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Macroeconomists have traditionally viewed movements in aggregate output as repre-
senting temporary fluctuations about a deterministic trend. According to this view,
innovations to real gross national product (GNP) should have no impact on long-run
forecasts of aggregate output. Increasingly, however, this view of aggregate fluctua-
tions has been challenged. Following the important work of Nelson and Plosser (1982),
numercus economists have argued that real GNP is best characterized as a stochastice
process that does not revert to a deterministic trend path. Under these circum-
stances, innovations to real GNP should affect oubput forecasts Iinto the indefinite
future. In pursuing this interpretation of the data, variocus researchers have tried
to measure the long-run response of real GNP to a shock. Estimates of this response
are often referred to as the persistence of shocks to real GNF.

Not surprisingly, the Iliterature on persistence has become Intertwined with
recent controversies over the empirical plausibility of two important classes of sta-
tistical univariate time series models: trend stationary and difference stationary
medels. Ultimately, proponents of the view that shocks to real GNP are persistent
must build their case on the empirical plausibility of the hypothesis that real GNP is
difference rather than trend stationary or, in other words, that real GNP has a unit
root.

To us, the possibility of providing a compelling case that real GNP is either
trend or difference stationary seems extremely small, certainly on the basis of post-
war data. This is because there is only one difference between these two types of
processes and that difference is completely summarized by the answer to the question,
How much should an innovation to real GNP affect the optimal forecast of real GNP into
the infinite future? If the answer is zero, then real GNP is trend staticnary. If
the answer iz not zero, then real GNP is difference stationary. The competing hypoth-
eses have no other testable differences. Once we pose the question in this way, it
seems clear that economists ought to be extremely skeptical of any argument that pur-
ports to support one view or the other. Simply put, it's hard to believe that a mere

40 years of data contain any evidence on the only experiment that is relevant.
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Notwithstanding these obvious difficulties, over the past decade there has been
an explosion of empirical research on whefher macroeconomic time series are best
viewed as trend or difference stationary. Even more surprising are the strong conclu-
sions that seem to mark this literature. For example, Schwert (1987, p. 99) writes
that "following Nelson and Plosser, many authors have found that many aggregate output
series . , ., aggregate price level series . . ., and other aggregate nominal series

. contain a unit root.”" Blanchard and Quah (1988, p. 1) simply begin their analy-
sis by stating that "in response to an innovation in GNP of 1%, one should revise
one's forecast by more than 1% over long horizons. This faet iIs documented by
Campbell and Mankiw (1987a), building on earlier work by Nelson and Plosser (1982)."
And Campbell and Mankiw (1987b, p. 111) write that "much disagreement remains over
exactly how persistent are shocks to output. Nonetheless, among investigators using
postwar quarterly data, there is almost unanimity that there is a substantial per-
manent effect.®

The first part of this paper argues that the new consensus about the presence and
size of the unit rcot in real GNP is not supported by an analysis of postwar U.S. GNP
data. The data simply do not discriminate between the trend stationary and the
difference stationary views of U.S. real GNP. Given the nature of the difference
between these two types of stochastic processes, any argument in favor of one or the
other necessarily relles on strong identifying restrictions. Unfortunately, inference
turns out to be extremely sensitive to exactly which identifying restrictions are
made. Moreover, the relevant sets of identifying restrictions are noi the sort which
economic theory has anything to say about.

The paper argues this point in two ways. Initially, we investigate the problem
using the parametric approach proposed by Campbell and Mankiw (1987a). The basic
strategy 1s to estimate the long-run response of real GNP to an innovation using a
particular parametric, autoregressive moving average (ARMA) representation of the

growth rate of real GNP. For the postwar U.S. data, the relative plausibility of the
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trend and the difference stationary hypotheses depends critically on the precise order
of the ARMA representation chosen. Campbell and Mankiw (1987a) euphasize an ARMA(2,2)
representation of postwar U.3. real GNP. Indeed, if one conditions on that precise
representation of the data, then real GNP is plausibly argued to be difference sta-
tionary. Unfortunately, very small perturbations in the order of the ARMA representa-
tion turn out to have a very large impact on this inference. For example, if one
conditions on an ARMA{3,3) representation of the data, then real GNP appears to be
trend stationary., Neither the data nor economie theory can convineingly disecriminate
between these competing representations of real GNP.

Since inference iz very sensitive to particular parametric assumptions, we also
examine the problem using the nonparametric methods developed by Cochrane (1988a). We
show that, when applied to postwar data, these methods. are completely uninformative
.about the relative plausibility of the trend and the difference stationary hypoth-
eses. How much should one's forecast of real GNP over long horizons be revised in
response to a 1 percent innovation? Taken together, our results lead us to answer, We

don't know. Indeed, we argue that this is the right answer even if by long horizons

we mean periods as short as five years. Taking any other position simply seems
unwarranted by the available evidence.

The second part of this paper investigates the consequences of not knowing. Here
we ask the question, Do we care if real GNP has a unit root? Our answer is, Maybe
not. Some authors have argued that we should care because the degree of persistence
in real GNP can be used to infer what the principal impulses driving business cycles
are (for example, Long and Plosser, 1983; De Long and Summers, 1988). This line of
reagoning presumes that if real GNP is highly persistent, then the shocks must be
principally to technology, whereas if there 1is little persistence, then the shocks
must be prinelpally to aggregate demand, such as innovations to monetary and fiscal
policy. Campbell and Mankiw (1987a), Cochrane (1988a), and West (1988b) argue persua-

sively against this view by pointing out that in a variety of plausible models these

presumptions are wrong.
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A more plausible reason for caring revolves around the possibility that the
implications of dynamic economic models depend sensitively on the presence or absence
of a unit root in the forcing variables to agents' environments. Our results suggest
that the degree of sensitivity is minimal. What economic agents care about is the
relative Importance of temporary versus permanent shocks to their environments--and
this 1s, at best, only loosely related to the unit root issue.

We reach this conclusion by considering two examples which have heen used to
argue for the importance of unit roots. These are Deaton's (1986) and Hansen's (1989)
analyses of the permanent income hypothesis {PIH) and real business cycle (RBC)
models. Both authors argue that the dynamle properties of their respective models are
extremely sensitive to the presence or absence of unit roots in income. Indeed,
Deaton and Hansen argue that the degree of sensitivity 1is large enough to affect
inference about the .overall plausibility of the models.

Taken at face value, these examples do create a presumption that we should care
about the unit root 1ssue. However, this presumption turns out to depend on a key
maintained assumption of both analyses, namely, that the forcing variables of concern
to agents are driven by a single shock. This assumption implies a sharp dichotomy
between trend and difference stationary specifications which is not tied in any log-
ical way to the unit root issue. With only one shock to agents' environments, a trend
stationary specification Implies that all shocks have purely temporary effects,
whereas difference stationary specifications necessarily incorporate the opposite
extreme; all shocks have purely permanent effects. But without this assumption,
difference stationarity does not imply the absence of temporary shocks to agents'
environments.

To see why, Suppose wWe acbually knew that a particular random variable was
difference stationary. Indeed, assume that we actually knew the univariate, differ-
ence stationary, Wold representation of the random variable. For each such represen-

tation, the variable can be decomposed into permanent and temporary components in an
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infinite number of ways (Quah, 1988). While each decomposition implies precisely the
game univariate time series representation, each decomposition emhodies different
assumptions about the relative importance of permanent and temporary shocks to the
variable. Simply knowing the univariate time series representation of a random vari-
able provides no information about which of the infinite decompositions agents may be
observing and responding to. At the same time, which decomposition Is chosen is crit-
ieal since agents' actions differ depending on whether they are responding to a perma-
nent or a temporary shock. Consequently, the properties of dynamic models will in
general depend sensitively on the relative importance of permanent and temporary
shocks. Agreeing on the presence of a unit root in the law of motion for some vari-
able, or even the variable's univariate time series representation, imposes almost no
restrictions on one's view of this issue since there always exists a decomposition
which makes the permanent component arbitrarily small.

Allowing for the presence of a temporary component in the difference stationary
representation of the forecing variables to agents' environments breaks the sharp
dichotomy implicit in the analyses of Deaton and Hansen. Quah (1989) shows this quite
dramatically in his discussion of Deaton's results. When agents see only the uni-
variate, difference stationary representation for labor income, consumption is pre-
dicted to be about 1.8 times as volatile as income; when the trend stationary specifi-
caticn is adopted, consumption 1s predicted to be 0.2 times as volatile as income.
Despite these sharp differences, Quah is able to display a temporary/permanent decom-
position of Deaton's difference stationary model of labor income which has the follow-
ing property: If agents observe both components separately, then the predicted rela-
tive volatility of consumption coincides with the predictions of the trend stationary
model of labor income. This is true despite the fact that the univariate time series
representation implied by Quah's components model is precisely the same as that
implied by Deaton's difference stationary model,

In the second part of this paper, we illustrate Quah's results in the context of

RBC models. In particular, we show that the implications of an unobserved components,
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difference stationary version of Hansen's RBC model closely resemble those of a frend
stationary sgpecification. Our tentative conclusion is that once we admit the possi-
bility that agenis are responding to hoth temporary and permanent shocks, the unit
root question loses much of its importance.

