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ABSTRACT

In a stochastic equilibrium model some stochastic processes are
usually exogenocusly given, while other are either chosen coptimally
by agents or emerge from market equilibrium conditions. When we
simulate such a model, often we aim at studying the relations
among variables in the model as we vary parameters of policy and
of behavior of economic agents. We are no more certain (indeed
often less certain) of what is reasonable or interesting behavior
for the exogenous variables (some of which may be unobservable)
than of the variables chosen by agents or fixed in markets. It
turns out that if we are flexible about which variabhles' behavior
we take as given in the model solution computation, freeing our-
selves from the convention that the variables exogenous to the
model economy must be taken as given in the simulation computa-
tions, great computational savings may result.
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SOLVING NONLINEAR STOCHASTIC OPTIMIZATICON
AND EQUILIBRIUM PROBLEMS BACKWARDS
by Christopher A. Sims

May 1989

Economists have in recent years been =2pplying the assumpiion that
economic agents dynamically optimize under uncertainty. Models
embodying this assumption can be difficult to sclve, however, and
those which have been used have therefore been highly simplified
or approximate. We have solution methods for linear-quadratic
models, in which agents have linear decision rules, and for
general nonlinear models with small discrete state spaces.
Kydland and Prescott have shown the way toward approximating
non-linear-quadratic models with linear-quadratic ones, thereby
meking them soluble, but their method is essentlially equivalent to
assuming that agents apply certainty equivalence to theilr
problems. For some issues the effects of the failure of certainty
equivalence are of ceniral interest. This paper suggestis a class
of solution methods which allow analysis of a broader range of

stochastic equilibrium models than has heretofore been practical.

Most of the methodology economisis have applied in this area is
borrowed from engineering. For an engineer, Jjust as for an
economic agent, solving the stochastic optimization problem
requires a method for finding the appropriate decision rule by
which to make controlled variables respond to a given forcing
stochastic process. An economist, however, can take a more
symmetric view of conirol varisbles and forcing variables. In
modeling behavior, he is interested in the mapping between the
stochastic processes for controlled and uncontrolled variables.
Since he may observe data on both processes, both are equally
"given" to him. In fact the variables taken as given by one group

of agents in his model may well be taken as cheoice variables by
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other agents, For an economist, therefore, a convenient method of
generating solution pairs -- controlled with corresponding
uncontrolled stochastic processes —— may be useful even if the
method does not proceed by generaiting the contreolled process

corresponding to an arbitrary uncontrolled processes.
1. The Method in Linear-Quadratic Problems

We begin by discussing the application of these lideas to
stationary linear-quadratic (LQ) models in state-space form. In
this coniext backwards solution provides no computational
advantage, but for economisis used to LQ control problems, it is
easiest to explain why the method works and what can go wrong with
it in this elementary framework. And the method may have some
value in theoretical and empirical exercises even here, if we have
stronger a priori notions about the shape of a reasonable decision
rule than about the distributional properties of unobservable

disturbance terms.

We postulate an nx1 vector x(t) of variables to be chosen subject to

the system of constraints

Ax(t+1) = Bx(t) + e(t+1), (1)

with Et[e(t+1)]=0. If a dynamic system involves lags of higher
than first order, it can be cast into the form (1) by the usual
expansion of the x vector to Include lagged values. The system
(1) of course includes the canonical state-conirol framework in
which the first part of the X vector is called the state vector
and the A matrix has the form A=[I 0]. For our purposes ihe
separation of states from conirols 1s not essential, and we allow

general A matrices. We follow the conveniion that variables




dated §L are in the information set at t. We assume an objective

function

Pt
E[ LB x(t}'Mx(tJ] . (2)
t=0
This implies first order conditions, in addition to (1), of
2Mx(t) + BB’Et[h(t+1)] = A'A(L) (3)

Introducing an error term n(t)=A(t)—Et_1[R(t)], we obtain
A O ®x(t+1) _ B O x(t) . e(t+1) (4)
0 BB’ AlL+1) -2M A’ Alt) BB n(t+1)

(e’,Bn'B}’, (4) becomes

Letting z = (x',A")’ and §

Foz(t+1)

Flz(t) + E(t+1) (5)

Equation (8) is a stochastic difference equation system which will
be saltisfied by any sclution to the LQ problem. However, it
ordinarily cannot be used to generate simulated scolutions fronm
given initial conditions. The most immediate obstacle is that T

