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formly larger and longer-lasting real effects but also flatter paths of aggregate output response.  With suf-
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1 Introduction

That production of �nal consumption goods typically requires multiple stages of processing has

long been recognized by economists (e.g., Smith (1776, 1937 ed., p.11)). A thesis of this paper is

that the assumption of multiple-stage production is crucial for explaining long-lasting real e�ects

of monetary policy shocks.1 A dynamic stochastic general equilibrium model is constructed

which incorporates a chain of production and staggered price contracts. The model embodies a

powerful monetary propagation mechanism.

The importance of chain of production in helping explain the observed relationships between

money and other economic variables has not received as much attention as it deserves. Al-

though empirical studies reveal that prices at di�erent stages of production behave di�erently

and input-output relations across stages may potentially be an important source of friction in

price adjustment (e.g., Gordon (1981), Blanchard (1987), and Clark (1996)), theoretical research

on monetary propagation mechanisms usually abstracts from the input-output relations and con-

�nes in a single-stage paradigm. A departure from the paradigm in our view may be a key to

resolve some of the ongoing puzzles in the literature. For instance, while most literature consid-

ers staggered price contracts as capable of generating persistent real e�ects of monetary shocks

(e.g., Taylor (1980, 1998)), the recent general equilibrium work by Chari, Kehoe, and McGrattan

(CKM) (1998a) suggests an anomaly because, in their model, factor prices change too quickly

following the shocks and so do goods prices. Since slow price level adjustment is likely to be

essential for generating output persistence, a mechanism that can generate sluggish price level

adjustment seems to be an important ingredient of a model that can generate real persistence.2

The aforementioned empirical studies are a manifestation that the chain of production is such a

mechanism, as is con�rmed by Blanchard (1983).

The purpose of this paper is to show that, by simply incorporating a chain of production into

the baseline model of CKM (1998a), monetary shocks can generate not only sluggish price level

adjustment but also persistent output response. Our model di�ers from Blanchard (1983) in

that it incorporates optimizing individuals and frictionless factor markets, and in that it features

horizontal interactions within each stage via staggered price setting and vertical interactions

1For empirical evidence on the persistent real e�ects of monetary shocks, see, for example, Christiano, Eichen-

baum, and Evans (1998).
2The \sluggish price level adjustment" refers to the price level inertia of Blanchard (1983)) in the sense that the

response of the price level to shocks is small on a period-by-period basis and the price level does not fully adjust

for a long period of time.
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across stages via input-output relations, rather than vertical interactions via both input-output

relations and staggered price setting across di�erent stages.

In our model economy, there are multiple stages of production and a continuum of �rms at

each stage producing di�erentiated goods. The outputs of �rms at the �rst stage are used as

inputs by �rms at the second stage, whose outputs are then used as inputs by �rms at the third

stage, and so on. There is a representative household who consumes and invests a composite

of goods produced at the �nal stage and supplies labor and capital to �rms at the �rst stage.

Factor markets are perfectly competitive, while goods markets are monopolistically competitive

(e.g., Blanchard and Kiyotaki (1987)). In the spirit of Taylor (1980) and CKM (1998a), it is

assumed that goods prices are set in a staggered fashion. More speci�cally, in each period and

at each stage, half of the �rms sets new prices while the other half does not; once a price is

set, it has to be �xed for two periods. The household is in�nitely lived and has preferences over

consumption, leisure, and real money balances. There is a government that conducts monetary

policy by injecting or extracting money via lump-sum transfers or taxes.

Our contributions in this paper can be summarized in four results. We �rst show that, in the

special case with a single production stage as in CKM (1998a), the model cannot generate price

level inertia or output persistence beyond the initial contract period following a monetary shock.

The intuition can be illustrated in the case with an expansionary shock. In the impact period,

half of the �rms cannot set new prices because they have already set prices in the previous period.

Since these �rms' prices are relatively lower, the demand for their outputs becomes relatively

higher. In meeting the output demand, they increase their demand for labor and capital, causing

factor prices to rise. Thus the marginal cost facing all �rms fully rises as soon as the shock occurs.

In consequence, all �rms choose to fully raise their prices whenever they have the chance to set

new prices. At the end of the second period when all �rms have had the chance to adjust prices,

the price index is entirely composed of fully raised prices and thus fully rises as well. Therefore

there is no price level inertia. Since each contract lasts for two periods, the output returns to the

steady state as soon as the initial contract period is over. Hence there is no output persistence.

One approach commonly taken in the literature to amplify the persistence is to introduce

factor market frictions to prevent factor prices from moving too quickly in response to a shock

(e.g., Jeanne (1998), Huang and Liu (1998), and Gust (1997)). We take here an alternative

approach by examining the ability of a production chain in generating price level inertia and

output persistence. To focus on the role of the chain in dampening the e�ects of the shock on

prices, we maintain the assumption that factor markets are perfectly competitive and frictionless.
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The dampening mechanism of the chain can be illustrated in the case with two stages. Follow-

ing an expansionary shock, for the reasons discussed above, �rms at the �rst stage immediately

face fully raised marginal costs and choose to fully raise their prices whenever they have the

chance to set new prices. What is di�erent here is that �rms at the second stage do not face

a fully raised marginal cost until the second period arrives. This is because their marginal cost

is equal to the �rst-stage price index, which does not fully rise in the impact period as it then

must record both the newly adjusted prices and the prices that were set before the shock occurs.

In the impact period, therefore, �rms at the second stage that can set new prices would choose

not to fully raise their prices. In the second period, facing fully raised marginal costs, �rms at

the second stage that can set new prices do choose to fully raise their prices. Nevertheless, the

second-stage price index does not fully rise as it then must record the newly adjusted prices and

the prices partially adjusted in the impact period. We have thus seen that, the �rst-stage prices

that were set before the shock occurs serve to dampen the e�ects of the shock on the second-stage

price decisions in the impact period and on the second-stage price index in the entire initial con-

tract period. Compared to the �rst-stage prices, therefore, the second-stage prices adjust by a

smaller amount (vertical dampening) and less rapidly (horizontal dampening)|it takes an extra

period for them to fully adjust. Consequently, the aggregate output continues to stay above the

steady state even when the initial contract period is over.

When there are more stages, the impact of the shock on prices diminishes from earlier to later

stages as the dampened fractions of the impact via earlier-stage prices that were set before the

shock occurs accumulate across stages. In general, if the shock occurs in period 0, the prices at

any stage n � 1 that were set before the shock occurs serve to dampen the e�ects of the shock

on the price decisions in periods 0 through m�n�1 and on the price index in periods 0 through

m� n at any later stage m > n. Hence, as is shown in our second result, there is an equilibrium

\snake e�ect" as emphasized by Blanchard (1983) in the sense that prices adjust by a smaller

amount and less rapidly at later stages than at earlier stages in response to the shock.3

The snake e�ect directly leads to an equilibrium price level inertia. When there are N total

production stages, the �nal-stage price index does not fully rise until period N arrives. Since the

monetary shock is divided between movements in the price level and movements in the aggregate

output, it follows that the aggregate output stays above the steady state in periods 0 through

N � 1: As the number of stages increases, the response of the price level decreases and that of

3For empirical evidence of the snake e�ect, see, for example, Blanchard (1987), Clark (1997), and Christiano,

et. al. (1998).
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the output increases on a period-by-period basis and it takes longer periods for the output to

return to the steady state. Nonetheless, care must be taken to note that a uniformly larger and

longer-lasting output response does not always lead to a more persistent response. To have more

persistence, it is also needed that the output response dies out more gradually, i.e., it calls for

a 
atter impulse response function of the output. In short, even though the chain is able to

generate the snake e�ect and thus the price level inertia, whether it can indeed help magnify

output persistence remains a non-trivial question.

Our third result establishes the strict monotonicity of output persistence in the total number

of production stages in terms of a general measure of persistence. To be speci�c, the measure

of persistence employed in this paper is the collection of the ratios of output response in period

t to that in period t � 1, for all t such that 1 � t � N � 1; where N is the total number

of stages. These ratios together provide a fairly accurate measurement of the 
atness of the

impulse response function of the output. It is shown that these ratios are strictly increasing

in N . Thus, the larger is the total number of stages, the 
atter the output impulse response

function is. In our baseline model, for instance, when the number of stages is increased from one

to �ve and then to ten, the ratio of output response at the end of the initial contract period to

that in the impact period (the \contract multiplier") increases from 0 to 0:46 and then to 0:62.

