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Abstract

In this paper I develop a practical extension of the Method of Simulated Moments (MSM)
estimator for limited dependent variable models to the panel data case. The method is based on a
factorization of the MSM first order condition into transition probabilities, along with the development
of a new highly accurate method for simulating these transition probabilities. A series of Monte-Carlo
tests show that this MSM estimator performs quite well relative to quadrature-based ML estimators, even
when larpe numbers of quadrature points are employed. The estimator also performs well relative to
simulated ML., even when a highly accurate method is used to simulate the choice probabilities. In terms
of computational speed, complex panel data models involving random effects and ARMA errors may be
estimated via MSM in times similar to those necessary for estimation of simple random effects models

via ML-quadrature.




1. INTRODUCTION

An important problem in the panel data literature is the estimation of limited dependent variable
(LDV) models in the presence of serially correlated errors. Maximum Likelihood Estimation (ML) of
these models generally requires the evaluation of choice probabilities which are multivariate
integrals—with the order of integration proportional to the number of time periods in the panel. In order
to make estimation practical, it is typically assumed that the covariance matrix of the errors has some
simple form which allows the order of integration to be reduced. In particular, it is generally assumed
that the errors are i.i.d. or that they are equicorrelated. The latter assumption leads to the popular random
effects model (see Heckman 1981) which is practical to estimate using the Gaussian quadrature procedure
described by Butler and Moffitt (1982).

The assumption that errors are either equicorrelated or i.i.d can be undesirable in many situations.
Economic theory often suggests the presence of serially correlated error components. Furthermore, if we
wish to use an LDV model for prediction purposes, it is important to determine the error structure which
gives the best fit to the data, rather than imposing a particular structure a priori.

An additional problem with the a priori assumption of a particular error structure in LDV models
is that, due to the nonlinearity of these models, parameter estimates are not in general consistent when
the error structure is misspecified, For example, if we falsely assume equicorrelated errors when there
is an AR(1) error component, estimates of regressor coefficients may be biased. If we assume i.i.d.
errors, pararmneter estimates will be consistent in the presence of any type of serial correlation so long as
the errors are normally distributed (see Robinson 1982), However the resultant estimator is inefficient
if serial correlation is present, and the resultant mode! may not predict as well as one which accounts for
serial correlation.

The Method of Simulated Moments (MSM), a new estimation technique developed by McFadden
(1989) and Pakes and Poilard (1989), provides a practical method for estimating LDV models in which
the choice probabilities are cumbersome multivariate integrals. The idea is to perform Monte-Carlo
simulations of these integrals rather than evaluating them numerically. If the simulations are unbiased,
the simulation errors tend to cancel out of the first order conditions of a Method of Moments Estimator
(MOM) when one sums over observations. Both McFadden and Pakes and Pollard (1989) prove that an

MSM estimator based on unbiased simulators is consistent and asymptotically normal, as well as being




asymptotically (in simulation size} as efficient as ML, given the optimal choice of the MOM weighting
mateix. If an MSM estimator is constructed using simulators that are only asymptotically (in simulation
size) unbiased, these consistency and asymptotic normality results continue to hold if simulation size is
increased with sample size at a sufficient rate (see also McFadden and Ruud 1991). When importance
sampling or other similar techniques are used to construct simulators which are smooth functions of the
model parameters, standard gradient methods can be used to obtain MSM estimates.

Thus, the MSM estimator provides a potential means for estimating LDV models with complex
patterns of serial correlation. However, the discussion of LDV models in McFadden is limited largely
to the estimation of multinomial probits involving many choices on cross-sectional data. Here the order
of integration is equal to M—1, where M is the number of possible choices. Application of the MSM to
panel data is a difficult problem for the following reason: with T time periods and M possible choices,
there are M” possible choice sequences. The probability of each sequence must be simulated in order to
apply MSM directly, and this quickly becomes impractical as T increases.

In this paper, I develop a practical extension of the MSM estimator to the panel data case. This
estimator avoids the problem of having to simulate the probabilities of MT possible choice sequences by
expressing the objective function in terms of transition probabilities. A practical method for simulating
transition probabilities is developed by using importance sampling techniques. This probability simulator
is smooth in the model parameters, so that standard gradient methods of optimization work well.

Unfortunately, for large T, practical simulators of transition probabilities that are smooth
functions of the model parameters ¢an be only asymptotically unbiased in the number of random draws
used in simulation. As a result, the simulation estimator proposed here can only be made asymptotically
unbiased in simulation size when T=4. To assess the importance of the bias that exists for finite
simulation size, I perform a series of Monte-Carlo repeated sampling experiments. These Monte-Carlo
experiments are of additional interest, because they are the first repeated sampling experiments for any
simulation estimator to be reported in the econometrics literature. Even for large T and small sized
simulations, the Monte-Carlo tests indicate that the bias in the MSM estimator is negligible.

The method for simulating probabilities developed in this paper is also of interest in its own right.
The method is often referred t0 as the Geweke-Hajivassiliou-Keane, or GHK, simulator, because

simultaneous and independent work by Geweke (1991) and Hajivassiliou led to the development of the




same method. Hajivassiliou, McFadden, and Ruud (1991), in an extensive study of alternative methods
for the simulation of probabilities, find that the GHK simulator is extremely accurate even for small
numbers of Monte-Carlo draws, and that it outperforms all the other methods considered.

In addition to the present paper, other attempts to develop simulation estimators for panel data
LDV models have been made by Hajivassilion and McFadden (1990) and McFadden and Ruud (1988).
These approaches are described in detail in Section 3.2. But basically, the preferred approach of these
anthors is to use the highly accurate GHK simulator to implement simulated ML or, equivalently, to find
the roots of the simulated score (also using GHK). In this paper, I also present the first repeated sampling
experiments for the SML estimator based on GHK. The resuits indicate that SML based on a small
number of draws works reasonably well, but that its estimates of serial correlation parameters suffer from
substantial biases when serial correlation is strong. These biases are not present with the MSM estimator,
and hence SML is clearly dominated by MSM in my experiments.