0]
is generally singular. Furthermore, stochastic processes z
satisfying (5) generally will explode at 2 rate exceeding B_t/a,
which may make the obJjective function unbounded. If we impose the

requirement that
E[ Ex(t)'x(t)st] <o, (5)
t=1

which guarantees boundedness of the objective function, we acquire
as an additional first order condition the treansversality

condition
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E[ T ?L(t)'?t(t)Bt] <w. 7

If there were no restrictions on the joint distribution of =(t)
and w(t), (5) would usually imply highly explosive paths for z,
which would not be sclutions to the optimization problem.
Furthermore, since 7 is an artificial disturbance term, if there
were no restrictions relating » to £ there would be nonuniqueness
in the scolution —-- for a glven £ we could generate a new solution
for every possible choice of the n process satisfying
EtIn(t+1)]=0. The hard part of the solution is to find the
functional relation between €(t) and n(t) which makes solutions to
(8) satisfy (68) and (7).

We can easily characterize the desired subset of solutions to (B}
and obtain the decision rule for agents by using the Q2
decomposition of (Fl,rb), which is defined as follows.

For any pair of square matrices (FO,Fll, there are orthonormal

matrices Q,2 and upper trlangular matrices HO’HI such that

FO = QHOZ, FI = QHIZ. (8)

Furthermore we can always choose {Q and Z such that all zerces on
the diagonal of HO occur in the lower right corner and such that
the remaining retios of diagonal elements Hlii/H01i are monotone

non—-decreasing in absclute value as we proceed from upper left to

1The condition (B6) ig stronger than needed to guarantee
boundedness of the obJjective function, since M need not be full
rank. The problem may have a solution even with no side condition
like (B) or with side conditions more general than (B8), e.g.
allowing different rates of growth for different components of x
but we ignore this possibility here. A derivation of the first

order conditions sppears in an Appendix avallable from the author.
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lower right down the diagonal. These ratlos of diagenal elemenis
are called the generalized eigenvalues of (Fl,FO), and the first k
rows of Z span iLhe same space as the first k generalized right

eigenvectors of the pair.z

We can use (8) to rewrite (5). We replace z(t) with Zy(t) and
premultiply the system (5) by Q° to obtain

Hcv(t+1) = le(t) + QTE(t+1) . (9)

If there are zerves on the diagonal of H0 which correspond Lo
zerces on the diagonal of H1, the system is ill-specified. Any
solution to the system can be modified by adding to it arbitrary
multiples of the corresponding generalized eigenvectors. Hence we
will assume that this does not occur. Other zeroces on the
diagonal of HO correspond to components of a solution path which
the system suppresses. That is, at every date the solution must
lie in the space spanned by ithe remaining columns of Z. This can
be checked by observing that if there is a zero at the boibtom of
the diagonal of H,, taking E of both sides of the last line of

O t
(9) gives us

2 The program PC Matlab contains a command to compute the
decomposition (7), except that it will not automatically order the
eigenvalues along the diagonal. It does compute the generalized
eigenvectors, which is all we need for this application if there
are no repeated rcoots. Unfortunately 0’s on the diagonals are
likely to repeat In models of any size. Algorithms for
rearranging eigenvalues along the diagonal of the Schur
decomposition of a single matrix are displayed in Golub and Van
Loan (1983), p. 240-245. These can be adapted to apply to (8),
and a PC-Matlab routine which does this is available from the

author.



0= Hlnnwn(t) . (10)

But then, if there is a zero on the diagonal of H0 in the n-1'st
position, using (10} in the n-1’st line gives us O= nrltt}’
etc. as long as we keep finding zeroes as we move up the diagonal

of HO.

When the last g diagonal elenments of Hb, and hence the last g
elements of ¥, are zero, we have q redundant equations in (8). If
p=n-q, then by construction the upper left pxp submatrix of H_,
which we will call GO,'is nonsingular, so we can drop the last g
equations of (8) and retain a system capable of determining the p
nonzero elements of ¥(t), which we will label x(t). Using
successive lagged versions of the top n-q rows of (8} to
substitute for the lagged T on the right-hand side, we can derive

1 .t -l 1 s
=) = (o0 + I (el gts) (11)

where Q1 is the first n-g columns of Q.