Since our persistence measure also nests the \half-life" of output response, i.e., the number of

periods it takes for the output to return to half of the level of its initial response, the half-life

also rises as the number of stages increases.

The remaining question is then: How long a way can the chain-of-production mechanism go

in helping amplify the persistence? Our �nal result provides an encouraging answer. It is shown

that, when the number of stages is su�ciently large, the price level response becomes su�ciently

close to zero, and the aggregate output tends to carry the full burden of adjustment.

The paper is organized as follows. Section 2 describes the baseline model where, for analytical

convenience, we abstract away from capital accumulation. Section 3 presents the main results

based on analytical solutions to the model. Section 4 shows that neither incorporating capital

accumulation nor replacing the model's input-output structure with a sparse input-output matrix

will a�ect the results. Section 5 concludes. All proofs are contained in Appendix A. A model

with capital accumulation is described in Appendix B.
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2 The Model Economy

This section sets up a baseline model. There are multiple stages of production and a continuum

of �rms at each stage producing di�erentiated goods and setting prices in a staggered fashion.

To focus on the role of this chain-of-production mechanism in generating price level inertia and

output persistence following monetary shocks, we consider simple two-period staggered price

contracts. To help exposition, we abstract away here from capital accumulation, as well as the

sparse nature of the input-output matrix in the data noted by Basu (1995). It will be shown in

Section 4 that these model simpli�cations are without loss of generality for the results obtained

in the next section.

In our model economy, production of a consumption good requires N stages of processing,

from crude material to intermediate goods, then to more advanced intermediate goods, and so

on. At each stage, there is a continuum of �rms indexed in the interval [0; 1], each producing

an intermediate good di�erentiated from other intermediate goods produced at the same stage.

Production at a stage n 2 f2; : : : ; Ng requires all intermediate goods produced at the previous

stage n � 1, while production at the �rst stage (n = 1) requires homogeneous labor services

provided by a representative household (see Figure 1 for an illustration of this chain-of-production

structure). In each period t, the economy experiences a realization of shocks st, while the history

of events up to date t is st � (s0; � � � ; st) with probability �(s
t). The initial realization s0 is given.

The household has a utility function

1X
t=0

X
st

�t�(st)

"
lnC(st) + � ln

 
M(st)
�PN (st)

!
�	L(st)

#
;

where � 2 (0; 1) is a subjective discount factor, M(st) and L(st) denote money balances and

labor hours, respectively, and �PN (s
t) is the �nal-stage price index. The household's consumption

C(st) is a Dixit-Stiglitz (1977) composite of goods produced at the �nal stage

C(st) =

�Z 1

0
YN (i; s

t)
�N�1

�N di

� �N

�N�1

� Y (st);(1)

where YN (i; s
t) is a type i 2 [0; 1] good and �N > 1 is the elasticity of substitution among all

types of goods produced at the �nal stage. Note that Y (st) can be interpreted as an aggregate

output and �PN (s
t) as an aggregate price level.

The household is endowed with one unit of time in each period, thus 0 � L(st) � 1: Upon

the realization of st, it solves the utility maximization problem by choosing fYN (i; s
t)gi2[0;1];

M(st); L(st); and one-period nominal bonds B(st+1), taking nominal wage rate W (st), bond
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price D(st+1jst); �nal-stage prices fPN (i; s
t)gi2[0;1] and the price level �PN (s

t) as given. The

utility maximization is subject to (1), a sequence of budget constraintsZ 1

0
PN (i; s

t)YN (i; s
t)di+

X
st+1

D(st+1jst)B(st+1) +M(st)

�W (st)L(st) + �(st) +B(st) +M(st�1) + T (st);

and a borrowing constraint B(st) � � �B for some large positive number �B, for each st and each

t � 0, with initial conditions M(s�1) and B(s0) given. Here, B(st+1) is a one-period nominal

bond that costs D(st+1jst) dollars at st and pays o� one dollar in the next period contingent

upon the realization of st+1, �(st) is the household's claim to all �rms' pro�ts, and T (st) is a

nominal lump-sum transfer from the government. The demand Y d
N (i; s

t) for a type i 2 [0; 1] good

produced at the �nal stage is derived from the �rst order conditions and is given by

Y d
N (i; s

t) =

"
PN (i; s

t)
�PN (st)

#
��N

Y (st);(2)

where �PN (s
t) =

hR 1
0 PN (i; s

t)1��Ndi
i 1

1��N .

Production technology of a �rm i 2 [0; 1] at a stage n 2 f2; : : : ; Ng is a standard Dixit-Stiglitz

(1977) type of production function

Yn(i; s
t) =

"Z 1

0
Yn�1(i; j; s

t)
�n�1�1

�n�1 dj

# �n�1

�n�1�1

;(3)

where Yn(i; s
t) is i's output, Yn�1(i; j; s

t) is the output produced by a �rm j 2 [0; 1] at the

previous stage n � 1 that is used by i as input, and �n�1 > 1 is the elasticity of substitution

among all goods produced at stage n � 1: Production technology of a �rm i 2 [0; 1] at the

�rst stage is a standard constant returns to scale production function Y1(i; s
t) = L(i; st); where

Y1(i; s
t) and L(i; st) are i's output and labor input, respectively.

Firms are monopolistic competitors in their outputs' markets and price-takers in their inputs'

markets. They set prices in a staggered fashion to maximize pro�ts, taking their outputs' demand

schedules as given. At each stage and in each period t; half of the �rms can set new prices upon

the realization of st: Once a price is set, it remains �xed for two periods. We sort the index of

�rms at each stage so that those indexed i 2 [0; 1=2] set new prices in periods 0; 2; 4; : : : ; while

those indexed i 2 (1=2; 1] set new prices in periods 1; 3; 5; : : : ; and so on.

Upon the realization of st, a �rm i 2 [0; 1] at a stage n 2 f1; : : : ; Ng that can set a new price

chooses its output price Pn(i; s
t) to solve a two-period pro�t-maximization problem

Max
t+1X
�=t

X
s�
D(s� jst)[Pn(i; s

t)� Vn(i; s
� )]Y d

n (i; s
� );
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taking its unit cost function Vn(i; s
� ) and its output demand schedule Y d

n (i; s
� ) as given. If

n = 1, the unit cost is simply V1(i; s
� ) = W (s� ), since labor is the only input used in the �rst-

stage production. If n 2 f2; : : : ; Ng, the unit cost is derived by choosing Yn�1(i; j) to minimizeR 1
0 Pn�1(j)Yn�1(i; j)dj subject to (3). Solving this cost minimization problem yields the demand

function by �rm i for a good j 2 [0; 1] produced at stage n� 1

Y d
n�1(i; j; s

� ) =

�
Pn�1(j; s

� )
�Pn�1(s� )

���n�1
Yn(i; s

� );

where n 2 f2; : : : ; Ng, and �Pn�1(s
� ) �

hR 1
0 Pn�1(j; s

� )1��n�1dj
i1=(1��n�1)

is the price index at

stage n � 1. Therefore, the demand schedule for good j can be obtained by summing up its

demand by all �rms at stage n, that is

Y d
n�1(j; s

� ) �

Z 1

0
Y d
n�1(i; j; s

� )di =

�
Pn�1(j; s

� )
�Pn�1(s� )

���n�1
Yn(s

� );(4)

where n 2 f2; : : : ; Ng and Yn(s
� ) �

R 1
0 Yn(i; s

� )di: The unit production cost, which, due to

constant returns to scale, is also the marginal cost, of �rm i derived from the cost-minimization

problem is then given by

Vn(s
� ) � Vn(i; s

� ) = �Pn�1(s
� );(5)

where n 2 f1; : : : ; Ng, with the convention that �P0(s
� ) � W (s� ). Note that the unit cost (5) is

�rm independent. Taking (4) and (5) as given, �rm i's pro�t maximization problem yields its

optimal price setting rule

Pn(i; s
t) =

�n
�n � 1

Pt+1
�=t

P
s� D(s

� jst) �Pn(s
� )�nYn+1(s

� )Vn(s
� )Pt+1

�=t

P
s� D(s

� jst) �Pn(s� )�nYn+1(s� )
;(6)

where n 2 f1; : : : ; Ng, with the convention that YN+1(s
� ) � Y (s� ). To understand (6), notice

that the �rm sets its price equal to a constant markup over a weighted average of its marginal

costs in the subsequent two periods, while inspecting (2) and (4) reveals that the weights are

(normalized) discounted total demand for its output in the corresponding periods.

