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ABSTRACT

The motive to hold inventories pyrely in the hope of profiting from a price increase is
called the speculative motive. This motive has received considerable attention in the
literature. llowever, existing studies do not have a clear implication for how large it is
quantitatively. This paper incorporates the speculative motive for holding inventories
into an otherwise standard real business cycle model and finds that empirically plausible
parameterizations of the model result in an average inventory stock to output ratio that is
virtually zero. For this reason we conclude that the quantitative magnitude of the
speculative role for holding inventories in this model is quite small. This suggests the
possibility that the study of aggregate economic phenomena can safely abstract from
inventory speculation.
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1. Iniroduction.

In the post war U.S., the stock of total inventories has on average
equaled roughly one quarter's GNP. The inventory literature presents several
motivations which could in principle account for these holdings of inventories. One
of these is the so—called speculative motive. Inventories are said to be acquired for
gpeculative reasons if the decision to do so is based exclusively on the prospects for
profiting from a price increase. This might occur, for example, if a large positive
output disturbance drives down the price of current output and creates an
expectation of a capital gain from holding inventories. Another example of the
speculative motive is the accumulation of inventories in order to avoid a stockout in
the event that a high price state is realized in the future.

As the stockout—avoidance example suggests, the non-negativity
constraint on inventory stocks plays a central role in the analysis of the speculative
motive for holding inventories. Because of this, and out of a desire to maintain
analytic tractability, existing studies of this motive have done so in a partial
equilibrium context.! As a result, they do not have clear implications for the
magnitude of the speculative motive in the aggregate economy. One class of models
that has been useful for investigating quantitative issues in macroeconomics is that
of the real business cycle model introduced by Kydland and Prescott (1982) and

Long and Plosser {1982). We compute the magnitude of the speculative motive

IThe literature on inventory speculation which recognizes explicitly the non—negativity constraint
on inventories includes Abel (1985), Aiyagari, Eckstein and Eichenbaum (1988), Kahn (1987) and
Reagan (1982). Several papers, including those of Blanchard (1983), Eichenbaum (1984} and
Chiristiano and Eichenbaum (1987), recognize the speculative motive for holding inventories and
attempt to mimick the effects of the non—negativity constraint by introducing a term in firms'
objective function which penalizes square deviations of the stock of inventories from some
function of sales. The high penalty associated with very low inventory stocks is intended to
capture stockout costs. The high penalty resulting from high inventory stocks is designed to
capture high inventory carrying costs.
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in a particular real business cycle model. Qur model has the property that there is
no motive, apart from the speculative one, for holding inventories. The magnitude
of the speculative motive in the model is measured by the average inventory stock
to quarterly output ratio that occurs in the model's equilibrium. Since the solution
to the model is analytically intractable, we find it using iterative numerical
methods.

Our model is a version of the real business cycle model studied by
Gary Hansen (1985), modified to give agents the option of accumulating inventories.
In one competitive equilibrium market environment which decentralizes the Pareto
optimum studied in the paper, there are three agents: households, firms and
speculators. Households sell labor time and purchase output in an effort to
maximize infinite horizon discounted utility. Firms operate the economy's
production technology for converting physical capital and labor into the single
output good. Speculators have access to a technology which they can use to store
(i.e., hold in inventory) the output good. The only source of uncertainty in the
model is a shock to firms' production technology. Labor markets meet and clear
prior to the current date's realization of the shock, and commodity markets clear
after the shock ig observed. Supply in the commodity market comes from firms and
also speculators if they believe the output price is temporarily high and they have
positive inventory stocks on hand. Demand in the commodity market originates
with speculators—if they think current price is temporarily low—and from
households. Firms' gross capital investment is also a source of demand in the
commodity market. However, in contrast with households and speculators, firms
are required to make their investment decisions prior to observing the price that |
clears the current period's commodity market. The timing assuraptions in the
model are intended to capture the idea that there is momentum in employment and

physical capital decisions which prevents them from reacting instantaneously to
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current information. By contrast, inventory investment and housechold consumption
decisions do respond instantly to current period shocks in our model. Our timing
assumptions, not a part of Gary Hansen's (1985) original model, have the effect—in
the abgence of speculators—of increasing the sensitivity of the current price to
technology shocks. They therefore increase the likelihood that speculators will
choose to hold inventories.

We find that when the technology shocks are of empirically reasonable
magnitude, then inventories are never held. When we allow a technology shock
equal to the biggest one observed in the past 30 years to hit the economy 11 percent
of the time, the average inventory to quarterly gross output ratio is pogitive, but
only .00064. This is 1304 times smailer than the corresponding empirical average
value, .9. We conclude that the magnitude of the speculative motive for holding
inventories in this model is quantitatively negligible.

We hope that the paper makes an independent contribution as a case
study in the application of numerical solution methods. We have included a fairly
careful description of our computational strategy, and present examples of some
"tricks" which—at least in our example—are extremely effective in accelerating the
calculations.

Because of the absence of externalities in our model, the competitive
equilibrium allocations are the solution to a ceniral planning problem. The next
two sections describe this problem, while the competitive market economy is
discussed in detail in Appendix A. Section 4 describes alternative strategies for
solving the planning problem, and compares the amount of computer time used by
each. In section 5 we argue that plausibly parameterized versions of our model!
produce no more than a negligible role for the speculative inventory holding motive.

Section 6 contains concluding remarks.



2. The Model.

The economy produces the quantity Y, of a single good in period t.
This good is allocated among economy—wide consumption, Ct’ gross investment, X i

and inventory accumulation, /_\It as follows:
(1) C,+ X, +AL =Y,

(Gross investment and inventory accumulation are related to capital and inventory

stocks as follows:

X, =K, - (1—§)Kt_l,

AIt =1 - It—l’
where Kt and It are the economy-—wide stock of capital and inventories, respectively,
at the end of period t. Also, §is the rate of depreciation on a unit of capital, and
inventories are assumed not to depreciate.

Gross output is related to total hours worked and capital by the
following aggregate production function:

— Tl - (1-6),, 8

(2) Yt = F(Zt’Ht’Kt—-l) = (Zth) Kt—l'
Here @ is capital's share in output, Ht is economy—wide hours worked, and 2 is &

technology shock which grows at the stochastic rate 8, L.e.:

(3) z, =2, _1exp(s,).




