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Robert Liltterman, beginning around 1980, bhegan forecasting
aggregate macrcoeconomic variables using a small Bayesian vector
autoregressive (BVAR) model. The model originally used 6
variables —- Treasury bill rate, M1, GNP deflator, real GNP, real
business fixed investment, and unemployment. It performed
remarkably well relative to forecasts prepared by commercial
forecasting organizations using much more elaborate models. {See
Litterman {1885].) In particular, zs documenied by McNees [1838],
it performed better than commercial models for real GNP and
unemployment, but worse for the price level. It was easy to see
from graphs or tables of the forecasts that the model was
extrapolating Iinflation at a long run average rate, despite many
quarters in a row of same-signed errors for forecasts made this
way. Attempting to rectify this, Lifterman added three additicnal
variables to the model —— trade-weighted value of the dollar,
Standard and Poors 500 stock price index, and a2 commodity price

index.

With the model in this form, I took over preparing forecasts with
it, starting in the fall of 18856. Litterman had noted a tendency
for improvements in the retrospective forecast perf‘or'mance1 of
the BVAR model for inflation to be accompanied by deterioration
in its performance for real variables. He had chosen his

additional varlables aiming to minimize the real-variable

II.e., in the simulated forecast performance of the model when it
is repeatedly re-estimated from data up to t and used to forecast
data at t+s, s=1,...,k, while t ranges over the historical sample
period.




deterioration while improving price forecasts. My own analysis
suggested, however, that this attempt was not entirely
successful. Furthermore, as I took over the model it had been
making a sequence of same-signed errors in forecasting real GNP,
which, while not as serious as the earlier sequence of inflaticon
errorsg, were disturbingly similar in pattern. I decided
therefore to complicate the specification of the model In several
ways, aiming to find a probability model which would track the
shifts in trend inflation rates and productivity growth rates
while still performing about as well for real variables as

Litterman’s original simple 6 variable model.

The resulting model differs from Litterman’s in several respects.

m It allows for conditional heteroskedasticity (Lime varying

variances of disturbance terms).

m It allows for nomnormality of disturbances. Specifically,
it allows disturbances to be mixtures of two normal random

variables.

m It tekes account of the connection of the constant term to
the means of the explanatory variables using a "dummy

initial observation," described bhelow.

m It uses the discrete-time process generated by time
averaging of a continuous time rendom walk 28 a prior mean,

rather than using a discrete time random walk.

m Probably mainly as a result of the first three changes, it
fits best with a great deal more implied time variation of

parameters than Litterman found optimal with his model.




Likelihood is dramatically higher for this version of the model
than for its predecessor. Simulated one through eight step ahead
forecasts from the sample perlod are about as good or a bit
better than with the previous model for real variables, much

better for price variables, and slightly worse for interest rates.

In what follows the probability model is described, the methods
used to fit it to data are laid out, the characteristics of the
fitted model are summarized, and the model’s recent forecasting

record ls displayed.
1. Description of the model

The data are a time series of kxl vectors X(t), determined by a
state vector B(t:i, J,s) and an equation disturbance u(t;1)
according to

k mn
1) X, (t) = ¢ Y X (t-s)B8(t;4, J,s) + B(t;1,§+1,1) + ult;1)
1 J=1 =1 J

We treat the B's and W's as siochastic processes which generate a
distribution, conditional on initlal X’s, for the other observed
X’s. In princliple, inference on all equations of the system
should proceed Jointly, as randomness In one equation could be
correlated with randomness Iln other equa.tions.2 However, because
it is computationally convenient and because some tentative
experiments have Indicated little advantage from full system
estimation, we proceed equation-by-equation. What we discuss
below, therefore, though we call it the "likelihood" is usually

2In this model the algebra of the "seemingly unrelated
regressions" of econometric textbooks applies. Thus even if the
randomness is related across equelions, if the same X's appear on
the right hand side of each equation and the prior has the same
form in each equation, then analysis of the whole system reduces
to equation~by-equation analysis. However, the prior we consider
is not symmetric across equations.
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the component of the likelihood corresponding to one equation

under the assumption of independence across eguations.
A. Form of the distribution of disturbances

Conditional on prior information, data observable through date
t-1 and on 2{t-1;i,J,s), the vector (B(t;i,-,-),ult;1)) is taken
to be a mixture of two Jjointly normally distributed random
»*
variables, both with mean (f (t-1;i,-,-1,0) and with variance
matrices V(t;i) and n?zvtt;i) respectively, i.e. the vector has
3
p.d.f.
»*
2)  p(B(t),ult; 1) [t-1) = = $(IB (£-1),01,V(E;1)) +

2

*
(1—n11)¢(IB (t—l),O],nl

ZV(t;i)) »

where ¢(a,b) is the p.d.f. of a normal vector with mean a and

variance matrix b.

