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Abstract

This note shows that the basic theorems of dynamic programming hold

when the return function is homogeneous of degree 8 < 1.

A major limitation in applying the tools of dynamic programming to many eco-
nomic problems has been the lack of a general theory in the case where returns are
unbounded. Except for a few special cases where closed form solutions are available
(linear-quadratic models and the log-Cobb-Douglas growth model being the leading
examples), recursive methods have not been useful. This note establishes that the
basic fixed point argument of dynamic programming, which is fundamental for both
theoretical and computational purposes, can be applied to a limited but useful family
of unbounded problems, those that are homogeneous.

Many problems in econornics are conveniently modeled with return functions that
are homogeneous of degree # < 1 and constraints that are homogeneous of degree one.
For example, in much of the endogenous growth literature (Lucas (1988), Jones and

Manuelli (1990), Rebelo (1991), and many others), a utility function with a constant



elasticity of intertemporal substitution is used,

¢
0,

Ule) = <1,

together with technologies that display constant returns to scale. The case § = 0 is
interpreted as U(c) = In( c). Preferences in this class are used because homogeneous
functions are the only ones consistent with balanced growth.

This note shows that the basic contraction mapping argument of dyramic pro-
gramming holds for problems of this type. The main steps are to find appropriate
restrictions on the state space and feasibility constraints and an appropriate space of

functions. With this done, standard arguments apply.
1. Preliminaries

Consider the problem
sup > B'F(ze2e41) (1)
{3t+l}::go t=0

s.t. Ty € T(:z:g), t= 0, 1,2, veey
zo € X given,

and the corresponding Bellman equation
ve)= sup [F(z,9)+Bo(y)], allzo€ X. 2)
yel(x

Let v*(zo) denote the value of the supremum in (1). It is often convenient, for
both theoretical and computational purposes, to study (2) instead of (1). To do
so, however, it must be established that there is a one-to-oné relationship between
solutions to the two problems. Moreover, the convenience comes only if it can be
shown that sta.ndar;l arguments establishing the existence and uniqueness of a solution

apply to the latter.



Both can be accomplished when T' is homogeneous of degree one and F is homo-
geneous of degree ¢ < 1. Slightly different assumptions and arguments are needed for
the case 0 € (0, 1], the case # < 0 and the logarithmic case (¢ = 0).

The following space of functions is suitable for analyzing Bellman equations when
f # 0. Let X C R’ be a cone, excluding the origin if # < 0, and let H(X,§) be the
linear space of functions f: X — R that are continuous, homogeneous of degree 8,

and bounded in the norm

WAl= sup |f(z)]. (3)
ll=ll=1,7eX

It is straightforward to show that (3) defines a norm and that with it, H(X,9) is

a complete metric space. To see this, notice that there is a one-to-one relationship

between elements of H(X, 8) and elements of the set of bounded, continuous functions

defined on the intersection of X with the unit circle. If # < 0, then functions in

H(X,8) diverge as |[z|| — 0, so the origin must be excluded.
* Note that for any f € H(X, 8), homogeneity of degree # implies that

flz) = ll=|° £ ( ) < =1 111 )
It follows that for any f,g € H(X,9),
f(x) = g(z) + [f(z) — g(z)]

<g(z)+|lzl°If —gll, allzeX. (5)

In addition, for any f € H, let f + a denote the function

T

Nz

(f +a)(2) = f(2) +all=|’,

so f +a is also continuous and homogeneous of degree 8. That is, (f + a) € H(X, 6).
Lemma 1 provides an analogue of Blackwell’s sufficient conditions for a contraction.
The lemma applies to H(X,#), but to other spaces as well, and others arise in appli-
cations. For example, in some settings it is useful to apply the result to the subset of

H(X,0) consisting of functions that are weakly quasi-concave.
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Lemma 1. Let § € R, with 8 # 0; let X C R’ be a cone, excluding the origin if
# < 0; and let J(X,8) be a space of functions that are homogeneous of degree ¢ and
bounded in the norm in (3). Let T: J(X,8) — J(X, 8) be an operator satisfying

a. (monotonicity) f,g € J(X,8) and f < g, implies Tf < T'g;

b. (discounting) there exists some § € (0,1) such that

T(f+a)<(Tf)+ Ba, all fe J(X,6), a>0.

Then T is a contraction of modulus .

Proof. Let f,g9 € J(X,8). Using (5), monotonicity and discounting imply that,
(Tf)(2) T (¢(=) + Il IS = g1l

< Tg(z)+Bliz|’IIf —gll, all z € X.