Besides these alternative simulation estimators, several authors have devised practical non-ML
estimators for LDV models with dependent observations which are more efficient than ML estimators that
assume i.i.d. errors, but which remain consistent in the presence of serially correlated errors. These
include the “orthogonality condition™ estimators of Avery, Hansen, and Hotz (1983), the minimum
distance method of Chamberlain (1985), the “nonlinear IV” estimators of Bates and White (1987) and
the quasi-ML estimator of Poirier and Ruud (1988). However, none of these estimators is as efficient as
ML, and their extension to systems of equations or multinomial probit models is computationally
burdensome. The simulation estimator for panel data proposed here thus has three important advantages
over these procedures. First, it is asymptotically (in simulation size) as efficient as ML; second, being
a simulation estimator, it can readily handle muitinomial probit situations; and third, it can be readity
extended to estimate nonlinear systems of equations which would be impractical to estimate by ML.

The outline of the paper is as follows. Section 2 describes the probit model. Section 3.1 describes
the MSM estimator and Section 3.2 explains the difficulties involved in applying it to panel data. The key
section of the paper is 3.3 which presents the construction of the simulation estimator for panel data.
Section 3.4 contains the details of the construction of smooth simulators for transition probabilities, and
contains a discussion of the asymptotic properties of the MSM estimator based on this simulation

procedure. Section 4 presents the Monte-Carlo test results. Section 5 concludes the paper.




2. THE PROBIT MODEL

Although the simulation estimaté)r which I will describe has more general application, I will follow
McFadden and restrict my exposition to the muitinomial probit model. The probit model has the following
form. An individual chooses from the set S of M mutually exclusive choices that choice which gives

greatest utility, The utility of choice j to person i at time t is given by:

py = X + & j=1,..,M~1 1)
where X is a row vector of exogenous regressors and 3; is & vector of coefficients possibly specific to
choice j. € is a disturbance which is independent across individuals but has a multivariate normal
distribution over choices and time, ¢, ~ N(0,X). Here, and below, the suppression of subscripts indicates
that a variable becomes a vector including elements for all values of the subscripts. The covariance matrix
¥ has the Cholesky decomposition A'A, so that ¢ = A’y where #; is i.i.d. We do not observe p;;

directly, but instead observe only the indicator variable dy,, where:

it = 10 otherwise

4 = {1 if g 2 gy, Vj' € S_ @
Let the KX 1 parameter vector & contain the elements of § and the parameters of the error processes that
generate E. Letting j, be the index of the choice actually made at time t, define I, = {j;,..-,j.}; as the
sequence of choices actually made by person i in periods 1 through t. Then, maximum likelihood
estimation of the probit model requires that one calculate the choice probabilities E(dﬁtpl_ﬂ,é,xi). The
problem with the probit model in the panel data case is that, for unrestricted I, the time T choice
probabilities are T » (M —1) variate integrals. Even in the single period case, numerical evaluation of such
integrals is prohibitively expensive for M 2 4. Note also that the assumption of exogenous X in this model
is important. If there is a history of the choice process prior to t=1, then consistent estimation of the
probit model requires that the past history of the process be “integrated out” of the likelihood function
(see Heckman 1981)). This is simple if X is exogenous and e is serially correlated, because it entails only
that the € be drawn from a marginal joint distribution fg,,...,€, | X;,0) that is not conditional on the
history of e prior to t=1. Thus the order of integration is unaffected. However, if X is endogenous (for
instance, if it contains lagged values of d) then ail possible past histories of the (X,€) process must be

integrated out of the likelihood.




3. THE METHOD OF SIMULATED MOMENTS AND PANEL DATA

The idea of simulation estimation is to simulate integrals like E(d;j,IJi_t_I,ﬁ,X,-) via inexpensive Monte-
Carlo methods, rather than evaluate them accurately via expensive numerical methods. For example,
consider the integral P= ; f(u]8)dy where f(u|8) is the density of the random variable p given parameter
2 and R is a region in the support of u. The value of P can be simulated by taking one or more draws
from the density f(u[f) and calculating the fraction of these draws which fall in the region R. This is
called a “frequency” simulator. The resulting estimate of P is unbiased even if only one draw from f(:3)
is used.}

McFadden proposes the use of simulation in the context of method of moments (MOM) estimation
to solve the problem of high order multivariate integration in the probit model.Z In the single period case
on which McFadden concentrates, the vector of first order conditions for an MOM estimator is given by:

N

E Wid, - EQléx) =0 3)
where d; is an Mx1 column vector of indicator variables for person i, E(d;[8,X)) is an M X1 column
vector of expected values of the elements of d; conditional on & and X, and W, is a KXM weighting
matrix. A b which sets this vector of weighted sums of residuals approximately equal to 0 is an MOM
estimator of 4. The optimal MOM weights are obtained if the (k,j)th element of W, is chosen to be
E(d,-u‘Ié,X,-)‘1 BE(d,-jfé,X,)laék for each j and k whereé is & consistent (but inefficient) initial estimate of

'For example, referring to the probit model in equation (1), we could draw values for py.j=1,...,M,
t=1,...,T from the multivariate normal distribution determined by X5 and E. The percentage of these
draws that generate a particular sequence of choices according to the rule given in equation (2) is a
frequency simulator of the probability of that sequence.

Zpakes-Pollard consider simulation in the general context of optimization estimators. Lerman and Manski
(1981) first considered use of the frequency simulation to evaluate choice probabilities in the context of
ML estimation, and Monte-Carlo tests of this method are presented in Albright, Lerman and Manski
(1977). The first empirical application of simulated ML was the study by Pakes (1986) on European
patent stocks. Unfortunately, simulation in the context of ML estimation has a serious drawback. If one
estimates a probability P in a log likelihood function, the resulting estimate of In P will be biased because
of the nonlinearity of the logarithmic transformation (i.e., Eln(P +5) » In E(P+5)=InP, where s is a mean
zero random simulation error). Thus, simulations of P must be very precise in order to keep the bias in
simulating InP small. For this reason, SML based on the GHK simulator is a more promising approach
than SML based on a crude frequency simulator as in the original work by Albright, et. al.




6. Then the FOC for the MOM estimator are {(asymptotically) equivalent to the derivatives of the log-
likelihood function, and the estimator is asymptotically efficient.

