productivity, let’s focus on labor productivity. This can be written as

y

n
=

y

nprod

nprod
n

=
e(z) · q

z

z

δ + z

where n = nprod + nrepair, and where recall that production worker effort per ton z depends on q

and pnet = py − τ , z(pnet, q).

We will also look at measures of farm productivity, like

y

a
=

y

s
· s
a
= e(z) · s

a

and

y

w
=

y

s
· s
w
= e(z) · s

w

Non-irrigated districts

Consider factory productivity first. In these districts, pnet falls but q is unchanged, and

extraction e(z) falls. Because e(z) is concave, e(z)/z increases as z falls. Hence, this effect has a

positive impact on y/nprod. However, z/(δ+z) falls, having a negative impact on y/n. Differentiating

the expression for y/n above with respect to τ , we have

∂( e(z)·qδ+z )

∂τ
= z0() · q · e

0(z)(δ + z)− e(z)

(δ + z)2

Notice that if δ = 0, the derivative is positive, since z0() < 0, and e0(z)z − e(z) < 0. This is the

effect from e(z) being concave. Notice as well that if δ is big enough, the derivative is negative, this

is the effect coming from the repair staff.

Consider farm productivity next. Since e(z) is falling, y/a falls.
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Irrigated districts

Consider factory productivity. The redistribution scheme leads to increases in ew(x), hence
decreases in eq(x). Examining the expression above for labor productivity, we see that there is a
direct negative effect of lowered q (that is holding z fixed). There is another direct negative effect

(holding z fixed) if quality enters the extraction function, that is, e = e(q, z). Beyond these effects,

we have the effect sketched above as z changes.

Consider farm productivity. Regarding y/a, there are two effects. First, e(z) falls, tending

to reduce productivity. Second, s increases tending to increase productivity. Regarding y/w, e(z)

falls, tending to reduce productivity. Recall, s/w is given by

s

w
=

s+ γf(w)

w

Since w increases, s/w falls.

C. Innovation

The redistribution scheme could have many influences on innovation. Here, we consider its

impact on farmer innovation.

Given the redistribution scheme, farmers had a great incentive to learn ways to increase

sugar per acre. In particular, farmers in non-irrigated areas which had little control over sugar

per acre before the Sugar Act gradually discovered ways to influence sugar per acre. They learned

ways to fertilize towards the end of the growing season, which had impacts that were similar to

late irrigation. Because farmers in non-irrigated districts learned how to manipulate s, there were

introduction of contracts that tested individual farmer beets in some of these districts. In fact, the

most sophisticated testing today occurs in North Dakota and Minnesota.

7. Regulation’s Impact: Restriction of Competition

In this section, we consider the impact of regulations that limited competition. We continue

to keep the redistribution scheme in place, and replace the tariff with sales quotas for factories,
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acreage quotas for farmers and quotas for foreign countries.2 We consider the impact on prices and

productivity.

A. Prices

During the Sugar Acts, prices were no longer determined by the world price (plus the tariff).

At the beginning of each year, the government determined the amount of sugar sales it wanted.

Note that given this quantity, it could fairly closely estimate the price of sugar in the United States.

The government then divided this quantity of sugar among the various producers.

Consider the incentives of a firm in setting its price given its sales quota. The firm had very

little incentive to lower its price below the estimated sugar price. A lower price would not bring any

additional sales, just lower revenue. In this way, regulations kept prices high.

Looking back on the price figure, we see that real sugar prices in the United States were fairly

constant during the Sugar Act, but have come down significantly since then. Hence, it was not only

foreign protection that kept prices high during the Sugar Act, but also the domestic regulation of

the industry.

Another big development post-1974 was the introduction of high fructose-corn-syrup. HFCS

clearly introduced greater competition for sugar in this period. Hence, it would be more accurate to

say a lack of domestic competition in the Sugar Act period kept prices high, and increased domestic

competition after 1974 have led to falling prices.

B. Productivity

We have seen that the redistribution scheme led, at least qualitatively, to many of the produc-

tivity changes observed in the industry. So, is there any reason to believe that reduced competition

during the Sugar Act period reduced factory productivity? And that the increased competition

2Note that acreage restrictions on farmers were not in effect in all years. Hence, the analysis above asking how the
redistribution scheme influenced contracted acres is relevant, and applies to these years when farmers could adjust
acres.
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since 1974 increased it? Another way to ask the question, a bit more skeptically, is: Why would

significantly falling sugar prices since the end of regulation have led to productivity gains at the

factory level?

Let us answer this two ways. First, let us mention literature that has shown that increased

competition that led to lower prices has raised factory productivity in some industries. Second, lets

present evidence for this industry that at least suggests its true here as well.

Schmitz (2005) shows that there was a dramatic increase in competition in the U.S. and

Canadian iron ore industry in the early 1980s. The prices received by these industries plunged.

Yet TFP at individual mines soared. He shows that changes in work practices led to most of the

dramatic increases in TFP.

How about this industry? We will present back of the envelope evidence that suggests compe-

tition may have led to significant TFP gains in this industry. We do this by examining the pattern

of factory extraction rates. For most factories, extraction rates fell during the Sugar Act, and have

increased since.

For the sake of discussion, assume the extraction function takes the form

e(z) = 1− exp(−Ae · z),

where Ae is factory TFP. Then, solving the factory’s optimization problem, one finds that the

extraction rate chosen by the factory is

e(z) = 1− pn
Aepnetq

.

So, the extraction rate depends positively on pnet · q = (py − τ) · q. Higher sugar prices and higher

sugar content lead to increases in extraction.

During the Sugar Act, py did not change much, but py − τ fell as taxes increased. Also, q

decreased. So, pnet · q fell over time, primarily because q was falling. Hence, holding Ae fixed, we

expect factory extraction to decrease, and it did.
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After the Sugar Act, taxes τ were reduced, but sugar prices began to fall, precipitously. Sugar

content began to increase. On balance, pnet · q was falling faster in the post 1974 period than it

was during the 1934-1974 period. Hence, holding Ae fixed, we expect factory extraction to decrease

faster in the post Sugar Act period than before it. But extraction rates have actually increased!

The only way to square these facts, at this back of the envelope level, is for Ae to grow much

faster post 1974 than during the Sugar Act period. Hence, it seems that we will not be able to

explain significant features of factory productivity by appealing to the redistribution scheme alone.

We will have to understand the impact of competition on TFP and other measures.
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Figure 1

Oxnard Factory, CA: y/b (CWT/BTU)
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Rocky Ford Factory, CO: y/b (CWT/BTU)
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Figure 2

Billings Factory, MT: y/b (CWT/Coal)
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Figure 3

Oxnard Factory, CA: y/nfact (CWT/ManHour)
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Rocky Ford Factory, CO: y/nfact (CWT/ManHour)
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Figure 4
Oxnard Recovery Rate: y/t (CWT/Ton of beets) 
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Figure 5
East Grand Fork Recovery Rate: y/t (CWT/Ton of beets)
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Figure 6

Recovery Rates National Average and Various Factories
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Figure 7

Land Productivity CWT/Acres (Log), California

-1.4

-1.2

-1

-0.8

-0.6

-0.4
19

19

19
21

19
23

19
25

19
27

19
29

19
31

19
33

19
35

19
37

19
39

19
41

19
43

19
45

19
47

19
49

19
51

19
53



Figure 8

Harvested Acres of Sugarbeets 
Shares by Various Groups of States
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Figure 9

Real Sugar Prices
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Diagram 2
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Diagram 3
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Diagram 4
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