We close the descriptions of the model economy by specifying a monetary policy. The nominal

money supply process is given by M s(st) = �(st)M s(st�1), where ln�(st) follows a stationary

AR(1) process. Newly created money is injected into the economy via a lump-sum transfer by

the government to the household, that is, T (st) =M s(st)�M s(st�1):

De�nition 1 An equilibrium for this economy consists of allocations fYN (i; s
t)gi2[0;1]; L(s

t),

M(st); and B(st+1) for the household, allocations fL(i; st)gi2[0;1] and prices fP1(i; s
t)gi2[0;1] for

�rms at the �rst stage, allocations fYn�1(i; j; s
t)gi;j2[0;1] and prices fPn(i; s

t)gi2[0;1] for �rms at
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each stage n 2 f2; : : : ; Ng, wage rate W (st), bond prices D(st+1jst), and price indices �Pn(s
t) for

each stage n 2 f1; : : : ; Ng, that satisfy the following conditions: (i) taking wage and prices as

given, the household's allocations solve its utility maximization problem; (ii) taking wage and all

prices but its own as given, each �rm's allocation and price solve its pro�t maximization problem;

(iii) markets for labor, money, and bonds clear; (iv) monetary policy is as speci�ed above.

In what follows, we focus on a symmetric equilibrium in which �rms in the same cohort at

each stage make identical decisions. As a consequence, each �rm is completely identi�ed by the

stage at which it produces and the time at which it can set a new price. Thus from now on we

can drop the indices i and j for individual �rms, and let Pn(t) denote the prices set at a time t

for goods produced at a stage n 2 f1; : : : ; Ng.

3 Main Results

This section presents the main results of this paper. We begin by reducing the equilibrium condi-

tions to 2N+2 equations, includingN price decision equations, a labor supply decision equation,

a money demand equation, and N equations de�ning price indices. We then log-linearize the

equilibrium conditions around the deterministic steady state. In the following equilibrium con-

ditions, the variables are logarithmic deviations of the corresponding level variables from their

steady state values.

The linearized price decision equation (6) for �rms at a stage n 2 f1; : : : ; Ng is given by

pn(t) =
1

1 + �
�pn�1(t) +

�

1 + �
Et[�pn�1(t+ 1)];(7)

where the notation �p0(t) denotes w(t) and Et is a conditional expectation operator, for each

t � 0.

The labor supply decision equation derived from the household's problem is given by 	Y (st) =

W (st)= �PN (s
t), and its linearized version is

w(t) = �pN (t) + y(t):(8)

Next, by log-linearizing the money demand equation obtained from the household's problem

around the steady state, we get

�pN (t) + y(t) = (1� �)m(t) + �Et[�pN (t+ 1) + y(t+ 1)]:(9)

Finally, the linearized price index at a stage n 2 f1; : : : ; Ng is simply a weighted average of

the ongoing prices at the same stage and is given by

�pn(t) =
1

2
pn(t� 1) +

1

2
pn(t):(10)
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To gain insights into the chain's ability in generating price level inertia and output persistence,

we derive analytical solutions to the linearized system of equilibrium conditions in the case where

the logarithm of money supply follows a random walk process given by m(t) = m(t � 1) + �(t),

where �(t) is a white noise. Suppose that at time 0 there is a one percent shock to the disturbance

term so that �(0) = 1 while �(t) = 0 for all t � 1. Our objective here is to compute the impulse

response functions to determine how the money shock is divided into movements in prices and

movements in the aggregate output. For this purpose, we focus on a perfect foresight equilibrium

and thus drop the expectation operator Et in (7) and (9). The following proposition partially

characterizes the equilibrium.

Proposition 1 There is a unique perfect foresight equilibrium in which

w(t) = 1; t � 0;(11)

pn(t) = 1; t � n� 1; n 2 f1; : : : ; Ng;(12)

�pn(t) = 1; t � n; n 2 f1; : : : ; Ng;(13)

y(t) = 0; t � N:(14)

Proposition 1, among other things, establishes the no-persistence result of CKM (1998a)

corresponding to the case with a single production stage. When N = 1, (14) implies that the

output returns to the steady state as soon as the initial contract period is over (y(t) = 0 for

t � 1). This is because every �rm faces a fully raised marginal cost in each period (w(t) = 1 for

t � 0), thus chooses to fully raise its price whenever it can set a new price (p1(t) = 1 for t � 0).

At the end of the initial contract period (t = 1) when all �rms have had the chance to adjust

their prices, the price index is entirely composed of fully raised prices and thus fully rises as well

(�p1(1) = 1). Thus there is no price level inertia. Here, staggered price contracts make the shock

non-neutral only in the impact period (t = 0) when half of the ongoing prices was set before the

shock occurs.

Having more than one stage is thus necessary if the model is to generate price level inertia or

output persistence beyond the initial contract period. In what follows we show that this is also

su�cient.

The key to understand the chain's ability in generating price level inertia is to understand

how the e�ects of the shock on prices can be gradually dampened through the chain from earlier

to later stages. This can be easily seen in the case with two stages, as illustrated in Figure 2. To

make the illustration as simple as possible, the value of � is set to 1. The arrows in the �gure

describe the equilibrium relations between price decisions and price indices within and across
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stages according to (7) and (10). (The bold-faced letters in the �gure denote price indices. For

example, P2(0) denotes �p2(0).) Following the shock, for the reasons discussed above, �rms at

the �rst stage immediately face fully raised marginal costs and choose to fully raise their prices

whenever they have the chance to set new prices. What is di�erent here is that �rms at the second

stage do not face a fully raised marginal cost until the second period arrives. This is because their

marginal cost is equal to the �rst-stage price index, which does not fully rise in the impact period

as it (�p1(0)) then by (10) must record both the newly adjusted prices (p1(0) = 1) and the prices

that were set before the shock occurs (p1(�1) = 0). That is, �p1(0) = (1=2)p1(�1)+ (1=2)p1(0) =

1=2. Thus, it is not until the second period and on that the �rst-stage price index fully rises

(�p1(t) = (1=2)p1(t � 1) + (1=2)p1(t) = 1 for t � 1). In the impact period, therefore, �rms at

the second stage that can set new prices (p2(0)) would choose not to fully raise their prices,

since by (7), their optimizing prices are an average of their marginal costs in the impact period

(�p1(0)) and in the second period (�p1(1)). That is, p2(0) = (1=2)�p1(0) + (1=2)�p1(1) = 3=4. At the

end of the initial contract period, �rms at the second stage face fully raised marginal costs and

thus those of them that can set new prices choose to fully raise their prices (p2(1) = 1). Yet,

the second-stage price index �p2(1) does not fully rise as it then by (10) must record the newly

adjusted prices (p2(1) = 1) and the prices partially adjusted in the impact period (p2(0) = 3=4).

That is, �p2(1) = (1=2)p2(0) + (1=2)p2(1) = 7=8.

In summary, the �rst-stage prices that were set before the shock occurs (p1(�1)) serve to

dampen the e�ects of the shock on the second-stage price decisions in the impact period (p2(0))

and on the second-stage price index in the entire initial contract period (�p2(0) and �p2(1)). For

instance, p2(0) = 3=4, thus a fraction 1=4 of the e�ect of the shock on p2(0) is dampened. This

fraction is equal to the multiplication of the weight 1=2 on p1(�1) in the price index equation

(10) for �p1(0) and the weight 1=2 on �p1(0) in the price decision equation (7) for p2(0). The

dampened fractions of the e�ects of the shock on �p2(0) and �p2(1) can be similarly interpreted.

As a consequence, compared to the �rst-stage prices, the second-stage prices adjust by a smaller

amount and less rapidly (p2(0) = 3=4 < 1 = p1(0), �p2(0) = 3=8 < 1=2 = �p1(0), and �p2(1) =

7=8 < 1 = �p1(1)). This pattern of price adjustment from earlier to later stages mimics a snake-

like movement and is thus termed \snake e�ect" as in Blanchard (1983). The snake e�ect directly

results in an equilibrium price level inertia. In particular, the second-stage price index|which is

also the price level in this case|does not fully rise even when the initial contract period is over.