Qur paper is organized as follows. First we discuss the concepts of trend and
difference stationarity and two statistical procedures which have been used to distin-
guish between them empirically. In the next two sections, we argue that, using post-
war data, one cannot determine the long-run effect of an innovation to real GNP based
on two leading statistical procedures, the ARMA method of Campbell and Mankiw
(1987Ta,b) and the nonparametric method of Cochrane (1988a). Then we address the issue
of whether unit roots matter from an economie perspective., In the last section, we

make some concluding remarks.

A SELECTIVE OVERVIEW OF THE LITERATURE

Recent research almed at analyzing the persistence of shocks to real GNP has been
conducted almost ezxclusively within the confines of atheoretical btime series models.
Much of the debate has centered on efforts to support or refute the traditional view
that fluctuatlons in real GNP reflect temporary deviations from a deterministic trend
path. At issue is the relative plausibility of two Important classes of statistical
univariate time series models: trend stationary and difference stationary models. We
begin by reviewing these models.

Congider the time geries variable Yi» which we assume is measured in loga-
rithms. According to the trend stationary model, y; 1s covariance stationary about a
deterministic trend. If the growth rate of y, is a stationary stochastic process, the
deterministic trend component must be linear. The following univariate time series

representation for Ye reflects these assumptions:

¥, = vt o+ a(L)Et. (M
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Here a{(L) = 1 + a b + a2L2 + ... 1s a polynomial in the lag operator L, y is a scalar
constant, t denotes time, and e, is the zero mean, serially uncorrelated time t inno-
vation to Yi- We denote the variance of £y by Gi' Since y, is covariance sta-
tionary, Eag and 03 are both finite. For convenience, we assume that E]ajl is finite.

According to the difference stationary model, the first difference of ¥y is a

covariance stationary process which we write as
dy, = u + b(L)u,. (2)

Here A denotes the first-difference operator, b(L) = 1 + byL + b2L2 + ... 1s a poly-
nomial in the lag operator L, u is a scalar constant, z|bj| < «, and u, is the zero
mean, serially uncorrelated innovation to y.. We denote the variance of ug by ci. In
addition, we Iimpose the requirement that b{1) = ij # 0. Without this requirement,
there is no difference between trend stationary and difference stationary processes.
This follows from the fact that any trend stationary process, (1), can be represented

in the form of (2). To see this, simply first-difference both sides of (1) to obbtain
8y, = v + A(L)e, (3

where A{L) = (1-L)a(L). This process satisfies all of the conditions imposed by the
difference stationary model except for ocne. The sum of coefficients on current and
lagged e.'s in (3) is given by A(1). Under our assumptions, A(1) = 0. But this vio-
lates the condition that the sum of the moving average coefficlents in (2} is not
equal to zero., Evidently, the condition that b{1) # 0 is all that distinguishes trend
and difference stationary processes.

Two widespread interpretations of b(1) revolve around its role in determining the
degree of persistence in V- One measure of persistence centers on the response to U
of the optimal forecast of y, into the infinite future. Let Ey denote the time ¢t
expectations operator conditioned on the information set {ut,ut_1,...}. Beveridge and

Nelson (1981) show that
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lim [E

ko

tVeeke = EpoqYead = BODug. (4)

It follows that b(1) completely characterizes the revision in the long-run outlook for
¥y induced by a time t unit innovation to yt. If y. 1s difference statlionary, then
b{1) # 0, so that an innovation at time t ought to affect our forecast of ¥¢ into the
infinite future. However, if Yy 1is trend stationary--say, as given by (3)--then
A(1) = 0. Consequently, an innovation to y, should have no impact on our forecast of
y¢ into the infinite future. This simply reflects the fact that eventually a trend
stationary process always returns to its deterministic trend path.

The other common measure of persistence revolves around the fact that the long-
run forecast of a difference stationary process is always changing. According to (4),
the time t revision to the long-run forecast of .y, 1s the random variable b(1)u.. 4
natural measure of the amount of variation in this variable is its variance,
[b(1)]20i. If y¢ is trend stationary, then fluctuations in u. induce only transitory
movements in y,; that is, the long-run outlook is deterministic. Consequently, the
variance of the revision to the long-run forecast of a trend stationary random vari-
able, [A(1)]Ec§, is zero,

Under the first interpretation of b(1), the 1issue of trend versus difference
stationarity reduces to the question, How much should an innovation to the stochastic
process y, at time t affect our forecast of y, into the infinite future? Under the
second Iinterpretation of b(1), the issue of trend versus difference stationarity
reduces to the question, How variable is the optimal forecast of Y in the infinite
future? Posed 1in these terms, neither question is answerable on the basis of any
finite data set. There simply are no observations on the ezperiment. The relevant
issues then become, What identifying restrictions have been made in the literature to
answer questions about persistence? And how sensitive are the answers to different
identifying assumptions?

To review the literature from this perspective, we adopt the following generie

representation for Ay,:




Ayt z a + C(L)nt (5)

where ny 1s the white noise innovation to y., with variance aﬁ. When C({1) = 0, (5) is
a trend stationary representation. Otherwise, it is difference stationary. The
literature on the persistence of U.3. real GNP can be roughly divided into two cate-
gories. One category focuses simply on the guestion of whether or not C(1} = 0, that
is, whether real GNP is trend or difference stationary. Two strategies are taken
here, with one adopting C(1) = 0 as the null hypothesis and the other adopting C{1} =
0. For example, Campbell and Mankiw (1987a} use the first strategy; Nelson and
Plosser (1982}, the second. This type of analysis only addresses the narrowly defined
question, Are output fluctuatlons temporary or permanent?

The other category of research aims to.quantify the persistence of Ye by focusing
on the two measures discussed above. Watson (1986), Campbell and Mankiw (1987a,b),
Clark (1987), and Campbell and Deaton (1988) estimate C(1) using postwar U.S. real GNP
data. Campbell and Mankiw (1987a,b) and Campbell and Deaton (1988) also measure
[C(‘l)]zai using an estimator proposed by Cochrane (1988a), who implements his proce-
dure on per capita real GNP data covering the pre- and postwar period.

How can these authors make inferences about either C(1) or [C(1)]Ec§ using a
finite amount of data? As Cochrane (1988a) emphasizes, inferences about the persis-
tence of y, are wade possible only by imposing identifying restrictions on C{L) and
My - The point of these restrictions is to allow the econometrician to make inferences
about the long-run dynamies of y.--say, as measured by C{1}--from its short-run
dynamics. The different types of identifying assumptions in the literature fall into
two categories which are closely linked to different strategies for actually estimat-
ing objects like C(1). One strategy amounts to fitting parsimoniously parameterized
ARMA models for Aye and then drawing inferences about persistence from the resulting
parameter estimates. The other strategy is less parametric in nature.

Congider first the more parametric strategy. Here, two different approaches for

achieving parsimony have been pursued. Authors like Campbell and Mankiw (1987a)
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achieve parsimony by limiting the orders of the autoregressive and moving average
components of the ARMA representation of the data, 1In particular, C{L) is assumed to

be of the form

5

c(L) = (6}

L)

R
—

where 8(L) and ¢{L) are polynomials in the lag operator of order g and p, respec-
tively. This implies an ARMA(p,q) representation for LA No additional restrictions
are imposed on the model. To test the null hypothesis that y. is trend stationary
[that is, C{1) = 0], Campbell and Mankiw obtain both an unconstrained estimate of C(L)
and an estimate of C(L) subject to the constraint that C(1) = 0. Given some metric
for Jjudging the empiriecal plausibility of the constraint, they calculate C{1) =
8(1)/6(1} using the preferred model.

& second strategy for achieving parsimony is to work within the confines of an
unobserved components model, Here the idea is Lo model ¥y as the sum of permanent and
temporary components: y, = Zy + Cp, where z; and e, are difference and trend sta-
tionary stochastic processes, respectively. A4n important advantage of this approach
is that parsimonious representations for Z, and e, will imply ARMA representations for
Ay, with high autoregressive and moving average components. For example, Watson
(1986) assumes that 2, 1s a pure random walk and ¢, has a second-order autoregressive
representation. In addition, he assumes that z, and ¢, are orthogonal processes.
Under these assumptions, his model generates an ARMA(2,2) representation for Ay that
is completely described by four parameters: the variances of the innovations to Z¢
and ¢, and the autoregressive parameters of c..