The important aspect of the MOM estimator is that the E(dEIB,X,»), which are the difficult
quantities to evaluate, enter linearly into the FOC of the estimator. The MSM estimator replaces the
difficult to evaluate E(dy[8,X;) by simulators E(d,-jlb,X,). Because these simulators enter the FOC linearly,
the simulation errors enter the FOC linearly as well, and simulation error tends to cancel across
observations i. Both McFadden and Pakes-Pollard have independently proved that an MSM estimator
based on unbiased simulators is consistent and asymptotically normal and that, if frequency simulation
is used, it has a covariance matrix which is (1+1/r) times that of the MOM estimator, where r is the
number of draws used in the simulation. If the optimal MOM weights are copsistently simulated, the
estimator is asymptotically as efficient as ML. It will not generally be possible to simulate the weights
consistently (for fixed r) because of denominator bias, so the MSM estimator will approach the efficiency
of ML only as the number of random draws used to simulate the denominators of the weights grows
large. McFadden and Ruud (1991) show that these asymptotic results continue to hold for MSM
estimators based on biased simulators, so long as the simulation bias converges to zero in probability as
sample size increases at a sufficient rate (see Section 3.4).

As a practical matter it may not be desirable to use frequency simulators to evaluate choice
probabilities. If E(dy|8,X) is evaluated using a frequency simulator, dE(d;}6,X,)/38 is not continuous. In
fact, B(d;(8,X)) is piecewise constant in § with discrete jumps at values of & which produce ties among
alternatives. Hence, conventional gradient methods cannot be used to minimize the objective, and random
search or pseudo-gradient methods must be used instead.

As discussed in McFadden, it is often more practical to use techniques such as “importance
sampling” to construct “smooth” simulators. Returning to the equation for P we see it can be rewritten
as P= L[f(u]|H/v(w)ly()dp where y(u) is any density function such that f(u|®)/y(n) is finite almost
everywhere in region R. By definition, this integral is the expectation of the quantity f(u|6)/y(y). Thus,
P can be simuiated by evaluating f(u[8)/v(z) at one or more draws from the “importance sampling”
density () that fall in the region R. This method is inexpensive because ¥(x) can be chosen in such a

way that most or all the p drawn will fall in the region R. Such a simulator is called “smooth™ because,




for a given p=p*, the derivative of f(u*|8)/y(n*) with respect to & is continuous.® Hence standard

gradient methods can be used to minimize objectives with respect to 8. For stability of the optimization

process it is essential that the draws from () be held fixed as we iterate on 4.

This section describes the difficulties inherent in applying MSM to panel data. In McFadden’s original
formulation, the FQC for the MSM estimator are constructed in terms of unconditional choice
probabilities. This is only possible if we treat sequences of states as the objects of choice. For this
purpose, let j € {1,...I,MT} index alternative sequences. Then the d; become indicators for certain
sequences of events, and the E(d;]3,X)) become the probabilities of observing these sequences. Since there
are MT possible sequences of choices, the residual vector [d; — E(d;[#,X))] in equation (3) is M7 elements
long. To utilize a smooth simulator, it is necessary to calculate the probability of observing each possible
sequence for each person. As M and T increase, this will quickly require an impractical number of
calculations.

McFadden discusses two ways around this problem, neither of which is adopted here. The ficst,
investigated by McFadden and Ruud, is to construct a frequency simulator based on only r draws from
the density f(u|#) of random variables p that determine the sequence of states chosen. This frequency
simulator will give nonzero values for the probabilities of at most r of the possible sequences. McFadden
shows that an MSM estimator utilizing residuals {d; — E(dﬁ]B,X,-)] only for these few sequences, plus that
for the observed sequence if it is not among them, has a covariance matrix which is still only (1+1/r)
times as large as that for the MOM estimator. The drawback of this approach is that the simulator is not
smooth, so that random search or pseudo-gradient procedures must be employed in estimation. It appears
that this method has not worked well in practice, although advances in nonsmooth hill climbing
algorithms may make it more appealing.

The second approach, investigated by Hajivassiliou and McFadden, is to directly simulate, vna
a smooth simulator, the score of the log-likelihood function, which 1s }."::L‘ AEd;|8,.X )/ =

- U

3As discussed by Geweke (1987) and McFadden, smooth simulators are often more efficient than
frequency simulators. Thus, an MSM estimator based on smooth simulators may have an asymptotic
covariance matrix less than (1+ 1/r) times that of the MOM estimator. The smooth simulators described
here are a form of importance sampling because the simulator is a weighted sum of the f(u[8) with the
weights being vy(p) ™!




E(dyl8,Xp ™ 9E(d;10,X,)/88. Since d; = O for all sequences except that which is observed, the score need
only be simulated for the particular observed sequence and the problem of having an enormous number
of possible sequences is avoided. However, such a simulator is biased because the term E(dh-]a,Xi) is
simulated and the nonlinear transformation I/E taken. Note that this Method of Simulated Scores, or MSS,
procedure is identical to SML, so long as the same probability simulator is used in each case, because
the same & that maximizes the simulated log likelihood function is also a root of the simulated score.

Despite the biases involved in these procedures, Hajivassiliou and McFadden and Borsch-Supan
and Hajivassiliou (1990) argue that SML or MSS based on the highly accurate GHK simulator performs
well using very small numbers of draws. However, extensive repeated sampling studies of such estimators
have not yet been performed.* In this paper I present the first such study. I find that the SML based on
the GHK simulator does perform reasonably well using only small numbers of draws. However, in my
Monte-Carlo experiments this SML procedure is dominated by the MSM estimator I describe in the next
section.

In addition to these approaches, van Praag and Hop (1987) and Ruud (1992) point out that the
score also can be written in terms of the latent vector g rather than in terms of choice probabilities. Then,
it is possible to form unbiased simulators of the score if it is feasible to draw the g from their conditional
distribution determined by agents’ observed choices d. This idea forms the basis of “simulated EM
algorithm” and “Gibbs sampling™ approaches to estimation of LDV models. Monte-Carlo analysis of the
performance of these procedures relative to MSM or SML based on GHK do not yet exist for the panel
data case. Geweke, Keane, Runkie, and Ruud (1992) compare the performance of all these approaches
in a cross-section case. An important avenue for future research is to perform Monte-Carlo studies of the

simulated EM and Gibbs sampling approaches in the panel data case.

The solution to the problem of applying MSM estimation to panel data that is proposed in this section

involves two parts. First, to circumvent the problem of having MT possible sequences of choices, the

“Borsch-Supan and Hajivassiliou study the performance of SML based on the GHK simulator in cross-
section trinomial probit model using a single Monte-Carlo dataset. They do not do a repeated sampling
experiment or consider the panel data case.