Conditional on data and prior information cobservable through t-1
*

alone B (t-1) is taken to be normally distributed with covariance

matrix W(t-1) and mean B(t-1), i.e. it 1s taken to have p.d.f.

3)  qB (t-1)) = ¢(Blt-1),W(t-1)).

Ir n,, were 0 or 1, equations (1)-(3) would justify applying the
Kalman Filter to an observation on Xi(t) to obtalin a posterior
distribution for 8 and u. With other values of LIPE since the
conditional distribution of Xi(t} is nonnormal, the Kalman Filter
cannot be applied directly. However, the posterior distribution
is still easily obtained by two applications of the Kalman

Filter. One applies it once conditional on the V{{;i) covariance

3Her-e and below we will use the abbreviated notation a(t) for
al{t;l,-, ) where there can be no ambigulty.
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matrix, then esgain conditicnal on the nfz

matrix. The posterior p.d.f. on (8(t),u(t;1i)) is then a weighted

V(it:1) covariance

sum of the two resulting normal posiericr p.d.f’s, with the
weights given by the relative likelihoods of the observed Xi(t)

under the two normal prior distributions.

The posterior distribution on B(t) generated by this procedure
is, of course, itself a mixture of normals, nct a normal
distribution. If B(t+1) were related to B(t) by a linear
equation with normal disturbances, the prior distribution on
B{t+1) would itself be nonnormal and the Kalman filter would not
be applicable at t+1. We assume that B*(t—lJ is a function of
Blt~1) such that it has a normal distribution with the same mean
and varlance as has B(t-1;,-,+), despite the nonnormality of the

latter.

If we could represent this change in distribution by supposing
that some sort of random noise were added to B(t-1), It would be
nmatural to think of this as simply non-normal stochastic time
variation in a. However, ihe nature of the change in
distribution precludes its belng characterized this way. The
assumption is in fact umnatural, Jjustifiable only as a convenient
approximation. Note, though, that because our uncertainty about
g{t-1) cumulates the effects of disturbances ai many dates, our
posterior for a is likely to be much closer to normality than is
the distribution for B(t)-B*(t—l). Treating the distribution of

the former as approximately normal while carefully accounting for




nonnormality in the latier is therefore Justifiable as an

approximation.4

Note that we are in effect assuming that our posterior mean for
B(t-1) at t-1 is the same as our prior mean for g{(t). This makes
the EIB(t)It]) sequence a martingale. There would be no
computational or conceptual difficulty with allowing a more
general linear dependence of the prior mean for B(t) on B(t-1),
and indeed Litterman and I have both, in this and other models,

experimented with specifications where
E[p{t)It-1] = eE[B{t-1)1t-11,

with 8 a scalar. The best cholce of & has always been close to
one, however, so that with sample sizes of the length actually
avalilable there has seemed little advantage to freeing 1 to differ

from one.

4Actually, if the prior at t=0 is normal, the pricr at t=1 would
be a mixture of two normals, so that by conditioning on each
normal component of the prior, Kelman flltering twice for each,
we could obtalin a new posterior which was a mixture of four
normals, etc. However with the number of normsl components
involved proliferating exponentially, this exact approach would
be computationally intractable. A better approximate approach
might be to continually keep track of the k most likely of the 2
branches of the tree of normal components of the mixed posterior
distributions, with k set at, say, 4 or 16. Or instead one could
at each t convert the posterior for B(t-k;i,-, )} conditional on
data through t-k to the normal distribution with corresponding
mean and variance, treating the disturbances from t-k+1 to t
exactly. The procedure actually ugsed is this procedure with k=1,
but a k of 2 or 3 would be feasible, at least as an experiment to
check the sensitivity of resulis. One hesitates to work too hard
at this, since the mixture of normals assumption itself is an
arbitrary convenience. A matrix t distribution would be more
plausible, implying a continuous mixture of normals in place of a
mixture of Just twe normals.