We think of unobserved components models of Ay, as simply devieces for achieving
parameter parsimony in ARMA models. From this perspective, the particular decomposi-
tion adopted need not be structural In any interesting economic sense. Indeed, this
approach for achieving parsimony may be quite useful for forecasting purposes even if

the restrictions are false, However, as a device for obtaining the true cyeclieal
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component of the data, this approach is more problematic. This is because there
exists an uncountable number of decompositions for Y¢» even if we impose the assump-
tion that z. and c. are orthogonal processes (Quah, 1988). Each decomposition implies
precisely the same univariate time series representation for yi- Obviously, strong
restrictions are required to identify z, and Cp - Unfortunately, the economic motiva-
tions behind the decompositions used in the unobserved components literature are often
left unspecified and are at best problematic when viewed from the perspective of eco-
nomic theory.

For example, the Beveridge and Nelson (1981) decomposition assumes that the inno-
vations to Zy and c are perfectly correlated. This is clearly incompabible with real
business cycle models in which there is more than one shock (such as in Christiance and
Eichenbaum, 1988b; Braun, 1983; or MeGratten, 1983). At the other extreme, the
assumption that z, and ¢, are orthogonal processes is also incompatible with these
models. HRBC models often do lead to unobserved components representations for Ve {as
in King, Plosser, Stock, and Watson, 1987). However, nothing inherent in the models
underlying these representations implies that Vi ought to be difference stationary (as
opposed to trend stationary) or, if so, that zg ought to be a random walk. Finally,
and most importantly, when agents' environments have more than one shock, z, and ¢
will be imperfectly correlated. But these are precisely the circumstances under which
unobserved components models are not identified (Watson, 1986).

The set of restrictions imposed on C(L) by a particular unobserved components
model clearly influences inference about C{1). One way to see this is to compare
Campbell and Mankiw's (1987a) results with those of Watson (1986). Working with an
unconstrained ARMA(2,2) model for Ay, Campbell and Mankiw estimate C(1) to be 1.52.
But Watson's unobserved components, constrained ARMA(2,2) model _generates a quite
different estimate: 0.57. Aside from a minor discrepancy in sample period, the only
difference bhetween the two procedures is the constraints imposed by the unobserved

components model. The point of this comparison is not to evaluate the relative plau-
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sibility of these two parametric procedures for estimating C(1). Instead, we only
want to emphasize--as Watson (1986) does--that inference about C(1) can be very sensi-
tive to different identifying assumptions about C(L).

In contrast to the parametric approaches discussed above, Cochrane (1988a) pro-
poses the following statistic to measure persistence:

K var(yt - yt_k)
vz 5

kGAy

k

; 1 JE (7

k-1
=1+2 )
3=
Here giy = var(yt - yt—l)’ Py = COV(Ayt’“yt~j}/°iy' and k = 2, 3, .... [3ee Cochrane,
1988a, for a proof of the equality in {(7).] For a given value of k, Campbell and
Mankiw (1987a) estimate vk by replacing the population moments in {(7) with their
sample analogs. (For an alternative estimator, see Cochrane, 1988a.) We denote the
sample estimator of vk by Vk.
To motivate the usefulness of VK as a measure of persistence, we use the fact
that

: k 2
V= iif Vo= Sﬂy(1)/dAy' (8)
Here SAy(” is the spectral density of Ay, evaluated at frequency zero. Let z = elv

for w ¢ [0,27]. 1If Ye has the law of motion given by (5), then

2

_ -1
Sby(z) = C(z)C(z )Un' (9)
Consequently,
22,2
v = {c(n)] Gn/cﬂy' (10)

Combining (8) and (10), we see that the issue of whether a time series is trend sta-
tionary [that 1s, C{(1) = 0] or difference stationary [C(1) # 0] is equivalent to ask-

ing whether the value of its sapectral density at frequency zeroc {(z = 1) is zero or

nonzero, respectively.
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To implement this estimator, one must choose a value of k. Consequently, the
crucial identifying assumption underiying this measure of persistence is the assump-
tion that whatever value of k is chosen, the higher autocorrelations are of negligible
importance. Cochrane (1988a) argues that for real GNP a good value for k is in the
region of 20-30 years. The key point is that, unlike parametriec ARMA approaches,
Cochrane's procedure does not exploilt information about the short-run dynamies of Ve

to measure long-run dynamics.

UNIT ROOTS IN REAL GNP: DO WE KNOW?

Parametric Measures of Persistence

In this section, we analyze the persistence of U.S. real GNP using the parametric
. methods discussed above, We begin by estimating a variety of parsimoniously parame-
terized ARMA models for the first difference of the log of quarterly real GNP using
data from 1948:1 to 1985:4. To estimate the models, we used Ansley's (1979) exact
maximum likelihood procedure. As Campbell and Mankiw (1987a) do, we restriet our-
selves to ARMA(p,q) models with p =0, 1, 2, 3 and q = 0, 1, 2, 3, but do not consider
the case in which both p and g equal zero. In addition to estimating the uncon-
strained ARMA models, we estimated the models {(those for which g 2 1) subject to the
constraint of trend stationarity [e(1)} = C(1) = 0].

Qur estimation results are in Table 1. There we report twice the difference of
the log likelihood values associated with the unconstrained and constrained versions
of each ARMA model. The corresponding number in parentheses is the probability value
of the associated likelihood ratio statistic implied by the chi-square distribution
with one degree of freedom. These probability values are included as a convenient
benchmark only. Standard justifications for interpreting the likelihood ratio sta-
tistic as a realization from an asymptotic chi-square distribution rule out unit mov-
ing average roots under the null hypothesis. (See Kohn, 1979, and Plosser and
Schwert, 1977.) Each estimated ARMA model generates an estimate of C{1), which we

denote by C{1). The sample estimator of C(1) is simply 8(1)/¢6{(1). Sinee C(1) = 0 by
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construction for the constrained models, Table 1 reports the value of C(1) correspond-

ing to only the unconstrained models.

We want to emphasize four key features of our results:

Generally, imposing the constraint C(1) = 0 causes a greater deterioration in
the likelihood function of the more parsimoniously parameterized models. For
example, the drop is very dramatic in the p = 0 models, where the likelihood
ratioc statistic exceeds 150. The smallest drop occurs in the models with
p 21 and q = 3, where the deterioration in the likelihood function is triv-
ial. Indeed, using conventional sampling theory, we cannot reject the null

hypothesis that C(1) = 0 at the 30 percent significance level.

An important exception to the general pattern that more parsimony implies a
smaller likelihood ratio statistic is the ARMA(2,2) model. 1In the class of
models with p = 2, this 1s the only model in which, using conventional sampl-
ing theory, we can reject the null hypothesis that C{1) = O at the 5 percent

significance level.

With the exception of the ARMA(3,3) model, all of the estimated values of
C{1) are substantially greater than 1. At the same time, for most of the
models, the likelihood ratic statistic suggests a great deal of uncertainty

about the true value of C{1}.

In the ARMA(3,3) model, the only specification for which the global maximum
of the likelihood function ocecurs at C{1) = 0, one of the autoregressive

roots equals 0.949, so that there is near parameter redundancy.

An alternative way to represent our results is to display the graph of the mazi-

mized value of the likelihood surface of the different ARMA models as a funection of

c(1).

above.

This representation makes even clearer the first three features discussed

For a fized value of C{1) equal to k, the parameters of the ARMA model must
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satisfy the restriction 6(1) - k¢(1) = 0. To generate the desired likelihood surface,
we compubed the maximized value of the likelihood funection for all the ARMA(p,q)
models with p 2z 1, q 2 0, subject to this restriction. In so doing, we chose values
of k belonging to the grid defined by the boundaries zero and 2 and fixed grid size
0.01.

The resulting likelihood surfaces for the ARMA(OQ,q), ARMA(1,q), ARMA(2,q), and
ARMA(3,q) models are displayed in Figures 1la-1d, respectively. The lowest, middle,
and highest curves in each figure correspond to ¢ = 1, £, and 3, respectively.
According to these figures, all of the likelihood surfaces have a local maximum at a
large value of C{(1). Moreover, all of the surfaces corresponding to models with a
nontrivial moving average component flatten out as C{1) goes to zero. This is a mani-
festation of the well-known fact that the slope of the exact likelihood function is
zerc on the unit circle.1

To =mee our first result, compare the global maximum of the likelihood function
with its value at C{71) = 0. Generally, the distance between these twoc values is
smaller for the more profligately parameterized models. For example, whenever p z 1
and q = 3, the global maximum of the likelihood function is very close to its alterna-
tive values. Consistent with our second result, the ARMA(2,2} model stands out as an
exception to this pattern. More typical are the ARMA(1,1) and ARMA(Z2,3) models, in
which the global mazximum is extremely close to the value of the likelihood function at
C(1) = 0. Fipally, consistent with findings in Plosser and Schwert (1977), the graphs
in Figures 1la-1d indicate that conventional estimates of the standard error of E(T)
are likely to overstate the precision with which C(1) is estimated. This is because
conventional methods for computing standard errors are based on the local ecurvature of
the likelihood function at 6(1). For most of our models, there is substantial curva-
ture around 6(1) but little difference between the value of the likelihood funection
at 6(1) and C(1) = O. Interestingly, conventional methods for computing standard

errors do not give misleading results for the ARMA(1,3) and ARMA(3,3) models. In both
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cases, the likelihood function is basieally constant over the whole range of values
for C(1} which we considered.