The same argument applies with the roles of f and ¢ reversed. Using these facts and

confining attention to the subset of X where ||z|| = 1, one finds that ||Tf — Tg|| <
BIf—g4ll.O

2. Homogeneous functions: 0 <§ <1

Next we must find suitable restrictions on the state space, feasibility constraints,

and return function. For the case & € (0,1], the following assumption is useful.

Assumption 1. a. § € (0,1] and X C R is a cone;
b. the correspondence I': X — X is nonempty, compact-valued, and continuous,

and the graph of T, call it A4, is a cone: T'(0) = 0, and

yeEl(z)=Ayel(Az}, allA>0,alzeX;



c. B €(0,1), and there exists a > 0 with v = o8 < 1, such that
Iyl < ellzll, all (=,y) € 4;
d. F: A — Ris continuous and homogeneous of degree 4, and for some 0 < B < oo,

IF(z,9)] < B(llz]| + lly)’, all (z,3) € A.

Assumption lc, which is the Brock-Gale (1969) condition for existence of optimal
paths, bounds the rate of growth of feasible sequencesby #-1/¢, and 1d imposes a
uniform bound on the ratio of F' to the norm of its arguments. The latter is equivalent
to assuming that F(z,y) is bounded for ||z|| = 1 and y € I'(z), and implies that
F(0,0)=0.

Given a;x:}y zo € X, define

H(.’l:o) = {{.’Eg}zo Tl € F(Zg), t = 0, 1, ...}

to be the set of all sequences in X that are feasible from zg. As above, let v* denote

the supremum function for (1).

Lemma 2. Let (0, X, T, 8, F) satisfy Assumption 1. Then

a. v* € H(X,0);

b. v* satisfies (2);

c. if a feasible plan {z}} € H(zo) attains the supremum in (1) for initial state
Zo, then

vi(z) =F ("‘:az:ﬂ) + pv* (-"t'+1) » t=0,1,2,..5 (6)

d. if v* € H(X,0) and {z;} € TI(z,) satisfies (6) for initial state zo, then {z7}

attains the supremum in (1).



Proof. To show that (b) - (d) hold, it suffices to show that [1(z) is nonempty, for all
zg € X; that limp—oo Zheo B F (21, 2e41) exists, for all 2o € X and all {z,} € (),
(although it may be plus or minus infinity); and that

Lim sup B'v*(z) €0, all {z:} € I(zp), all z, € X. (M

The claims _then follow from Theorems 4.2, 4.4, and 4.5 in Stokey, Lucas, and Prescott
(1989). Part (a) will be proved directly.
It follows immediately from Assumption 1b that II(zp) is nonempty, for all z, €

X.
Next, choose any 7o € X and any {:} € II(zo). Assumption 1c implies that

llzell < @ flzoll, all 2,

el + llzegall < @ ||zo]] (1 + ), allt,

and

(lzell + lzer1l)’ < o fizo]l® (1 + @)®, all 2.

Then Assumption 1d implies that

i Bt |F(ze, ze41)| < B ||.1:0||9 (1+ a)‘ i (ﬁaa)t
t=0 t=0
s B1+a)

= lzoll” — pom (8)
where 7 = a®f < 1. Hence limp—co T Bt F (4, Teq1) exists.

To show that (a) holds, we must show that v* is bounded in the norm in (3),
continuous, and homogeneous of degree §. For boundedness, note that (8) implies
that if ||zol| = 1, then [v™(zo)| € B(1 + @)’ /(1 — ). Continuity follows from the
fact that I' and F are continuous. For homogeneity, note that since I is homogeneous

of degree one, it follows that for any zo € X and A > 0, if {z,} € II(z), then
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{Az:} € II{Azo). Since F is homogeneous of degree 8, the djscounted returns from
these paths satisfy
u(Agc_) = Zﬁ‘F()‘It, /\-‘Ct+1) = Zﬂt/\aF(xh I:+1) = l\su(i),
t=0 t=0
where u(z) denotes the total discounted returns from any feasible path. Hence

{zt}€l(Azo) {z:}€ll(zo) {=e}€li{zo}

so v™ is homogeneous of degree 6.

v"(Azg) = sup u(z)= sup u(dz)= sup ANu(z)= Nv*(zo),

Finally, since v* € H(X, 0), it follows from (4) and Assumption lc that
lim o (20| < Jim B llzdl® o™ < Jimm +* ol o]l = 0,
all {z:} € I(zo), all zo € X,
so (7) holds. O