A
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B. Initial prior mean

In the model discussed here m, the lag length, is B — slightly
over a year, since we are using quarterly data. The vectior
B(0;1,3,+), the initial prior mean on B(1;i,Jj,-), is set to zero
for 1 not equal to J. The vector B(0;i,i,-) is given by

1.2879 -.3397 .0910 -.0244 .00654 .

These numbers satisfy B(G;i,i,s)=(1+a}{-a)s, which defines (if s
is allowed to run to infinity, instead of being truncated at BE)
the autoregressive coefficients for an ARIMA(O,1,1) process
with moving average parameter «=2-v¥3. It can be shown that this
is the form of a unit-averaged Wiener process. Thus the prior
mean mekes all elements of X behave like unit-averaged Weiner

processes with no lagged cross-relations among components of X.s
C. The Initial Litterman prior

The prior covariance matrix is bullt up by 2 sequence of
modificatlons of an initial prior. The initial prior makes each
scalar component of the B*(t;i,-,-) vector independent of all the
others (l.e. it makes the covariance matrix W{Q) diagonal) and

sets the variance according to

5Note that in previous published work prior means for BVAR models
have generally made the components of X discrete time random
walks. The unit-averaged Welner process prior {at least where
the data have in fact all been collected as unit averages) is a
notably more accurate naive standard, however. Observe that the
Theil U's obtained by using the correct AR in place of a discrete
random walk AR for & process which is actually a unit-averaged
Weiner processes would be, at forecast horlzons 1 through 4,

. 933, .9732, .8832, .8878.
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4) V@ar(Bi(O;i,J,s)) =—§%%% n, x, &(i, §) exp(—nslog(s)} ,

J=1,...,k+1;

Here o(1) is a parameter measuring the scale of fluctuations in
variable i, taken in practice as ithe residual standard error from
a unlvariate 5th order VAR fit tc the entire sample for i=k,

For j=k+1 there is only an s=1 term, as the corresponding a

is the "constant term" (here actually not a constant, but time
varying.) For this term ¢(j+1)=1/n4, another unknown parameter.
The function 5(1,J) is the Kronecker delta, 1 for i=j and zero
otherwise. Here as elsewhere in this paper the parameters T, are
"unknown constants." In principle, we should specify a prior
over them to complete a Bayesian framework for inference.
However, because deing so would be inconvenient and we expect our
prior on them would be uninformative (i.e., we don’t know much
about them a priori) we integrate over these parameters

informally.
D. The dummy intial observation

The range of differences in observed dynamic behavior for
econcomic time series is fairly large, and indeed a reasonable
prior specification for the standard error of B*(O;i,i,l) is
about .16. But then this component of uncertainty about B* alone
accounts for an implled standard error of forecast for Xi(l]
amounting to 16% of the initial level*of Xi' Since the random
components in the other elements of B {(0) are all independent of
this one, they all serve only to increase the implied forecast
errors. We are not in fact this uncertaln about the accuracy of
nz2ive random-walk forecests {which is what our initial forecasts,
based on prior means for B*, will be). We are unsure of whether

our prior means are exactly right, coefficient by coefficient,
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but we find it much more likely that the best forecasting model
will be one which implies that naive no-change forecasts will be
fairly good than that it will be one which implies that great
improvements on a no-change forecast are possible. If
coefficlents deviate from their prior means, we expect other
coefficients will deviate in an offsetting way, so that naive no-

change forecasts will still be fairly accurate.

To capture this aspect of prior bellefs, we need to introduce
appropriate off-diagonal elements into W(t;i), while leaving the
diagonal elements relatively undisturbed. One easy way to do
this is to introduce a "dummy observation” in which the prior is
modified by feeding it intc a Kalman filter which takes as
observed data for X(t-s}, s=1,...,m the actual m intial values of
X from the sample and for X, (t) not the actual X (m+1) but
instead the model’s own forecast based on the prior mean for B .
of Xi(m). The data in this dummy observatlion are weighted by a

parameter n_, which can be expected to be best taken to be near

one if the Eariances of the u{t;i) disturbances have been
specifiied as near to the variance of forecasts from a naive

random walk model. Because the Kalman filter finds that with these
artificial data the prior mean generates perfect forecasts,

the Kalman filter makes the posterior mean the prior mean. Only
the variance matrix of the prior mean is changed. The change is

of rank one and in practice turns out to have only modest effects

on diagonal elements of W.