The random shock 8 is distributed independently over time with mean g and
standard deviation ¢ . We assume s, is a realization from the following discrete

distribution over the M states s(1), s(2), ..., s(M):
Probfs, = s({)] = pp =1, M,

(4) Bl\g:lpgz 159,20, 0= 1, M,
£y 10,80 = 5 B _ pfs(0) - % = o2

Let Nt denote the population at date t. We assume that this grows at
the constant rate, n:

(5) N, =N, ., forallt.

-1’
Let lower case letters denote per—capita quantities, i.e., ht =H t/Nt’ kt = Kt / Nt’ Yy
= Yt/Nt’ i = It/Nt‘ Then, the resource constraint and production technology can
be represented in per capita terms as follows:
-6

1 S
(6) ¢, + kt “_kt—l +i -5k =n (Ztht)

- (1-0), 0

t—1"

We assume that the structure of the economy is such that in
equilibrium, per capita consumption, hours worked, capital investment and

inventory investment solve the following planning problem. Maximize




g B fuleyhy), uleghy) = los(ey) + 1Ty,

7>0,0<8<1, T>0,

over contingency plans for ¢;» k and i,, subject to (3)-(4), {(6); to ¢ by, T —hy, Ky,
it being non-negative (T is the total endowment of time); and to the following

information constraint. The plans for i, and ¢, can be contingent on 8 and the

t
model's variables dated t—1 and earlier. However, we assume that the plans for hy

and kt cannot be contingent on 8 , and must only feed back on variables date t—1

£
and earlier. Thus, the planner's date t decisions are made in two stages. In the first
stage—which occurs prior to the realization of St—-the date t hours and investment
decisions are made. The consumption and inventory investment decisions are made
in the second stage, after observing 8 This two stage decision structure captures
the idea that there is an element of precommitment in employment and capital
investment decisions, but not in inventory investment and consumption decisions.

The Appendix provides 2 rigorous exposition of the role of speculation
in a competitive market economy whose equilibrium coincides with the solution to
the planning problem that was just described. A sketch of that economy was
provided in the introduction to the paper. In the market economy of the appendix,
gross population growth, n, is set to unity. Aiyagari (1986) discusses one way to
decentralize a planning problem like the one we have just described when n > 1
using the constructive immortality idea in Barro (1974).

The Appendix shows that speculators follow a simple reservation price
strategy. If the price of a sure claim on date t-+1 consumption relative to date ¢
consumption is less than the reservation ratio of unity, then I, = 0. Inventories will

only be held when this price ratio is equal to, or greater than, unity. The reciprocal

of this ratio is the risk free rate of interest, Rt’ which
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coincides with the planner's intertemporal marginal rate of substitution in a unit of

consumption, i.e.,

®) R = a“(_ct’ht)/[ﬂE Quleyy p.hy 4 q),
P Y :
" t+1
n St
::6 - :
Bycitq

Here, the expectation is conditioned on variables dated t and earlier, including 8,

Thus, we have

(9) R, >1 implies I; =0
Rt <1 implies It > 0.



i resentation
A solution to the model is the set of contingency plans which solve the
planning problem described in section 2. Because we assume g > 0 in (4), ki ¥io €4
grow at the rate z on average and, in particular, do not remain within a bounded
set. In order to apply solution procedures which require that the control variables
belong to a bounded set, we must first transform the model into an alternative,
equivalent, formn which possesses the required boundedness property. In particular,

let

(10) k, =k/z,_, ¢, =<, /2, ¥, =¥ /7

The resource constraint, (6), can be expressed in terms of these variables simply by
dividing (6) by z;. This operation is guaranteed to be well defined since z; > 0

according to (3). Thus,

= 1 1-§ r I
(1) ¢ + exp(st) k- nexp(5¢+8¢1) ky g+ 't ~ mexp(sy) ‘t-1

= Jexp(s,+s,_y)n] 0, (ORD .

Note also that (7) can be rewritten in terms of ¢, as follows:

Jud]
L =
(12) K+BE Fuhy)

w
Hete,k=E Y ﬁtlog(zt) and can be dropped from the analysis since it is beyond
t=0

the control of the planner.




The planning problem posed above can now be restated in terms of
the variables defined in (10). In particular, the objective is to find contingency
plans for ¢, k;, h, and T, to maximize (12) subject to (4), (11), the non-negativity
constraints and the information constraints. Because of the recursive structure of
the problem, it can be formulated as a dynamic programming problem. This will
permit us to appeal {0 existing numerical methods for solving such problems.
Before doing this, it is convenient to eliminate a control variable, Et’ and the
constraint, (11), by using (11) to substitute out for Et in u(Et,ht). This yields the

following instantaneous return function:
(12) ik, k., 1,17, b, 8,8,

where &, I, s are the variables that are known at the beginning of the period to the
planner, k7, I/, h are to be chosen, and s is the technology shock that is realized
during the period. That is, in terms of the subscript t notation, at date t, k7, 1", h,
8” correspond to k., Tt, hy, and s, , respectively. Also, k, 1, s correspond to Et—l’
ftwl’ 8, 4. The assumed information structure results in a two stage decision.
First, the variables k- and h are chosen after observing only k, 1 and s. Then, i’ is
chosen based on also observing 8. Bellman's equation corresponding to this

problem is:
(13) v(kis)

\
= max p,max ok, &7, 1,17, b, g, 8{§)]
(k" ,h) cA(E,f,s)EE; T Bl Tas(0)] (

+ fvlke.ir (6]}




Here, A and B are bounded feasibility sets constraining the relevant choice
variables. The boundaries of these sets are determined by the non-negativity
requirements on the variables of the problem.

The problem is solved once a function v is found that satisfies (13).
When it is found, then the decision rules are simply the values of k”, 1* and h that

solve the maximization problem in (13). We write these decision rules as follows:

(14)

It is straightforward to derive decision rules for the original problem of interest

simply by expressing Et and Tt in terms of k, and i; and z; in (14).
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4. Solving the M.

The first subsection describes how we concentrated h out of the
maximization problem in (13) by exploiting the fact that h does not directly enter
the value function. We then describe three value function iteration methods for
solving the resulting concentrated dynamic programming problem. Our experience

with these methods is deseribed in the final subsection.

4.5 Concentrating h Out of Bellman's Equation.

To save computation time, we decided to limit the value of M to 2.

