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ABSTRACT

The effects of stochastic iInflation on equity prices and the
equity premium are studied in a pure-endowment assetf-pricing model
with a cash-in-advance constraint., Stochastic inflation affects
the equity premium through two channels: the assessment of an
inflation tax and the presence of an inflation premium. Real and
monetary versions of the model are simulated and the comparative
dynamic results corroborate the conclusion that inflation has
quantitatively important effects.

The other important result is that the equity premium in the real
vergion of the model--a continuous state-space generalization of
Mehra and Prescott (1985)--and the monetary model is very sensi-
tive to the conditional variance of endowment growth. When the
standard deviation of endowment growth is increased from 3.49
percent (the estimated value) to 5.59 percent, the real model can
generate an equity premium of 2.8 percent in the range of the risk
aversion parameters considered by Mehra and Prescott. The mone-
tary model displays similar sensitivity and can generate an
equity premium of 5.81 percent.
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The effects of stochastic inflation on the equity premium are
studied in a pure endowment representative agent economy with a cash-in-
advance constraint. The random endowment is growing over time and the
nondistortionary monetary transfers are stochastic. Inflation affects
the equity premium through two channels: the assessment of the entire
time path of the future inflation tax and the presence of an inflation
premium.

The equilibrium equity price is a function of the discounted present
value of the real dividend stream. Dividends are denominated in units of
currency so that their real value depends on the realization of endowment
and the inflation tax. The effect of the inflation tax on the equity
price depends on the conditional covariance of the tax with the inter-
temporal marginal rate of substitution (MRS). This covariance is posi-
tive or negative depending on the sign of the conditional covariance of
the endowment shock with the monetary transfer. The intuition is this:
Whether the inflation tax tends to high in good times (higher than
anticipated endowment) or high in bad times (lower than anticipated
endowment) affects the riskiness of the equity. The riskiness of an
equity is measured by the conditional covariance of its return with the
MRS.

Measuring the equity premium -- the difference between the condi-
tional expected equity return and the return t¢ an indexed boand ~- may
be difficult in the presence of stochastic inflation. An indexed hond,
which has the important property of zero correlation of its return with
the MRS, is generally not traded so data on its return are unavailable.
An alternative is to use the real return to a short-term nominal bond.

This return displays nonzero correlation with the MRS if the conditional




covariance of inflation with the MRS is nonzero. The difference between
the real return to the nominal bond and the return to the indexed bond
is the inflation premium. The measured equity premium -- the difference
between the expected equity return and the real return to the nominal
bond -- differs from the equity premium by the inflation premium.

Are the effects of stochastic inflation on the equity premium
guantitatively important? To answer this question, I simulate real and
monetary versions of. the model. The model is a parameterized version of
the models devised by Lucas [1978, 1980, 1982]. The cash-in-advance
congtraint is agssumed to be binding in all states. This assumption has
some empirical support; see the paper by Hodrick, Kocharlakota and Lucas
[1989]. A covariance stationary system with gaussian disturbances that
is bivariate and autoregressive is specified for the growth rates of
endowment and money. With this specification and the assumption of
isoelastic preferences, the equity price is a geometric distributed lead
of log-normally distributed random variables; an iterative solution
method to evaluate the equity price is described.

The real model is a continuous state space generalization of Mehra
and Prescott [1985]. Simulations reveal that the equity premium is very
sensitive to the conditional covariance of the endowment process. When
the standard deviation is increased from 3.49% (the estimated value) to
5.59%, the equity premium increases from 1.17% to 2.81% in the range of
the risk aversion parameter comsidered by Mehra and Prescott..1 Moreover,
the equity return is 7.16% and the indexed bond return is 4.36%. While
this parameter sensitivity diminishes somewhat the extent of the equity
premium puzzle, an equity premiuvm of 2.81% is still less than half of the

observed premium.




The quantitative effects of stochastic inflation appear to be
important. When the standard deviation of inflation and the endowment
growth are increased from their estimated values of (4.47%, 3.45%) to
(6.32%, 5.48%), the equity premium increases from 2.23% to 5.76%.

The model and the effects of inflation are described in section 1.
The model is parameterized and the solution algorithm is described in

section 2; the results of the simulations are reported in section 3.

1. A model of equity prices that incorporates inflation

A version of the asset-pricing model devised by Lucas [1978, 1980,
1982] is used to study the effects of inflation on equity prices and the
equity premium. Since most of the theoretical properties are estab-
lished, my discussion focuses at the outset on a specific parametric
version of the model which is simnlated to derive comparative dynamic
results. Incorporating inflation into the model reveals two channels
through which stochastic inflation affects the equity premium; the two
channels arxe analyzed after the basic model is described,

The economy experiences monetary instability and stochastic endow-
ment shocks. The per capita endowment is nonstorable, exogenous and
growing over time. Before trading starts, stochastic monetary transfers
are made at the beginning of each time period to currency holders. Each
member of the identical and fixed population maximizes an isoelastic
utility function over an infinite planning horizon. The representative
agent holds wealth carried over from the previous periocd in the form of
The equity share is a claim to the

currency M and equity shares z

t-1 t-1"

dollar-denominated current and future dividend stream. "All variables are

expressed as per capita.




At the beginning of the period and prior to any trading, the sto-
chastic monetary shock and endowment shock are realized and observed by
all. Currxency holdings are augmented by a lump-sum transfer tht-l 50

that an agent's post-transfer currency holdings (before any trade occurs)

are

Mt = (1 + Wt)Mt-l‘ (1.1)

The endowment good, denoted as v, at time t, evolves over time according

to

A (1.2)

Yer1 T a1 Yo

The motion over time of the growth rate of endowment (£n A) and the
growth rate of currency (&n (I+tw)) is described by a bivariate system
that is covariance stationary; this is made explicit in section 2 and
motivated by the properties of the data described in section 3.