When there are more stages, the impact of the shock on prices diminishes from earlier to

later stages as the dampened fractions of the impact via earlier-stage prices that were set before
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the shock occurs accumulate across stages. In general, the prices at any stage n � 1 that were

set before the shock occurs serve to dampen the e�ects of the shock on the price decisions in

periods 0 through m�n�1 and on the price index in periods 0 through m�n at any later stage

m > n. Such accumulation intensi�es the snake e�ect and the price level inertia, as is illustrated

in Table I for the case with N = 20. In computing the equilibrium prices displayed in the table,

we choose � = 0:961=2 so that the period length corresponds to half a year. According to the

table, prices adjust by a smaller amount and less rapidly at later stages than at earlier stages.

Implicitly, the more the stages, the larger the magnitude of the price level inertia. Our next

proposition formally establishes the result.

Proposition 2 Suppose that N � 2. In the perfect foresight equilibrium, the following holds for

each n 2 f1; : : : ; N � 1g :

pn+1(t) < pn(t); 0 � t � n� 1;(15)

�pn+1(t) < �pn(t); 0 � t � n:(16)

According to Proposition 2, the e�ects of the shock on prices are extenuated through the

chain from earlier to later stages. It is thus inferred that the price level inertia increases with

the number of stages in the sense that the response of the �nal-stage price index decreases on a

period-by-period basis and it takes longer periods for it to fully adjust. With N stages, the price

level does not fully rise until period N arrives.

It follows immediately from Propositions 1 and 2 that, as the number of stages increases,

the response of the aggregate output increases on a period-by-period basis and it takes longer

periods for the output to return to the steady state. With N stages, the aggregate output stays

above the steady state in periods 0 through N � 1.

It is important to emphasize that a uniformly larger and longer-lasting output response due

to a further increase in the number of stages does not always correspond to a more persistent

response. To have more persistence, we need to show that the output response in later periods

relative to that in earlier periods also becomes larger as the number of stages increases, so that

the initial output response dies out more gradually. That is, we need a 
atter impulse response

function of the output. In short, although by Propositions 1 and 2 the chain is able to generate

the snake e�ect and thus the price level inertia, whether it can indeed help magnify the output

persistence remains a non-trivial question.

To gain some intuitions and con�dence, we �rst examine the implications of our model in

terms of two special measures of persistence proposed in the literature. One is the ratio of
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output response at the end of the initial contract period to that in the impact period (the

\contract multiplier"), that is, y(1)=y(0). The other is the number of periods it takes for the

output to return to half of the level of its initial response (the \half-life"), that is, a time t?

such that y(t?)=y(0) = 0:5. As Table II exhibits, both the contract multiplier and the half-life of

output response are strictly increasing functions of N . Since the two measures describe to some

extent how 
at the output impulse response function is, the outcomes reported in Table II are a

manifestation that an increase in the number of stages may help magnify output persistence in

terms of these measures.

In fact, the monotonicity of output persistence in the number of stages holds true not only in

terms of the contract multiplier and the half-life of output response, but also for a more general

measure of persistence. This is established in the next proposition. To be speci�c, the measure

of persistence adopted here is the collection of the ratios of output response in period t to that

in period t � 1, for all t such that 1 � t � N � 1; where N is the total number of stages. This

measure, while nesting the contract multiplier and the half-life of output response as special

cases, provides a fairly accurate measurement of the 
atness of the impulse response function

of the output. The following proposition shows that these ratios are strictly increasing in N .

To help exposition, we make explicit here the dependence of the aggregate output on N . More

speci�cally, we use the equilibrium relation that y(t) = 1 � �pN (t) if there are N stages, and

y(t) = 1� �pN+1(t) if there are N + 1 stages.

Proposition 3 (Monotonicity of Output Persistence) The following holds in the perfect foresight

equilibrium:

1� �pN+1(t)

1� �pN+1(t� 1)
>

1� �pN (t)

1� �pN (t� 1)
; 1 � t � N;(17)

for N � 1.

Propositions 2 and 3 imply that, with more stages, the chain generates not only uniformly

larger and longer-lasting real e�ects but also 
atter paths of dynamic output response. Since

the monotonicity displayed in (17) is strict, the chain has a promising potential in generating

substantial output persistence. For instance, as Table II reveals, when the number of stages is

increased from one to �ve and then to ten, the ratio of the output response at the end of the

initial contract period to that in the impact period (the contract multiplier) increases from 0 to

0:46 and then to 0:62, a substantial increase.

The remaining question is then, how long a way the chain mechanism can go in helping

increase output persistence in terms of the general persistence measure. We provide here an
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encouraging answer. Our next proposition shows that, with su�ciently many stages, the response

of the price level at any time is su�ciently close to zero, and that of the aggregate output at any

time is su�ciently close to one percent.

Proposition 4 As the total number of production stages N approaches 1, the price level �pN (t)

approaches 0 and thus the aggregate output y(t) = 1� �pN (t) approaches 1, for all t � 0.

Our �ndings in this section can be summarized as follows: (i) with a single stage, the price

level fully adjusts and the output returns to the steady state as soon as the initial contract period

is over; (ii) with multiple stages, the e�ects of the shock on prices are gradually dampened through

the chain, inducing an equilibrium snake e�ect in the sense that prices adjust by a smaller amount

and less rapidly at later stages than at earlier stages, so that the magnitude of the price level

inertia increases with the number of stages; (iii) with more stages, the chain generates not only

uniformly larger and longer-lasting real e�ects but also 
atter paths of dynamic output response;

and (iv) with su�ciently many stages, the price level response at any time is su�ciently close to

zero, and the aggregate output tends to carry the full burden of adjustment.

4 Robustness

To help exposition, we have made the baseline model as simple as possible. In particular, there

is no capital accumulation, and production of a �rm at a later stage requires the outputs of all

�rms at the previous stage. This section is devoted to showing that the results obtained so far

are robust and general, and do not hinge on these model simpli�cations.

4.1 Input-Output Structure

It is important to emphasize that, even though the dense input-output structure in the baseline

model seems to be very special, it is employed there just for mathematical elegance, and is not

essential for the results obtained in the previous section. What matters is only that, for �rms

of the second stage and beyond, their input-supplying �rms set prices in a staggered fashion,

while it does not matter whether the input-supplying �rms constitute all or just part of the �rms

of the previous stage. As long as this essential feature of the model is retained, it is still true

that, following a shock, �rms at later stages do not face fully adjusted marginal costs and thus

they have no incentives to fully adjust their prices for extended periods of time. In consequence,

it remains the case that the e�ects of the shock on prices are gradually dampened through the
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chain from earlier to later stages, and the results obtained from the baseline model continue to

hold.

To make this point clear, we now show that the results in the previous section remain valid

without modi�cations when we incorporate into the model the sparse nature of the input-output

matrix in the data. Consider the following input-output structure. There are N production

stages and a continuum of �rms at each stage producing di�erentiated goods. Firms at each

stage are divided into H cohorts: [0; 1
H ]; (

1
H ;

2
H ]; : : : ; (

H�1
H ; 1]. Without loss of generality, H is

assumed to be an even natural number. Production technology at the �rst stage is the same as

in the baseline model. Production of a �rm in a cohort h 2 f1; 2; : : : ;Hg at a stage n requires

using the outputs of �rms in cohorts h and h+1 at the previous stage n� 1, modulo H, for each

n 2 f2; : : : ; ; Ng, according to a Dixit-Stiglitz (1977) type of production function. Therefore, the

�rm uses in its production only the outputs of 2=H fraction of the �rms of the previous stage.

Since H can be arbitrarily large, this fraction can be arbitrarily small and the corresponding

input-output structure can be arbitrarily sparse.4

The staggered price contracts are speci�ed as follows. In periods 0; 2; 4; : : :, �rms in cohorts

2; 4; : : : ;H at each stage can set new prices while the rest cannot. In periods 1; 3; 5; : : :, �rms in

cohorts 1; 3; : : : ;H � 1 at each stage get the chance to set new prices while the others do not.