Frem €11) it is evident that we can suppress 2ll terms in 7, and
hence in z, which grow at the rate 3_'5 or faster only by
requiring that all componenis of the t vector corresponding to
generalized eigenvalues of (Fl,FOJ equal to or greater than B_'S
in absolute value be zero. Because of the way we have ordered
the matrices, if there are m eigenvalues greater than 8 '°, this
amounts to setting the last m elements of T to be identically
zero, which in turn is Just

Zj_z(t] =0, all t, j=p-m+l,...,p , (12)

where Zj.is the j'th row of Z. The conditions (12) implicitly

impose also the requirement that the corresponding rows of Q'&(t)

be ldentically zero.




One way to simulate solution paths for the system, then, would be
to use all but the last q (identically zerco) rows of (11),
together with {12). This system will have more equations than the
lengih of the z vector, but we can use It by treating some
elements of the § vecitor as unknowns. This is possible because
the restrictions on £ implied by (12) should make all the random
variables 1 introduced into the first order conditions in arriving
at (8) linear functions of the original disturbances . If they
do not, the system allows multiple solutions for a given exogenous
input. It is also possible for the implied restrictions on £ to
be inconsistent with the exogenously given properties of £, but
this implies that the problem as orginally posed does not have a
solution. Assuming the system is well behaved in these respects,
we can use the known propertlies of £ to generate realizations of
the £ process, then use (11) and (12) to generate y paths. Paths
for z then emerge from z=Gy. The same procedure applies if
instead of generating simuleted z paths our problem is to control

Zz In response to exogenously given eg's.

In economic applications we may sometimes have a clearer idea of
what the stochastic properties of % should be than of what the
stochastic properties of € should be. We could, therefore, draw
simulation realizations for n and solve the system for £ instead
of drawing £ paths and scolving for 3. Of course since the mapping
between £ and n iIs known and linear, which one we start with in
simulation does not affect our ability to control the covariance

matrix of either € or n In the simulation.

The equations (12) define a mapping from some of the elements of z
to others. Usually we think of this mapping as determining

"control" wvariables from observations on "states” and we call the



mapping the "decision rule".3 In some economic applications we
might know something a prliorl about the form of the decision rule.
Suppose we postulated a model (1}-(2), derived the decision rule
mapping (12), and concluded that the result was unreasonable.

What would we get If we simulated (5} with a different version of

{i2), based on our notion of a reasonable form for it?

If (5) and our revised (12) are used to sclve for z and % from
gilven £, the result will be meaningless. If, houwever, we draw
simulated paths for m which satisfy the martingale-difference
property (Et[nt+1]=0), possibly also draw paths for some
subsvector or linear transformation of €, and use (5} and our
reviged (12) to solve for the remainder of £, the result is still
2 solulion Lo & model closely related Lo ihe one we started with.
In particular, the original Euler equatlons and the constraints
gtill hold, so the resulting simulation, if it satisfiles the
growth rate conditions (8) and (7), is a solution to a problem
with the same objJective function and same constraints. Since (12)
is altered, something aboui the problem musi have changed,
though, and that can only be the distributicn of £, including its

serial dependence preoperties. In this linear quadratic

3Actu'a.lly, this is = slight distortion of the usual terminclogy.
(12) relates elements of the zy vector to one another.
What is usually called a decision rule relates the

elements of the z, vector labeled "controls" to the elements of

t
the z, vector labeled "exogenous shocks" and to the elements of
z,_, labeled “states”. That is, & conventional decision rule

relates current contrels to current shocks and lagged states, with
the current state then determined from (1). In a conventlional
state space model, (1) can be solved for the current state and the

result substituted In to (12) to yield the conventional decision

rule.




framework, the only aspect of the distribution of £ which affects
the solution is its serial correlation structure, so it is this
which must be changed by the change in the decision rule.

The argument of the preceding paragraph makes an important general
point which holds outslde the linear-quadratic context -- if the
FEuler equations and the form of the constraints are held constant,
changes in the stochestic properties of the disturbances in the

constraints map into changes in the decision rule, and vice versa.

We may encounter iwo pogsible kinds of pathology in working
backwards to properties of £ from the form of the decision rule.
One obvious one is that it may turn out that when the system is
solved for some or all of the £ s, taking n as input and using an
arbitrary form for (12), the resulting path for z {(and hence g)
may be explosive at a rate greater than B“'St. Since we have set
the problem up so that we know that highly explosive paths for z
are not solutions, we know that in this case we have generated a
system in which, though the Euler equations are satisfied, we are

not getting solutions to the optimum problem.