Qverall, the results in Table 1 and Figures ta-1d show that inference about C(1)
is extremely sensitive to the choice of ARMA model, that is, the choice of p and g.
Some of the ARMA models support the difference stationary perspective since they indi-
cate that C(1) is large and precisely estimated. Models in this category include the

ARMA{1,1), ARMA(2,2), and ARMA(O,q) specifications, q = 1, 2, 3. But other ARMA
models are consistent with the trend stationary perspective because they indicate that
elither C(1) = 0 or little can be sald about its value. Models in this category
include the ARMA(2,1), ARMA(3,1), and ARMA(p,3) models, p = 1, 2, 3. The key question
iz, Which perspective is best able to account for these apparently conflicting
results?

To answer. this question, we adopt the following approach. First, we ask whether
an empirically plausible trend stationary data-generating mechanism exists that can
explain those results in Table 1 which appear to support the difference stationary
perspective. Then we ask the analog question for difference stationary data-
generating mechanisms.

This general strategy for selecting between competing explanations of apparently
contradictory statistical results was described and implemented in Christiano and
Ljunggvist (1988).2 To apply this strategy, each exzplanation must be formalized as
one or more fully specified data-generating mechanisms. To represent the trend sta-
tionary perspective, we chose two models. The first is our estimated ARMA(3,3)
model. In addition, we considered an ARMA(1,3) model in order to ensure that any
results based on the ARMA{3,3) model are not sensitive to the fact that it has a rela-
tively large number of parameters. Although our estimated ARMA{1,3) model implies a
large value for C(1), the likelihood function hardly deteriorates when we impose the
constraint that C(1) = 0 (Figure 1d). Indeed, when Campbell and Mankiw (1987a) esti-

mate the ARMA(1,3) model using a slightly different data set and a slightly different
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estimation method, the global maximum actually occurs at 6(1) = 0.3 Consequently, we
chose as our sscond trend stationary mechanism the Campbell-Mankiw ARMA(1,3) model. "’

To represent the difference stationary perspective, we chose our estimated
ARMA(2,2) model, The choice of only one model reflects our need to economize on com-
putational costs. This particular model was chosen because we think it has the best
chance of accounting for the evidence in Table 1 that C{1) = 0 or is imprecisely esti-
mated. In addition, focusing on the ARMA(2,2) model has the important advantage of
making our results directly comparable to those of Campbell and Mankiw {1987a).

We analyze the relative plausibility of the trend and difference stationary per-
spectives using two questions: Can the ARMA(3,3) and the trend statlonary ARMA(1,3)
specifications account for the high likelihood ratic statistiec and the high value
of 6(1) obtained using the ARMA(2,2) model? And can the ARMA(2,2) model account for
the low likelihood ratio statistics and the wvalue of 6(1) obtained using the ARMA(1,3)

and the ARMA(3,3) models?

Evaluating the Trend Stationary Perspective

To assess the plausibility of the trend stationary perspective, we conducted the
following Monte Carlo experiments. We generated 2,000 data sets, each 151 observa-
tions long, using our estimated ARMA(3,3) model and the Campbell-Mankiw ARMA(1,3)
model.5 For each realization of 151 observations, we estimated both constrained and
unconstrained ARMA(2,2) models and then computed a likelihood ratio statistic to test
the null hypothesis that C(1) = 0. The frequency distributions of these likelihood
ratio statistics, as well as the distribution of the chi-square statistic with one
degree of freedom, are displayed in Figure Za.

In Table 1, we reported that the ARMA(Z2,2) model produced a likelihood ratio
statistic of 1.356 when we tested the null hypothesis that C(1) = 0. Our Monte Carlo
evidence reveals that if the true data-generating mechanism was our ARMA(3,3) model,
then a likelihood ratio statistic greater than or equal to 4.356 would actually occur

T4 percent of the time. If the true data-generating mechanism was Campbell and
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Mankiw's (1987a) ARMA(1,3) model, then this would occur 38 percent of the time. Obvi-
ously, these numbers are much larger than the frequency of U4 percent predicted by the
conventional chi-square distribution. Indeed, Figure 2a reveals that the likelihood
ratio statistic of 4.356 is close to the central tendency of that statistic for
ARMA(1,3) and ARMA(3,3) models. Evidently, both of these trend stationary models can
easily account for the high likelihood ratio statistic associated with testing the
null hypothesis of trend stationarity obtained with the ARMA(2,2) model.

By-produets of the preceding Monte Carle studies are simulated frequency distri-
butions for the values of 6(1) obtained using the ARMA(2,2) model in data generated by
the ARMA(3,3) and ARMA(1,3) models. These frequency distributions are plotted in
Figure 2b. The main characteristics of the two distributions are very similar. Both
are bimodal. The larger mode is centered about a value of C{1) substantially greater
than 1, while the smaller mode 1s centered about zero. The unconditional means of
6(1) are 1.43 and 1.23 when the data are generated by the ARMA(3,3) and ARMA(1,3)
models, respectively. The corresponding standard errors are 0.39 and 0.57. Comparing
these values with the value of 6(1) produced by the ARMA(2,2) model (1.53), we con-
clude that both the ARMA(32,3) and the ARMA(1,3) models can easily account for the
estimate of C(1) obtained with the ARMA(2,2) model.

Campbell and Mankiw report that, with the ARMA(2,2) model, 6(1) = 1.52, with a
standard error of 0.16. While our reported standard errors are larger, this may
partly reflect the tendency of. standard errors based on the loecal curvature of the
likelihood function to overstate the precision with which C(1) is estimated. We con-
Jjecture that standard errors based on local curvature of the likelihood function will
on average correspond to the standard deviation of 6(1) conditional on being in the
larger mode of the bhimodal frequency distribution. Scme support for this conjecture
is provided by the fact that the standard errors of 6(1) conditional on being In the
larger mode of Figure 2b are 0.20 and 0.23 when data are generated hy the ARMA(3,3)
and ARMA(1,3) models, respectively. [The corresponding mean values of 6(1) are 1.51

and 1.46.]
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Specification Error and Near Parameter Redundaney. So far, we have established

that the ARMA(2,2) results can easily be accounted for by both of our trend stationary
models. At first glance, this may seem surprising, for at least two reasons. First,
in both data-generating mechanisms, C(1) = O by construction; yet the estimated value
of C{1) is typically quite large. Second, it is well known that, when a moving aver-
age root is near the unit ecirele, maximum likelihood parameter estimates have positive
mass on the unit ecircle (Sargan and Bhargava, 1983). This is referred to as the

pileup phenomenon. Our data-generating mechanisms have an exact unit moving average

root. As Campbell and Mankiw (1987a) emphasize, the pileup phenomenon suggests that,
cther things equal, conventional sampling theory substantially understates the evi-
dence against the null hypothesis that C(1) = 0. In sharp contrast, our Monte Carloe
experiments reveal that the conventional probability value of 4§ percent associated
'with the llkelihood ratio test of C(1) = O substantially overstates the evidence
against the null hypothesis of trend stationarity.

Now we show that two key factors account for the results in Figures 2a and 2b:
(1) the specification error arising from the fact that the ARMA(2,2) model is mis-
specified from the perspective of either the ARMA(1,3) or the ARMA(3,3) model and (2)
the near parameter redundancy problem which arises from the fact that both trend sta-
tionary models have an autoregressive root near the unit circle., We begin by provid-
ing the underlying intuition using large-sample arguments. Then we present the
results of a suitably chosen Monte Carlo experiment.

Our large-sample argument is based, in part, on the probability limit (plim) of
the ARMA(2,2) model when we assume that the true data-generating process corresponds
to the estimated ARMA(3,3) model. This plim was calculated by first simulating a
realization of 20,000 observations from the estimated ARMA(3,3) model and then esti-
mating an ARMA(2,2) model on the synthetic data set. The resulting ARMA(2,2) model is

given by

(1 - 0.6249L + 0.461HL2)Ayt = (1 - 0.3143L + 0.5934L)n, . (11)
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The model summarized by (11) implies that C(1) = 1.53, a value very different from
zero, the true value of C(1) in the data-generating process. Evidently, the impact of
specification error is to substantially bias the estimate of C(1) away from zero.