Theorem 1. Let (6, X, T, 8, F) satisfy Assumption 1, define H(X,8) as above, and
define the operator T' on H(X, 8} by

(T1)(=z)= Sap, [F(=z,y)+ BF(v)]. (9)

vell(z
Then T: H(X,0) — H(X,0), T is a contraction of modulus 4, and the supremum
function v* for (1) is the unique fixed point of T. If a feasible plan {z}} € II(z,)
satisfies (7), then it attains the supremum in (1) for initial state zo, The policy
correspondence G is nonempty, compact-valued, u.h.c., and homogeneous of degree
one:
y € G(z) implies Ay € G(Az), all A>0.

Proof. Assumptions 1c and Id imply that for (z,y) € A with |[z|| = 1, F(z,y) is
bounded and |[jy|| < a, so the right side of (9) is bounded by B (1 + )’ + «||f]|.
Hence ||T f|| is bounded. Clearly T preserves homogeneity:

¥yt € arg max [F(z,y)+ B8f(y)] implies (10)
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Ay* € arg max [F(Az,y)+ Bf(y)], all A.>0.

That T f is continuous follows from Assumption 1 and the Theorem of the Maximum.

Obviously T satisfies the hypotheses of Lemma 1, so T is a contraction of modulus
B. Since H(X,8) is complete, T has a unique fixed point. This fixed point is the unique
element of H(X,8) that satisfies (2), and so by Lemma 2 is v*. The homogeneity of

the policy function is clear from (10), and the other properties are standard. O
3. Homogeneous functions: ¢ <0

The space of functions H(X,#8) defined above applies for this case as well. A
somewhat different set of assumptions on the state space are useful, however,

If § > 0, the value of a homogeneous function f(z) grows (in absolute value) as
lzli grows. Thus, to ensure that total discounted returns did not diverge along any
feasible path, Assumption 1 put an upper bound on the growth rate of ||z.|| along
every feasible path. If 8 < 0, the value of 2 homogeneous function grows (in absolute
value) as ||z|| shrinks. Thus, one possibility for this case would be to put a lower
bound on the growth rate of ||z.]| along every feasible path. Most applications do not
fit this restriction, however. |

Instead, in most applications the return function takes nonpositive values, F < 0,
so returns are bounded above by zero but are potentially unbounded below. Then,
since total returns are being maximized, it is enough to assume that from every
initial condition there is at least one feasible path along which returns do not diverge
to minus infinity. Hence it suffices to assume that from every initial condition z4 € X,
there is at least one feasible path {z,} € II(z,) along which ||z|| does not shrink too
quickly. This in turn implies that (||z:}| + [|zi41l])° does not grow too quickly, so total

discounted returns are bounded below.



Assumption 2. a. # <0 and X C Ris a cone, minus the origin;
b. the correspondence I': X — X is nonempty, compact-valued, and continuous,

and the graph of I', call it A, is a cone, minus the origin:
yel(z)=Ayel'(Az), allA>0,alzreX.
c. # €(0,1), and there exists { > 0 with v = 8¢{° < 1, such that for every z € X,
lwll = ¢ l=zll, for some y € I'(z);

d. F: A — R_ is continuous and homogeneous of degree 8, and for some 0 < B <
00,

|F(z,9)| < Bl + Iyl all (z,y) € A.

As before, Assumption 2d is equivalent to assuming that [F(z,y)| is bounded for
llz]l = 1 and y € [(z).

Under Assumption 2 there may be many feasible paths long which returns diverge
to —co. For any initial state, however, there exists at least one feasible path along
which the growth rate of {[z¢41]| / [[z:|| is bounded below by (. For any such pa;t.h, the
bound in part 2d and the assumption that 8¢ < 1 together imply that total returns
are bounded. Thus, under Assumption 2, we have the following analogue of Lemma
2.

Lemma 3. If (4, X, I, 8, F) satisfy Assumption 2, then (a) - (d) of Lemma 2 hold.
Proof. Much of the proof parallels the proof of Lemma 2.

It follows immediately from Assumption 2b that I1(zg) is nonempty, for all z, ¢
X. Also, since F < 0, the limit exists, although it may be —o0, and v* < 0, so (7
holds. Hence claims (b) - (d) hold.



To show that v* € H(X,$), we must show that v” is bounded in the norm in (3},
continuous, and homogeneou of degree 6. Since F < 0, v* is bounded above by zero.