MOM first order condition is rewritten in terms of transition probabilities. Second, a method for
obtaining computationally efficient smooth simulators of these transition probabilities is devised.
Recalling that J, is the sequence of observed choices for person i in periods 1 through ¢, the

MOM first order condition written in terms of transition probabilities has the form:

N T M

Y¥Y ¥ wiid, - B@,17,,,0.X)1 = 0. @

iw] tx] jul
Now, rather than M", there are only M« T probabilities to be simulated. However, expressing the FOC
in this way creates an important new problem—from the second period onward, the transition probabilities
E(dy[T 11-1.0,X;) must be simulated. In most circumstances, it is either impossible or extremely difficult
to construct unbiased smooth simulators of transition probabilities. This is because transition probabilities
are generally ratios of two integrals, and simulating a denominator produces bias.

Unbiased frequency simulators of transition probabilities can be constructed using the acceptance-
rejection method (henceforth A/R). In the probit model of Section 2 we see that, for given values of ¢
and X;, a draw for the vector of i.i.d. errors ¢ will generate a particular sequence of states. In the
simplest A/R method, vectors of random variables 5 are drawn from a standard normal distribution with
density f(#;,...,%;,—;) until one or more which generate the sequence of states J;,_, actually chosen by
individual i up through period t—1 are obtained. I will refer to such sequences of i.i.d. errors » which
generate the observed sequence of choices J;,_; as “accepted conditioning sequences.” When such a
sequence is obtained by the A/R method, it will have the correct density f(fy,---,%; -1 |5;e-1,8,X0.5 If
we randomly draw from f(y;,) values for the time t elements of y (i.e., the 7y, for j=1,...,M—1), then
the fraction of these draws which, conditional on a particular accepted conditioning sequence, imply the
choice of state j at time t, is an unbiased frequency simulator of E(dy|T; ,_,,8,X).

Unfortunately, the simpie A/R method is not practical. An enormous number of draws may be
necessary to obtain just one accepted sequence if M'™! is large, making the A/R method extremely

expensive.® An important innovation in my approach is the use of an alternative method that generates

*Note, as was mentioned in section 2, that since the history of ¢ prior to t=1 is assumed unobserved,
f(+ | ) must be an appropriate marginal density with respect to e dated prior to t=1.

SAs discussed in Hajivassiliou and McFadden, more elaborate A/R methods have been devised which
reduce the number of draws needed to obtain accepted sequences. However, they find that even the more
sophisticated A/R methods are prohibitively expensive in practice.
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accepted conditioning sequences at low cost. This method involves drawing sequences very inexpensively
from an importance sampling distribution, say with deasity cb(nﬂ,...,m_t_lIim_l,é,Xi), chosen so that
sequences drawn from it are very likely to be accepted. Denote by (4} ,---»1: 1) 2 particular sequence
drawn from ¢( - | +) that generates the observed set of choices I;,_,. Of course, since (7ip...,7;,~y) Is nOt
drawn from f(; 1,.. 95— 1[7;4-1,9,X)) We have, letting E, denote the expectation over all (n; ,...,75,-1)
sequences obtained from ¢, that E{E@y |} - 01-08.X0} # E(dglJi1.0,X). However, an
unbiased simulator of the transition probability E(d|J,.—,,#,X;) may be formed as a weighted sum of
transition probabilities conditional on each of several such sequences (11;,1,...,11;,,_1), for 5=1,...,8 as
follows:
]

Bl oh %) = 5 3 0B @rnnizDod ). ®)
The “sequence weights” w, are ratios of the correct joint demsity f(q} (,ee-esWie-1 PJie-1.0,Xy) to the
importance sampling joint density ¢(n}y,...,7 51 |Ji,t_1,9,Xi) of sequence s. Here the w, are the importance
sampling weights.

Different choices of the importance sampling density ¢ and of the method for forming the £ lead
to different estimators. Section 3.4 describes the details of the particular procedures used here to form
E and to construct accepted conditioning sequences (i.e., the particular importance sampling distribution
from which the sequences are drawn), and derives the correct form of the sequence weights corresponding
to this procedure. In this procedure, ¢ is specified as the density of sequences constructed by drawing
recursively (i.e. one component of » at a time) until a complete  vector implying a person’s choice
history is obtained, and E is also formed using such recursive draws. This amounts to using the GHK
method to simulate the transition probabilities. It is itmportant to note, however, that other choices of ¢

and £ could potentially dominate this procedure. This is an important avenue for future research.

To simulate a time t transition probability we must construct conditioning sequences that generate the
observed set of choices up through period t—1, denoted J;,_,. Rather than drawing entire vectors
(1}.15+++sM1 1) from the unconditional density f(-) and accepting only those vectors for which all 9, for
T = 1, t—1 are accepted (i.e., those that generate the entire set of observed choices J,_;), the

inexpensive method of sequence construction used in this paper is to build up sequences on an element-




11

by-element basis. Specifically, using the M=2 case (where there is only one error per period) to
illustrate, the procedure works as follows. A value for 3, is drawn from the truncated standard normal
distribution from which gl draws generate the state actually chosen in period one. This value, call it n;;,
is retained and a value of %, is drawn from the truncated normal distribution conditional on »3,, all draws
from which generate the state actually chosen in period two. The vector (7;,,7;,) is then an accepted
conditioning sequence for periods 1 and 2. Repeating this for t—1 periods we obtain one conditioning
sequence 7 for the first t—1 time periods.”