A4 striking feature of the previous result is that the plim of 6(1) actually
corresponds (up to three decimal places) to the value of 6{1) cbtained from the
ARMA(2,2) model estimated with the actual U.S. data (Table 1). To understand this
result, recall the near redundancy of the parameters describing the ARMA(3,3) model.
As reported in Table 1, the autoregressive and moving average roots of that model are
(0.299 = 0.565i, 0.949) and (0.133 + 0.747i, 1), respectively. Since 0.949 is close
to 1, the ARMA(Z2,2) model defined by stripping away both these roots has roughly the
same covariance structure as the estimated ARMA(3,3) model. Equation {11) reveals
that this is indeed what the probability limit of the misspecified ARMA(2,2) model
amounts to. This is because the autoregressive and moving average roots in (11) are
(0.312 + 0.6031) and (0.157 & 0.754i), respectively. These are very close to the
corresponding roots of the ARMA{2,2) model estimated using the postwar U.S. data:
(0.293 = 0.614i) and (0.139 + 0.776i). Since C(1) is determined entirely by these two
roots, the two ARMA(2,2) models generate essentially identical values.

The previous reasoning takes as given that a maximum likelihood estimator of the
misspecified ARMA(2,2) model wants to ignore the maximal autoregressive and moving
average roots of the ARMA(3,3) model, even though this has the effect of converting
the model into one with a large value of C(1). Why should this be so? With a large
amount of data, maximum likellhood selects a theoretical spectral density that matches
as closely as possible the true spectral density of the data. When the model Lo be
estimated is correctly specified, the estimated spectral density will, in population,
coincide with the true spectral density matrix. However, since the ARMA(2,2) model is
misspecified, the estimated spectral density cannot match the true spectral density
matrix at all frequencies. From this perspective, the relevant question is, Which

frequencies will bear the brunt of the specification error?
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&n implication of results in Christiano and Eichenbaum (1987) and Cochrane
(1988a) is that maximum likelihood seeks to minimize the average percentage error of
the discrepancy between the theoretical spectral density matrizx of the misspecified
model and the true spectral density matriz. Let Sﬂy(e'im) dencte the spectral density
of the true model at frequency w € [0,2%]. The spectral density of the estimated
model is C(e—im;:b,e)C(eiw;d:,e)ai. Here we have modified our notation slightly in
order to explicitly refleet the dependence of C on the autoregressive parameters, ¢;
the moving average parameters, 9; and the imnnovation variance, Uﬁ' In population, the

maximum likelihood estimator of ¢ and 8 minimizes6
IF sﬁy<e‘i“’)x[c<e‘i‘°;¢,e)c(e“";qa,e)] du. (12)

Notice, Cfirst, that when the true. data-generating process is trend stationary,
C{1) = 0. This implies that Sﬁy = 0 at frequency zero [equation (9)]. By continu-
icy, SAy will be small in a neighborhood around freguency zero. Consequently, other
things equal, the method of maximum likelihood will sacrifice accuracy in a neigh-
borhood of frequency zero Iin order to achieve a better rit over intervals of higher
frequencies. This suggests the possibility that the impact of specifiecation error
will fall heavily on the object of interest, C(1). Second, notice that errors over
any small band of frequencies do not contribute in an important way to the criterion
function which maximum likelihood is minimizing.

To understand the combined Impact of these considerations, examine Figure 3a,
which displays the spectra of LYy implied by the estimated ARMA(3,3) model and the
ARMA(2,2} model of equation (11). Two features of the first spectral density are
worth noting: (1) There are two regions in which the level of the spectral density
undergoes substantial change--the area around frequency zero and the area around the
seasonal frequency, 1.5. (2) The first region is smaller than the second because of
the very steep slope of the spectrum near zero. This reflects the near parameter

redundancy of the ARMA(3,3) model.
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Figure 3a shows that the misspecified ARMA(2,2) model described by (11) succeeds
in closely mimicking the high-frequency properties of the ARMA(3,3) spectrum. Indeed,
the two spectra are virtually identical for values of w exceeding 1, that is, time
periods less than 6.3 quarters. The brunt of specification error is heavily borne by
the low frequencies.

To better understand the nature of the trade-offs involved in fitting the mis-
specified ARMA(2,2) model, consider the following experiment. Suppose that we forced
the ARMA(2,2) to match the low-frequency behavior of the ARMA(3,3) model. What would
the cost be? To answer this question, we computed the plim of the ARMA(2,2) model
subject to the constraint that C{1} = 0.” The resulting spectrum is shown in Figure
3b, where that of the ARMA(3,3) is repeated, from Figure 3a. Ais can be seen, the
constrained A4RMA{2,2) model succeeds in capturing the behavior of the ARMA(3,3) model
In the neighborhood of w = 0. However, Lo accomplish this, it must set one of the
autoregressive roots close to 1. This root and the unit moving average root have a
negligible effect on the spectrum at higher frequencies because they cancel each other
out at those frequencies. Consequently, the ARMA(2,2) model has only two parameters
left to match the relatively complicated seasonal and high-frequency dynamics of the
ARMA(3,3) model. The best that the constrained ARMA(2,2) model can do is to ignore
the seasonal dip and draw a smoothed version of the ARMA(3,3) spectrum at the higher
frequencies. The misspecified ARMA(2,2) model simply does not have enocugh flexibility
to capture the dynamics of the ARMA(3,3) spectrum at both the zero and the seasonal
frequencies., Our analysisz indicates that when foreced to choose which dynamies to
mimic, the unconstrained ARMA(2,2) simply gives up on the long-run dynamics.

Specification error will not always result in a biased estimate of C{1). The
fact that the ARMA(2,2) model generates a large value of 6(1) depends critically on
the near parameter redundancy in the ARMA(3,3) model. A simple way to see this is to
repeat our previous experiment but assume a trend stationary ARMA(3,3) model in which

the problem of near parameter redundancy is less severe. Figure 3c displays the spec-
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trum of the ARMA(3,3) model obtained by replacing the largest autoregressive root,
0.949, in our estimated ARMA(3,3) model with 0.500. Comparing Figures 3a and 3¢, we
see that the primary effect of reducing the maximal autoregressive root is to expand
the band about frequency zero in which the level of the spectrum undergoes substantial
change. This suggests that maximum likelihood will give greater weight to matching
the low-frequency dynamics of the modified ARMA{3,3) model. Indeed, the plim of the
ARMA({2,2) model fit to data generated by the modified ARMA(3,3) model turns out to
imply a wvalue of 6(1) precisely equal to zero. Figure 3¢ also displays the spectrum
of this ARMA(2,2) model. Notice that the spectrum exactly coincides with that of the
modified ARMA(3,3) model at w = 0 and matches its low-frequency behavior quite
closely. At the same time, It does quite poorly with respect to the high-freguency
behavior. As before, the misspecified ARMA(2,2) model does not have enough flexi-
bility to capture the dynamies of the ARMA(3,3) spectrum at both the zeroc and the
seasonal frequencies. Bub now, when forced to choose which dynamics to mimie, the
ARMA(2,2) model chooses to mimic the long-run dynamies. By reducing the severity of
the near parameter redundancy problem, we have lncreased the cost of ignoring the
long-run dynamics.

The previous large-sample considerations suggest that, without  near parameter
redundancy, the trend stationary perspective could not have accounted for the large
value of 6(1) agsociated with the ARMA(2,2) model. To show that this is indeed true,
we repeated the Monte Carlo study of Figure 2a using the modified ARMA(3,3) model
which has a maximal autoregressive root of 0.5. When we did this, we found that only
3 percent of the simulated likelihood ratio statistics exeeed the wvalue reported in
Table 1, 4.356. This stands in sharp contrast to Figure 2a, uwhere T4 percent of the
gimulated likelihood ratio statistics exceed that value. Taken together, these
results establish that both specification error and the near parameter redundancy
problem allow the trend stationary models to account for the high and apparently pre-

cise estimate of C(1) obtained using the ARMA(2,2) model.®
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To summarize, from the trend stationary perspective, the high value of 6(1) asso-
ciated with the ARMA(2,2) model reflects the choice of maximum likelihood to model the
area around the seasonal d4ip in the spectrum of the data. This dip may reflecit the
effects of the procedure used by the U.S. Department of Commerce to seasonally adjust
the data (Granger and Newbold, 1977, p. 66). This, in turn, raises the possibility
that measures of persistence generated from low-order ARMA models could be very sensi-
tive to different seasonal adjustment procedures. Jaeger and Kunst (1989) obtain
precisely this result. OQur analysis provides a possible explanation for their result.

Reconeiling Qur Results With Campbell and Mankiw's. OQur results contrast sharply

with those of Campbell and Mankiw (1987a). Using Monte Carlo methods, they reach the
conclusion that trend stationary models cannot account for the results obtained with
the ARMA(2,2) model. The reason for the difference is that Camphell and Mankiw's
(1987a) Monte Carlo study assumes that the ARMA(2,2) model is correctly specified. In
particular, their data-generating mechanism is the model estimated by Blanchard
{1981), according to which Ye is a second-order autoregression about a linear trend,
with autoregressive roots equal to 0.5 and 0.84, This implies an ARMA(2,1) represen-
tation for Ay, with a moving average root of 1.