In most previous published work with BVAR's, there has been a "sum
of coefficients" modification to the prior. That modification can
be characterized as a sequence of Kalman filtering operations
indexed by J=1,...,k, in each of which X(t-s) is set to O for

s=1,...,m except for X,(t-s), 8=i,...,m, all of which are set to

J
i, while Xi(t), the dependent varisble, is set te 1 if and only if

Jj=i. Because most economic time series are smooth, X(t-s) and

g




X(t-8-1) have similar values. Thus the dummy initial observation
used here is approximately a linear combination of the dummy
observations used In imposing the sum of coefficlents
modifications. 1In practice, the dummy inltial observation seems
to reduce or eliminate the usefulness of sum of coefficients dummy
observatlions. This point is substantively important, because
heavily weighted sum of coefficlents dummy observations push {he
model toward a limiting form written entirely in terms of
differences, which eliminates all long-run relations across

variables.

This dummy initial observation idea was discovered in the process
of adapting BVAR methodology to a context where the number of
series avallable for a model lncreases at several dates scaltered
through an historical sample. A natural approach to such a
gituation is to begin with a prior for a model with all the
variables which will eventually be available, padding the data for
variables which are initially unavailable with zeroes. Applying
the Kalman filter to the padded data is equivalent to =applying it
to a smaller model. The prior means and variance mairix of the
coefficients on unavalilable variables are lefi unaltered by the
Kalman Filter when the data for them is get at zero. However, at
the time when data on a series does become available, the prior
shows an exaggerated version of the problem described in the text.
The new data multiply large prior variances to imply large
forecast errors, and the uncertainty about coefficients on the
newly entering veariable shows no correlatlion with uncertainly
about coefficients on the variables already in the model. We know
in fact that the small model estimated up to this point is a good
forecasting model and the avallability of data on a new variable
has not made its forecast accuracy worse. To make the prior
reflect this knowledge, a dummy observation, in which the prior
mean coefficients at 1 are presented to the Kalman filter as

making perfect forecasts for t+l, is appropriate. The prior mean
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coefficients sre all zero for the newly introduced variable, so
the dummy observation expresses confidence in the small model
estimated without the new variable. Covariances between
coefficients are introduced sc that deviations from zero in
coefficients on the new variable imply likely offsetting changes
in other coefficients to leave forecasts from the previously

estimated small model falrly accurate.
E. Relative tightness on durable goods prices

There is an a priori basis for expecting that prices of durable
goods frequently traded in open markets will follow stochastic
processes well approximated as Welpner processes over short Lime
spans. Thus our prior mean is inherently more attractive for
such variables than, e.g., for GNP or unemploymeni. We therefore
Introduce into (4) an additicnal multiplicative factor,

5) IDGP(J) ,

e
where IDGP(Jj) is zero for variables which are not durable goods
prices and one for variables which are. The latter are tasken to
be the value of the dollar, stock prices, and commodity prices.
A case could be made for Iincluding three month Treasury bill
rates and/or M1 in this list, but they were left out as not
actually being prices of durable goods.

F. Covarlance matrix of disturbances

The upper left diagonal component of the matrix V(1;1)
corresponding to all the B’'s is taken to be ngW(O;i), i.e. Just
a scaled version of the initial prlor cevariance matrix.
However, the scale of this matrix is allowed to adapt over time
to the observed squared errors in the model. The idea here is

very close to that of the ARCH models pioneered by Engle [18982],
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but differs in that instead of variances being adapted to the

A
sizes of past uncbservable true disturbances (u and B-8 in our
notation), they are adapted to the sizes of past actual forecast

errcors, l.e. in our notatlon to sizes of

k m
v(t;i) = Xi(t) -3 X

j(t-s)B(t-l;i,j,s) + B(t;i, j+1,1)
J:]_ g=1

The specification adopted here has the advantage that it makes
the variance of disturbances at t+1 known at t, allowing 2 single
pass of the Kalman filter through the data to evaluate the sample
likelihood function.