Another problem is that it may turn out that, though by
construction £(t) is determined in the simulations by current and
past values of those elements of the w and £ vectors being teken as
input, 1t 1s not possible to represent 3n(t) as determined by
current and past values of e(t].4 This does not mean that we are
failing to generate optimel paths, but it does mean ihat the paths
take as avallable at t a larger information set than the set of

4The simplest example of this phenomena is e{t)=n(t}-2n(t-1). It
is easily verified that in this case 7(t) cannot be approximated
arbitrarily well in mean square by linear combinations of ¢(s) for

ast.




current and past values of e£(t). Puiting it another way, if the
model is taken as descriptive of some agenis’ behavior, those
agents are being taken to be able to forecast £(t) more accurately

than they could if they were a&ble to observe past & alone.

We call these two pathologies the gtability and jpvertibility
problems, respectively. They can be characterized &s in a sense
duals of each other. A stability problem arises when the equation
system implies that the space spanned by current and past £’s
under the covariance inner product is strictly larger than the
space spanned by current and past values of the subset of (w,2)
taken as input. The invertibllity problem arises when tLhe
relative size of the two spaces is reversed. When there is a
stability problem the altered (12) used is not a valid decision
rule for any verslion of £’s serial correlation properties, while
the invertibility problem only implies that there may be some
quesiion about the sclution’s interpretation. The Infinite
horizon discounted LQ context may be a little misleading here,
however. Even when the solution is stable and invertible, there
is a question of whether the implied Joint behavior of x and £ is
reasonable based on introspection and observation of beha.vior.5
When we turn below to examination of the finite horizon case, we

will see that there is no longer any sharp distinction among

5This approach to the solutlion makes these issues come to the
fore. But of course no matier how one solves the system, if it is
2 model of economic behavior one faces quesiions of whether the
implied behavior is reasonable. Deriving properties of £ from
properties of the decigslon rule makes clear in the numerical
procedures a basic fact about the nature of economic science --
an economic medel always includes arbitrary parameterizations
which can be adjusted to make its behavior more or less

reasonable.
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stability problems, invertibility problems, and general problems

of reasonableness of resulis.

II. Application to Non-LQ Problems

In non-1Q problems, the idea of backsolving gsolutlion is to use =a
decision rule -- an analogue to (12) —- together with the Euler
equations and the constraints, to simulate a solution path. This
is just the proposal for the LQ problem in the previous section.
However in a non—LQ problem the distinction between generating
paths for £ and solving for m on the one hand, and generating 7
paths and solving for £ on the other, is more important. Because
in a non-1Q problem the mapping from £ to 1 is nonlinear and only
implicit in the equation system, sciving for £ from m may allow
computationally cheap simulated paths for exact solutions, where

direct solution is prohibitively expensive.

The reason non-LQ problems are so expensive to solve is that the
analogue to (12) 1s ordinarily defined implicitly by functional
equations which involve all aspects of the distribution of =£(t).
But if we guess & reasonable form for {12) and delete a
corresponding number of equations from (1), the Euler equations
{3) and the remaining constraints can be solved period-by-period

to generate simulated solutions.

Of course we can still run in to stability and Invertibility
problems, but they can be minimized by centering the analysis on
an approximating LQ problem. That is, we can begin by following
Kydland and Prescott in expanding the equations of the problem in
Taylor series about a steady state solution path, deriving the
corresponding form for (12}). Then we can replace the Euler
equations and constraints of the LG approximation with the
nonlinear Euler equations and constraints of the original problem

and append (12) {or, more usually, a convenlent nonlinear equation
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whose first-order expansion about the steady state solution
matches {12)) to the resulting system. This system can be

solved in the usual way, deleting some equations of the

nonlinear analogue to {1) and deriving the simulated paths of =
from the assumed input paths for a subset of the (eg,7m) vector.
Since in the LQ problem itself we are sure that with (12) derived
this way there is no stability or invertibility problem, we can be
sure the same will hold true locally for the nonlinear preoblem, so
long as stochastic disturbances are small enough and we have

enough contlnuity.

The result of this approach to solution is a simulated path which
is an approximate solution to the original non-LQ problem in the
same sense that Kydland and Prescott’s solutlon is an approximate
solution. The solution is also an exact solution, though, to a
problem with the same objective function and constraints, but a
slightly different stochastic process for £(t) from that
originally proposed. In situations where cne is suspiclious of the
approximate certalinty-equivalence assumption on which the
Kydland-Prescott approximation is based, a comparison of the two
types of solution may give important insights intco the effects of

failure of certainty-equivalence.