The exchange of equities, carrency and goods takes place in two
stages. In the first phase of trading, the agent divides his post-
transfer wealth between equity claims z, =" with each claim purchased at
a real price q, == and currency holdings M? -~ with each dollar valued at
(pt)-l units of the endowment good.

Goods trading and dividend collection occurs during the second phase

of trading. The agent must finance consumption purchases with currency

accumulated previously so that

P, €, = ME. (1.3

During the second trading phase, the agent collects nominal dividends

P,Z,.V,5 this income is unavailable for spending wptil the pext period.




At the beginning of period t+1, the pre-transfer, dollar-

dencminated wealth available for spending is

ZelPyy ¥ Preg e (1.4)

The maximization problem solved by the representative agent is

oo
t, 1 1-
maxMD ED{ E B(T_—?Ct}!},}’>0 (1.5)

subject to the cash-in-advance constraint {1.3} and the wealth constraint
(1.4). 1In (1.5) Ey denotes the expectations operator conditioned on
information available at time 0 and 0 < B< 1. The first order condition

for equity holdings is

g -y -1
cpa. = BE{c [ (2 (g, * v 008 (1.6)

where T 11 is the gross inflation rate (pt+1(pt)_1).
Markets are cleared when all equity shares are held (zt = 1), all
currency is held (Mt = ME), and the endowment is consumed (ct = yt). Let
g{+) and p(-) denote the equilibrium equity price function and equi-
librium goods price function and let 8, denote the state vector at time
t. Finally, let 4, and Py denote the walue of the functions q and p
evaluated at the current state 5 - The constraint {(1.3) is assumed to be

binding so that the equilibrium price functiom is
p(s) =M (vy) 7" (1.7)
t t't
The equilibrium first order condition is

ylals) = BE £y ) Y((als yp) + ¥ 0paq )}

o R ICANDILI(CICHND I AN WA} (1.8)



where ¢ denotes (1 + w )_1 for notational convenience. The second

t+1l t+1l
equality in (1.8) follows from (1.1) amd (1.7).

The equilibrium first-order condition (1.8} reveals the dependence
of the real equity price on the stochastic properties of both the endow-
ment process and the monetary shock. The stochastic monetary transfer
can either detract from or emhance the real wvalue of the equity through
the inflation tax. Risk averse agents assess the real impact of the
inflation tax to determine their optimal equity holdings; in a represen-
tative agent model this assessment affects the equilibrium equity price
and creates a nontrivial link between the inflation tax and the real
equity return. The exact nature of this link is now explored more

carefully.

The real return to the equity from period t to (t+1) is

q _ -1 -1
Rigp = (qt+1 * nt+1yt)(qt) 1. (1.9)

Substituting (1.9) intoc the equilibrium first order condition (1.8) and

rewriting results in

= -Y
1= E {80, )71 + R, 1T (1.10)

Let St+1 denote the MRS (Bh;ﬁl). The conditional equity return is then

2
expressed as

1+ERrRY = (ES

~1
Rieg Y i1 - Covt(S

(1.11)

q
t+1 t+l’Rt+1)]

where Covt denotes the conditional covariance. One measure of the
riskiness of an asset is the correlation of the asset's return with the
MRS. An asset is risky if the covariance in (1.11) is negative. One

implication is this: If stochastic inflation affects the covariance in




(1.11), stochastic inflation affects the risk characteristics (defined as
the equity premium and the correlation of consumption with the asset's
return) of the asset.

How does stochastic inflation affect the conditional covariance of
the asset's return with the MRS? Substituting (1.9) into the covariance

reveals that

q 4 - -1 -1
e+ Rery) = Cove(Syys (e + My, (ep) 1
-1

-1
(qt) [Covt(St+1,qt+1) + ¥, Covt(nt+1,st+1)]. (1.12)

Covt(S

The first covariance, Covt(St+1,qt*1), is affected by inflation through

the equilibrium price process. To illustrate this, notice that (1.8) is

linear in the function h(st) where

b(s,) = v, ‘als,)
so that (1.8) is

B(s,) = BE{h(s 4 ) + (7,4 Y9 Mopq}- (1.13)

Under certain conditions,3 (1.13) can be solved forward to result in

1

00
= J A
h(st) Et --_E- B (Yt_,,J) “’t—l'jyt-l-j-l

j=1
so that

als.) = h(s )y}

The equilibrium equity price is a function of the discounted present
value of the marginal utility of the future dividend stream. This

present value depends on the entire path of the future inflation tax.




The other covariance, covt(n 1

t+1’St+1)’ is the conditional covariance

of the MRS with the appreciation in the purchasing power of money. In

my model,

_1 _ -Y
Covy (Meiy28paqg) = B Covp (A g0 pohgy)- (1.14)

The sign of (1.14) can be positive or negative depending on how A and ¢
co~vary contemporaneously. If the endowment shock A and the monetary
transfer ({1 + w) = ¢_1) co-vary negatively, the covariance (1.13) is
negative.

Stochastic inflation affects the risk characteristics of the equi~
ty's return through the assessment of the entire path of the inflation

tax measured by Covt(S - and the correlation of the MRS with

e+17%+1) "
the rate of appreciation in the purchasing power of money -- measured by
~1 .. . X . .
Covt(St+1,nt+1). Thl; is the first channel through which inflation
affects the equity premium.
The equity premium is defined as the difference between the real
return to the equity (RY) and the real return to an indexed bond -- a

bond that pays with certainty one unit of the endowment good one period

hence. The indexed bound has a real price that, in equilibrium, satisfies

0 -
9 T B8ty

and a real return

H

s, . )L _ (1.15)

o
L+ Re 3141

The indexed bond has, by definition, the property that the conditional
covariance of its returm with the MRS is zero.
Efforts to measure the equity premium are confounded because, in

general, an indexed asset of this type -- zero covariance with the MRS --




is not traded so that data om its return are unavailable. One approach,
used by Mehra and Prescott [1985], is to measure the indexed bond's
return by the real return to 2 nominal bond {computed by subtractiﬁg
realized inflation from the nominal interest rate). If the conditional
covariance of the MRS with inflation is nonzero, the real return to a
nominal bond will display a nonzero correlation with the marginal rate of
substitution. As a result, the measured equity premium computed with the
real return of a nominal bond may differ systematically from the equity
premium computed with the indexed bond. The difference between the real
return to the nominal bond and the indexed boad return is defined as the

inflation premium.