Once a price is set, it has to remain �xed for two periods. Therefore, in each period and at each

stage, half of the �rms can set new prices while the other half cannot. It can be similarly shown

as in Section 2 that the optimizing price of a �rm in a cohort h at a stage n 2 f2; : : : ; Ng is

a markup over a weighted average of its marginal costs in the current period and in the next

period, where the marginal costs are an average of the prices of �rms in cohorts h and h + 1 at

the previous stage n� 1 in the corresponding periods. Since each �rm at the �rst stage simply

faces the wage rate as its marginal cost, its optimizing price is a markup over a weighted average

of the wage rates in the current period and in the next period. In a symmetric equilibrium, �rms

at the same stage face the same production costs and those of them that can set new prices at

the same time make identical price decisions. Hence, the price decisions of each �rm only depend

on the stage at which it produces and the time at which it can set a new price, but neither on

the index of the �rm nor on the index of the cohort that the �rm belongs to. It follows that, the

price index at each stage, which is an average of all �rms' prices at the stage, is also an average

4We are grateful to Narayana Kocherlakota for suggesting that we use this input-output structure to capture

the sparse nature of the input-output matrix in the data.
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of the prices of �rms in any two cohorts at the same stage that set prices in an asynchronized

fashion.

It is then straightforward to verify that the current model is equivalent to the baseline model

in Section 2 in terms of the equilibrium price deicisions, price indices, and aggregate output, and

thus the log-linearized equilibrium conditions are identical to those in the baseline model given

by (7)-(10). In consequence, the e�ects of the shock on prices are gradually dampened through

the chain in an identical manner, and the results in Section 3 continue to hold.

4.2 Capital Accumulation

It is equally important to point out that, for the validity of the results in Section 3, the abstraction

of the baseline model from capital accumulation is not essential either. Incorporating capital into

the baseline model directly a�ects the production costs and thus the price decisions of �rms of

the �rst stage; and, through input-output relations, indirectly a�ects the price decisions of �rms

of later stages. However, the dampening mechanism of the chain works in the same way as in the

baseline model in attenuating the e�ects of the shock on goods prices. The impact of factor price

movements on goods prices diminishes from earlier to later stages, as the dampened fractions of

the impact via the earlier-stage prices that were set before the shock occurs accumulate across

stages and eventually become dominant in determining the division of the shock into movements

in the price level and movements in the aggregate output.

To make this point clear, we formally construct a model with capital accumulation. Since

in this case it is di�cult to obtain analytical solutions, we resort to numerical methods. We

log-linearize the equilibrium conditions of the model around the deterministic steady state, and

solve the linearized system numerically to obtain the impulse response functions of the price level

and of the aggregate output following a monetary shock. The stochastic process for the money

growth rate is given by

ln�(t) = �ln�(t� 1) + "(t);(18)

where 0 < � < 1, and "(t) has an i.i.d. normal distribution with zero mean and �nite variance.

In computing the equilibrium impulse response functions, we choose the magnitude of "(0) so

that money stock rises by 1% one year after the shock occurs (that is, at the end of the initial

contract period). To help exposition, the response of the output is pointwise normalized by its

initial response. Detailed model speci�cations, computation methods, and calibration strategies

are contained in Appendix B.
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Figure 3 plots the impulse response function of the aggregate output for N = 1; 5; 10; 20,

respectively. From the �gure, in terms of our general measure of persistence, the response of the

output becomes more persistent when there are more stages. With N = 1, following an initial

rise in the impact period, the output returns to the steady state before the initial contract period

is over. With more and more stages, the output stays above the steady state for longer and

longer periods of time, and returns to the steady state along 
atter and 
atter paths. Figure 4

plots the impulse response function of the price level for N = 1; 5; 10; 20, respectively. According

to the �gure, as the number of stages increases, the response of the price level diminishes on a

period-by-period basis and converges to a new steady state level along a 
atter path.

In summary, the basic conclusions lying with our analytical results in Section 3 continue to

hold when capital accumulation and the sparse nature of the real-world input-output matrix are

taken into account.

5 Conclusions

We have shown in the current paper that a model with multiple production stages and asyn-

chronized price setting at each stage can generate sluggish price level adjustment and persistent

aggregate output response following monetary shocks. The intuition behind our results is simple:

the e�ects of the shock on prices diminish from earlier to later stages as the dampened frac-

tions of the e�ects via the earlier-stage prices that were set before the shock occurs accumulate

across stages. In consequence, a chain with more stages generates not only uniformly larger and

longer-lasting output response but also 
atter paths of the response. The results stand �rm in

the presence of capital accumulation and sparse input-output structures.

Our results can be extended to generalizations of our model's physical environment. For

example, all but the \limiting" result carry over directly to a model in which production at later

stages requires labor and capital in addition to outputs produced at earlier stages. Such a chain-

of-production structure works in the same way as our baseline model in dampening the e�ects of

the shock on prices. The only di�erence here is that the dampened fractions are now relatively

smaller, which however does not a�ect the conclusions lying with the �rst three propositions,

although which does imply that the conclusion drawn in Proposition 4 for the limiting case has to

be amended to respect the shares of factor inputs at later stages in determining the division of the

shock into movements in the price level and movements in the aggregate output. Also, versions

of our results can be obtained for environments in which prices at some but not necessarily at

all stages are set in an asynchronized fashion.
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Our model is the �rst to incorporate the chain-of-production feature in the real-world economy

into a general equilibrium framework. Although the model is tailored to address the persistence

issue of monetary shocks, it can be extended to study other important questions as well. For

instance, despite the overwhelming empirical evidence that asset prices are much more volatile

than goods prices, there are few satisfactory theoretical explanations. Our model may help

interpret this observation based on the following intuitions. As we have shown in the text, from

earlier to later stages, the response of goods prices to a shock becomes smaller while that of

outputs becomes larger and more persistent, and thus the response of dividends tends to be more

persistent. Since the current prices of assets are equal to the discounted sums of future dividend

streams, assuming no price bubbles, there tend to be larger gaps at later stages between the

volatility of asset prices and that of goods prices. For a detailed analysis of this issue, see Huang

and Liu (1999a).

Our model can also be a good starting point to study issues regarding international business

cycle comovements and real exchange rate persistence. Most international business cycle models

with technology shocks as a driving force of aggregate 
uctuations predict that cross-country

correlations of aggregate output, investment, and labor hours are small or even negative, while

the correlations in the data are large and positive. This is known as the international comove-

ment puzzle (e.g., Baxter (1995)). A related puzzle is the large and persistent deviations of the

real exchange rates in the data from the purchasing power parity. The recent work by Chari,

Kehoe, and McGrattan (1998b) resorts to long-period of exogenous price stickiness to amplify the

persistence of real exchange rate. An extension of our current model to a two-country economy

is likely to resolve both the international comovement puzzle and the real exchange rate persis-

tence puzzle. With multiple stages of production and staggered price contracts in each country,

a domestic shock tends to increase demand for goods produced in both countries through cross-

country input-output relations. The response of real exchange rate to a country-speci�c shock is

also likely to be persistent because the real exchange rate is related to the relative consumption

in the two countries, as suggested by most exchange-rate theories (e.g., Stockman (1998), Chari,

et al. (1998b)). In Huang and Liu (1999b), we provide a more detailed analysis of these issues.
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Appendix A

Proof of Proposition 1: Using (8), (9) and m(t) = 1 for t � 0, we obtain

w(t) = 1 + [w(0) � 1]=�t(19)

for each t � 0. Subsituting (19) into (7) for the case with n = 1 yields

p1(t) = 1 + 2[w(0) � 1]=[�t(1 + �)](20)

for each t � 0. Substituting (10) into (7) leads to

pn(t) =
1

2(1 + �)
pn�1(t� 1) +

1

2
pn�1(t) +

�

2(1 + �)
pn�1(t+ 1)(21)

for each t � 0 and each n 2 f2; : : : ; Ng. Using (20) and (21), we can prove by induction on n

that

pn(t) = 1 + 2[w(0) � 1]=[�t(1 + �)](22)

for each t � n� 1 and each n 2 f2; : : : ; Ng. It then follows from (10), (20) and (22) that

�pn(t) = w(t)(23)

for each t � n and each n 2 f1; : : : ; Ng.

We claim that the only value of w(0) that is consistent with an equilibrium is w(0) = 1.