I1I. Example 1: One Sector Growth

We consider a simple growth meodel, cast as the maximization

problem
w0 1-y
max E[ y &8 ° Bt] (13)
t=1 7
subject to
Clt+1) + K(t+1}-K(t) = a(t)K(t)¥ (14)
log(e(t)) = Tlogle(t-1)) + v(t) (18)
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We assume Et[u(t+1)]=0 as the starting point for our LQ
approximation, but of course will not quite achieve this in ocur

backsolved solution.

Euler equations are

cit)™¥ = art) (18)

A(t) = BE, [A(t+1){ae(t+1JK(t)“"1+1}] (17)

This problem was solved and simulated for 1000 observatlions under
two specificaiionss. In both, «=.33, B=.98 and 8 was lognormally
distributed, with 7=.95 in (15). In simulation I, Var{w(t)}=.0004
and y=3. In simulation II, Var{v(t))=.01 and y=.5. Both the
lower risk aversion and the higher variance of £ contribute to

wider fluctuations in simulation II.

Each simulatlon was undertiaken both with an LQ approximation
around the steady state and with a backsolved simulation. The LQ
approximation was constructed by sclving the linearized system to
arrive at (12), then simulating equations generated by taking the
loglinear first order expansion of all egquations of the system
about the deterministic steady state. (12) itself, as well as the
rest of the system, was used In loglinear form. If instead the
system had been simulated as linear in levels, it would have under
some parameter values and shock distributions implied negative

consumption or capital.

6The nonlinear simulations are part of a set of 10 undertaken as =
group project with members of the NBER-NSF seminar on computation
for nonlinear ratlional expectations models. Members of the
group attacked the same problem with a variety of sclution

methods. The results are submitted for publication.
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The backsolved system, of course, used the Euler equation and
constraints in the original nonlinear form. It did not use (12)
directly, however. Because the system involves non-integer powers
of X, it can become inscluble in the real domain if it generates
negative K values. Direct use of (12) or a loglinear expansion of
it is therefore capable of making the system inscluble. Instead
the simulatlions described here replaced (12) with an equation
loglinear in C(t)/K(t), XK(t-1), and e(t) with coefficients chosen
to give the system the same Taylor expansion about steady state as

would have been produced by direct use of (12).

The combination of high risk aversion and small shocks in
simulation I results in narrow fluctuatlons around the steady
state. Differences in the propertles of the loglinear LQ
approximatlion and the backsolved solution were small for this
solution. This is not to say they were undetectable. Since the
technology constraint (14) is not loglinear, it cannot hold
exactly in the loglinear simulation. Chart 1.I shows a plot of
"demand” C(t)+K(t)-K(t-1) vs. "supply" e(t)K(t-1)% for the
simulation I loglinear LQ simulatlon. For =a simulation which uses
(14) in its nonlinear form, like the backsclved solution, the
chart would have shown a perfect straight line. The LQ simulation
plot has clearly visible, but fairly small, departures from a
perfect straight line. Chart 1.II shows the same data for the
loglinear 1LQ simulation II, and the deviations from the straight

line are notably more pronounced.

Equations (18) and (17) together yield a stochastic equatlon in C,
K, and 06, which implies that if we define the Euler equation shock

1% _1)?
a(t) = BledBIK(E-1)% + nce-17 (18)

cit)?
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then n satisfies Et[n(t+1)]=0, all t. No function of varisbles
dated t-1 or earlier should help predict n(t}. We can check this
condition by estimating a regression of the 7n(t) calculated from
the simulatjon on a constant and variables dated t-1 or earlier.
The regression should have an Rz of zero asymptotically. The
model implies that conditional heterosckedasticity is probably
present in such a regression when the model has not been
backsolved; i.e. EtIn(t+1)2|X{t)]*constant, where X(t) is the time
t right~hand-side varlable wvector in the regression. To test
correctly for zero R2 in the equation, therefore, requires that we
form a heteroskedasticity—corrected covariance matrix M for the
estimated coefficients B and treat B M B as ¥ (k), where k is the
order of the X vector. Without conditional heteroskedasticity,
the corresponding test can be formed by treating TR® as xB[k),

where T is sample size.

The backsolved solution, since it generates n(t) directly from =
random number generator, satisfies the zero R? condition by
congtruction (though checking it is a useful diagnestic for the
random number generator). Indeed for the simulation II backsolved
solution regressions of 7n{t) on 4 lagged values each of %, C, K,
and & produced x2(16}=22.8, which has a marginal significance
level of .16. A regression on lagged K and & alone produced
x2(8)=11.9, which has a marginal significance level of . 16.