Given this method of constructing conditioning sequences, the proper sequence weights are
constructed as follows. Begin with the 3-period case. Recalling that j, denotes the choice actually made

at time t, while J;, = {j,,...,j;}, and suppressing all individual subscripts i, define the sets:

A= {nld, = 1forj=j}
B = {‘n;r,t,nz[dj1 =1forj=j, djz = 1forj = j;}
B(p) = {g,]d, = Lforj = j, givenq, = n; € A}
where 7; is the particular value of 4, drawn from the truncated standard normal distribution. It is clear
that £(y1,7,|(n1,7,) €B), the joint density of (y;,7,) vectors obtained by an unbiased A/R method, does not
equal f(n,ly, € B())f(nily;€A), the importance sampling density obtained when the % vector is

constructed on an element-by-element basis. Notice, however, that:

£} 7,1 (15,1, € B) = fn )fny)
[y [ R0 In o, )
“« f * . "
fnln € A) = _'@i?'_ f(n,|n, € B(y)) = __@_.___
L ftr)dn, IB&:) f(r,)dy,

™To draw from the truncated univariate normal, let Y* be a particular draw from a univariate standard
uniform distribution, ¥ € {0,1]. Let F(-) be the standard normal distribution function. Then, F(y,fa <
7 = b) = (F(n) — F@)/(F(b) — F(a)). Letting F(yzla < u, < b) equal Y*, we have n;, = F
HEF®) — F@)Y* + F(a)}, where F'(+) is the inverse distribution fanction. In the probit model, the
values of a and b may be simply calculated given knowiedge of X, & and the previous period draws
(1 15++-»:.01)- As B is varied in optimization, the draws from the uniform distribution are held fixed.
Then, the values of a and b, and hence the draws 4}, vary smoothly with 8. The weights ¢, also vary
smoothly with 8. I will, therefore, be possible to construct smooth simulators of transition probabilities
using formula {5).
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Therefore, defining w(y;) as the ratio of the correct to the importance sampling density, we have:

f(r:,m,/(m.m) € B)  _ Probln, € B(ny)[n, = m)

fn, |7, € B ), |1, € A)  Prod(m, € B@)[n, € A) M

o) =

where Prob (- | +) denotes integration over a conditional normal density. Hence, «w(y;) is the proper
weight to apply to simulated probabilities conditional on sequences (;,7,) in order for the simulations
to be unbiased. To see this, consider simulating the probability of a certain event in period 3, dg = 1
for some j € {1,...,M}, conditional on (3;,9;) € B. Describe this event as (4,,%,,1;) € C; where C; is

a subset of B. Define:

C,-(ﬂ;m;) = {”3‘(7?;»7]2-) € B, d;js =1forj € {L---:M}}

1if 5, € Ciny.m2)

X M) =
Gl )8 0 otherwise

then:
Prob[(y,,1,,m) € C;{(m,1) € Bl

= I I IXci(,h,w(ns)f(ﬂs)f(”p"gl("?p’b) < B)d‘l}3d'fl2d1}1
A B(p) -o= @)

[ | [ Xcmnw@dfadomfn,n, € Ba)i, |n, € Adndn,d,.
A By} -os

Thus, the quantity w(m’)xcj (’?I,ﬂ;)(ﬂ;) evaluated at a particular draw (q;,75,95) from the importance
sampling density f(n:)f(n;|n, € B )f(n;n: € A), which is what we have when we obtain draws for 7,
and 7, on an element-by-element basis and draw %, randomly, is an unbiased simulator of the desired
transition probability. Here w(y;,) is the importance sampling weight.

Since the sequence weights and the sequences themselves are smooth functions of the model
parameters (see footnote 7), the construction of a smooth simulator by a further application of importance

sampling to f(»,) is straightforward. Simply rewrite equation (8) as:

fi
ﬂw(ﬂl}] Y)f(n, 10, € B(n, ) (n, [0, € A)dn,dn,dy,. ®

A Bla) Cfmm [7(”3)
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An unbiased smooth simulator is obtained by evaluating the quantity f(n;)w(n.)}/¥(3s) at a draw from the
importance sampling density y(n5)f(n2{y; € B f(n:ln1 €A). ¥(n;) is chosen so that most or all random
draws for 5 fall in the region C,(37;,%2)-

To form a more accurate smooth simulator, we may take an average of simulated transition
probabilities over several conditioning sequences (as in equation 5). Additionally, we may also average
over several different draws from the importance sampling distribution y(ys). Letting S be the number

of conditioning sequences and R be the number of importance sampling draws, we obtain:

s R
E(dii'-" Ijn’a’xi) = 2 0’.(1?;‘) ‘% 21 E(dijs Inﬁui(ni.hsni;x)sasxi)

1

_S- s=]
: ) (10)

5§ 20 7 X [l € Criwnt)r01)

where 1,, is the value of 3,; generated by the sth conditioning sequence and the rth importance sampling
draw.

Turning from the three-period example to the general case, the proper weights for t element
conditioning sequences can be constructed recursively. Define 5(t) = (yy,...,%) and define »(J) as the
set of sequences that generate the observed set of choices through the first t periods. Then w(q1,...,77),
the weight that corresponds to a t+ 1 element accepted conditioning sequence 2*{t+1) = (7,....75, Tt 1)s
is defined recursively as:

w(n” t—D)Prob(n,,; € 70,0 [n®) = 7" (®)

Prob(y,,; € 71(191)17?(0 € () an

(") =

which is obtained by the same type of algebraic manipulations used in equation (7).

Finaily, it is important to note that Monte-Carlo simulation of choice probabilities conditional on
accepted conditioning sequences, as in equation 10, may be unnecessary. Choice probabilities conditional
on accepted conditioning sequences are integrals over only the time t values of the 7. Thus, in
multinomial probit with M <3, direct numerical evaluation is feasible, since the order of integration
involved is only M—1. In the case where M >3, one possible choice for forming E is to use a recursive
simulation procedure like that used to construct the conditioning sequences. Note that a time t choice

probability may be written as:
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By 7*¢—1),8,X) = Prob (ug, < py ¥ k#i|7*¢—1),0,X)

= Prob ({nudi=1-1 € 7@ |7%¢t—1)8,X)

This probability may be simulated recursively using a procedure that has the same mathematical form as
the procedure for generating accepted conditioning sequences, First, draw from a truncated normal an
;1 that belongs to the set »(Jy) conditional on #*(t—1). Then this value, call it n3,,, is retained and a value
of 0y, is drawn from a truncated normal distribution such that (45;,, 720 € 7{J) conditional on g*(t—1).
This is repeated until the whole 7, vector is constructed. Then, an unbiased simulator of the choice j

probability is given by:

B(dg | n*¢t—1),8,X) = Prob (n;, € 20 |n*¢—1).8,X)
- Prob (55 € 70D | niwn*E—1),8,X)

« Prob(n;y-1c € 10 [ Misee-osMiv—2, o *E— 1),8,X)

This procedure for simulating choice probabilities is referred to as the Geweke-Hajivassiliou-
Keane (or GHK) simulator in the paper by Hajivassiliou, McFadden, and Ruud (1991), who compare its
performance to many alternative probability simulators and find that it is the most accurate of those
considered. It is important to note that the GHK simulator has an importance sampling interpretation,
where the importance sampling density y(+) for u; is chosen to be of the same form ¢(+) that was used
to draw accepted conditioning sequences, and the importance sampling weights are of a form analogous
to that given in equation (11). Thus, the GHK procedure for simulating within period choice probabilities
may be integrated with the recursive procedure for constructing conditioning sequences. Specifically, the
conditioning sequences may be constructed element-by-element within each period, as in (12), and the
sequence weights for transition probability simulation will continue to have a structure similar to (11),
except that they will be a product of within period weights.