The inflation premium, Ht+1’ is defined as

_ i _ po
M., = ERp,, - RO (1.16)

where R;+1 is the real return to the nominal bond. A nominal bond is a
claim to one unit of currency one period hence. The nominal price at
time t (Bt) of a one period bond that is a claim to (pt+1)-1 units of

(t+1l)~-goods satisfies

_ ~1
B, = Etst+1(nt+1)
and the nominal interest rate is
i = (B! - 1. (1.17)
t t

The expected real return to the nominal bond is

i ] -1
1+ ER L, =0 +iDEm
_ -1 -1 ,-1
=B (B S, i) (1.18)
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A property of the covariance is

“ly 158 Bl

E (8 er17Ter1) T E S B

t+1 t+1] = Cov, (8

so that (1.18) may be expressed as

-1
B n
1+ E.RE t e+l - ) (1.19)
terl T Cov, (S n..)+ES. . Em -1
t- t+]l? t+1 t T+l t+1

Whether an inflation premium is present depends on the sign of
nlyb

Covy (8y419My1

There are three cases.

Case 1 No ;nflation premium

If cht(s ) equals zero,

t+1’ t+1

1+E R = (E S

= + 0
R L+ Re-

-1
t+1)

Using the real return to the nominal bond to measure the equity premium

results in no systematic measurement error.

Case 2 Negative inflation premium

A negative inflation premium occurs when Covt(S } is positive

£t+1? t+1

(endowment shocks and monetary transfer shocks are positively correlated)

because

y+Entes 171« (E,S -1

t t+1 L b+l )

E.rx . [Cov (8 l,n

= + RO,
t t+1 [ 4 1 Rt

t+1 t+1

The measured equity premium exceeds the equity premium because of the

negative inflation premium.

Case 3 Positive inflation premium

If Covt(S ) is negative,

t+1’“t+1
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i )
Eth+1 > Rt’

and the measured equity premium will understate the equity premium.

To conclude, the two channels through which stochastic inflation can
affect the equity premiuvm are: assessing the current and future inflation
tax which alters both the equity return and its correlation with consump-
tion; and measuring the indexed boand's return in the presence of an

inflation premium.

2. Computing the equilibrium price

Yhile stochastic inflation affects the risk characteristics of the
asset and may create an inflation premium, the question remains: Are
these effects of sufficient magnitude that their omission leads to 2
serious migsinterpretation of the data? To answer this question, the
equilibrium equity price function g(+) must be expressed as an explicit
function of the current state s, .

t

The equilibrium equity price satisfies
yi¥a(s) = BE fv ¥ lals ) + ¥ q0peq]} (2.1)
t t £ el tt1l 17+l

As illustrated in (1.13), the equilibrium first order conditionm (2.1}
becomes linear in the function h{+) -- where h(st) equalsg y;Yq(st) -~ s0

that
B(sy) = BE [R(s ) + ¥y 0041 (2.2)

where p equals 1~y for notational convenience. This is a linear stochas-

tic equation that can be solved forward, if the sum convexrges, as
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a(ep) = E L BIY0 0} (2.3)

To evaluate the conditional expectation in (2.3), the joint distribution
of the endowment and monetary processes must be specified.

To this end, I make

Assumption A. The distribution of (A,¢) is a stationary bivariate

process that is log-normal:

T A, " 8¢ 6y n |} fa A v
t+1 - + t + £+l (2.4)
e+l _80 _¢ 91_7 —2n ¢t_ _Ft+1

fn ¢

where (v,u) are jointly normally distributed with zero mean and variance-

covariance matrix

o2 o
v va
i= \ . {(2.5)
_Uku a2 _
The (v,u) process also satisfies: Eutus = Evtvs = Eutvs =0 fors £t.

This assumption is motivated by the properties of the data which are
described in section 3. Conditions that result in stationaxity are

detailed in the appendix. The state at time t is a wvector s, =

(Yt:ht ?Ht H ¢t) e

Assumption B. The long-run average growth rate of marginal utility

times the real dividend (yp¢) is of exponential order less than B—I.
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Under assumptions A and B, (2.3) is a geometric distributed lead of
log-normally distributed random variables. Evalwvation of this sum

results in

Theorem 1. Under assumptions A and B, the equilibrium equity price

satisfies
@ aj bj
Asp) =y 2 Ay A0,
j=1
where Ay = B exp[p(8p + .5pcZ) + 8g + 502 + o]
a; = pb1 *+ Y
by = 8; + pn (2.6)

and, for j > 1,

Aipp = AR expl(ay + p)(8o + .5(a, + PIOZ) + b (6o + .5b;02)
+ (aj + p)bjcvu]
3541 = 61(3j + p) + bj¢
bj+1 = elbj + n(aj + p) (2.7)

Proef. The proof is in the appendix.5

There are five steps in the algorithm to compute the equity price.

Algorithm
1. Choose values for the parameters
(02,02,0_,80,83,60,65,%,1,8,)
and values for the initial conditions (yg,hp,$0). Generate 2
sample realization of the bivariate normal process {ut,vt}zzl.

Use the realization, the parameter values and the initial

o T
conditions to construct {Yt’ht’¢t}t=1'
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2. Evaluate the system
- 2¢y2 2
Ay B exp{péo + .5p UV + .SUu + B + pO’uv}
pd1 +

61 + pn

a3

by

and compute

1= P as. b
HY = yPAAT10L.

3. For j 2 2 evaluate (A.,a.,b.) in (2.7) and compute
H;i= yPAth)J

4.  Repeat step 3 until

max | Hf+1 - Hf | < epsilon (2.8)
L

where epsilon is a small and positive number.