Also, let
(15) 8(1) =8,8(2) =8,8>s5,and p; =D, py = 1 —D.

In addition, let I; denote the variable I when the high shock (s) occurs and let i

denote I’ in the event of a low shock state. In this notation, (13) can be rewritten

as follows:
(16) v{k,1,8) = (E'rfllal)ffs—,fg) cF(E,T,s){ alk, &5, I, Ig’ h, s)

+ Apv(k’, Iy, 8) + (-p)v(E”, 5, )1}
where
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ak, k-, 1, ig, Ig’ h, §)

=0 e F, L b, 5,8 + (1-F) r(E &, L1, b5, 9).

In (16), ¥ is defined by the requirement that k-, Tg, ;s’ and h be non-negative and

also that consumption be non-negative in both the § and s states.
For a given set of values for all the other arguments of q, the

optimizing choice of h,
(17) hh: ';b(E, R_’a i—: fgs ‘I-B’ S),
is implicitly defined by the following condition:

(18) QG(E: k', 1, Ig, {S’ h, 8) > 0.

Here, the strict inequality holds if, and only if h = T\ In (18), Qg denotes the
partial derivative of q with respect to its 6th argument.

Using (17), we can eliminate h from (16) as follows:

(19) v(k, 1, 8) =
max q(k,k- 1,151 8)+ Bpvik’ 1 ,8) + (1-p)v(k’,1-5)]},
L e S g I T + 0T )
where
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ok, B, T Ty 0) = ok, B, T B, By 9RE Bigis), ol

In (19), G is defined by the condition that k*, iy, and iy are non-negative, and that

consumption in each of the two states is non—negative. Equation (19) is (13) with h

concentrated out.
4. b Three Value Fynction Iteration Methods Described.

The right side of (19) defines a functional, T, mapping from the space

of value functions into itself. Thus, (19) can be written ag follows:
(20) v = T(v).

The heart of the problem of finding a solution to our planning problem lies in
finding the fixed point, v, in (20). We applied several value function iteration

methods to do this. To apply these methods we had to discretize the set of possible

™

values that k, k-, 1, Tg, 1, can agsume. Once this is done, we are free to think of v as

a vector in R™, where m is the number of possible values that (k, i, 8) can take. In

addition, we can think of T as a a vector valued function, mapping from R™ into

R™. The objective, then, is to find the fixed point of this function.

Standard Value Function Iterations

All value function iteration methods share the characteristic that each
is based on computing a sequence, Vgr V1 with lim v, = v. We call the simplest
JHm
such algorithm standard value function iteration. It generates a sequence of value
13




functions by iterating on T: vi= T(Vj—l)’ j=12,..., with Vg = 0. This method is
also sometimes called the method of successive approzimation (Bertsekas

[1976,p.237].)
Newton Value Function Hterations

One alternative to iterating on T by standard value function
iterations uses Newton's method. Given Vi this method equates Vj 41 with the
fixed point of the linear Taylor series expansion of T about v = \: Specifically, the
linearized T function is T(vj) + T'(vj)(x - vj), where T'(vj) is the derivative of

T(x) with respect to x, evaluated at x = vj.2 Then, v, , , i3 by assumption the fixed

J+1

1 1 i . = V. -1 L gd—=v.| = . ,3
point of this function, so that, Vi1 VJ+[I T (VJ)] [T(VJ) vJ] Tw(vJ) The

+
reason for using ’I‘oo to signify this operator is made clear below. A difficulty of the
method is that it requires inverting the mxm matrix [I — T'(vj)]. Unless the

structure of the problem is such that some recursive algorithm for doing this rapidly

2The matrix T is proportional to the state transition probability matrix implied by j, the
decision rule implied by the maximization implicit in the definition of T(vj) (see the right side of

equation [19].) The decision rule, Tj, associates 2 value for k-, fg, :1-8 with each point, (k,i,s), in

the state space. To establish that T” is a state transition probability matrix, it is useful to

express T(vj) in matrix form. First, associate each of the m possible points, (E,i_,s), in the state
space with one of the integers £ = 1,2,...,m, where m = Mxny*nj. Here, ny and nj are the
number of points in the capital and inventory grid, respectively.  Let the mx1 vector qj be the
vector of values of the function q defined after (19) associated with 7j. For example, the first
element of qj is the value of the function q evaluated at the first point in the state space, and at

the value of (E’,'i';js) associated by 7j with this point. Also, let Gj be the m*m state transition

matrix implied by 75. Ia particular, the {n element of G j is the probability of passing to the
nth point in the state space starting from the &t point. Each row of G j has no more than M
non—zero entries and all eniries in each row sum fo unity. In this notation, it is easy to confirm
that T(vj) = qj + Jile jvj. Since a small perturbation in the vj's induces no change in 7j—and
hence, qj and Gj—it follows that T (vj) = [)’Gj.

3This method is the one used in Rust (1987,19882,1988b). The global convergence of this
method is discussed by Bertsekas (1976,pp.245—47), who calls it the policy iteration algorithm.
See footnote 4 for further details.
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is available, then direct application of the procedure is computationally prohibitive.
We therefore seek computationally efficient ways to approximate this inverse. The

following value function iteration method accomplishes this.
Hybrid Value Function Iterations

Let s denote the policy function relating k-, Tg, is to the state

variables, k, 1, s computed during the standard value function iteration step, T(vj).
We denote the value of using policy T for one period given that next period's state

variables are valued according to the value function x by T _ (x). By construction,
J
T_(v.)=T(v.). Let T2 v ) T, [T (v;)] be the value of following policy = for
T "] A .
two periods given that the subsequent period's state is valued according to Vi and

define Tp (v ) similarly, for p = 2,3,... . Our third value function iteration method
g

computes vj 11 from Vj as follows:

= TP
= TW-(Vj)'
J
We call this method hybrid value function iteration. When p = 1, then this method

reduces to the standard value function iteration method, i.e., T, = T. In addition,

it is easy to show that

(22) T =1imT .4

P

4To see this, apply the framework in footnote 2. Thus, T (Vj) = T(vj) = q5 + ﬁ(}jv_i and
Tj
T2 2 (=T, J[qJ + fGjvil = qj + fAGjqj + f?G;%vj. Proceeding recursively, T (vJ) TP (v_])

= [I — FGi1 I — (BG;)Plqs + (ﬁ(}l)PvJ This converges to the limit [I — AG;] IqJ = zj, say
The exmtence of the indicated inverse is assured by the fact that zj is the fixed point of T -
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That is, as the number of hybrid value function iteration steps increases, the
method converges to the Newton method described above. Roughly, Tp
approximates the matrix [I - T'(vj)]'1 by its pth order series expansion: I+ T'(vj_)
+ T’(Vj)2 o T ()P,

In applying the hybrid value funection iteration method, we have
found it useful to vary the value of p, with p starting out small (¥ 30) during the
initial iterations and then jumping to a very large number (i.e., 10,000)—at which
point the method is basically the Newton method—upon reaching a trigger point.5
The jump in p is triggered when the number of states in which the current iteration

decision coincides with the previous iteration's optimal decision falls below some

value. We document these findings below.