If otherwise, w(0) > 1 or w(0) < 1, then by (19), as t goes to in�nity, w(t) diverges to plus

or minus in�nity at a rate of 1=�, so does the price level �pN (t) as implied by (23). These

possibilities, however, can be ruled out as in Obstfeld and Rogo� (1983, 1986). The hyper-

in
ationary path with w(t) ! 1 cannot be an equilibrium, because with the log-utility in real

balances the household would su�er an in�nite utility loss as real balances approach zero along

such a path. The hyper-de
ationary path with w(t) ! �1 cannot be an equilibrium either,

because it would violate the appropriate transversality condition with respect to real balances.

Therefore, w(0) = 1, and there is a unique equilibrium in which w(t) = 1 for all t � 0 according

to (19). That is, equation (11) holds. Equations (12) and (13) then follow from (20), (22) and

(23). Finally, equation (14) follows from (8), (11) and (13). This completes the proof. 2

Proof of Proposition 2: We prove (15) by induction on n: We �rst verify (15) for n = 1.

Equation (12) implies that p1(0) = 1 and thus �p1(0) = 1=2 according to (10). This together with

�p1(1) = 1 by (13) results in p2(0) = 1� 1=[2(1 + �)] < 1 according to (7). Therefore, (15) holds

for n = 1. This would be the end of the proof of (15) if N = 2. Without loss of generality, we
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assume N > 2. Suppose that (15) holds for n with 1 � n � N � 2. We need to show that (15)

holds for n+ 1, that is,

pn+2(t) < pn+1(t); 0 � t � n:(24)

Fix an arbitrary t with 0 � t � n. It follows that �1 � t� 1 � n� 1 and 1 � t+ 1 � n+ 1: By

the induction hypothesis and (12), we have

pn+1(t� 1) � pn(t� 1); pn+1(t) � pn(t); pn+1(t+ 1) � pn(t+ 1);

with at least one strict inequality. Noticing that relation (21) holds for each t � 0 and each

n 2 f2; : : : ; Ng, we have

pn+2(t)� pn+1(t) =
1

2(1 + �)
[pn+1(t� 1)� pn(t� 1)]+

1

2
[pn+1(t)� pn(t)] +

�

2(1 + �)
[pn+1(t+ 1)� pn(t+ 1)] < 0;

which establishes (24). This completes the proof of (15).

To prove (16), �x an arbitrary n 2 f1; : : : ; N � 1g and an arbitrary t with 0 � t � n. It

follows that �1 � t� 1 � n� 1. Then (12) and (15) imply that

pn+1(t� 1) � pn(t� 1); pn+1(t) � pn(t);

with at least one strict inequality, which together with (10) leads to

�pn+1(t)� �pn(t) =
1

2
[pn+1(t� 1)� pn(t� 1)] +

1

2
[pn+1(t)� pn(t)] < 0:

This establishes (16), and thus completes the proof of the proposition. 2

Proof of Proposition 3: We prove the proposition by induction on N: To simplify ex-

pressions, we denote 1� �pN (t) by yN (t) so that (17) can be expressed as

yN+1(t)

yN+1(t� 1)
>

yN (t)

yN (t� 1)
; 1 � t � N:(25)

We shall verify in Lemma 1 that (25) holds for N = 1; 2; 3. Suppose that (25) holds for N � 3:

We need to show that (25) holds for N + 1, that is,

yN+2(t)

yN+2(t� 1)
>

yN+1(t)

yN+1(t� 1)
; 1 � t � N + 1:(26)

We proceed by �rst noting that, when adding an additional stage to a chain with N stages,

(7)-(10) remain to be equilibrium conditions for the modi�ed economy with N + 1 stages where
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N +1 replaces N everywhere, since none of these conditions hinge on the total number of stages.

Manipulating (7) and (10) for index N + 1 leads to

�pN+1(t) =

8<
:

1
2(1+�) �pN (t� 1) + 1

2 �pN (t) +
�

2(1+�) �pN (t+ 1); if t � 1;

1
2(1+�) �pN (0) +

�
2(1+�) �pN (1); if t = 0;

(27)

which, along with the notations yN (t) � 1� �pN (t) and yN+1(t) � 1� �pN+1(t), implies that

yN+1(t) =

8<
:

1
2(1+�)yN(t� 1) + 1

2yN (t) +
�

2(1+�)yN(t+ 1); if t � 1;

1
2(1+�)yN(0) +

1
2 +

�
2(1+�)yN (1); if t = 0:

(28)

When adding one more stage to a chain with N + 1 stages, we can derive a similar expression

by replacing in (28) the index N with N + 1 on the right-hand side and the index N + 1 with

N + 2 on the left-hand side. We write it down here for future reference:

yN+2(t) =

8<
:

1
2(1+�)yN+1(t� 1) + 1

2yN+1(t) +
�

2(1+�)yN+1(t+ 1); if t � 1;

1
2(1+�)yN+1(0) +

1
2 +

�
2(1+�)yN+1(1); if t = 0:

(29)

We then note that a version of Proposition 1 holds for the modi�ed economy with N + 1 stages

where N+1 replaces N everywhere. Using (13) for indices N and N+1, along with the de�nition

yN (t) � 1� �pN (t) and the induction hypothesis, we have:

yN+1(t+ 1)

yN+1(t)
>
yN (t+ 1)

yN (t)
;

yN+1(t)

yN+1(t� 1)
>

yN (t)

yN (t� 1)
;(30)

yN+1(t� 1)

yN+1(t� 2)
>
yN(t� 1)

yN(t� 2)
; if 2 � t � N � 1;

yN+1(t+ 1) = yN(t+ 1) = yN(t) = 0;
yN+1(t)

yN+1(t� 1)
>

yN (t)

yN (t� 1)
;(31)

yN+1(t� 1)

yN+1(t� 2)
>
yN(t� 1)

yN(t� 2)
; if t = N ;

yN+1(t+ 1) = yN+1(t) = yN (t+ 1) = yN (t) = yN (t� 1) = 0;(32)

yN+1(t� 1)

yN+1(t� 2)
>
yN(t� 1)

yN(t� 2)
; if t = N + 1:

Finally, (28)-(32) along with Lemma 2 establish that

yN+2(t)

yN+2(t� 1)
>

yN+1(t)

yN+1(t� 1)
; 2 � t � N + 1:

To establish (26), it thus remains to show that

yN+2(1)

yN+2(0)
>
yN+1(1)

yN+1(0)
;
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which, given (28) and (29), is equivalent to showing that

1
2(1+�)yN+1(0) +

1
2yN+1(1) +

�
2(1+�)yN+1(2)

1
2(1+�)yN+1(0) +

1
2 +

�
2(1+�)yN+1(1)

>

1
2(1+�)yN (0) +

1
2yN (1) +

�
2(1+�)yN (2)

1
2(1+�)yN (0) +

1
2 +

�
2(1+�)yN (1)

:(33)

To establish (33), by Lemma 2, it su�ces to show that

yN+1(2)

yN+1(1)
>
yN(2)

yN(1)
;

yN+1(1)

1
>
yN (1)

1
;

yN+1(0)

yN+1(0)
=
yN (0)

yN (0)
:

The �rst inequality follows from the induction hypothesis, the second follows from (16) for index

N in an economy with N + 1 stages, and the last equality is trivial. This establishes (26), and

thus completes the proof of the proposition. 2

Proof of Proposition 4: In light of (8), (10) and (11), it su�ces to show that, for each

t � 0,

lim
N!1

pN (t) = 0:(34)

We proceed by �rst showing that the limit exists. Similarly as in the proofs of Propositions 1 and

2, it can be shown that pN (t) is monotonically decreasing in N . The recursive relations in (21)

imply that, for all N � 2, pN (t) is a weighted average of the �rst-stage prices p1(�1), p1(0); : : : ;

and p1(t + N � 1). This together with (12) and the fact that p1(�1) = 0 implies that pN (t) is

uniformly bounded from below by 0 and from above by 1. Therefore, for each t � �1, the limit

of pN (t) as N !1 exists. Denote this limit by p(t). Then, trivially p(�1) = 0, and

0 � p(t) � 1;(35)

for each t � 0. It remains to show that p(t) = 0 for each t � 0. For convenience, we rewrite here

(21) for index N and for each t � 0:

pN (t) =
1

2(1 + �)
pN�1(t� 1) +

1

2
pN�1(t) +

�

2(1 + �)
pN�1(t+ 1):

Since each of the four terms in the above equation converges to a �nite limit, taking N !1 on

both sides of the equation leads to

p(t) =
1

2(1 + �)
p(t� 1) +

1

2
p(t) +

�

2(1 + �)
p(t+ 1);

which can be rewritten as p(t+ 1)� p(t) = [p(t)� p(t� 1)]=�. By iterating on t, we get

p(t+ 1)� p(t) =

�
1

�

�t+1

[p(0)� p(�1)]:(36)

22



Summing up both sides of (36) through periods 0; : : : ; t, and using p(�1) = 0 and 0 < � < 1, we

have p(t+ 1) = p(0)[(1=�)t+2 � 1]=[(1=�) � 1].5 It follows that, for each t � 0,

p(t) =

"
(1=�)t+1 � 1

(1=�) � 1

#
p(0):(37)

Equation (37) implies that p(0) = 0. If otherwise p(0) > 0, then there exists some � � 0 such

that p(t) > 1 for t � � , a contradiction to (35). It follows immediately that p(t) = 0 for t � 0.