Let N denote the iteration number at which (2.8) is satisfied; then
N _ Y
qt—ytHE

and qﬁ is an arbitrarily good approximation to 9 - The approximation
error is an increasing function of epsilonm.

Evaluated and summarized in Table 1 are the other important vari-
ables of the model: the real return to the indexed bond; the real return
to the nominal bond; the return to the nominal bond; and the conditiomal
covariance of the MRS with the rate of change in the purchasing power of

money.




1. Indexed bond return

-1
1+ RO = (£,8,,) " = [B exp(-¥6o + .5v202)]  [A01%0Y)

2. Nominal interest rate

1 )"1

t+l t+1

[B exp(pbo + 59202 + 8o + -502 + po 1 APG1+¢¢PU+91)‘1

1+ it = (E 8

i

3. Expected real return to the nominal bond
-1 -1
1"

t+1%+1 'E £ T4y

[B exp(-¥6o + .5(¥% - 2y)02 - yo )17 [A219]) 7Y

1+ Etrt+1 = [E 24

U

4, Conditional covariance of MRS and the inverse of inflation

81php NptB,
Covt(8t+1, t+1) = ﬁh ¢

exp(pSo + 6o + .502 + (1+y%)0? + g )[exp(-y0Z - Yo ) - 1]

Table 1: Important variables of the monetary model expressed as explicit
functions of the current state and parameters of the model.

When the cash-in-advance constraint is binding, assumption (A)
imposes conditions on the behavior over time of the inflation process.

To see this, recall that gross inflation is

M
-1 tily (“_)

. =DPo.q(p)
t+1 [ Rl o Yt+1 t

s0 that, from assumpiion A,
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£n Mgy = ~(2n ¢t+l + £n ht+1)

_(60 + 80) - ((61 + wjﬂn ht + (61 + n)zn ¢t) - (Vt+1 + ut+1)

“(8o + 80) - (61 * ¥)2n A + (6; + N)(n 7, + 2n A))

If}

il

T Vpgy T uy)

Og + ¢y 2n At + ae fn Ht + Et+1. (2.9)

The conditional variance of the inflation process is
2 - (- 2y = g2 2
o2 E(-(v + u)?) o2 + g% + 2Gﬁv’ (2.10)

and the conditional covariances of inflation with the endowment shock

and the monetary process are

O, = Cov(e,v) = E[-(v + u)v] = _Gé -0
and (2.11)
= = - =_2_
Ty = Cov(e,u) = E[-(v + u)u] oz - o -

It Oy is negative, the conditional covariance of inflation with the

endowment may be near zero. As long as Oy is negative and
foc | ~0c2#0
uv v

the conditional covariance of the MRS with the invarse of inflation (see
Table 1, number 4) will be positive. This covariance (Guv) is critical
to the sign and magnitude of the inflation premium. The magnitude of the
covayiance also depends on the risk parameter Yy and the current xealiza-
tion (At,¢t).

The binding cash-in-advance constraint has another implication:
The monetary transfer (1 + w) equals the growth of nominal consumption

(wA) since
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- M y
e e

Yer1 Bt

-1
(ot WA

Terp = Prep (P

(2.12)
or

e+1) = A

+
(1+w Ter1Mee1-

Assumption A and the binding cash-in-advance constraint imply strong
¢cross~equation restrictions on the rate of inflation and the growth rates

of endowment, money, and nominal consumption.

3. Comparative dynamics and the equity premium

Mehra and Prescott [1985] observe that the equity premium for a
particular sample averages about 6%. They pose the question: Can a
simple asset-pricing model with random and growing endowment generate an
average equity premium that matches the sample average? They find that,
in a simple two-state Markov model with constant relative risk aversion,
the answer is no if the risk aversion parameter is restricted to a2 range
that seems reasonable in light of microeconomic data. When the rigk
aversion parameter is varied between zero and ten, Mehra and Prescott
fipd that the largest equity premium generated by their model is .38%.

Mehra and Prescott use the Grossman and Shiller [1981] data set to
construct a measure of the equity premiunm. The data are:5

i. Series C: Kuznets-Kendrick-USNIA real, per capitaz annual U.S.

consumption of nondurables and services 1889-1979,

measured in 1972 dollars.

ii. BSeries PC: Consumption deflator -- computed by dividing
nominal consumption by real consumption.

iii. Series PSN: Average Annual Standard and Poor's Composite Stock
Price Index, 1889-~1979.
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iv. Series DS: Annual nominal dividend for the Standard and Poor's
Stock Price Index. DS is the dividend that accrues
over time period t and is paid at the beginning of
t+ 1.

v. Series RF: Nominal yield on relatively short~term securities
-~ this series is described and plotted in Mehra
and Prescott (1985, p. 149, fig. 3). Ninety-day
government Treasury Bills are used for 1931-78,
Treasury Certificates for 1920-30, and 60-90 day
Prime Commercial paper prior to 1920.

Mehra and Prescott measure the real equity return in the data by

PSN ps. psy, !