More specifically the scales of the V(t;i) matrices are adapted
to the recent history of forecast errors in ell equations of the
system according to the following scheme. Let v*(t;i;O) be
v(t;i) divided by the model’s implied variance for v{t;i)
conditional on the true disturbance matrix being V(t;1), while
v*(t;i;l) is v(t;1) divided by the model’'s implied variance for
v(t;1} conditional on the true disturbance mairix being

2
n12V(t,i). Then let

¥ % * #e

v (t;i)2 = pgV (t;i;O]2 + PV (t;i;l)z,

where Py is the posterior probebllity, given data at t, of the

smaller variance normal component of the mixed distribution for

the disturbance at t, and p1=1—p0 ig the posterior probability of
* ¥

the other component. If the model is correct, v  should average

out to about 1. Let

k

* * % 2
B T (L) = Ty +(1-ng) Tv (£:1)°/k
I=1

Let

* 6 2 »*
7] T{t;1) = n7+(1~n7}v (t;1)° + nlO(r (t)y-1) + & .
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Then we take

8) V(t+1;1) = v(t;1)v(t;1) .

If 3=0 in this specification, each v(t;i)2 is a martingale, but
since these terms are necessarily positive, they form martingales
bounded below. Thus with 8=0 the model implies v{t;1i) converges
almost surely to a constant. While this implication is perhaps
no more unreascnable than the implicatlons of martingale behavior
for B itself (which we have imposed), experimentation with &
nonzero seems warranted. The current version of the model takes
&=.01, which slightly improves fit over 3=0, but there has been
no systematic exploration of the likelihood surface in 8 as there

has been for the nm vector.
2. Model Fitting

What we have described above is a 12-parameter probablility model
for the 8 quarterly cobserved time series in the model. A
classlically oriented statistician cen ignore the Bayesian jargon
in the model description, treat the 8’s as well as the u’'s as
unobserved random digsturbances, and intepret the w’s as the model
parameters. From this perspective, our estimation procedure is
sinply maximum likelihood. (Though, as mentioned above, since we
add up individual equation log likellhoods to form the system
likelihood used as the fit criterion, we are in effect assuming
independence of all random disturbances across equations, =a

potentially unrealistic assumption.)

My own view is that maximum likellihood is justifiable only as an
approximation to a Bayeslian procedure or as a device for
sumnarizing a likelihood function. The most 1lmportant single
aspect of a llkelihood function, at least if It has a well

defined peak, is iis maximum. Ncnetheless, we must bear in mind
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that the peak might not be well defined, or that the shape of the
likelihoeod may otherwise turn out to differ from the usual
Gaussian shape. In practice, this means that if likelihood turns
out to be insensitive to some dimension of variation in g, we
ought to verify that the implications of the model which are
Important to us —- forecasts and policy analysis -- are also
insensitive to this dimension of wvariation. If not, resulis from

several parameter settings should be studied.

The derlivation and interpretation of the likelihood function for
this type of model have been described in Doan, Litterman and Sims
[1984]. The mechanics of likelihood maximization have been
handled with a nonstandard hillclimbing routine, described in Sims
[1986a]. Because each function maximization is relatively
expensive (invelving 2 pass through the data with twe Kalman
filter applications at each sample point), it seemed important to
use global information about the shape of the likelihood in
decliding on each function evaluation. The program used, BAYESMTH,
fits a surface to the observed likelihood values to generate a
guess for the location of the function’s peak. It is applied
iteratively, with on the order of 50 functlon evaluations used to
obtaln very rough convergence.8 An advantage of the Bayesian
hillelimbing routine is that at any iteration it can be used to
generate a best guess at the shape of the likelihood, which is
more important for inference than the precise location of the

peak.

8Iteration is ordinarily halted when, say, 10 or 12 successive
function evaluatlions produce changes in log likelihood of less
than .5,
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3. Characteristics of the fitted model

Table 1 below shows the m vector which achieved the highest level
of the likellhood function. Observe that with T, = 3.7 and
n11=.31, the mixed distribution is strongly nonnormal.

Table 2 shows the simulated forecasting performance of the model
and of a smaller model with no time wvarliation (but otherwise the
same form of prior distribution.) The point would be clearer if
the table showed results for an coptimized S-variable model with no
time variation, but the table’s resulis are probably
representative -~ they suggest that time variation is very
important in improving forecast accuracy for the GNP deflator,

but not for other variables in the 6 variasble model.
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Table 1

Likelihood~-Maximizing n Vector

n subscript n value Description of =
1 .17 Overall tightness
2 .18 . Relative tightness on other
variables
3 1,08 Exponent for increase in

tightness with lag

4 2. 97 Standard error of constant term
relative to o(i)

5 1.18 Welght on initial dummy
observation

B .10 Ratic of initial standard error

of time variation to initial
prior standard error

7,9,10 .84 Determinants of time variation
.81 in disturbance variances. See
.9 equations (6-8) In text.