4. ¢ Computational Results,

In order to solve the model, we require values for the parameters, and

grids for (detrended) capital and inventories, k, andI,. We think of the time

which is known to exist and be unique as a consequence of the fact that Tﬂ" is a contraction
mapping. To show that Tw(Vj) = gj, some simple substitutions are required. Recall from

footnote 2 that T(vj) = qj + BGjvj, so that q5 = T(vj) + [I — BGjlvj — vj. Upon substituting,
we find zj = vj + [I — AGj]"{[T(vj) — vj. But, according to footnote 2, ﬂJGj is T’ (vj), so that
zj = Tm(Vj), as claimed. The value function iteration algorithm, defined by equating vj,1 to zj,
i called the policy iteration algorithm by Bertsekas (1976,p.246). That zj and Tw(\rj) are

mathematically identical therefore establishes the equivalence of policy iterations and newton
value function iterations.

SIn practice, ’I‘p may involve fewer than p applications of the T7|-- operator, as in (21). In

particular, let wo = vj and define wi = T'R"(Wi'l)’ i=1,2,..,p. Then, according to (21), Tp(vj)
Z wp. When, however, we found wy to be close to wy.1 for some r < p, we set Tp(Vj) =w.
Thus, for example, when p = 10,000, we rarely found it necessary to literally iterate on Tﬂ_

10,000 times.
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interval in our model as quarterly, and set the discount rate at a 3 percent annual
rate. Thatis = 1.0372%. The parameters n, §, 4, v, p where set at 1.00325, .0183,
.3606, .00275, and .004, respectively. These values are taken from Christiano
(1988, Table 2, Model 1). These parameter values cause selected steady state
properties of the nonstochagstic version of our model to roughly match the
corresponding sample averages from post—war U.S. data. (See Christiano [1988] for
a discussion of the data.) The sample averages used include those of ¢, / Y xt/yt’
k,/y;, b, and log(y -log(y {—1)» and are reported in column 1 of Table 3. Here, x,
denotes k, — [(1-6) /n]k, _; in the model and per capita gross fixed capital formation
in the data. Column 2 of Table 3 reports the steady state properties of the model.
The rationale for this method of selecting parameters lies in the assurnption that the
steady state properties of the nonstochastic version model correspond closely to the
corresponding first moment properties of the stochastic version of the model. Under
this assumption, the method of assigning parameter values which equates steady
state properties with sample averages is an exactly identified, first moment
estimator.

We set o, = .019, which is the standard deviation of log(zt)—log(zt_l)
when z, is computed using (2), the relevant post—war U.S. data, and the value of ¢
used in the model. (See Christiano [1988,Table 3].) Given the mean and variance

restriction on s, we still have one degree of freedom in parameterizing its

i
distribution given that M = 2. In doing so we where guided by the histogram of 112
empirical values of 8 covering the period 1956.2 — 1984.1 which are graphed in
Figure 1. Based on that graph, we chose three models of ;- In the first, 8 is
skewed to the right, with s = .057, the largest empirical value of 8- In the second
model, 8, is symmetrically distributed about y, with 8 = —.015 (15%) and 5 = .023

(14%), where the numbers in parentheses are the percent of empirical values of 8

lying in the tail. These values of 8, are indicated in Figure 1. The third model
17




specifies the 8 to be skewed to the left, with s = —.049, the smallest empirical value
in the sample.

We used these three distributions to define four versions of our model.
Model 1 incorporates the right skewed distribution of st‘s, Model 2 the symmetric
distribution, and Model 3 the left skewed distribution. For reasons to be made clear
in the next section, each of these models was solved subject to the restriction that
inventory holdings are always identically zero. We do, however, impose the two
stage decision structure on those models. Model 4 incorporates the right skewed
distribution of st‘s and permits inventories to be held.

The only thing left to specify are the grids for capital and inventories.
Obviously, no grid for the latter is required in the case of Models 1 — 3. In Models 1
— 3, the capital grid contains 10,000 grid points, and covers the range indicated in
Table 1. Table 1 also reports the distribution of 8 associated with each model, as
just discussed. In the case of Model 4, the number of grid points on capital was
reduced to 800, and the number on inventories was set at 11. Computing times for
each model are reported at the bottom of the Table. The decision rules for each of
the four models were stored for use in the simulations discussed in the next section.

Results of experiments with versions of the solution procedures
discussed in the previous subsection are reported in Table 2. In cach case, our
convergence criterion was that the maximum percent difference between elements in
vj and Vj—l be less than .lxlo_g. In addition, we always started the iterations with
vy = 0. The calculations involved solving a version of Model 4 in which the capital
and inventory grid contain 100 and 11 points, respectively. The first row shows
what happened when we applied standard value function iterations. We canceled
the job after the program had used up 44 CPU minutes of Cray—~2 supercomputer
time. Based on our examination of the output from that run, it seemed that the

program still needed at least another 33 minutes to converge. The output revealed
18




that the decision rule had stopped thanging on each iteration. Consequently,
although at each step the relatively expensive maximization problem implicit in the
T1 operator was being carried out, in practice the program was simply applying the

T?r_ operator repeatedly. This suggested that convergence could be speeded up by
J
starting with hybrid value function iterations with p = 1 (i.e., standard value

iterationg) and then raising p to 10,000 when the decision rule stopped changing
very much. The results of this are reported in the second row of Table 2, which
showsg that the routine converged reasonably quickly, in about 4.6 minutes. Thus,
this one change improved convergence speed by a factor exceeding 10. Row three of
Table 2 reports the effects of starting the iterations with p = 30 rather than 1.