D t+1 t t
RS = ( + ) ( ) - 1. (3.1)
i Pct+ PCt Pct

1

They compute the real return on the indexed bond by

PC - PC
D _ _ £t+1 t
Teey T Ry - e (3.2)
where the last term on the right-hand-side of (3.2) is the realized
inflation. Finally, they measure the expost equity premium by
n’ = gD - 2, (3.3)

Some sample statistics for these variables are reported in Tables 2a and

2b.
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(1) (2) (3) (4)
Return on Nominal yield Infla- Measured
S&P 500 (%) Shoxt-term asset (%) tion (%) Equity Premium (%)

Mean Mean Mean Mean
(8.D.) ($.D.) . (s.Dn.) (s.D.)
1889-1978 6.98 3.36 T 2.40 6.18
(16.54) (2.065) (5.10) (16.66)
1889-1898 7.58 4.58 -1.26 1.78
{10.01) (1.32) (2.65) {(11.57)
1899-1908 7.71 4.73 2.06 5.08
(17.21) (7.87) (2.38) (16.86)
1909-1918 -. 14 4.58 5.75 1.49
(12.81) (8.26) (7.64) (9.18)
1919-1928 18.94 3.92 -.58 14.64
(16.18) {9.83) {6.47) {15.94)
1929-1938 2.56 9.78 -1.58 .18
(27.90) (1.39) (5.93) (31.63)
1939-1948 3.08 3.02 5.88 8.90
(14.66) (2.43) (3.73) (14.22)
1949-1958 17.49 1.69 2.45 18.29
{13.08) (.67) (1.75) {13.20)
1959-1968 5.58 3.52 2.41 4.50
(10.59) (.99) (1.22) (10.17)
1969-1978 .04 5.95 6.43 .76
(14.02) (1.40) (2.36) (11.64)

Table 2a: The real return to the Standard and Poor 500 (col. 1) is

D

_ -1 -1 -1.-1
computed as Rt = [PSNt+1(pct+1) + Dt(pct) ][PSNt(pct) ]

. . -1
- 1. Inflation {col. 3) is computed as (pct+1 pct)(Pct) .

The real return to the bond with nominal return RFt {col. 2) is

RFt - (ptt+1 - pct)(pct_‘)“1 and the measured equity premium

(col. 4) is R = [RE, - (pc,, - pe,)(pe )M, (8.D.) is the

standard deviation.
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(1) (2) (3) (4)
Correlation of Correlation of
%4 Growth Rate % Growth Rate of growth rates of growth rates
per capita per capita real consumption real and
real consumption nominal consumption and inflation nominal consumption
Mean Mean
(s.D.) (s.D.)
1889-1978 1.75 4.15 .09 .62
(3.53) (6.47)
1889-1898 2.18 .92 .54 .94
4.7 (6.58)
1899-1908 2.40 & 47 -.30 .89
(5.20) (5.04)
1909-1918 -39 6.14 -.17 .22
(3.06) (7.72)
1919-1928 2.88 2.30 -.25 , .35
(3.95) (6.70)
1929-1938 -.37 -1.95 .75 _ .93
(5.33) (10.53)
1939-1948 2.14 8.02 ~.07 .51
(2.47) (4.32)
1949-1958 1.46 3.91 ' -4k .13
(.98) {(1.58)
1859-1968 2.34 4.75 .27 .74
(.98) (1.76)
1969-1978 2.37 8.80 ~-.51 .01
(1.45) (1.86)

Table 2b: The compounded growth rate {col. 1) is computed as £n(ct(ct_1)h1).

Nominal consumption is (pct)ct and its compounded growth (col. 2) is

£n(((pct+1}ct+1)((pct)ct)*l. {(8.D.) is the standard deviation.
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Mehra and Prescott assume a two-state Markov process for the growth
rate of the endowment. A continuous state-space generalization of their

growth process is

2n A 1 = Qo + Q; 2n At + &

ot (3.4)

e+l

where Zn A is the continuously compounded rate of growth and £ is an
error process that is independent and identically distributed with mean
zero and finite variance GZ. This specification (3.4) allows for

positive average growth and serial correlation. By setting A equal to

t+l

ct+1(ct) 1 where ¢ is real per capita comsumption of nondurables over
1889-1979 -- the parameters of the process can be estimated. This
estimation results in: OQp = .01765, {i; = .018145, and Gg = .0012167.°

In the real version of the model, the equity is a claim to the
future dividend stream so that the purchase today of a claim entitles the

holder to tomorrow's endowment (in equilibrium) and its resale price

Ve+1
Qy4q- If the error process {at} is normally distributed, the equilibrium
equity price and its return can be expressed as explicit functions of the
current state by following the steps of the algorithm described in

section 2.7 To compute the eguity premium, the return of the indexed bond

must be evaluated; its price is

=f _ =Y - - 2 -2yyx Y
q, = BEA L, = B exp( vy(Q5 + .5¥ oé)}ht .

The model can be simulated by generating a realization of the error
process {st} according to its distribution {a normal distribution with

mean zero and variance 02). The endowment process is cowputed by setting

- _ 1 . .
Yo = Cygago Ay = (clggo)(clgsg) , using (3.4) to generate Aj (i>1),

and setting, for t > 1,
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= A

Ves1 t+17¢"

The final step is to choose values for (y,B) to use in the solution
algorithm. The realized equity return, indexed bond returnm, and equity
premium can then be evaluated. The results are reported in Table 3.

In Table 3, the value of B is fixed at .98. The risk premium
parameter {Yy) is varied from .75 to 9.75. While several values of the
conditional variance Gg are examined, the parameters (¢g,0¢;1) are fixed at
their point estimates. The sample size of each simulation is 200. TFor
every set of parameters values considered, each statistic reported -- the
equity return, the indexed bond return and the equity premium -- is an
average over fifty drawings of length 200. Specifically, a sample

{st}igg is generated, sample paths {At,¢ } evaluated, and computations

'Yt
made of the equity return, indexed bond return and the premium. The
sample average of the returns and the premium are calculated; this
process is repeated fifty times. The average of the fifty sample aver-
ages is compiled and reported in Table 3.

The first column in the table reports the sample averages of the ex
post equity return, the indexed bond return and the premium using the
point estimates of the parameters in (3.4). Column 2 reports the results
when the conditiomal variance is increased. The standard deviation of
endowment growth in column 1 is 3.49% whereas the standard deviation in
column 2 is 5.59%. In the decade sample averages for the data summarized

in Table 2b, the standard deviation varies from 1% to 5.33% so that a

standard deviation of 5.59% is not extraordinary.