Taking as glven the estimated Blanchard model, Campbell and Mankiw generated 20
data sets, each 151 observations long. Then, using the ARMA(2,2) model, they computed
a likelihood ratio test of the null hypothesis that C(1) = 0 for each data set. Their
calculations lead to the dramatic result that the likelihood ratioc statistic does not
exceed 4.356 in any of the 20 artificial data sets.9 Obviously, under their main-
tained assumptions, the likellhood ratioc test is not biased toward rejecting the null
hypothesis that C(1) = 0. Indeed, the test rejects the null hypothesis considerably
less often than 1t should. Based on this evidence, Campbell and Mankiw infer that
Blanchard's model cannot account for the ARMA(2,2) results.

Campbell and Mankiw {1987a, p. 871) summarize their findings this way: "We con-

clude from our literature review and our small Monte Carlo study that while there are
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some statbistical difficulties with our estimator, there 1s no reason to think that
these blas us toward rejecting stationarity.” This conclusion seems warranted if the
ARMA(2,2) model is correctly specified. However, both our results and theirs point te
other empirically plausible trend stationary models relative to which the ARMA(2,2)
model is misspecified. According to these models, there is reason to think that tests

based on the ARMA(2,2) model are severely biased toward rejecting stationarity.

Evaluating the Unit Root Perspective

Now we consider whether the ARMA(2,2) model can account for the key features of
Campbell and Mankiw's estimated ARMA{1,3) model as well as our estimated ARMA(3,3)
model. The salient characteristic of both of these models is that, according to the
likelihood ratio statistic, there. is very little evidence against the hypothesis that
C(1) = 0. Suppose, in fact, that the true data-generating mechanism is given by our
estimated ARMA{2,2) model. What should we expect if we estimate an ARMA(1,3) or an
ARMA(3,3) model? Campbell and Mankiw (1987a) conjecture that the high likelihood
value associated with the test that C(1) = 0 reflects the pileup phenomenon.

To investigate that conjecture, we performed the following Monte Carlo experi-
ment. Using our estimated ARMA(2,2) model, we generated 2,000 data sets, each 151
observations long. For each data set, we estimated constrained and unconstrained
versions of the ARMA(1,3) and ARMA(3,3) models, thus generating 2,000 likelihood ratio
statistics for testing the null hypothesis that C{(1) = 0. Consistent with Campbell
and Mankiw's conjecture, we found that, for the ARMA{1,3) and ARMA(3,3) models, 37 and
47 percent, respectively, of the likelihood ratio statisties are identiecally =zero.
Figure 4 displays the frequency distributions of the estimated values of C{1) corre-
sponding to the ARMA(1,3) and ARMA(3,3) models. In hoth cases, the estimated C(1)'s
pile up at zero. This, in turn, corresponds teo a plleup of likelihood ratioc sta-
tisticg at zero.

gmong the estimated C(1)'s that exceed zero, the vast majority are greater than

1. This suggests that the typiecal likelihood surface in the Monte Carlo study
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resembles the surfaces depleted in Figures 1b-1d in two respects. First, there is a
local maximum in the region of large values of C{1). Second, the likelihood surface
is inecreasing as C(1) declines toward zero. These results are consistent with the
notion that, across synthetic data sets, the likelihood surface tilts back and forth,
with the global maximum shifting between extreme values at C{1) = 0 and C(1) > 1.
Overall, the empirical values of 6(1) implied by the ARMA(1,3) and ARMA(3,3)
models are clearly consistent with the bimodal distribution for the simulated 6(1)'3
when the data-generating mechanism is the ARMA(2,2) model. We concilude that the
ARMA(2,2) model can account for the salient characteristics of the estimated ARMA(1,3)

and ARMA{2,3) models.

Summary
We have argued that the parametric methods of Camphell and Mankiw (1987a) do not

provide a basis for taking a strong position on whether shocks to real GNP are best
characterized as having temporary or permanent effects. Perhaps the best way to con-
clude this section is to consider Figure 5, which displays the impulse response func-
tions of real GNP implied by a subset of the ARMA models that we estimated. Ineluded
are the impulse response functions implied by the Blanchard ARMA(2,1) model estimated

using his data up to 1980 {(old Blanchard), the updated version of that medel estimated

using our larger data set (new Blanchard), as well as our estimated ARMA{2,2) and

ABMA(3,3) models.'’ Notice that all of the impulse response functions have very sgsimi-
lar shapes for the first 5-10 quarters. Only after this is the impulse response func-
tion of the difference stationary ARMA(2,2) model radically different in shape from
that of the trend stationary models. To sharply differentiate among these models
would require reasonably precise information about the higher-order autccorrela-
tions. Needless to say, these are not estimated very precisely with postwar U.S. real
GNP data.

Campbell and Mankiw concluded that a 1 percent innovation in real GNP ought to

induce a revision in the long-run forecast of real GNP of more than 1 percent.
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Suppose by the long run we mean anything more than four years. Figure 5 indicates
that this conclusion is supported only by the ARMA{2,2) model. None of the trend
statlonary models support it, and one of these models, the ARMA(3,3), is at least as
plausible as the ARMA(2,2).

Figure 5 also reveals that all of the ARMA models we investigated have impulse
response functions above the old Bilanchard model. Suppose we accept Blanchard's
(1981, p. 150) assertion that this model summarizes macroec&nomists' views in 1980
about the nature of the dynamics in real GNP. On this premise, it seems fair to con-
clude that macroeconomists must now revise upward their point estimate of the half-
life of an innovation in real GNP. This is true regardless of whether they take a
trend or a difference stationary perspective. Less obvious is the idea that the
increased point estimate has any economic significance. We know of no interesting
case in which the differences in persistence among the three trend stationary models
in Figure 5 are impor-tant.11 Later we will discuss whether there are interesting eco-

nomie issues at stake in adopting a unit root perspective.

Nonparametric Measures of Persistence

Above we argued that one cannot distinguish between the competing null hypotheses
that postwar U.S. real GNP 1i1s trend stationary or difference stationary using the
parametric methods of Campbell and Mankiw (1987a). A natural response to this problem
iz to examine the persistence of real GNP using the nonparametric methods of Cochrane
{1988a).

k for the values of k used

Table 2 reports Cochrane's variance ratio statistic ﬁ
by Campbell and Mankiw (1987a). The numbers in parentheses are asymptotic standard
errors computed using the formula of Priestly (1982, p. 463): s.e. (Gk) =
Vk{(3/4)[T/(k+1)]}1/2. To make our results comparable with those above, we also
report nonparametric estimates of C{1), obtained from ﬁk, using a transformation dis-

cussed in Campbell and Mankiw (1987a). Let RE = 1 - cﬁ/ciy. Then (8) can be written

as
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c(1) = [v(1-%)] V2 (13)

Here RZ is the fraction of the variance in Ayy that is predictable using all lagged
values of Ay, . Let p denote the first-order autocorrelation of Ay, - Campbell and

Mankiw's (1987a) nonparametric estimator of C(1)}, 6(1)k, is defined by
c(¥ = [vk/iu-p‘?)]”2 (14}

where ; is the sample estimate of the first-order autocorrelation of Ay.

In practice, to calculate Cochrane's variance ratio statistic, we must choose a
value of k. As we stressed earlier, the key identifying assumption underlying this
measure of persistence is the assumption that, whatever value of k is chosen, the
higher autocorrelations are of negligible importance. This suggests that k should not
be chosen too small. To see this, notice that 61 =1+ pg. As long as 4y, is posi-
tively autocorrelated, 61 Wwill exceed 1 even if the process is trend stationary. But
when k = T - 1, Gk = 0 by construction. Clearly, k should not be chosen too large
relative to the sample size, T. Table 2 reports the values of ﬁk and E('I)k for a
variety of values of k. Comparing Tables 1 and 2, we see that, roughly, the non-
parametric estimates of C(1) are lower than the parametric estimates of C(1). But the
reported standard errors, calculated using the Priestly formula, are all quite large
relative to the point estimates.

According to Table 2, distinguishing between the classes of trend stationary and
difference stationary models using Cochrane's nonparametric measure of persistence is
difficult. Unfortunately, we cannot formally test the null hypothesis of trend sta-
tionarity since, under that null hypothesis, Priestly's formula for the standard error
of Gk equals zero for all k. We can, however, ask whether the representative models
discussed in the last section are consistent with the computed Gk's.