Results were similar for the backsolved simulation I.

Similar regressions for the loglinear LG approximate model in
simulation I alsc showed no statistically significant
predictability for 1. Simulation II for the loglinear LQ method,
however, produced x2(8)=51.0, which has marginal significance
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level well under .01.7 These regresslons do not have large Rz’s,
but they are large enocugh that 1000 observations makes them
clearly statistically significant. Table 1 below displays the
regression of the LQ 7 on 8 lagged variables. Chart 2 displays a
plot of residuals against predicted values from the Table 1
regression. For comparison, Chart 3 displays on the same scale
the scatter of residuals against predicted values for the

corresponding regression using the backsolved simulation.
TABLE 1

Regression of Euler Equation Disturbance
from LQ Simulation on Lagged K and 8

n(t}) = .00478 + .00365 K(t-1)} - .00177 K{t-2) -.00342 K({t-3)

(4.4} (2.25) {-.52) (-1.01)
+.00165 K(t-4) - .0148 8(t-1) - .00373 6(t-2)
(1.05) (-2.80) (-.53)
+ .00818 a(t-3)} - .00203 o6(t-4)
{1.50) (-1.25)

OBSERVATIONS 885 DEGREES OF FREEDOM 986
R¥*2 .0424 SEE . 00548
DURBIN-WATSON 1.85 xz{s) 51.0

Numbers in parenthesis below coefficients are t statistics. xz
statistic is heteroskedasticity-corrected as described in text,
and tests the null hypothesis that all coefficients other than the
constant term are zero.

7The regresgion with 16 explanatory variables produced numerical
problems in inverting M. However it showed R2=.0539, Implying
x2(16)=52.7 if we ignore the heteroskedasticity preblem. This is

also significant at well under the 1% level.
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The simulations also generate values for the v process. Because
(15), the true equaticn generating @, is loglinear, our loglinear
LQ sclution method does not distort the distribution of v at all.
The backsolving method, however, is almed at concentrating all
approximation error in the distribution of v. The histogram of v
In the backsolved soluticn showed no notable deviation from a
normal shape or from the zero mean, standard deviation .10
assumption. A regression of v(t) on the same 18 and 8 lagged
variables used in the tests for n above produced x2(16)=27.5 and
x2(8)=15.8, which have marginal significance levels of .036 and

. 045, respectively.8 There is thus some evidence of
predictabllity of v in the backsolved simulation, but the effect
is much weaker than the predictability of the LQ sclution’s 7.

That the inaccuracy in the LQ simulation displayed here is
noentrivial is apparent also in comparing the two regressions in
Tables 2 and 3. Both display regressions of C(t) on lagged values
of C, K and 8. Regressions of this type might be used to test the
rendom walk hypothesis for consumption. Table 2 shows results for
the LQ simulation, Table 3 for the backsolved simulation. While
both show firm rejection of the random walk hypothesis (a result
which seems to be generic for thls model when ¥ is small), the
pattern of estimated coefficients is strikingly different between
the two solutions. In one, lagged K is highly significant and
lagged theta insignificant, while in the other the reverse is

true.

8These significance levels may be misleading. On the null
hypothesis of "accuracy", there is no heteroskedasticity in v, s0
the TR2 statistic applies. These statistics are 24.2 and 14.3,
with marginal significance levels of .085 and .075, respectively.
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TABLE 2

Consumption Regression, LQ Loglinear Simulation II

C(t) = -.0970 + 1.35 C(t-1) - .0203 K({t-1) + .0184 e(t-1)
(-7.8) (19.7) (-5.8) (.70}
OBSERVATIONS 299 DEGREES OF FREEDOM 9885
R**2 .9976 SEE .0817

DURBIN-WATSON 2.14

Numbers in parenthesis below coefficients are t statistics.

TABLE 3

Consumptlon Regression, Backsolved Simulation II

C{t) = -.0458 + 1.03 C(t-1) - .0034 K(t-1) + .0142 e(t-1)
(-3.2) (14.1) (~.88) (4.3)
OBSERVATIONS 984 DEGREES OF FREEDOM 9898
R¥¥2 . 8972 SEE . 0887

DURBIN-WATSON 2.05

Numbers in parenthesis below coefficients are t statistics.