This completes the proof. 2

Lemma 1 In the perfect foresight equilibrium,

1� �pN+1(t)

1� �pN+1(t� 1)
>

1� �pN (t)

1� �pN (t� 1)
; 1 � t � N

for N = 1; 2; 3.

Proof: Equations (10), (12), and (13) together with p1(�1) = 0 imply that

�p1(0) =
1

2
; �p1(t) = 1; t � 1:

Using the above solutions and repeatedly applying (27) result in the following solutions:

�p2(0) =
1 + 2�

4(1 + �)
; �p2(1) =

3 + 4�

4(1 + �)
; �p2(t) = 1; t � 2;

�p3(0) =
1 + 4�

8(1 + �)
; �p3(1) =

4 + 13� + 8�2

8(1 + �)2
;

�p3(2) =
7 + 16� + 8�2

8(1 + �)2
; �p3(t) = 1; t � 3;

�p4(0) =
1 + 9� + 17�2 + 8�3

16(1 + �)3
; �p4(1) =

5 + 29� + 41�2 + 16�3

16(1 + �)3
;

�p4(2) =
11 + 44� + 48�2 + 16�3

16(1 + �)3
; �p4(3) =

15 + 48� + 48�2 + 16�3

16(1 + �)3
;

�p4(t) = 1; t � 4:

It is then straightforward to verify the claimed inequality by direct substitutions. 2

5Proposition 4 in fact holds even in the case without discounting, i.e., with � = 1. To see this, note that in

this case (36) implies that p(t) = tp(0) for all t � 1. Therefore, the only value that p(0) can take is 0. If otherwise

p(0) > 0, then p(t) > 1 for all t � 1=p(0), a contradiction to (35). It then follows immediately that p(t) = 0 for all

t � 0.
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Lemma 2 Let A;B;C;D and a; b; c; d be arbitrary nonnegative real numebrs. Then,

1
2(1+�)B + 1

2C + �
2(1+�)D

1
2(1+�)A+ 1

2B + �
2(1+�)C

>

1
2(1+�) b+

1
2c+

�
2(1+�)d

1
2(1+�)a+

1
2b+

�
2(1+�)c

(38)

if one of the following three conditions holds:

(i) D
C � d

c ;
C
B � c

b ;
B
A � b

a ; with at least one strict inequality,

(ii) D = d = c = 0; C
B � c

b ;
B
A � b

a ; with at least one strict inequality,

(iii) C = D = b = c = d = 0; B
A > b

a ;

where all variables are strictly positive unless speci�ed otherwise.

Proof: We �rst prove (38) under (i). Cross multiplying the terms on both sides of (38) and

expanding the resulting expressions show that (38) is equivalent to the following inequality:

1

4(1 + �)2
Ba+

1

4(1 + �)
Bb+

�

4(1 + �)2
Bc+

1

4(1 + �)
Ca+

1

4
Cb+

�

4(1 + �)
Cc(39)

+
�

4(1 + �)2
Da+

�

4(1 + �)
Db+

�2

4(1 + �)2
Dc

>
1

4(1 + �)2
Ab+

1

4(1 + �)
Ac+

�

4(1 + �)2
Ad+

1

4(1 + �)
Bb+

1

4
Bc+

�

4(1 + �)
Bd

+
�

4(1 + �)2
Cb+

�

4(1 + �)
Cc+

�2

4(1 + �)2
Cd

Using (i) to compare the two sides of (39) term by term leads to a conclusion that the terms on

the left-hand side are always larger than or equal to the corresponding terms on the right-hand

side, except for those terms involving Bc and Cb. We thus need to show that

�

4(1 + �)2
Bc+

1

4
Cb �

1

4
Bc+

�

4(1 + �)2
Cb;

or, by collecting terms, that

1

4

�
1�

�

(1 + �)2

�
(Bc� Cb) � 0:

The above inequality holds since 0 < � < 1 and Bc � Cb by (i). Since there is at least one strict

inequality in (i), (39) holds, and so does (38). The proof of (38) under (ii) or (iii) is similar, with

the speci�ed zero terms imposed in (39). This completes the proof. 2

Appendix B

This appendix presents a model of chain-of-production with capital accumulation. The model is

identical to the baseline model in Section 2 with two exceptions. First, �rms at the �rst stage now

use both labor and capital as inputs. Second, the household's problem now involves a decision

on capital accumulation.
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B.1. The Model

We �rst describe the household's problem. The utility function is the same as in the baseline

model. The budget constraint is now given by

�PN (s
t)C(st) + �PN (s

t)I(st)

"
1 + �

 
I(st)

K(st�1)

!#
+
X
st+1

D(st+1jst)B(st+1) +M(st)(40)

� W (st)L(st) +Rk(st)K(st�1) + �(st) +B(st) +M(st�1) + T (st);

where I(st), K(st), and Rk(st) denote investment, capital stock, and the nominal rental rate on

capital, respectively, and �(I(st)=K(st�1)) is the capital adjustment cost, for each st and each

t � 0. The other notations are the same as in the baseline model. The consumption/investment

good is a Dixit-Stiglitz (1977) composite of goods produced at the �nal stage, that is,

C(st) + I(st)

"
1 + �

 
I(st)

K(st�1)

!#
=

�Z 1

0
YN (i; s

t)
�N�1

�N di

� �N

�N�1

� Y (st):(41)

Additionally, the capital accumulation rule is given by

I(st) = K(st)� (1� �)K(st�1);(42)

where 0 < � < 1 is a capital depreciation rate.

The representative household chooses C(st), I(st), fYN (i; s
t)gi2[0;1],M(st), L(st), andB(st+1)

to maximize utility subject to (40)-(42) and a borrowing constraint B(st) � � �B for some large

positive number �B, taking prices W (st), Rk(st), D(st+1jst), fPN (i; s
t)gi2[0;1], and �PN (s

t) and

initial conditions K(s�1), M(s�1), and B(s0) as given. To simplify notations, we denote by

Q(st) the investment-capital ratio I(st)=K(st�1), and by F (Q) the e�ective cost of capital

1 + �(Q) +Q�0(Q). The �rst order conditions are then given by

�
Ul(s

t)

Uc(st)
=

W (st)
�PN (st)

;(43)

Um(s
t)

Uc(st)
= 1� �

X
st+1

�(st+1jst)
Uc(s

t+1) �PN (s
t)

Uc(st) �PN (st+1)
;(44)

D(s� jst) = ���t�(s� jst)
Uc(s

� ) �PN (s
t)

Uc(st) �PN (s� )
; � � t;(45)

Uc(s
t)F (Q(st)) = �

X
st+1

�(st+1jst)Uc(s
t+1)[Rk(st+1)= �PN (s

t+1)(46)

+(1� �)F (Q(st+1)) +Q(st+1)2�0(Q(st+1))];
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where Uc(s
t), Ul(s

t), and Um(s
t) denote the marginal utility of consumption, leisure, and real

money balances, respectively, and �(s� jst) = �(s� )=�(st) is the conditional probability of s�

given st. Equations (43)-(46) are standard �rst order conditions with respect to the household's

choice of labor, money, bond, and capital, respectively.