To investligate this question, we performed the following Monte Carlo experi-

ment. We considered three data-generating mechanisms: the Campbell and Mankiw

ARMA(1,3) model and our estimated ARMA(2,2) and ARMA(3,3) models. For each of these,
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we generated 2,000 data sets, each with 151 obszervations. We then calculated %k for
k=1, 2, ..., 75 using each of the data sets. The results of our experiment are
reported in Table 2. To understand these numbers, consider a particular column, say,
the one labeled ARMA(1,3). Any given row in that column corresponds to a particular
value of k. The corresponding entry in the row is the fraction of times (out of

2,000) that the k-lag variance ratio statistic calculated from the simulated ARMA(1,3)

data eXceeds the corresponding empirical value of Vk reported in column (3). The
numbers in the columns labeled ARMA(2,2) and ARMA(3,3) are constructed in an analogous

way. Notice that the probability values in columns (4)-(6) lie between 0.18 and 0.73,

s0 that the empirical Vk's in column (3) can be accounted for by each of our three

k's do not

ARMA models. We conclude that, even from this limited perspective, the ﬁ
let 'us discriminate between trend and difference.stationary representations of the
data.

Examining the same empirical variance ratio statistics, Campbell and Mankiw
{1987a, p. 875) conclude that "the nonparametric estimates thus confirm our finding
that postwar quarterly real GNP appears to be more persistent than a random walk."
The reason Campbell and Mankiw give for reaching this conclusion is that "ﬁk for the
real GNP data are consistently . . . larger than one would expect to find for a random
walk in a sample of this size" (pp. 87T4-75). This can be seen in Figure 6, which

plots the mean values of the Vk

the ﬁk'

's implied by the random walk model, together with
8 calculated using the data. What Campbell and Mankiw's reasoning Ignores is
that a large class of trend stationary models, Iincluding those which they consider,

k's which closely mimic their empirical counterparts. This

imply mean values for the G
also can be seen in Figure ©, which displays the mean values of ﬁk implied by our
estimated ARMA(3,3) model.

A different way to state our objection to Campbell and Mankiw's argument is that
it implicitly assumes that the direction and magnitude of the bias in ﬁk is relatively

Insensitive to the underlying data-generating mechanism. Unfortunately, this assump-
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tion is not true. Suppose that the underlying data-generating process is a random
walk, Campbell and Mankiw {1987a}, among others, stress that, in this case, the vari-
ance ratio statistic is severely downward biased. In contrast, suppose the true
generating mechanism is our estimated ARMA(3,3) process, so that V = 0. According to
Figure 6, the ak's are consistently much larger than zerco, even for k = 75. We infer
that, at least for this data-generating mechanism, the varlance ratio statistic is
very substantially upward biased.

We conclude that, given the sample size of our data set on real GNP, the variance
ratio statistic gives us almost no reliable information. Our nonparametric estimates
of V and C{1) are no doubt consistent with the view that postwar U.S. real GNP is more
persistent than a random walk. But they are at least as consistent with the view that
postwar U.S. real GNP is less persistent than a random walk., Which view is true? We

can't tell.

UNIT ROOTS IN REAL GNP: DO WE CARE?

Suppose we knew the answer to the question, How much should one revise a long-run
forecast of aggregate output in response to an Innovation in U.S. real GNP? Would we
care? At one level, the answer is obvious: unit roots per se cannot be very impor-
tant. The existence of a unit root means only that C{(1) # 0; that does not preclude a
value of C{1) arbitrarily close to zero. We do not know of any model in which agents’'
decision rules are discontinuous in C{1)}. Therefore, it seems likely that for any
trend stationary specification of the foreing variables in agents' environments, some
difference stationary specification will imply arbitrarily similar dynamic behavior.

In practice, however, this is not the perspective of concern to economists.
Typically, the analyst's problem is not one of selecting between different specifica-
tions with arbitrarily similar values for C{i). Usually, the decision to model a time
series as difference or trend stationary leads the analyst to adopt specifications
with very different implications for C(1). For example, in Deaton's (1986) analysis

of the PIH, the difference and trend stationary specifications for measured labor
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income imply values of C{1) near 1.5 and zero, respectively. Similarly, in Hansen's
(1989) analysis of RBC models, the difference and trend stationary specifications for
technology shocks imply values of C(1) equal to 1 and zero, respectively. In both
cases, the dynamic properties of the endogenous variables behave very differently
depending on which specification is chosen.

Here we argue that the dramatic results obtained by Deaton and Hansen do not
reflect model sensitivity to unit roots per se or even the value of univariate mea-
sures of persistence like C(1). Rather, they reflect the assumption that the forcing
variables of concern to agents are driven by a single shock. Under these circum-
stances, the assumption of difference stationarity implies that all of the shocks to
agents' enviromments have purely permanent effects, Onee the unit root issue is
decoupled from the temporary/permanent Issue, the unit root issue loses much of its

quantitative significance.

Unit Roots and the Permanent Income Hypothesis

Because of its simplicity, the PIH is a convenient vehicle for illustrating both
why unit roots seem to matter and why they may not matter after all. We use the PIH
for illustrative purposes only. Unobserved component models of labor income will not
remedy the empirical shortcomings of the PIH (West, 1988a). More generally, this type
of modifiecation to the basic model camnot account for the faect that the orthogonality
conditions implied by the PIH are violated by the data (Flavin, 1981; Campbell and
Deaton, 1988; Campbell and Mankiw, 1989; and Christiano, Eichenbaum, and Marshall,
1989).

According to the PIH, the level of consumption depends on hoth asset and labor
income. However, given a constant real interest rate, the aonly thing that induces
househelds to set date t consumption, Cy s Lo a value different from,ct_1 iz news about
current or ezxpected future labor income, yﬁ. When such news arrives, households
adjust consumption by the amnuity value of the resulting revision to expectations

about yt+s for s = 0, 1, .... This annuity value, computed using the constant inter-
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est rate r, 1ls the change in consumption that can feasibly he maintained indefinitely

in an expected value sense. Formally, the PIH posits that

1 o 1 41 5 A
tE " t+r 2J'.:O(-‘l—-l-"l;"] {Etyt+i - Et.-1yt+]’_}' (15)

¥r

Hall (1978) describes a partial equilibrium consumer optimization problem with a solu-
tion which implies (15), while Christiano (1987), Hansen (1987), Sargent (1987), and
Christiano, Eichenbaum, and Marshall (1989) discuss general equilibrium environments
which rationalize relation (15).

We now consider the case that has been made for the view that unit roots
matter. Suppose that agents only see yi and that its univariate time series represen-
yi; that is, e, = yi - E¢_
1y§. To see how sensitive 4c, is to C(L), .suppose that yt iz a first-order auto-

tation is A 2 = C(L)et. Here € is the innovation in
¥t

regression about a trend with autoregressive parameter o, so that C{L) = (1-L)/(1-
$L). When ¢ = 1, yt is simply a random walk JC{L) = 1}. UNotlice that C{1) drops dis-
continuously to zero for values of ¢ less than 1. With this general specification of

C{L}, equation (15) implies that

Ac_ = C(—1']et = ?_‘_—;—:—; €y - (16}

One way of measuring the sensitivity of the model's implications to different
specifications of ¢ is to examine the relative volatility of consumption, Vﬁc. Deaton
(1986) and others define Vo 38 the ratio of the standard deviation of changes in

1/2, to the standard deviation of the univariate innovation

consumption, [E(Act)zl
in yi, G- For simpliecity, suppose r = 0.01. Then, according to (16}, Vpo = 1 when
¢ = 1. However, V,, = 0.5 when ¢ = 0.99. Obviously, the impact on consumpticn vola-
£ility of a change in ¢ is very large for values of ¢ in a nelghborhood of 1., This
sengitivity reflects the fact that households place substantial weight on expected

income in the distant fubture. And this is precisely where small differences in ¢ in a

neighborhood of 1 have large effects.’
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At first glance, then, this example seems to provide powerful motivation for the
view that economists should care about unit roots. However, we think the example is
misleading. To demonstrate why, we use an argument in Quah {1989) which draws out the
implications of the well-known fact that there exists an infinite number of orthogonal
decompositions of difference stationary processes into persistent and transient com-
ponents. Let y,. and Yot denote the time t values of two orthogonal difference and
trend stationary stochastic processes, respectively, which constitute such a decom-~

position, so that
% _
Yp = Yqp * Yor- “an
Assume that the time series representations of yq. and y,. are given by

by = Cylldeyy (18)

I

8Yq, = (1-L)Co(L)eg, {19}

where ey 1s the white nolse innovation to y;¢ for i1 = 0, 1. Also, ey, and eq, are
orthogonal at all leads and lags. Consistent with its definition as the trend sta-
tionary component of yﬁ, the sum of the coefficients in the moving average representa-
tion for Ay, is zero.