Value
Risk Ave
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.75
.75

Table 3:

Case (1) Case {2)
Gé = ,0012167 Og = .00312167

of

rsion Equity Indexed Bond Equity Equity Indexed Bond Equity

ry Return (%) Return (%) Premium (%)} Return (%) Return (%) Premium (%)
3.48 3.39 .09 3.58 3.33 .25
5.32 5.11 .21 5.37 4,79 .58
7.06 6.72 .34 6.83 5.12 .81
8.69 8.23 .46 7.95 6.72 1.23
10.21 9.62 .57 8.72 7.18 1.54
11.61 10.90 71 3.13 7.30 1.84
12_88 12.06 .83 9.18 7.07 2.11
14.03 13.09 .94 8.87 6.50 2.37
15.05 13.99 1.06 8.20 5.59 2.60
15.93 14.76 1.17 7.16 4.36 2.81

Simulation of the real model assuming that endowment growth follows

4n ht+1 =y + Qq £n At t e, with Qo = .01765 and Qg = .018145 (the point

estimates) and the initial endowment and growth rate A set equal to their
historical wvalues. B is fixed at .98. The endowment variance in

column 1 is the point estimate; its standard deviation is 3.49% whereas
the standard deviation in column 2 is 5.59%. Each statistic is the
average over 50 draws of length 200.

The equity premiums in Table 3 are surprisingly large: when O,
equals 3.49% and y equals 9.75 the equity premium is 1.17%; when O
equals 5.59% and Y equals 9.75 the equity premium is 2.81%. Moreover,
the equity return is 7.16% and the indexed bond return is 4.36% in the
second case (oé = 5.59%). The largest equity premium reported by Mehra
and Prescott in this range for y is .38%. The statistiecs reported in
column one are directly comparable to Mehra and Prescott; the key dif-
ference is that I use a2 continuous state spéce version of their 2-state
model. The statistics in the second column snggest that the Mehra and
Prescott [1985] equity premium puzzle is very sensitive to the condi-

tional variance of endowment. Despite this sensitivity, an equity
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premium of 2.81% is less than half of the observed premium so this

feature of the data is unexplained by the real model.

Incorporating Inflation

In section 1, I show that stochastic inflation affects the risk
characteristics of the equity and the measurement of the equity premium.
The question now is: Are the effects of inflation on the equity premium
quantitatively significant?

To study the effects of stochastic inflation, I use the Mehra-
Prescott data set to estimate a bivariate system describing the motion of
the growth of endowment and inflation. The binding cash-in-advance
constraint imposes strong cross—equation restrictions on inflation and
the growth rates of endowment, nominal consumption, and the monetary
transfer; these restrictions are described in (2.9)-(2.11). The model is
matched to the data by setting At equal to (ct+1(ct)—1) and Ty equal to
(pct+1(pct)—1) where ¢ is per capita real consumption of nondurables and

pc is the consumption deflator. The bivariate system I estimate is

“%n htﬂ— N By 62 | | en A 5.
= + + {3.5)

8n 7 o o o fn e

The results are reported in Table 4.
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Equation 1: Z£n At =83 + 61 &n At-l +8; o R

t
Parameter . Estimate o .- . Standard Error
8o .01835 .105013
5, -.15196 .073321
5o .10197 .0043976

Equation 2: 2n T, = g oy Ln e q + oz £n ht-l + e

Parameter ’ . Estimate _ . . Standard Error
o .01034 .0056949
oy 46456 .094951
0o . 18608 - .1359928

Table 4: Estimates of the bivariate system where
Ln ht = ln(ct) - ﬂn(ct_l) and € is annual per

capita consumption of nondurables in year t, and
fa m, ='£u(pct) - Qn(pct_l) where pc, is the

consumption deflator in year t. The sample period
is 1891-1978 (89 observations).

In the simwlation results contained in Table 5, the parameters
{€0,80,01,82,08,) are set equal to their point estimates reported in Table
4. The implied values of the parameters of the monetary transfer process
are: §; = ~.2539, ¥ = .5314, n = ~.1019, By = -.02869, and €; = .5655.

By specifying values of (cs,cg,cev) (which detexrmines the values of
Gi and qu), a realization {vt,ut} can be generated; the procedure is
described in Appendix A, The initial values selected are: yg = C1889°

-1

-1
hl = (c y 3 = (Pclggo)(Pclsgg)) and ¢1 = (nl}\'l) .

1890° (18897
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Values of the parameters (Y,B) are chosen and the equity price and
its return are computed with the solution algorithm described in section
2. The other variables of interest -- the real and nominal returns to
the bond and the indexed bond return -- are calculated according to
Table 1. The results of this exerxcise are _reported in Table 5.

In Table 5, the value of B is fixed at .98. Just as in Table 3, the
statistics reported are the sample averages over fifty realizations of

{vt,ut} of length 200.
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Case (1) Case (2)
o2 = .001994 o2 = .004
e . . . - . -
(1a) (1b) (2a) (2b)
0?2 = .001189 02 = .003189 02 = .001189 02 = .003189
Values v v v v
of y o, = -000083 G, = 00021 @ = .000083 Oy, = -00021
¥y = .75 N . . ) . —
R (%) 3.49 3.61 3.52 3.60
R° 3.41 3.36 3.41 3.35
Rt 3.40 3.34 3.40 3.32
y = 1.75 .
R (%) 5.38 " 5.47 5.41 5.46
rR® 5.16 4.88 5.16 4.83
Rt 5.14 4. 82 5.14 4.78

7.23 7.07
6.82 6.02
6.80 5.93
g.00 8.34
8.39 6.89
8.36 6.77
10.68 9.54
9.87 7.44

9.82 7.29




Table 5:

Case (1) (cont.)
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Case (2) (cont.)