8 .37 Relative tightness of prior on

durable goods price equations

11 .31 Probablility that disturbance is
drawn from normal component
with larger standard error

12 3.65 Standard deviation of more
diffuse of the two normal
components of the disturbance
distribution, as a multiple of
the standard deviation of the
less diffuse
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Table 2

Theil U Statistics, 1849:3-1987:2

Current 9 varlable model! result listed above resuli for
6 variable model with no time variation in each pair of rows.

Quarters ahead

Variable 1 2 4 8
Treasury . 96836 1.0379 . 8641 : . 9850
Bill Rate . 9487 L9723 . 9587 . 8578
M1 L4661 L4232 . 3787 . 3781
. 4807 . 4353 . 3968 . 4080
GNP . 3892 .3219 . 2880 . 2592
Deflator L4471 .4182 . 4436 . 4564
Real GNP .7618 . 6984 . 6968 .6481
. 7523 .T034 L7022 .B68B57
Business . 8650 .8791 . 8356 . 9548
Fixed Investment .9040 . 9382 . 8698 . 8305
Unemployment . 79586 . 8584 L9212 L9775
.B163 . 8880 . 8568 1.0477
Trade-Weighted . 9207 . 89640 1.0274 1.1715
Value of Dollar
S&P 500 Stock .B775 .8018 .89201 .83915
Price Index
Commodity Price L7471 . 8038 .B727 . 8758
Index
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Charts 1-9 show the model’s forecasting performance since the
first time it was used with the Table 1 w vectcor, in August 1987.
This was of course a difficuli pericd to forecast, hecause of
the October 1987 stock market crash. We will not examine the
record exhaustively here, but we can point out a few interesting

aspects of it.

Revisions in GNP accounts have made it difficult to evaluate
forecastling performance. Forecasts of real GNP growth for 1888
were too low by 2 percent or so, and the change in the forecast
{(between the D87 and 887 lines) generated by the October crash
information moved the forecasts in the wrong direction. On the
other hand, GNP growth for 87:3, which was apparently predicted almost
perfectly at first, was substantially revised upward later. 1Ii
would be interesting to check how much of the poor year—-szhead 1988
forecasting performance for GNP is accounted for by data revision.
A similar difficulty arises in interpreting the forecast record
for real business fixed investment because of the substantial
downward revision in its 88:1 value. Difficulties in deciding how
to deflate the computer component of investment may be a source of

this instability in the GNP accounts data.

Commodity price inflation forecasts reacted badly to the 87:4
shock. The Jump in inflatlon in that quarter was exirapolated in

the forecasts, yet it proved to be a iemporary phenomenon.

Unemployment forecasts were good. Before the B8:4 shock, the
model was predictiﬁg rapid and continuing decline in unemployment
for the following three years. At the time, there were probably
no other forecasters predicting nearly as sharp a drop in
unemployment. The 87:4 shock accurately dampened the optimism of
this forecast, while maintaining the prediction of a declining

unemployment rate. It is interesting toc note the contrast between
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the results for real GNP and unemployment. One might have
expected that the inaccuracy of the GNP forecasts would have
corresponded to similar inaccuracy in the unemployment forecasts.
Thai the unemployment forecessts were good, and revised in the
right direction by the 87:4 data, may lend credence to the idea
that index number problems in the GNP data are part of the

explanation for the poor model performance on GNP forecasts.

Charts 10-13 show some experiments to determine the degree of
nonlinearity in the model. 1In each chart the solid line labeled
"85" ig the forecast actually prepared in March 1989,
extrapolating the 1989:1 treasury bill rate as 8.5%. The other
three lines represent forecasis in which the bill rate is set at
6%, 10%, and 11%. Note that 6% and 11X are above and below 8.5%
by equal amounts, while 10% is more than halfway from 8.5X to 11X,

The alterpative forecasts were prepared in each case by using
current quarter data on interest rate, money stock, stock prices,
and value of the dollar in the following way. A forecast based on
data through 1988:4 was prepared. Data for 1889:1 was set to the
forecast values, except for the four varisbles with current
quarter data avallable. The model coefficient estimates were
updated using the mixed forecast and actual values for 1988:1 as
if it were actual data. Forecasts were then generaited for
subsequent quarters with coefficients held fixed at their newly

estimated values.