The drawback of my importance sampling technique for simulating transition probabilities is that
the denominators of the sequence weights involve multiple integrals. Observe that in (12) the denominator
of the weight for a t period sequence is a t variate integral. Simulation of tth period transition probabili-

ties thus requires evaluation of sequence weights that involve T—1 variate integrals. Thus, the
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denominators of the weights must be simulated when T=4 in order to avoid cumbersome 3-variate or
higher numerical integration.

Note that the denominators of the sequence weights equal the expected value of the numerators
over ail possible sequences. Thus, given S sequences, an unbiased simulator of their sequence weight
denominators is given by the mean of their sequence weight numerators. Such simulation of the sequence
weight denominators induces denominator bias. This leads to biased simulators of transition probabilities
when simulated sequence weights &(y;(t— 1)) are substituted for the w(n(t— 1)) in equation 10. In the case
of biased simulation, McFadden and Ruud (1990) show that if the difference between the simulated MOM
first order condition W’(d — £(d}J,8,X)) and the exact MOM first order condition W'(d — E(d|J,8,X))

0,(5~*) uniformly in 8, and if SA/N > oo, then the asymptotic bias of the MSM estimator converges
to zero in probability uniformly in §, and McFadden’s (1990) consistency and asymptotic normality
results continue to hold. This O,(S~*) condition is simple to verify in the present case. Define:

w,, = w,(n, ) = Prob(n,,, € 30,20 = 1"®) (13)
» Prob(y, € 9@} |9(t—1) = 2" @t—1)) - - - Prob(n, € 53).

L3
Then, defining dgg, = S“'g Wag, the simulated sequence weights may be written as &(7.(t)) = wa,/Ops:-
For person i, alternative j and time t, the difference between the simulated and exact FOC contributions

is:

Wi [E(dmlli,t_l,é,xi) - s-l)fj 2“’"‘2 Byl (t—2),9,Xi):,

s=1 Ypsiz
3
= Wi, E@ |3, .0,X) — s—x;I “;%:-;2 E @ ln (t—z),a,xi)] (14)

+ Wi [SE ‘;’;‘" - “’::j Edy |07 ¢-2),0 X)}
The first term on the right has expectation zero. The second term is the source of bias. Since W, and
E(d, |7:(t—2),8,%) are bounded, it is sufficient to show that s f{ (@asi—2/9B3-2 — Gpgreaf/Opsea) i
O,(S™™). Suppressing the time subscript, the first order Taylor expansion with remainder of S’l‘é

3
Wa,/@ps around 57 B w,,/wy is (after some algebraic manipulation):

] 2_2 =
S“IE“’*'—S 12‘%_ —12“’1.: Pps ‘*’B“"’Bs Wp a’ns_z“’n“’ns. (15)

a=1 &BS g=] g} wBS wB wB &)g QB
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The terms ({p—wp)dns/w3 and (wE —&3s)/wE and (wp—&ps)/wp can all be shown to be O,(S™*) by simple
applications of the Chebyshev inequality. The quantity S“'_;;‘ wa/Gps is one by construction. Thus the
0, (8™*) condition holds.

Despite the fact that SA/N must go to infinity as N increases for the simulation estimator
proposed here to be consistent and asymptotically normal, the Monte-Carlo results in section 4 show little
evidence of bias in the proposed estimator, even for small S. I believe the reason that simulation bias is
relatively unimportant in the present case is that all time t transition probabilities for person i are
simulated conditional on the same set of conditioning sequences, all of which have the same simulated
denominator. Thus, all are biased by the same proportion. It is simple to show that any proportional bias
of ail time t transition probabilities will have no affect asymptotically (in N) on the MOM first order
conditions if the optimai MOM weights are used. Of course the optimal weights are only simulated, but
if the simulated optimal weights are bighly correlated with the true optimal weights there should be 2
strong tendency for this proportional bias to cancel out of the MSM first order conditions.

Finally, a referee has observed that, using a technique due to McFadden and Ruud (1991), one
may, after substituting the biased simulators (equation 5) into the MSM first order condition (equation

4), multiply through by the simulated sequence weight denominators &g to obtain the expression:

ix] t=

.l

1 ¢ .
aBs 2 [d éBSI t-2 '§-'=Elwe\li,t—2 E(dutj”; (t_2)7a:Xi):| . (16)
Here the term in brackets is a mean zero residual. Thus, the usual consistency and asymptotic normality
results hold for this MSM estimator with fixed simulation size. Since this alternative estimator involves
different simulated moments and weights than are given by equation 5, it will in general have different
small sample properties. An important avenue for future research is to compare the small sample

properties of these two estimators.

4. MONTE-CARLO TESTS

This section contains three Monte-Carlo tests of the proposed simuiation estimator for panel data, Three
types of Monte-Carlo datasets are created using different values for the true model parameters. For each
parameter vector, 1000 Monte-Carlo datasets are created, and a repeated sampling experiment is

performed in which MSM estimates are obfained for each datasef. For each estimation, a different seed
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for the probability simulator is used. The Monte-Carlo data for the tests are constructed using the latent
variable model of Section 2, with the number of alternatives M =2, The independent variables in all three
models are a constant and a variable X that is normally distributed with a mean of 6, an across individual
variance of 3 and a within individual variance of 2. Each individual is observed over 8 time periods.
Thus, the simulation estimator is required to simulate 8-variate integrals. The number of people N is set
to 500. Two types of models are considered in the experiments: a random effects model, so that
comparisons can be made with ML, and a random effects plus AR(1) error model that is not feasible to
estimate by ML. For comparison purposes, I have also included the SML estimator based on the GHK
simulator in all three experiments.