g2 = .0019%4 0% = 004
e o e
(1a) (1b) (2a) (2b)
g = ,001189 af = ,003189 = ,001189 g2 = ,003189
v v v
o = .000083 o = .00021 = _000083 o = .00021
ev ev . ev ey
12.26 10.41 12.29 10.37
11.24 7.82 11.24 7.66
11.18 7.64 11.19 7.49
13.79 10.99 13.82 10.94
12.50 7.74 12.51 7.56
12.44 7.54 12.44 7.36
15.24 11.30 15.27 11.25
13.66 7.34 13.66 7.13
13.59 7.10 13.59 6.90
16.60 11.34 16.62 11.29
14.70 6.61 14.71 6.38
14.62 6.35 14.63 6.12
17.86 12.13 17.8% 11.07
15.63 5.57 15.64 5.31
15.54 5.28 15.54 5.02
Reported are simulation results for the monetary model. ZEach
statistic is an average over 50 draws of length 200. Reported

are: the ex post equity return (R}, the indexed bond return RO,

the real return to the nominal bond (R*). The conditional
variance of inflation is U:, the conditional wvariance of

endowment is GZ and their conditional covariance is Gév'
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Incorporating inflation results in higher average returps for the
equity. In case (la), the equity premium ranges from a low of .08% when
¥ equals .75 to 2.32% when y equals 9.75. In Case (la), the parameter
values are set equal to their point estimates (reported in Table 4). The
standard deviation of the inflation disturbance in column 1 is 4.47%; in
column 2 its standard deviation is 6.32% -- this is not unusually high
since the decade sample standard deviations of inflation range from 1.22%
to 7.64%. F¥or each wvalue of the conditiomal variance of inflation
considered {of which there are two), two sets of values for the endowment
variance and the inflation-endowment covariance are examined. In cases
{1a) and (2a), the parameters Gg and o,, 2re set at their point asti-
mates; the standard deviation of endowment is 3.45%. In cases {1b) and
(2b), the standard deviation of endowment is 5.47%. Comparing columns 1
and 2 reveals that the sample statistics for the monetary model, just as
in the real model, are sensitive to the parameter specification of the
conditional variances and covariance. The positive covariance Oy
implies that the covariance of the endowment shock and monetary transfer
is positive (the inflation tax tends to be high when endowment is high).
This corresponds to the case of a negative inflation premium. The
inflation premium appears to be small (in absolute value) and fairly
constant -- see Table 6 where the inflation premium can be calculated as

gt - go,

Conclusion
Currency is introduced into a pure exchange asset-pricing model via
a cash-in-advance constraint. The timing of information acquisition and

trading is designed to leave the real side of the economy as unchanged

as possible. Despite this construction, stochastic inflation affects
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the risk characteristics of the equity's return and its premium. The
equity is a claim to a currency-denominated dividend stream whose real
value depends on the realizations of the endowment and the inflation
tax. The riskiness of the equity, measured by the conditional covariance
of its return with the MRS, depends on two factors: the assessment of the
entire time path of the future inflation tax and the conditional covari-
ance of the MRS with the rate of appreciation in the purchasing power of
money.

Are the effects of stochastic inflation quantitatively important?
To determine the answer, the model is simulated. The growth rates of the
endowment and monetary transfer are modelled as a bivariate autoregres-
sive system with gaussian disturbances. Preferences are isocelastic. As
a result of this specification, the equity price is a geometric dis-
tributed Iead of log-normally distributed random wvariables; an iterative
solution method is described in section 2. The parameters of the bivari-
ate system are estimated for the Mehra and Prescott [1985] data set.

When the real model -- a continuous state-space version of the
Mehra and Prescott model -~ is simulated, I find that the equity premium
ig very sensitive to the conditional variance of endowment growth. For
the range of risk aversion parameters considered by Mehra and Prescott,
the equity premium varies from .09% to 1.17%. If the standard deviation
of endowment growth iIs increased from its estimated value 3.49% to 5.59%,
the equity premium varies from .25% to 2.81%. If the endowment data
(annual real per capita consumption of nondurables for 1889-1978) contain
measurement error that causes the series to appear smoother than it

actually is, this increase in the standard deviation does not seem




unreasonable., Even so, the model-generated equity premium of 2.81% is
less than half of the observed equity premium.

Stechastic inflation does have gnantitatively significant effects
especially as the risk aversion parameter is increased. This seems
quite mnatural since agents are confronted with two sources of risk
(endowment shocks and random inflation tax). The monetary model can
generate an equity premium of 5.81% in the relevant range of the risk
aversion parameter if the conditional wvariances of inflation and
endowment are increased. The inflation premium seems to be quite small
for the set of parameter values examined here; elsewhere (Labadie
[1988]) I have found larger and more volatile inflation premiums. Most
of the impact of inflation on equity prices results from the inflation

tax assessment.

31
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Footnotes

The endowment series is real per capita consumption of nondurables
for the sample period 1889-1978 (see section 3}. There is a strong
possibility that the data contain measurement error which could

make the series appear smoother (lower variance) than it actually is.
The relationship between the riskiness of an asset and the covari-
ance of its return with the MRS is discussed in Grossman and Shiller
[1981] and Donaldson and Mehra [1984].

This is the data set used by Grossman and Shiller [1981] and Mehra
and Prescott [1985]. Mehra and Prescott provide a description of
the properties of the data.

The conditions are described in detail in section 2 and the
appendix.

LeRoy [19842,b] and Svenssen [1985] have made this point.

The key property is, . for X a log-normally distributed random wari-
able and k a scalar,

ok X = E (k % X

2 o
e X1 )} + .5k vart(ﬁn X

).

t+1 t+1

Estimation of the endowment process results in

in xt+1 = 01765 + .018145 %n A
{.003719) "(.016618)

&
with the sum of squared residuals .013365. The sample size is 90.
The F-statistic is 1.192 and t-statistics for the estimates are 4.7&

(o) and 1.092 (Q1}.

The equity price of the real model is

Y co
q =¥ Ey .f

J P
; B4

1

where p = 1 ~ y. The first term is
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PPy 4P
PE. Yeap = B yp By ALy

p 245212 Pf1
By, exp(pQo + .5p%02)AL

— P a4,
- Yt Al At .