That resulted in a further decline in computing time by a factor of 3.5. We then
considered the effect of triggering Newton. value iterations (i.e., p = 10,000) sooner,
when the decision rule stopped changing at 75 percent of the points in the state
space. That resulted in very little change in computer time (see row 4.) Row 5
reports the results of starting with Newton iterations immediately. Evidently, that
dominates by a factor of over 10 the method of applying standard value iterations
from start to finish (eg., row 1). However, results with setting p = 10,000
throughout are clearly inferior to setting p to a Jower number at the beginning.
Finally, row 6 reports the result of starting with p = 30 and not triggering Newton
iterations at all. Comparing the results of this row with those in rows 3 and 4 shows
that it i3 better, when p = 30 initially, to trigger Newton iterations at the end.

In sum, the results in Table 2 suggest that hybrid value function
iteration, with p > 1 is far more efficient than standard value function iterations.
Second, the results suggest that it is best to start out with a low value of p and then
trigger into Newton value iterations before the elements of the decision rules stop

changing. Clearly, we cannot expect the performance results associated with p > 1
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reported in Table 2 to apply in all problems. We expect that setting p > 1 will be
most advantageous when the maximization problem to the right of the equality in

(19) is particularly costly in terms of computer time.
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. The Maeni f th cculative Motive for Holding Iny i

The results of this section are based on simulating 100 realizations of
length 10,000 each, of data from each of our four models. Each simulation was
carried out by drawing randomly from the relevant model's distribution for 8- We
first discuss the simulations of Model 2, the one with a symmetric distribution for
the 8,'s (see Table 1 for Model definitions.) Figure 2 plots the histogram of R,
generated by Model 2. The mean value of the gross risk free rate is 1.0146, or close
to 6% at an annual rate. Interestingly, 1.0146 is also the risk free rate that obtains
in the steady state of the nonstochastic version of the model. The distribution in
Figure 2 has two humps, reflecting the two humps in the distribution of s,. The
higher risk free rates are associated with 8, = 8, and the lower ones with s, = 8.
Significantly, from our perspective, Rt is never less than 1 in Model 2. Asa
consequence, the fact that It is constrained to be zero during the simulations is
never binding (recall [9].) Therefore, in Model 2 the speculative motive for holding
inventories is quantitatively negligible.

Next, consider the Rt‘s generated by Models 1 and 3. Recall that the
st’s in the former are skewed to the right, while those in the latter are skewed to the
left. The histogram of risk free rates from these models is plotted in Figure 3. In
each case, the mean value of Rt is 1.0146, as in Model 2 and in the nonstochastic
version of the model. Both interest rate distributions in Figure 3 are bi-modal,
with one peak being considerably higher than the other. The histogram marked by
the solid line corresponds to the left-skewed technology shocks (Model 3.} Its
smaller peak is located in the right corner of the graph, and is associated with 8 =
8, which occurs with low probability (see Table 1.) Large negative shocks create a
rise in the relative price of goods in the current period relative to the future, and

therefore create an incentive to decumulate inventories, if indeed any are being held.
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In fact, in Model 3 it is optimal to never hold inventories, because negative values of
R,—1 never occur. High values of the technology shock—which have the effect of
reducing the current price of goods—are never big enough to induce speculators to
hold inventories. The low values of the technology shock do not have a high enough
probability to induce speculators to accumulate inventories in advance. Thus, the
speculative motive for holding inventories is also quantitatively negligible in Model
3.

Next, consider Model 1, which has a right skewed technology shock
distribution. In this model, Rtwl is always driven into the negative region when
(and, only when) a big positive technology shock is realized, so that the restriction
I, = 0 is binding. The average value of R,, conditional on §, = 8, is .99278 and the
lowest value of Rt ever computed is .99138. These correspond to annualized rates of
interest of —2.9 and —3.4 percent, respectively. Thus, in this model there is a
quantitatively identifiable speculative motive for holding inventories.

Figure 4 graphs the histogram of R, generated by Models 1 and 4.
The Model 1 histogram is reproduced from Figure 3 for convenience. Recall that
Model 4 is the same as Model 1, with the exception that It = 0 is not imposed. In
both Models 1 and 4, the average value of R, is 1.0146. At first glance this was
surpriging to us since, as expected, the lower left tail of the Rt distribution was
shifted to the right in Model 4 relative to Model 1. For example, the lower bound
on R, was shifted up from -3.4 percent (annualized rate)} for Model 1 to —.6 percent
(annualized rate) for Model 4.8 The reason the mean value of R, is nevertheless

identical in the two models is that the mean of R, conditional on s, = s is shifted

t

80f the 1,000,000 simulated values of Ry—! for Model 4, 5.8 percent were negative. In each of

these cases, i was positive. Presumably, had our iy grid been finer, it would have been chosen
slightly larger in these cases, and a negative value of Rt—1 would pever have been observed.
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down in Model 4 relative to that in Model 1.7 That, in turn, reflects that the
marginal utility of consumption associated with 8; = 8 ig higher in Model 4 than in
Model 1 due to holdings of inventories in the high shock state. This marginal utility
term appears in the denominator of R, (see [8]), reducing its magnitude in Model 4
when 8, = 8.

Table 3 shows how much inventories are actually being held in Model
4. The first column of numbers in that table reports the empirical values of, among
other variables, the ratios i /vy i and di, / ¥, where di e %it—l' In the data these
are .9 and .0065, respectively. In the model these are .00064 (.00013) and .000014
(.000023), respectively. Numbers in parentheses are the standard deviation of the
associated statistic across the 100 simulations. Thus, the speculative motive for
holding inventories, as captured by Model 4, can only account for .07% (=
100x.00064/.94) of aggregate inventories. Moreover, in that model people only hold
positive inventories in periods in which the high technology shock is realized. Recall
that shock is the largest empirical value of 5 observed in the last 30 years, and in
this model it occurs 11 percent of the time. Thus, even with very large shocks
(although keeping the variance of 8 empirically reasonable), the speculative motive
for holding inventories is far too small to account for an appreciable fraction of
inventories held using the real business cycle model of this paper.