Assumption 2c implies that for any z, € X, there exists {z,} € II(zo) such that
llzell 2 ¢* llzoll, allt >0,

S0

(zell + lzesall) = ¢ llzoll (1 +¢), allt >0,

(zel + llzesall)’ < ¢*floll® (1 +¢), allt > 0.

Then Assumption 1d implies that

iﬂt |F(ze, ze41)| < Bllzol® (14 ¢)° i (5(9)‘

=0 =0

_ ¢ B(1+¢)°
N s

where v = 8¢® < 1. In particular, if ||zof| = 1, then —B(1+¢)® /(1 —9) < v*(zo) <

3

0. Hence v* is bounded in the norm in (3). The arguments showing that v* is contin-

uous and homogeneous of degree § are the same as before. O
The conclusions of Theorem 1 then go through without change.

Theorem 2. Let (6, X, T, 3, F) satisfy Assumption 2, define H(X,#) as above, and
define the operator T on H(X,#) by (9). Then the conclusions of Theorem 1 hold.
Proof. Unchanged. O

4. Logarithmic functions: § =0

For the logarithmic case, # = 0, a similar argument applies. A soméwhat unusual

space of functions must be used, however. Let X C R! be a cone, minus the origin,
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and for any 8 € (0,1) consider the space of continuous functions f: X —R that
satisfy .

f(z)= (" ") +(1-8)""h|zl|, allzeX. (11)
Define the “zero” function

ofz) = (1-B)" In |lz||;

define addition by

(F+9)(=) =1 (ﬂ) (” ") +(1 =) al;
and define scalar multiplication by
of(z) = af (" ") +(1-B) " le]l.

It is straightforward to show that

Il = sup |f(z)| (12)

liefi=1,2€ X
defines a norm on this space. Let Hg(X,0) denote the space of continuous functions
satisfying (11) that are bounded in the norm in (12). It is straightforwa'rd to show
" that Hp(X,0) is complete. As before, the key idea is that functions in Hg(X,0) are
characterized by their behavior on the intersection of X with the unit circle.

Also note that for any f € Hz(X,0),
f(@) < I+ (1 =B In 12l (13)
It follows that for any f,g € Hp(X,6),
fz) = 9(z) + [f(z) - 9(a)]

=5(2)+ |1 (&) -+ ()
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=g(z)+If—gll, alzeX. . (14)

The next lemma provides an analogue of Blackwell’s sufficient conditions for a con-

traction. As before, the lemma holds for Hg(X,0), but also more generally.

Lemma 4. Let X C R’ be a cone, excluding the origin; let 8 € (0,1) ; let J3(X,0)
be a space of functions that satisfy (11) and are bounded in the norm in (12). Let
T: Jg(X,0) — Js(X,0) be an operator satisfying (a) and (b) (monotonicity and
discounting) of Lemma 1. Then T is a contraction of modulus 3.

Proof. Let f,g € Js(X,0). Using (14), monotonicity and discounting imply that,

(Tf)(z) < T (g(z) +If - gli)

<Tg(z)+Bf—gll, all z € X.
Reversing the roles of f and g, one finds that ||Tf — Tg|| < 8||f - gll. O

When the return function is logarithmic, it is unbounded both above and below.
Hence the growth rate of ||z]{ must be bounded above for all feasible sequences, and
for every initial condition zo € X, there must be at least one feasible sequence along
which the growth rate of ||z;|| is bounded below. In addition, the ratio of the return
function to the norm of its arguments must be bounded from above and below. The

analogue of Assumptions 1 and 2 is the following.

Assumption 3. a. X C R’ is a cone, minus the origin.
b. The correspondence I': X — X is nonempty, compact-valued, and continuous,
and the graph of ', call it A, is a cone, minus the origin.

c. B € (0,1}, there exist 0 < ¢ <1 and 1 < a < 400 such that for any z € X,
vl = {llzll, somey € I'(z),

12



Iyl < elizl], ally € I(z);

d. F: A — R has the property that F(z,y) = In¢(z,y), where ¢: A — R, is
continuous and homogeneous of degree one. In addition, there exist 0 < b < 1 and

1 < B < 400 such that

b(lizll + yl) < é(=,v) < B(llzli + llyll), all (z,y) € A.

Part d is equivalent to assuming that ¢(z,y) is bounded, above and below, for ||z|| = 1,

and y € ['(z).