The computational speed of both simulation estimators is such that repeated sampling experiments
are feasible. For MSM, I have set the number of conditioning sequences S at 10. Since M =2, the choice
probabilities conditional on these sequences are evaluated numerically. For SML the number of draws
used to form the GHK simulator is also set to 10. For the random effects model, ML-quadrature estimates
are obtained using 16 quadrature points. For MSM, a single estimation of the random effects plus AR(1)
error model on the 500 individual, 4000 observation size datasets typically requires approximately 1.5
cpu minutes on an IBM 3083 computer, while runs on an IBM 486 PC (without math coprocessor)
require an average of only 4.5 minutes. The SML runs typically require about 30% more time than the
MSM runs. MSM requires that the probabilities of choosing all alternatives be simuiated, while SML
requires only that the probabilities of the chosen alternatives be simulated. However, this computational
advantage for SML is counterbalanced by the fact that SML requires derivative calculations on each
iteration, while MSM only requires that derivatives be calculated once to form the initial weighting
matrix.

The results from the first repeated sampling experiment are reported in Table 1. In this
experiment, a random effects model is used. The true parameter values are p = 0.60, constant = —0.90,
and X coefficient = 0.25, where p denotes the fraction of variance due to the individual effect. The mean
and empirical standard deviation of the MSM, SML, and ML -quadrature estimates, along with the mean
of the estimated standard errors, are reported. t-statistics for the statistical significance of the biases,
based on the empirical standard errors, are also reported. The mean MSM estimates of the constant and

X coefficient are extremely close to the true values (e.g., 0.24936 vs. 0.250 for the X coefficient) and
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the estimated biases in these coefficients are insignificant. The mean MSM estimate of the fraction of
variance due to the random effect is significantly larger than the true value (.60603 vs. 0.600 with a t-
statistic of 6.55 for the bias) but obviously the magnitude of the bias is small. The ML-quadrature
estimates all suffer from biases that are significant but negligible in magnitude. (In an earlier version of
this paper, I found that ML-quadrature estimates suffer from serious bias in these types of models when
serial correlation is of this magnitude and conventional numbers of quadrature points—3 to 9—are used,)
The sample standard deviations of the MSM estimates range from 5.3 percent higher than that of ML-
quadrature for the X coefficient (0.01386 vs. 0.01310) to 10.2 percent higher for p. Given the use here
of a smooth simulator with simulation size 10 and of (simulated) optimal weights, these results conform
well with the MSM to MOM asymptotic covariance matrix ratio of (1+ 1/R} that obtains when frequency
simulation is used (more efficient smooth simulators being expected to improve on this ratio), The only
drawback in these results is that the mean estimated standard deviation of the p estimates is 13.8 percent
larger than the empirical standard deviation (0.03304 vs. 0.02903), but the empirical and mean estimated
standard deviations are quite close for the constant and X coefficient.

The SML estimates in Table 1 also appear acceptable. The biases in the estimates of the intercept
and slope coefficient are insignificant. The estimate of p is very significantly biased downward, and the
magnitude of this bias is more than three times greater than the magnitude of the bias in p for MSM.
However, the magnitude of the bias still appears negligible. The empirical standard ecrors for the SML
estimates are very close to those for MSM, and in all cases slightly smaller. The estimated SML standard
errors are slightly downward biased.

The second repeated sampling experiment involves 1000 replications of data constructed to have
random effects plus an AR(l) error component (p = 0.20, AR(1) = 0.60, giving a first lagged
autocorrelation of 0.68). The results are reported in Table 2. Only MSM and SML results are reported,
because ML by quadrature is not feasible for this model. The MSM results are again very impressive.
Bias is insignificant for the estimates of the intercept and X coefficient. Bias in the estimates of p and the
AR(1) coefficient are significant but very small in magritude. In fact, the mean estimated parameter
values are all within 0.11 empirical standard errors of the true values, and the mean estimated standard
errors are all within 4.5 percent of the empirical standard errors. The SML estimates of the intercept and

X coefficient also exhibit no significant bias. However, the SML estimator has some difficulty in
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uncovering the true correlation structure in this example. In particular, the estimates of the AR(1)
parameter are significantly biased downward (.53747 vs. 0.60 with a t-statistic of —47.37 for the bias),
and the magnitude of this bias exceeds 10% of the true value.

Both simulation estimators might be expected to perform poorly when serial correlation is very
strong. In the third experiment, I have set p = 0.20, AR(1) = 0.90, constant = —.600, and X
coefficient = 0.10. Thus, the first lagged autocorrelation is 0.92. Despite this high degree of serial
correlation, the MSM estimator continues to perform well. All four parameter estimates are significantly
biased, but in each case the magnitude of the bias is negligible. The SML estimator, on the other hand,
has severe difficulty in uncovering the true error structure in this example. It greatly overestimates the
fraction of variance due to the random effect (43.8% vs. a true value of 20%) and substantially
understates the AR(1) parameter (.8007 vs. a true value of .90). Note that although the bias in p may
appear smail in percentage terms {(only 11%), an AR(1) parameter of 0.8 implies serial correlation that
dies out much more quickly than if the AR(1) parameter were 0.9. Thus, the SML estimates imply less
short run persistence and more very long run persistence in choice behavior than does the true model.
The SML estimates of the intercept and slope also show significant bias, but again, as in experiments 1
and 2, this bias is negligible in magnitude. Finally, note that in experiment 3 both the MSM and SML
estimators have difficulty in estimating the standard errors of the correlation structure parameters. For
SML the means of the estimated standard errors for 5 and AR(1) are 30% and 25% below the empirical
standard errors, respectively. For MSM, they are both over 3 times larger than the empirical standard
errors. This may be because with such strong serial correlation the effective sample size is small, causing

the asymptotic distribution of the estimators to be 2 poor approximation to the finite sample distribution.