Table 3 also permits one to compare the mean values of ¢ / Yo X¢ / Yo
k/y, h, and log(y,) —log(y,_;) implied by the models with the associated steady
states (see column 1). Note in particular how close mean and steady state values

are. Therefore, in the framework of this model it is valid to interpret the parameter

"The frequency of 8, =8 and s, = 5 is the same in the two models, being 11.3537 and 88.6453

t
percent, respectively (identical shocks were used in the simulations.) The mean value of Ry

conditional on s, =8 and 8, = s is 1.01743 and .99278 for Model 1, respeciively, and 1.01653 and

1.00000 for Medel 4, respectively.
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estimation procedure described earlier—under which one equates model steady state
and sample properties—as a first moment estimator.

Another useful indicator of the role of inventory investment in this
model is the role it plays in buffering consumption from technology shocks. Table 4
reporis the volatility of consumption, capital investment, and inventory investment,
relative to the volatility of income. These are defined as follows. The volatility of a
variable, say w, is defined a3 v, where v = (1/T)2‘f=0 | Aw, | /yt, where A is the
first difference operator and T is the number of observations in the sample (T = 112
in the data and 10,000 in the simulations.) Then, the volatility of W, relative to the
volatility of ¥ 18 vW/vy. Note that in the case of Models 1 — 3, the relative
volatility of consumption is quite high compared with what it is in the actual data.
In Model 4 the relative volatility of consumption is lower than it is in Model 1,
showing that the role of speculation is to stabilize consumption (and, hence, the
Arrow-Debreu price of consumption), but that it does not make it as smooth as it is
in the data. Put simply, the return on holding inventories is so low (on average, it
is negative) that using them to smooth out consumption, though feasible, is simply
not worth it. Note also that the relative volatility of capital investment is higher in
Model 4 than in Model 1. We suspect this reflects that inventories accumulated in
high shock states in Model 4 are invested in physical capital in the following period.
Such investments can be expected to generate a high return because of the random

walk nature of the shocks.
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This paper has taken a standard model used to study aggregate
fluctuations, and modified it to allow speculators to hold goods in storage
(inventory) in the hope of profiting from a price increase. When the model is
parameterized in an empirically reasonable way, inventories of the model's one good
are practically never held.

One way to explain our finding views our competitive model economy
from the perspective of a central planner who, because of the assumed absence of
externalities, chooses the same levels of consumption, inventory holdings, hours
worked, etc., as occur in competitive equilibrium. A measure of the planner's
willingness to trade goods intertemporaly is given by the rigk free rate of interest:
the number of consumption goods the planner is willing to give up next period in
exchange for one extra good in the present. As long as the risk free rate excceds 1,
the planner prefers zero to positive stocks of inventories. This is because by
reducing stocks to zero the planner can increase welfare by raising current
consumption at the cost of only an equal amount of consumption in the next period.
Only when the rigk free rate is less than, or equal to 1 would the planner be willing
to hold a positive amount of inventories. The reason inventory stocks are almost
never held is that when the planner is constrained to hold zero inventories, the rate
of interest almost always exceeds 1, so that the constraint practically never binds.
In this constrained version of the model the net risk free rate of interest is on
average quite high—around 6% at an annual rate—and has a fairly small variance.

The fact that the average value of the risk free rate is quite high in a model like ours
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has received a great deal of attention in the literature.8 One paper that has drawn
attention to this fact particularly forcefully is Mehra and Prescott (1985).

We suspect that a heterogeneous good version of our model, in which
each industry's production function has a large idiosyncratic component in its
productivity shock and/or tastes shift randomly between goods, may produce larger -
speculative inventory stocks in equilibrium. This possibility seems interesting to us,
however exploring it using the strategy of this paper involves substantial
computational challenges. This ig because heterogeneity increases the number of
endogenous state variables, greatly increasing the number of calculations required to
solve the model. In the mean time we think it fair to conclude from our results that
one can safely abstract from inventory speculation in models of aggregate
fluctuations.

In particular, in models épeciﬁed at the level of aggregation in this
paper, more plausible explanations of the observed holdings of aggregate inventories
are motives that focus on the service flow yielded by holding inventories, in addition
to possible price changes. One channel by which inventories produce a service flow
ig by facilitating increased efficiency in the allocation of labor and physical capital.
For example, Blinder (1981,p.453) points out that economies of scale in
transportation and fixed costs associated with placing and processing orders would
be expected to result in manufacturers bunching their shipments to
retailers—thereby resulting in positive inventory holdings—in order to reduce costs.

Similarly, costs—in the form of machine down time and labor time—of switching

8When utility is time separable and separable across consumption and leisure—as we
assume—then the risk free rate which obtains in non—stochastic steady state is
G1 + 4Alog(c) + n—1, where F1 is the gross rate of time preference, Alog(c) is the net rate of
growth in per capita consumption, n is the gross population growth rate, and 7 is the coefficient
of relative risk aversion on instantaneous utility. In our model the annual rate of time preference
is 3%, 7 = 1, and Alog(c) and n—1 are around 1.5% at an annual rate, implying a steady state
risk free rate of about 6% annually. This is also the risk free rate in the stochastic version of our
economy.
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production among heterogeneous goods could induce manufacturers to make
production runs that exceed their planned sales for the current period (Lovell
[1981,p.508].) As noted by Blinder (1981), these considerations are reminiscent of
features of the simple (S,8) model of inventory accumulation associated with Arrow,
Harris and Marschak (1951). Other existing models of aggregate inventories,
including those of Kydland and Prescott (1982) and Christiano (1988) attempt to
capture the service flow motive for holding inventories by including them as a factor
of production in the production function. One interesting, as yet unanswered,

question is how accurate this approximation is.
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Table 1

Decision Rule Information?

Model 1

Model 2

Model 3

Model 4

£k
K Grid
#K Grid pts

| 6o

I Grid
#I Grid pts

CPUs
Time

{9744,15530}

{77000,17000}
10,000
—0.0028

8.057
0.89

0.11

02

2472,

{11012,17414}

{9500,19500}
10,000
~0.015

0.023
0.50

0.50

1542.

{12266,19120}

{11000,21000}
10,000
~0.049

0.011
0.11

0.89

1770.

{9772,15457}

{9000,16000}
800
~0.0028

0.057
0.89
0.11

{0,10}

{0,20}
11

1191.4

IgK and 51 denote the ergodic sets of k¢ and 1y, respectively. The points in these sets were found by

simulating 1,000,000 observations on the variables of the model by drawing an equal number of s's
from the indicated distribution. The lower point in the ergodic set of a variable is its minimum value
in the 1,000,000 cbservations and the upper point is the maximum value.