Lemma 5. If (X, T, 8, F) satisfy Assumption 3, then v* € Hg(X,0), and (b) - (d) of
Lemma 2 hold.
Proof. Much of the proof parallels the proof of Lemma 2.

Assumption 3b implies that II(zo) is nonempty, for all zp € X

To show that lim,_.oo 7o 8 F(2Z¢, T441) exists, it suffices to show that 3752, Bt F+(z,, .q1)
is bounded, where F*(z,y) = max{F(z,y),0}. Assumption 3c implies that for all
{z¢} € I(zo) and all z4 € X, |

In fjzefl <ln (o' wofl) = tlna+lnllzoll, t=1,2,... (15)
Since ¢ is homogeneous of degree one,

F(z¢,z441) = In(¢(4, Te11))

=1n (Hzt" ¢ (ﬁ‘:ﬁ’ ﬁ))

=In(jlz]| ) +1n ( ¢ (nz_:u ﬁ))

It then follows from (15) and Assumption 3d that
B F(ze, 2141) € B*[tlna + In|lzo]| +In (B (1 + a))].

13



Therefore, since a, B> 1 and f < 1,

3 B F*(zy, 2e1) < 30 8 [t n o+ max {la |Jzoll, 0} +In (B (1 + a))]

=0 t=0

= lnafﬁ‘t 4+ Bax {In [}z ,f}—-;ln (B(1 +a)),
t=0

which is finite. Hence lim, o Y7o 8 F (2, 2¢+1) exists, although it may be —oo for
some paths.
To show that v* € Hp(X,0), we must show that v* is bounded and continuous

and satisfies (11). Choose any zo € X with ||zo}| = 1. It follows from the argument
above that for any {z.} € II(zo),

$ 6t (20 2u) < lna 3o gt 4 BB L)

t=0 =0 1-8

In addition, it follows from Assumption 1c that there exists {z,} € II(z,), such that
In|lzel| > In (¢* lzoll) = tin¢ +In ol =tln(, t=1,2,..

Then Assumption 1d implies that

= had In(b(1

3B F(azun) 2 ¢ Y o+ LD,

=0 t=0
Hence v*(zo) is uniformly bounded above and below for ||zo]| = 1, so v* is bounded
in the norm in (12).

The continuity of v* follows from the continuity of I" and ¢.

For any 7o € X and any A > 0, if {z.} € II(zo), then {Az.} € II(Az,). Let u(z)

denote the total discounted returns along any feasible path. Then

u{Az) = i At ln (¢ (Aze, ATigr))

t=0

= 3 B (¢ (2 200) + 38 In 2

t=0 t=0
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InA
1-48

= u(a) +
Hence v* satisfies (11).

Finally, using (13) and (15), one finds that for any f € Hs(X,0), any zo € X,
and any {z;} € {zy),

tin sup /(2 < i s 171+ 2120

thha+In ||Io||]

=0,

< Jim " 11+ L2222

so (7) holds. O
Again, the conclusions of Theorem 1 go through without change.

Theorem 3. Let (X, T, 8, F) satisfy Assumption 3, define Hs(X ,0) as above, and
define the operator T’ on Hy(X,0) by (9). Then the conclusions of Theorem 1 hold.
Proof. Unchanged. O

5. Conclusion

Arguments analogous to those in section 4.3 of Stokey, Lucas, and Prescott (1989)
can be used to establish (weak or strict) concavity of the value function. Several
additional assumptions are needed: that X is convex, that I'(z) is convex-valued, for
all z € X, and that F or ¢ is (weakly or strictly) quasi-concave. The arguments
above can then be applied to the closed subset of H(X,8) consisting of functions that
are weakly quasi-concave.

To simplify the exposition, the deterministic case was discussed here. The same

arguments apply to stochastic models, however. In this case the bounds on the
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growth rate of |jz;|| and on the ratio of F or ¢ to the norm of its arguments must
hold contingent on every realization of the exogenous stochastic shock.

Dolmas (1993) shows that return functions that are recursive and homogeneous
are also consistent with balanced growth, even if they are not additively separable
over time. The extension of the arguments above to return functions in this broader
class is a topic for future research.

Homogeneous models have the attractive feature that for computational pur-
poses, the dimensiona.lit}; of the problem is essentially reduced by one. Since both
the value and policy functions are homogeneous, it suffices to compute their values
on the unit circle. Thus, for a problem with state space X C RY, it is enough to
compute the value and policy function on a manifold of dimension ¢ — 1. Hence the

“curse of dimensionality” operates a little more slowly.
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