Since the interest rate enters the model untransformed, if the
model were linear, the responses to each of these deviations from
the 8.5% interest rate level would have the same form, differing
only in scale, with the scale factors -1 (for 8%), 1 (for 11%) and
.8 (for 10%4). Since we re-estimate the model before forecasting,
the effects of the varlations In 18839:1 interest rate would be

somewhat nonlinear In any case, but without the substantial time
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variation allowed in the model coefficients the nonlinearity would
be small. Note that at longer time horizons the forecast interest
rate path for the 11% shock is considerably more than twice as far
from the base forecast line than is the 10% path. The same

nonlinearity is evident at long time horizons in each of the other

graphs.

Obgerve alsc that the responses to an interest rate shock by GNP
deflator inflation and by commodity price inflation are opposite
in sign. It is difficult to see how this result fits conventional

Keynesian, monetarist, or real business cycle theories.

4. Conclusion

This model represents a further step iIn a research program
attempting to bring into the realm of explicit probabilistic
theory more of our uncertainty about the way the economy works.
The model has been used for forecasts with the same parameters
(the w vector) since mid-1887 and has performed reasonably well.
It is a part of a seguence of models which have been used for
forecasting since 1880, all of which have made forecasts without
any add factors or ad hoc adjustments In response to current data

over the entire period of record.

The form of the model has some implications for developments in
macroeconcmic theory which aim at explaining observed data. The
moedel has substantial time varliation in its coefficients, which is
essential to generating good forecasts for some variables.
Thecories which Imply stationary linear models for observed data
will therofore Inevitably fall shert. Rational expectations
theoristis, who have taken the lead iIn developing explicitly
stochastic models, have not yet generated econometrically usable
structural models capable of fitting a world of stochastically

drifting parameters.
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Recently a number of authors (e.g. Bernanke [1886], Blanchard
[1986], and myself [1988]1) have explored the use of convenient
schemes for interpreting statlionary VAR models. It is either
discouraging or challenging, depending on your point of view, to
note that Jjust .as tools for convenient identifaction of stationary
VAR models begin to be wildely used, evidence emerges that
stationary VAR models are inadequate. The problem of generating
convenlient identification schemes for the nonlinear, nonnormal

model lald out in this paper appears quite difficult.
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Notesa te Charts 1-8

Each chart plots four forecasts, together with the "actual"® data
available at the time of the forecast for the preceding twoe (for
rates of change) or three (for levels) quarters. The forecast
plots are labeled with the months in which they were prepared:
8/87, 12/87, 6/88, and 3/88. In each case some monthly data were
available on some of the model’'s variables for the quarier in
which the forecast was prepared, but other variables, including
GNP accounts, were avallable only for the preceding quarter. The
plots show a vertical line at the guarter through which all data
vere available at the time of preparation of each forecast. Datas
revisions and the use of incomplete current data to estimate
current-quarter values of some variables cause the plots in some
instances to fall to lie on top of one another when ii appears

from the dating that they should.

22



Notes to Charts 10-13

Fach chart plots the publlicly distributed March 1889 forecast
{solid line) and three other forecasts based on the same data,
except for variations in the assumed 1889:1 interest rate. The
interest rates assumed are 8%, 8.5% (the public forecast's value),
10%, and 11%. The method for incorporating the current
information into the forecast is described in the text. The
vertical line is at 1988:4, the last date for which current data

for all variables was avallable at the time of forecast.
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Data Description

Treasury Bill Rate: Three month treasury bill rate, discount on
new issues

Mi: Pre-1859 data on M1, spliced together with more recent data
on MIBE. The splicing is done simply by scaling the earlier data
to match the level of MIB at the date of switch.

PGNP: GNP deflator.

GNP82: GNP, 1882 prices.

BFI82: Business Fixed Investment in 1982 prices from the GNP

accounts.

UNEMP: Unemployment rate, total labor force excluding military
overseas.

DOLLAR: Federal Reserve Board trade-weighited Index of the value
of the U.S. dollar.

STOCES: The Standard and Poors 500 Stock index.

PR28: Index of producer prices for 28 sensitive materials.
Source: Bureau of Labor Statistics Bureau of Economic Analysis
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