K and I grid are the

boundaries of the grid on ki and I, respectively, used in the computations. Also reported is the
number of grid points.

2Zeros reflect that Iy = 0 in the computations.

3CPU time refers to central processing unit time, in seconds, used in solving the indicated model. For
models 1, 2, 3 the computations were carried out on the Federal Reserve Bank of Minneapolis’ Amdahl

mainframe computer. The computations for Model 4 were carried out on the Cray—2.
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Table 2

Computational Costs of Alternative Versions
of Hybrid Policy Iterations!

CPUs

p? Triggers Stepst Time

no 1740 2640.06
1 3 121 287.7
30 3 26 81.3
30 1,650 22 84.9
0 no 46 227.8
30 no 112 279.8

10alculations based on a model identical to Model 4 in Table I, except
that the capital grid contained only 100 points.

2V alue of p in hybrid value function iteration for j = 1, 2, 3, ..., until the
decision rule changes at less than frigger points in the state space, which
is itself composed of 2,200 points. After this, p = o. When p = 1 the
method corresponds to standard value function iterations. When p = «
the method represents Newton value function iterations.

3A no in this column means no trigger was used.

4Number of value function iteration steps.

5Central Processing Unit seconds on the Cray—2 supercomputer.

6This job was canceled before convergence because progress was so slow.

Qur guess is that convergence would have required at least another 2,000
seconds of CPU time.
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Table 3

First Moment Properties!

U.S. Steady
Data, State Model 1 Model 2 Model 3 Model 4

(1) (2) 3) 4) (5) (6)

¢,/ 725 721 122 722 722 722
(.016)  (.010)  (.010)  {(.010)

%, /¥, 269 279 278 278 278 278
(.010)  (.010)  (.010)  (.010)

di, /y, 0065 0 0 0 0 000014
(0) (0) (0) (.000023)

k/y, 1059 1098 11.05 1104  11.04  11.05
(312)  (.314)  (.320)  (.310)

it/yt .90 0 0 0 0 .000G1
(0) (0) (0) (.00013)

3205 32214 321.85 32193 321.95  321.85
(4.68)  (4.66)  (4.66)  (4.66)

Alogy, 0041  .00¢  .0040  .0040  .0039  .0039
(.0017)  (.0017) (.0018) (.0017)

!Numbers in column (1) taken from Table 1 in Christiano (1988). Numbers in column
(2) are the values of the indicated variables in the steady state of the nonstochastic
version of the model. Since steady state Ry is 1.01486, iy = 0 in the steady state. Resulis
in the columns (3) — (6) are based on simulating 100 artificial data sets, each with
10,000 observations, from the indicated model. For model definitions, see Table 1. The
reported numbers all but colurmn (2) the table are averages of the variable indicated in
the first column, across the 100 data sets. Numbers in parentheses are the corresponding

standard deviation.
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Table 4

Relative Volatility Measures®

T.S.
Data? Model1l Model 2 Model 3 Model 4

Consumption {¢)  0.47 0.86 1.00 0.81 0.75
(0.077)  (0.079) (0.052)  (0.047)

Investment (x) 047  0.81 094 066 097
(0.047)  (0.045) (0.063)  (0.062)

Inventory (di) 0.51 0 0 0 0.29
Investment, (0) (0) (0) (0.032)

IThe volatility of a variable, say wi, is defined as vy = (1/T) E’{‘:dAng [vt, where
| Awy| denotes the absolute value of the first difference in w¢. The relative volatilities
reported in the table are vy /vy for w = ¢, x and di, respectively.

2Taken from Table 4 in Christiano (1988). Other columns were computed using the
artificial data underlying the results in Table 3.
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Appendix A: A Decentralized Market Interpretation of Qur Planning Problem

A competitive economy whose equilibrium allocations coincide with those of
the planning problem in the text is presented here under the restriction that there is
zero population growth (n=1). We adopt the normalization N, =1lforallt. In
order to highlight the speculative motive for holding inventories, access to the
economy's storage technology is restricted to a single agent called the speculator.
Firms are the type of agent who have access to the economy's production
technology, F. Households own firms and speculators and use the profits from this
ownership (which are zero in equilibrium) together with income from labor services
to purchase consumption goods. In the real world the distinction between
households, speculators and firms are not as sharp as they are in our model. We
maintain the distinction for expositional clarity.

In the first of the following two subsections we describe the market economy
and define a competitive equilibrium. We use the time 0 Arrow—Debreu framework
spelled out in Lucas (1984) for an economy very similar to ours. In the second
subsection we establish that the equilibrium allocations in our market economy

coincide with those of the planning problem studied in the text.
A.1 The Market Economy and Its Competitive Equilibrium.

Denote the entire history of realizations By Bs 8oy +ey 8¢ by st. The set of all

possible s’ is denoted S and consists of M4 T1

elements. Finally, the joint density
of st is ft’(st). To simplify notation, we assume there ig a single household, a single
firm and a single speculator. We begin by considering each of these in turn. After

that we define a competitive equilibrium.
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Households

Household preferences are given by the following utility function:

(A1) Y Y At ule ) + dn6TTH),
t=0 StESt

b and ht(st_l) is date t

where ct(st) is date t consumption, contingent on history s
hours worked which is contingent on s Here, u(-) =log(+) and f(lzt(stql)) =
—-7ht(st_1). Consumption is, and hours worked is not, a function of 8;- This reflects
our assumption that date t consumption is set after, and hours worked before, 8y is
realized.

Following is the household budget constraint:

w0

\ by ot t—1y, d=1vy _
(A2) 3, Y, @) = w6 O = M + Topecntator
t=0 St eSt
Here, Thrm and Tspeculator denote the profits of firms and speculators, respectively,

and are defined below. In addition, pt(St) is the date t price of the consumption
good, given history s* and wt(st_l) is the wage.