This example illustrates the fact that high accuracy of simulated
solutions for one LQ approximation (here the backsolved
simulation} is no guarantee that another (here the direct LQ
system simulation) is accurate on the same problem. HNot

only is there no general rule that "LQ approximate solution is

accurate in economic growth models,” accuracy of one LQ
approximation Is no guarantee that another, differing in details
of implementation, will also be accurate on the same problem. LQ

approximation can be highly accurate, as the simulation I resulis
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showed, but when LQ solutions are presented as characterizing the
behavior of a nonlinear meodel, they should always be supported by
accuracy checks. It is easy enough to show the extent to which
the original equations and stochastic specifications of the
nonlinear model are viclated by the approximate simulated

solution.

In fact this point applies beyond the context of LQ
approxXimations. All methods of solving continuous parameter,
multiple state, nonlinear stochastic equilibrium models are
approximate in one way or another. The fact that our solution for
the decision rule is spproximate, however, is no barrier iLo our
checking the equations and stochastic specifications of the
original model against the simulated data from the approximate

solution,

IV. Example 2: LQ Savings Problem with Binding Nonnegatlvity

The problem in this sectlion is behaviorally even simpler than that
in section III, but it is inherenitly nonstationary. Backsolving
works quite easily in differentiable problems where the LQ
approximate solution provides a good starting point for choice of
a decision rule. Here, by contrast, the LQ rule is inherently
deficient. HNonetheless backsolved simulations are feasible and

possibly useful.

We consider the problem of maximizing

> 2] .t
E[ T [cft)—.sc(t) ]43 ] (19)
t=1
subject to
C(t) + KE(t) = aK(t-1) + Y(t), (20)
K(t) =20, all t . {21)
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The stochastic process Y is asgumed to make Y(t)>0, 2ll t with
probability one and to make Y i.1.d. across time. C and K are
chosen subject to the constraint that C(t) and K(t) can depend
only on Y(t) deted t and earlier.

The stochastic Kuhn-Tucker Euler equations for this problem are

1 - C(t) = a(t) (22)
afe) - p(t) = BaEt[R(t+1)} (23)
p(t)X(t)=0 , {24)

where A and p are the stochastic Lagrange multipliers on (20) and
(21), respectively.

Note that C will never exceed one in a solution tc this problem.
Any candidate solution with C(t)>1 at some t can be improved by
decreasing € at that date without violating any constraint,
because there iIs no upper bound on K or its rate of growth. If
Baz1l, (23} implies that At is a supermartingale (i.e., Etht+lsht)’
since we have structured the problem so ptzo, all t. But a=1-C is
bounded below by zerc, and a supermariingale bounded below
converges with probability one. In fact, one can easily see fron
(23) that when «f>1 the expectation of At+s+0 as sJw, 50 that A
{(being strictly positive) converges to 0. That is, C converges to
its gatiation level of one. Indeed, the same holds for «f=1 so
long as Y(t) does not settle at zero forever, because in that case
(23) still guarantees that marginal utility is a supermartingale
bounded below, therefore convergent with probability one, and
convergence to any value other than zero is impossible. When
«B<1, stationary sclutions are possible. Indeed if initial X is
not large and the ratlio of maximum Y to mean Y is less than 1/¢8,
then the optimal scolution is to consume all the capital in

the first period, then set C(t)=Y(t)}, K(t)=Q thereafter.
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Obtaining simulated solutions for this model when obzl is
difficult. Backsolving could, however, form the basis for an
iterative approach to the solution. Consider the case of «b>1,
and guess that pt=0, all t. Then (23) and the boundary conditions
we have discussed imply that C(t) must converge to one, showing
stochastic variation along the way, but never equalling or
exceeding one unless it hits one exactly and “"sticks" there.
Furthermore, because when C(t)=1 C(t+s)=1 with probability one

for all s>0, C(t)=1 implies (a—l)K(t)+Ymin=1, where Ymin is the
lower bound on the support of the distribution of Y(t).
{Otherwise, since the probability of an indefinitely long sequence

of ¥Y's arbitrarily close to Ym n is never zero, the probablility of

i
C{t)=1 forcing K eventually to zero and thereafter becoming

infeasible is not zero.) We know that in the LQ problem with no

bound on K but with K(t)8 " >'+0 imposed, the optimal policy sets

(1-7) («Z8-1)

L : (25)

C(t) = («PB-1)K(t) + 1 -

When C is far below 1, this is probably a good approximation. On
ithe other hand this formula has C apprecach 1 when K approaches
(1-Y)/(a-1) rather than when it approaches (1-Y . )/(a-1), as we

know must be the case In a correct solubion.