5. CONCLUSION

In this paper I have used a factorization of the MSM first order condition into transition probabilities in
order to construct a practical MSM estimator for panel data. The key problem in constructing such an
estimator is the inexpensive simulation of transition probabilities without the introduction of substantial
bias. I develop a particular very inexpensive importance sampling technique for simulation of transition
probabilities which is asymptotically unbiased in simulation size. This simulation method is of interest
in its own right, since Hajivassiliou, McFadden, and Ruud, who call it the GHK simulator, find that this

miethod outperforms all other probability simulators from a large set of alternative methods they consider.
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A battery of Monte-Carlo tests reveal no significant bias in an MSM estimator that utilizes this method
to simulate transition probabilities, even for small simulation sizes. For models in which ML is feasible,
the MSM estimator performs well relative to quadrature-based methods using many more quadrature
points than are typically used in practice. For models in which ML is not feasible, the MSM estimator
outperforms SML based on the highly accurate GHK probability simulator. Specifically, when serial
correlation is very strong I find that SML produces severely biased estimates of the serial correlation
structure, while the MSM estimator does not. The computational speed of the MSM estimator is such that
it is possible to estimate panel data models with complex error structures involving random effects and
ARMA errors in times similar to those necessary for estimation of simple random effects models by
guadrature.

I motivated this paper by arguing that the ability to deal with complex patterns of serial
correlation in LDV models may be important for out of sample prediction purposes. As an example,
Elrod and Xeane (1992) have applied the method developed in this paper to estimate detergent choice
models with eight alternatives and 30 time periods. We find that a probit model that allows for a rich
pattern of serial correlation outperforms all competing choice models in terms of accuracy in forecasting
agents” future purchases.

An important avenue for future research into simulation based inference for LDV models is to
compare the performance of methods based on probability simulation with methods based on simulating
the underlying latent variables in the LDV model from their distributions conditional on agents observed
choices (i.e., simulated EM and Gibbs sampling methods). This is a substantial undertaking, but a first
step in this direction is the work by Geweke, Keane, Runkle, and Ruud (1992), who do this in the cross-
section case. It seems likely, however, that no method will dominate for all modeis. The MSM estimator
described in the present paper will probably dominate for models like the probit where it is simple to
express the score in an MSM form. The SML estimator may dominate in models where it is difficult to
express the score in terms of mean zero residuals but where the objects entering the score can be
simulated accurately. The simulated EM and Gibbs approaches are likely to dominate in models were it
is difficult to accurately simulate the objects entering the score but simple to generate the model’s

underlying latent variables from the conditional distributions generated by agents’ choices.




Table 1: Repeated Sampling Experiment - 1,000 Replications
Random Effects Model
- MSM - 10 Draws F
Parameter True Value Mean B Std(®) Mean Sid(8)  T-Stat Bias
P .600 .60603 .02903 .03304 6.55
{ Constant —.900 —.89991 08861 08750 0.03
X .250 .24936 .01386 01443  —1.45
1\
ML - Quadrature — 16 Points
Parameter True Value Mean Std(®) Mean Sid(3)  T-Stat Bias
0 600 59628 .02635 02668  —4.46
Constant -.900 —.91017 08149 08293  -3.95
X 250 25152 01310 01332 3.67
Simulated ML-GHK - 10 Draws
Parameter True Value Mean 3 Std(B) Mean Std(3)  T-Stat Bias
) .600 57954 .02826 02518 -22.99
Constant —.500 —.50126 .08267 07987  —0.48
X 250 .24952 01331 01289  —1.14

NOTE: 1,000 Monte-Carlo datasets were created using the true parameter values shown. Each dataset
consisted of 500 individuals and 4,000 person year observations, Mean B refers to mean of the estimated
parameters over all 1,000 datasets. Std(3) refers to the sample standard deviation of the estimated
parameters. Mean Std(B) refers to the mean of the estimated parameter standard errors over afl 1,000
datasets. Typical times for a single estimation of the random effects model on an IBM 3083 are 1.2 cpu

minutes for MSM and 0.8 cpu minutes for ML - Quadrature.




Table 2: Repeated Sampling Experiment - 1,000 Replications
Random Effects + AR(1) Error Model
MSM - 10 Draws [
" Parameter True Value Mean 3 Std®) Mean Std(3)  T-Stat Bias |
P 200 .19250 07379 07065 ~3.22
AR(1) .600 60421 04713 .04816 2.83
Constant -.900 —-.90041 08449 08431 —0.15
X .250 .24998 .01348 01404 —0.05
" Simulated ML.-GHK - 10 Draws I
Parameter True Value Mean 3 Std(B) Mean Std(8)  T-Stat Bias
) 200 21915 05368 .04838 11.26%*
AR(1) 600 53747 04183 03922 —47.37**
Constant -.900 —.90298 08123 07703 1.16
X . 250 .24984 01329 01251 ~-0.38

NOTE: 1,000 Monte-Carlo datasets were created using the true parameter values shown. Each dataset
consisted of 500 individuals and 4,000 person year observations. Mean 3 refers to mean of the estimated
parameters over all 1,000 datasets. Std() refers to the sample standard deviation of the estimated
parameters, Mean Std(3) refers to the mean of the estimated parameter standard errors over all 1,000
datasets. Typical times for a single MSM estimation of the random effects plus AR(1) error model are
1.5 cpu minutes on an IBM 3083 and 4.5 minutes on an IBM 486 PC.



Table 3: Repeated Sampling Experiments - 1,000 Replications
Random Effects + AR(1) Error Model
MSM - 10 Draws

ll Parameter True Value Mean B Std(5) Mean Std(3)  T-Stat Bias
p 200 19248 .12484 42393 -1.90 |
AR(1) .900 90473 .01949 05903 7.63
Constant —.600 —.59245 07496 07572 3.19
X 100 09882 00923 01036 —-4.07

Simulated ML-GHK - 10 Draws “

Parameter True Value Mean § Std(® Mean Std(8)  T-Stat Bias
o .200 43922 .13932 10036 54.24
AR(]) 900 .80070 05027 03752 —64.45
Constant —.600 -.61785 07034 .06648 —8.41
X 100 .10292 .00885 .00899 10.43

NOTE: 1,000 Monte-Carlc datasets were created using the true parameter values shown. Each dataset
consisted of 500 individuals and 4,000 person year observations. Mean B refers to mean of the estimated
parameters over all 1,000 datasets. Std(3) refers to the sample standard deviation of the estimated
parameters. Mean Sid(%) refers to the mean of the estimated parameter standard errors over all 1,000
datasets. Typical times for a single MSM estimation of the random effects plus AR(1) error model are
1.5 ¢cpu minutes on an IBM 3083 and 4.5 minutes on an IBM 486 PC.
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