The second term is

2 P z P P &
B* By Yeap = B% vp Ep AL, Ay

p ptag
Boyp 81 B Ay

,B YE Al exp((p + 31)(00 + ,5(p + 31)023A21(p+al)

n

1l

p az
Yt A2 At .

This sets up a recursive scheme

Aj+1

[F}

B Aj exp({p + aj)(ﬂo + .5(p + aj)og)

a 91(9 t aj)'

j*l

The equilibrium equity price is

Co a,
q, =v! = A AJ.
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Appendix

Proof of Theorem 1

The equation to be solved (2.3) is

n(s) =E{x p ¢ (A1)

Vewj Opasi-

The linearity of the expectations operator allows (Al) to be evaluated
term~by~term. The variables yt+j and ¢t+j are jointly log-normally

distributed. A property used repeatedly is

2
a _ a
Rn(Et Xt+l) = Et(a n Xt+1) + 5 vart(ﬁn Xt+1)'

Evaluating term-by-term:

ﬁyg E_ AP

p
1. BE vy 1041 £ M1 Pt

il

5+ +8
ByD APOL P01 g exp(pso + B0 + pv,,; + BL)

54+ +8
Byi hi 1+ ¢$” U explpdo + 8o * .5p%02 + .502 + po, )

b
Ay vp AT o

where Ay, a; and by are defined in (2.6).

I

z P 2.0 P P
2. PBEE My 00001 = BV By Alip Oap Aoy

it

B2y, E, fexp(pdo + .5p%02 + 8o

2 p&ttp pnto,
+ .Scﬁ + cﬁv)ht+1 ¢t+l }

by

P aptp

t Tt ttl
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= B A1 v exp((a; + p)(8p + .5(ag + p)oZ + by16g

+ b202 + (a3 + 0)bs0, JAY 81(a tp) by 81b1+n(a1+p)

1f

A Yp a2¢

where Az, as and by are definmed in (2.7).

Evaluating the third term results in

3 p — @2 aytp
B°EL Visg Ope3 = B° A1 Yt By Aero qJt+2 t+1

p aztp b2
Bhz ve By Mty Oky

"

B Az yh exp((az + p) (60 + .5(agt p)Z + bgBy + b2a2

* (ag + pbzo, )h51(82+93+b2$ ¢91b2+ﬂ(32+93
= g y0 AZ3D2

There is nothing special about the second and third terms and evaluation
of higher terms proceeds according to the recursive system established in

(2.7). The equilibrium is computed as
als )} = y¥ h(s)
Lt t t

Stationarity of the bivariate system in Assumption A

The unconditional mean of the bivariate system is

- ) G ut
k=25l - meya sy T e P W e00 - 80 - Uy

and

* (1 - 6,)8, + U
A R DR R T




37

The unconditional mean is finite if
1. !611 < 1 and ]Bli <1

2. 181 ¥ 85 =~ 8461 v Ymf <1
For (2.4) to be invertible, the determinant must be nonzero or
8161 ~Yn + g+ n - (8 + 81) £ 0. (a2)
This condition is assumed to be satisfied.

a, b.
Convergence of the sum Z Aj AtJ ¢tJ

The steady state of the system (2.7) is

a = p[6;(1 = 8;) + ynl[(1 ~ 6;)(1 - 81) - yn] >
and

b=ponl(l - 6;)(1 ~ 6;) - ¥n]~".

The earlier condition }8; + §; - 6:;81 + Yn] < 1, along with a finite and

positive Yy, ensures that a and b are finite. Define a constant k as
k = expl(a + P)(80 + .5(a + P)o2) + b(8g + .5b02) + (2 + pIboy 1.
If Bk < 1,

lim Aj+1 = lim A Bk = 0

oo Jree

and, for some j large (say j = N where N is finite),

S A AT gd oA 3 i
_z_ Aj Al 8 = A b f‘ AN(Bk)
j=N j=N

A2 ob ay(eiY
1 - Bk

< oo




38

so that h(st), written as

b N~
a. b, N-1 a, b, A?4¢ Ay (BK)

_ I o = Jodst’t

hisy) = v, j§1 Ay A 0 TV j£1 Ay Ay7 0 T - Bk ’

o]

is the sum of two finite partial sums and hence h(st) iz well-defined.

Generating a realization of (u,v)

The system
£n At+1 - fn A 51 n 20 At+1 - fn A Vsl
= +
_£n ¢t+1 - 2n Q_ _& 81_- _%n ¢t+1 - £n ?_ _Ft+1q
can be written in terms of the lag operator L (LKt = Xt_l) as

Zo A . - 4o A Virr
c(L) RE
£n ¢ - Zn o Uiy

t+1

and the bivariate process (expressed as deviation from mean) has a Wold

moving average representation

on At+1 - 2n A Zy,

in ¢t+1 - 2 ¢ z

where (zlt’ZZL) are jointly fundamental and

D(L) = C-I(L) _C11 012—

C21 Ca2_
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where (vt,ut) and (th’ZZt) are related by

£n At - P[£n ht | 1,20 At_l,...,ﬂn ¢t-1""] =V, = Ccy1Z,, * Ci2Z

it 2t

n ¢t - P{¢n ¢t | 1,8n ht_l,...,ﬂn ¢t—1""] = U, T CpyZ

+ CpoZ
£ 22

1t 2t

and P is the linear least squares projection operator.
In order for C(L) to be invertible the condition for the determinant
(A2) must be satisfied. If the variances o%,0% are set equal to ome, the

variance-covariance matrix of (vt,ut) is

o2 o “ey31 c21

c c
5 v uv 11 12
o ol c o e c
uy u 21 22 12 C22

Once the values in Z are chosen, a Cholesky decomposition can be used to
determine (cy;,C32,C21,C22). A realization of (u,v) can be generated by
drawing realizations (zi,2s) according to their joint normal distribuy-

tion (i.i.d. with variances 02,08 equal to one) to compute

<
|

= €332, t Cy22

1t 2t

= + .
Up T C21Zy, T CoeZy