A reasonable start towerd sclution, then, might postulale 2
relation between C and K which is almost exactly (25) for small
values of C and ¥, but which makes C smaller for a given X than is
implied by (25) when C and X approach 1 and (I-Ymin]/(a—l}. With
such a hypothetical rule in hend, probably parameterized as a
flexible nonlinear functional form, one could then generate
backsolved simulations. Shocks for equation (23) would ke drawn,
taking account of the fact that when 1-C(t) is small, the support
of the distribution of shocks must be adjusted so that C{t)=1 with
probability one. The resulting simulated time path for C would be
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combined with (25) and (20) to find simulated paths for Y and K.
The simulated Y paths would then be checked for conformity to the
originally postulated distribution and i.1i.d. assumption.g

Note that in this nonstationary problem the invertibility and
stability problems do not arise directly. By choosing the
modification of (25) so that it guarantees K(t)z(l—Ymin)/(a—lJ
when C(t)=1, we enforce directly a terminal condition which is the
analogue of the stability condition in a model with

stationary solutions. Imposing this terminal condition may
require strange behavior of ¥ as C nears 1, and this is the
analogue of the unstable Euler equation solutlons which have to be

ruled out in stationery models.
V. Iteration Toward Exact Solution

The methods we are discussing here allow computation of simulated
solutions to an optimization problem or an equilibrium model given
arbitrary "decision rules". We have suggested using rules which
match a solution to a linearized version of the meodels stochastic
equations in the neighborhood of a steady state. Bub this is only
a reasonable starting point. More generally, the decision rule
{or in an equilibrium model decision rules and pricing functlions)

can be parametrized flexibly and the space of scolutions generated

gI have experimented with this approach. Two or three simple
guesses for a modification of (25) failed to produce a solution
with good behavior for Y when C neared {1), however. To make the
procedure work will apparently requlre systematic iteration over
the functional form of the substitute for (25), minimizing a
measure of the discrepancy between desired and actual properties
of the Y simulatlions.
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as the rules’ parameters are varied can be explored. A numerical
optimization program can be used to minimize the distance between
an hypothesized distribution for the exogenous stochastic shocks
in the model and the distribution generated by the backsolved

gsimulations.

0f course the same idea could be applied to forward simulations.
The difference is that forward simulations would have exogenous
shocks satisfylng the assumed distribution by construction, but
failing to satlisfy the Euler equationg. Thus for forward
solutions the appropriate fit criterion would be minus some
neasure of the predictability of the Euler equation shocks.
{(Marcet [1988] has applied a similar idea successfully, though he
flexibly parameterizes conditional expectation functions rather

than decision rules or pricing functions. )
VI. Estimation

These methods meke it possible to simulate models of size
comparable to common macroeconometric models. I have used It
to solve and simulate several verslons of a medel of money,
nominal interest rate, price level, capital and output, with
demand for money motivated by transactions cests. The model
treats investment and consumption as distinct goods. While the
reported model [1889] is still first-order, it is capable of
roughly matching many aspects of the MAR for money, interest

rates, output and prices in the observed data.

This raises the prospect of using these simulation techniques to
estimate non-1LQ dynamic models. The principle is simple -- one
ad juste parameters of the model until some sel of funcilons of the
simulated sample paths matches as closely as possible the
corresponding set of functions of the observed historical data.

Ingram and Lee [1988] discuss the classical asymptotic econometric
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theory of such estimators and Kwan [1989] provides =& way to give

such results a Bayesian interpretation.

Note that in the special case where the theoretical model is at
the same discrete time unit as the data and contains Jjust as many
unobservable stochastic exogenous variables as there are
observable variables, estimation by simulation may not be
necessary. In this speclal case, the same set of equations which
allows simulation of artificial data given computer-generated
artificial random disturbances can be solved to find the random
disturbances implied by the observed historical data. With an
hypothesis on the distribution of the disturbances, it then
becomes possible to formulate a likelihood function, allowing

standard maximum likelihood estimation techniques.

However it wlll be quite common for the number of underlying
behavioral shocks to exceed the number of observed variables, or
for the theoretical model naturally to be treated as at a finer
time scale than the observed data. In these cases estimation by
simulation can substitute for numerlcal analytic Integration which
would otherwise be needed to form a marginal distribution for the

observed data.
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