Households maximize (A1) subject to (A2) and consumption and hours
worked being non-negative. Let A denote the Lagrange multiplier on (A2) in this

constrained maximization. Then, the first order condition for ht(st_l) is:

(A3) Ao @GN E ) = - Mw st
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The corresponding condition for ct(st) is:
S N A t L
(A4) BT (eyfs") = Apy(s")-
Firms

Firms maximize their cash flow:

(a5) Y Y {0yl (sh) - wys R
t=0 St 6St
- (Yl s - (1-0)k,_, ")},
subject to

(Asa) k(') 2 (1-8)k, ("),

(A5b) k_; given.

t-1 gross capital investment

Here, kt(st""l) - (1-6)kt"_1(st_2) is the date t, history s
undertaken by the firm. Equation (Aba) is the assumption that investment is
"irreversible". The fact that date t investment is not a function of 8 reflects our
assumption that that decision has to be made before the realization of s £ Also,

yt(st) is the output produced by the firm, using production technology F:
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(A6) (s = Fls®h,(s" ) K, (")
|1
= [exp(?zosj)z_lht(st—l)](1—0)[kt_1(st—2)16

The first order conditions for the firm's maximization problem are:

=1y _ | t-1 ko t-1
(A7) Zpt(s ’st)_z Pog1(8 Sy gy (&7 88y 1g) + 178,

3
¢ S¢15tr1

for kt(st_l) and

-1 — —
(48) Mw, (") = Y p, syt sy,
8
t

for ht(st_l). In (A8), y]tJ(st) and ylé(st) are the derivative of F with respect to n and
k, respectively. We denote the maximized value of (A5) by Trm

Speculators

Speculators' objective is to maximize:
0
w . t—-1, . 1
(a9) BN pyfig 6 -y 6N,

t=0 s;xf‘fSt

subject to
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(A9a) it(st) > 0 for all st, b,
(A9b) i_; given.
Speculators' first order condition is:

t 1 1
(A10) 2 Py 1(8°84 1) - p(s") 2 0 then I,(s”) 2 0
Bt+1 < 0 then I,(s%) = 0

Equation {A10) formalizes the remarks about speculation made in the introduction.
*

t4+1°
of the commodity is sufficiently high. They may also

For example, inventories may be held if there ig a state, s in period t+1 in

*®
t+1)
be held if p,(s*) is sufficiently low. Of course, if the object to the right of (A10) is

which the price, p(st,s

positive, then the demand for it(st’) by speculators is infinite so that in equilibrium
we do not expect to see it exceed zero.
For purposes of comparison with the text, it is convenient to rewrite the

object in (A10) as follows:

p,(s")

(Al1) R(s" =

t
Pyp1(875841)
i1

Here, Rt(st) is the rate at which a unit of ct(st) can be exchanged risklessly for a
unit of time t+1 consumption. The formula for the risk free rate of interest given in

(Al1) can be seen to coincide with (8) after substituting (A4} into (A11).
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Competitive Equilibrium
We are now in a position to define a competitive equilibrium:

Definition 1: A competitive equilibrium is a specification of {ct(st)}, {h t(st_l)},
{0,6"D}, 6O 165} 5O oY)}, (w67} satistying:

Market Clearing: for each t and st

¢, (6% + k(") - (-9, ") + i (s i,y (") = yy(sh),
~ -1

b, (s71) = hy(s" ™).

Consumer Maximization: The quantities {ct(st)} and {ht(st_l)} maximize
(A1) subject to (A2).

Firm Profit Maximization: The quantities {yt(sf’)}, {kt(st—l)}, and
{b,(s"™)} maximize (A5) subject to (A52)—(A5b).

Speculator Profit Maximization: The quantities {i t(st)} maximize (A9)
subject to (A9a) — (A9Db).

A.2 Equivalence of the Competitive Equilibrium and the Solution to the Planning

Problem.

To demonstrate the equivalence between the competitive equilibrium and the

solution to our planning problem, (13), we need only show that both satisfy the
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same first order conditions. In showing this we assume the value function, (13), is
differentiable in its first two arguments, implicitly assuming that the "grid" on Et
and Tt is continuous. The result then follows from the fact that the two problems

satisfy the same initial conditions and resource constraint.

Consider hours worked first. Substituting (A8) into (A3), we get

N O A Gl ):pt(s” PACEEN
Bt

= 5t):ft(st, (e, (5,5 )y sy,

after substituting from (A4). Rearranging:

(AL2) =Y (s, s u (e (a8 Ny sy)

8¢

= ¥ s " Gy la s TN-0F,6 ) /by MY,

84

where ft(st[st_l) = ft(st,st"l)/ft_l(st_l), the conditional probability of s, given
1. The identity ylg = (I—H)yt/ h, and the labor market clearing condition,
ht(st_l) = ht(st_l) were used in passing from the first to the second equality in
(A12). In the notation of the text,

'(s(0) |8 1) = pj, £=1,...M, for all t, 5",
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Also, the variables with over bars in (A12) are defined in (10). It is easily
confirmed that the first order condition for h, {18), coincides with (A12).
Next, consider the first order condition for physical capital, kt(st'l).

Substituting (A4) into (AT):

z‘ft(st | st_l)u’(ct(st,st_l))
8%
(A13)

{41 t-1y t=1y\r K t-1
=2ﬂf (88, 4 g 18" Jur(eyyq (88 418" Ny 18y s )+1-4,

8¢28441

after dividing by ﬁtft’_l(st"l). Multiply both sides of this expression by Z_1 and

i ==l k L e
use the facts u (ct) =1 (Ct)Zt Vi1 T 9Yt+1/l‘f, - 6(3{;-4—1/zt—l)yt-i-lﬂ'E ?

z;_1/% 1 = exp[=(8;_ ;+5;)] to rewrite (A13) as follows:

Y s, 18 (5,57 exp(-s,)
B¢
(A14)

b+1 b1y, = -1
DY AR OO TN )

84:8¢+1

1+ (1-fexpl-(s, , +8)1)-

-k
(V4108418
Here, ?1: e H{rt +1/EI:' After some algebra, it can be confirmed that the first order
condition for k- in (13) coincides with (A14). Doing this requires computing the
derivative of v in (13} with respect to its first argument.

Finally, consider it(st)' Substituting (A4) into (A10) and rearranging:
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{[2: B oy g 180 Gy (i (s )] - 0 G}
St+1
(A15)

x MY /2.

Apart from the last expression, this is the derivative of the expression to the right of
the equality in (13) with respect to 1. The expression in square brackets is the
derivative of the planner's value function with respect to its second argument, while

- u’(Et(st)) corresponds to the derivative of r with respect to its fourth argument.
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