We next specify the problem of �rms at the �rst stage. Production technology of a �rm

i 2 [0; 1] at the �rst stage is a standard Cobb-Douglas production function

Y1(i; s
t) = K(i; st)�L(i; st)1��;(47)

where 0 < � < 1. Minimizing R(st)K +W (st)L subject to (47) yields �rm i's factor demand

functions

Ld(i; st) =

"
1� �

�

Rk(st)

W (st)

#�
Y1(i; s

t); Kd(i; st) =

"
�

1� �

W (st)

Rk(st)

#1��
Y1(i; s

t):(48)

It follows that the marginal cost function (which is also the unit cost function due to constant

returns) at the �rst stage is �rm-independent and is given by

V1(s
t) = ~�Rk(st)�W (st)1��;(49)

where ~� = ���(1 � �)��1. The other optimization conditions are the same as in Section 2, and

an equilibrium can be de�ned analogously.

B.2. The Computation

We now describe how to compute equilibrium decision rules. With appropriate substitutions,

the equilibrium conditions can be reduced to 2N + 3 equations, including an aggregate resource

constraint, a capital Euler equation, a money demand equation, N price decision equations,

and N equations de�ning price indices. The decision variables are N current prices, aggregate

consumption, aggregate labor, and aggregate capital stock. We focus on a symmetric equilibrium

in which �rms in the same cohort at each stage make identical decisions so that the price decision

of a �rm only depends on the stage at which it produces and the time at which it can set a new

price.

We begin with the aggregate resource constraint. By integrating the goods demand functions

(2) and (4), we get, for n 2 f1; : : : ; Ng,

Yn(s
t) =

"
NY
k=n

Gk(s
t)

#
Y (st);(50)
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where Gk �
R 1
0 [Pk(i)=

�Pk ]
��kdi for k 2 f1; 2; : : : ; Ng. Integrating (48) over i and using (50) lead

to

Y (st) =

"
NY
n=1

Gn(s
t)

#�1
K(st�1)�L(st)1��;(51)

where we have used the factor market clearing conditions that
R 1
0 K

d(i; st)di = K(st�1) andR 1
0 L

d(i; st)di = L(st): Note that the capital stock available for rent in period t is K(st�1) and it

is chosen by the household in period t� 1, while each �rm i at the �rst stage chooses its factor

demand after the realization of st and its demand for capital is Kd(i; st). Substituting (51) into

(41) gives the aggregate resource constraint.

Next, we express all variables in the N price decision equations in terms of the aggregate

variables. This involves the N unit cost functions and price indices, in addition to the the stage-

speci�c demand functions Yn which are related to the aggregate output by (50). In light of (43),

(48), and (49), the unit cost at the �rst stage is given by

V1(s
t) =

1

1� �

 
L(st)

K(st�1)

!�  
�Ul(s

t)

Uc(st)

!
�PN (s

t);

where we have used the relation Rk(st) = (�=(1 � �))(L(st)=K(st�1))W (st) derived from (48)

and the implication of constant returns to scale that the labor-capital ratio is �rm-independent.

The unit cost at a later stage (n � 2) is simply the price index at the previous stage as indicated

by (5). In a symmetric equilibrium, �rms in the same cohort at each stage make identical price

decisions, and thus the price index at a stage n 2 f1; : : : ; Ng is given by

�Pn(s
t) =

�
1

2
Pn(s

t�1)1��n +
1

2
Pn(s

t)1��n
� 1

1��n

;(52)

and the term Gn in (50) is given by Gn(s
t) = �Pn(s

t)�n [Pn(s
t�1)��n + Pn(s

t)��n ]=2:

Finally, we use (43) and (48) to substitute for Rk(st) in the capital Euler equation, and (52)

to substitute for �PN (s
t) in the money demand equation.

Given the Markov money supply process (18), a stationary equilibrium in this economy

consists of stationary decision rules which are functions of the state of the economy. In each

period, half of the ongoing prices was set in the previous period due to staggered price contracts.

Thus, in period t, the state records the prices set in period t� 1 in addition to the beginning-of-

period capital stock and the exogenous money growth rate. We normalize all prices by dividing

them by the money stock to induce stationarity. Thus, the state in this economy in event st is

given by [P1(s
t�1)=M(st); � � � ; PN (s

t�1)=M(st); k(st�1); �(st)]:
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B.3. The Calibration

The parameters to be calibrated include the subjective discount factor �, the parameters � and 	

that determine the relative weights of real money balances and leisure time in the utility function,

the capital share �, the capital depreciation rate �, the goods demand elasticity parameters �n,

the monetary policy parameter �, and the parameters in the capital adjustment cost function.

The calibrated values are summarized in Table III.

Following the standard business cycle literature, we choose � = 0:961=2. To assign a value for

�, we use the implied money demand equation

� =
M(st)

�PN (st)C(st)

 
R(st)� 1

R(st)

!
;

where R(st) =
�P

st+1D(s
t+1jst)

��1
is the gross nominal interest rate. We choose � = 0:028

so that the model is consistent with a steady state consumption velocity of 3:3 and a nominal

interest of 1:05, both at annualized levels. The serial correlation parameter � for money growth

is set to 0:572, based on quarterly U.S. data on M1 from 1959:3 through 1995:2 obtained from

Citibase (see also CKM (1998a)).

We next choose � = 1�0:921=2 and 	 = 1:56 so that the model predicts an investment-output

ratio of 0:23 and an average share of time allocated to market activity of 1=3, as in most business

cycle studies.

We set �n = �, and assign a value for � so that the model implies a steady state price-cost

margin of 0:26, which is the value found by Domowitz, Hubbard and Petersen (1986). The

price-cost margin (PCM) in our model is the overall net markup of the �nal stage price over the

ultimate unit cost v � V1= �PN , that is,

PCM =
�PN � v �PN

�PN
= 1� v;

where we have used the steady state relation that �PN = PN . The implied steady-state unit cost

is v = 0:74. We then determine the value of � using the following steady state relationship:6

v =
NY
n=1

�
�n � 1

�n

�
=

�
� � 1

�

�N
:

Given v, the value of � is assigned so that the model predicts an annualized capital-output

ratio of 2:65. Speci�cally, we use the steady state condition K=Y = (�v)=r, where r � Rk= �PN =

0:06 is the steady state real rental rate on capital. If follows that � = 0:45. This value is larger

6In an unreported sensitivity test, we �nd that our results are not sensitive to the value of �. Indeed, � does

not play any important role as can be seen from the analytical solutions in Section 3.
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than what is usually used in the standard business cycle literature, because it is here the share

of capital income in total cost, rather than that in total revenue.7

Finally, we assume that the capital adjustment cost function takes the form

�

�
I

K

�
=
 

2

�
I

K

�2

;

where  is adjusted as we vary the number of production stages so that the model predicts

a standard deviation of aggregate investment being 3:23 times as large as that of output, in

accordance with the U.S. data.

7Hall (1988) shows that the measure of � based on total cost instead of total revenue is a more accurate measure

of the elasticity of output with respect to capital input, especially with imperfect competition.
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TABLE I

Snake Effect in the Baseline Model

�pn(t) n = 1 n = 2 n = 5 n = 10 n = 20

�pn(0) 0:50 0:37 0:24 0:17 0:12

�pn(1) 1:00 0:87 0:65 0:49 0:36

�pn(2) 1:00 1:00 0:89 0:73 0:56

�pn(3) 1:00 1:00 0:98 0:88 0:72

TABLE II

Output Persistence in the Baseline Model

N = 1 N = 2 N = 5 N = 10 N = 20

Contract Multiplier 0:00 0:20 0:46 0:62 0:73

Half Life 0:50 0:63 0:93 1:41 2:01

TABLE III

Calibrated Parameters

Preferences: U(C;M= �PN ; L) = logC +� log(M= �P )�	L, � = 0:028, 	 = 1:56

Production Technology at the First Stage: Y = K�L1��, � = 0:45

Production Technology at Stage n � 1: Yn+1 =

�R
Yn(j)

�n�1

�n dj

� �n

�n�1

, �n = � adjusted

Capital Accumulation: Kt = It + (1� �)Kt�1, � = 1� 0:921=2

Adjustment Cost Function: �(It=Kt�1) =
 
2 (It=Kt�1)

2  adjusted

Money Growth: log �t = � log(�t�1) + "t � = 0:572

Subjective Discount Factor � = 0:961=2
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Figure 1: |Chain structure of the economy
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Figure 2: |Snake e�ect illustrated (N = 2, � = 1)
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Figure 3: |Relative response of aggregate output to monetary shocks
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Figure 4: |Response of price level to monetary shocks
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