For illustrative purposes, consider the random walk case, Ayi = g,, One class of

t
orthogonal decompositions of this process is given by

C(L) = 1+ 4L (20)
CO(L) =1 {(21)
o§1 = EeS, = (1+9)7%0° (22)
& =B - VEST, (23)
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for all 0 s v £ 1. To prove that (20)-(23) is a valid decomposition of yi, we need
only verify that E(Ayi) = oi and E(Aytﬂytns) =0 for sz 1.
Under the assumption that households observe y,. and y,. separately, relation

(15) implies that Act evolves according to

_ b r 1
aey = 01(1+r]€1t * 77 Solfr)eoe-

(a1)

Thus, the time t change in consumption equals the annuity value of the innovation to
the permanent component of labor income, €1 plus the annuity value of the innovation

to the temporary component, en.. Substituting (20)-(23) into {24} we obtain
y ot

be, = (1 + $/(1+r)]s1t + T—§_F 5t - (25)

Therefore, the relative volatility of consumption is given by

Vo= T + $/(1+r) 2+ r/{1+r) 2¢ 1/2_ (26)

Ac T T+ B 1T+ 0

This expression 1is minimized for ¢ = 1, in which case VAC = 0.995., The assumption
that agents react to this particular orthogonal decomposition of yi results in only a
trivial reduction in consumption volatility relative to the case in which agents ouly
observe yi. Specifications of Cy(L) and C,(L) that reduce V,o to the empirically
plausible value of 0.5 are deseribed below and by Quah (1989). However, all the intu-
ition for understanding how Quah's ezamples work is contained in our example.

There are at least two ways to understand why V,, is less than 1 when § exceeds
zero. First, note from {20}-(23) that, as ¢ increases, the variance of innovations to
the permanent component falls relative to the variance of the innovations to the tem-
porary component, 80 that, loosely speaking, an increasing proportion of news is ahout
the stationary component of labor income. This is important for determining the rela-
tive volatility of consumption because the response of consumption to an innovation in
the temporary compconent of yt ls much smaller than the corresponding response te an

innovation in the permanent component.
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Second, consider the response of yi to a one standard deviation increase in e,
that is, 05/{1+¢). The dynamic response of ayg+8 to such an impulse is given by
cs/(1+¢), ma€/(1+¢) for s = 0, 1, respectively, and zero for s > 1. The corresponding
response of yt+s is cE/(1+w) for s = 0 and a, for s > 0. Notice that, irrespective of
the value of ¢, the long-run response of yﬁ to a one standard deviation impulse in the
permanent component is 0(1)03’ which equals 9. in our example.13 While the eventual

impact of a typical permanent shock is invariant to ¢, the path by which one gets

there is not. With ¢ = 0 (the no-component case}, the response of y§+s is equal to
a, for all s 2 0, so that the long-run impact on labor income of a typical innovation
is realized Immediately. In contrast, with ¢ > 0, the long-run impact on yi is not
realized until one pericd later. Since r > O, the present value of a permanent stan-
‘dardized innovation to Y1t is decreasing in ¢. Therefore, the response of consumption
£o such an innovation is also decreasing in ¢. Consistent with this intuition, VAQ is
invariant to ¢ when r = 0.

To pursue this line of reasoning, we conslider the following class of decomposi-

tions for yi:
C.](L) = (1-pL)-d (27)

for d = 1, 2, 3. In addition, we set p = 0.98 and o, = T. The remaining elements of

the decomposition-—ns1, oEO, and Cn(L)--are determined by the requirement that Vg +
Yot 1s a random walk with innovation variance ai. The scalar cs1 is determined by the
requirement that the long-run impact of an Innovation in y,, of magnitude 051 must
equal o_. This condition requires that 081 equal (T-p)dcs. Since |p] < 1, 051 is a
decreasing function of d. This in turn suggests that vﬂc ought Lo be decreasing in

d. The remaining elements of the uncbserved components model are obtalned using the

methods described by Quah (1989). These are given by
d = 1: CO(L) = 1/(1-pL) (28)

02 = 902 (29)
£y €
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d = 2: Cy(L) = (1-aL)/(1-pL)® (30)
cgo = pzoifa {31)

where a satisfies a° - va+ 1, la] €1, and v = 2[1+(1-p)2/p], and

d = 3: Cy(L) = (1-a,L)(1-a,L)/(1-pL)3 (32)
aio - p3c§/(a1a2) (33)

14
where |a .| < 1 for 1 =1, 2.

Figure 7 plots the first 500 coefficients in the polynomial in L, 08101(L)/(1—L)
for d = 1, 2, 3. Each curve represents the impulse response of yi to-a one standard
deviation innovation in Eipe Consistent. with our previous example, the long-run
response of a typical shock is invariant to d. This can be seen in Figure 7 by noting
that all of the impulse response functions converge to 1, the long-run impact of a
standardized innovation in the no-component version of the model (d = 0). At the same
time, the value to households of a one standard deviation shock to e,, is not invari-
ant to d. This is because forward-looking agents care about the intermediate-term
impact of permanent shocks. Since those are a decreasing function of d, the annuity
value of a standardized Iimnovation in .. is decreasing in d. This annuity value
equals 1, 0.82, 0.45, and 0.31 in the d = 0, 1, 2, and 3 decompositions, respectively.

These arguments do not imply that VAc necessarily falls as d increases. This is
because consumption also adjusts in response to Eqt - Not surprisingly, as d increases
and permanent shocks become less Important, temporary shocks become more important.
The annuity value of a standardized innovation in ey, is 0, 0.330, 0.422, and 0.478 in
the d = 0, 1, 2, and 3 decompositions, respectively. However, the increasing contri-
bution of temporary shocks to Vﬂc is smaller than the reduced Impact of permanent

shocks. We derive the relative volatility of consumption, V from these annuity

Ac?

values by squaring them and faking the square root of the resulting sum. Doing so, we

find that vAc equals 1, 0.88, 0.62, and 0.57 in the d = 0, 1, 2, and 3 decomposi-
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tions. Interestingly, when d = 3, V o iz very close to the empirically plausible

A
value of 0.5.

To summarize our findings, consider three of the models presented ahove: the ¢ =
1, no-components model; the ¢ = 1, components model with d = 3; and the ¢ = 0.99, no-
components model. The implications of the first model for the behavior of consumption
are very different from those of the other two models. At the same time, the implica-
tions of those other models for consumption dynamics are very similar. The key Ffea-
ture that distinguishes the first model from the others is the absence of temporary
shocks.

This suggests that what is important for the dynamics of consumption is not the
value of ¢ per se. Rather, it is the relative importance of temporary and permanent

.shocks. A tight link between ¢ and the dynamics of consumption exists only under the
strong assumption that agentsa do not sege and respond to different components of labor
income. Without this assumption, the assertion that the exogenous driving variables
faced by agents contain a unit root--or that C(T)cs has a particular value--does not
have important implications for the dynamics of consumption.

A key feabture of the two-component model of labor income is that agents' informa-
tion sets are larger than the econometrician's. We can build on this fact to rein-
force the intuition about the driving force underlying our results. > Consider the
extreme example where economic agents actually know the entire future path of their
labor income. The econometrician does not. From the perspective of agents, the inno-
vation variance of labor income equals zero, so that the change in consumption always
equals zero. This would be true even if there were a large innovation variance and a
unit root in the univariate labor income process. The examples we have discussed

ahove can be viewed as less extreme illustrations of this point.

UInit Roots and the Real Business Cycle Model

Now we use the results above to analyze a second example which, according to

Hansen (1989), suggests that model dynamics appear to be sensitive to unit roots. The
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model he considers is one in which a representative agent chooses consumption ¢y,
capital k. i, and hours worked ng to maximize z:=0{ln(et) + Y ln(T-nt)} subject to the
resource constraint ey + kt+1 - (1—6)kt = Ve Here Vo time t gross output, is pro-
duced according to the Cobb-Douglas production funetion, y, = (ztnt)(l"e)kg. The
random variable Z, is a technology shock that satisfies

alog(z.) = A + C{L)e, (34)

where C(L) = (1-L)/(1-¢L).

Hansen's results Indiecate that the wveolatility of hours worked, ng, relative to
productivity, y./n., 1s very sensitive to values of ¢ near 1. The basic iIntuition
behind this result can be described as follows. Given our production funection, the
marginal productivity of labor is proportional to average productivity, yt/nt. Other
‘things equal, both are an increasing function of Zy. When ¢ is positive and less than
1, a positive innovation in 2z, is associated with a smaller upward revision in the
outlook for Zi,.1- Under these circumstances, the returns from working at time t are
unusually high, thus triggering a strong intertemporal substitution effect on ng .
When ¢ = 1, the outlook for future z, moves one-for-one with innovations in z,, since
Etzt+i =z for all i, t > 0. Not surprisingly, here agents have less incentive to
intertemporally substitute labor over time.

In analyzing this example, we consider two measures of the volatility in hours
worked, g . One measure is the standard deviation of Alog(nt), while the other is the
standard deviation of log(n,), after the Hodrick and Prescott filter has been applied
(Prescott, 1986). Similarly, we have two measures of the volatility of productivity,

o One is the standard deviation of Alog(ytfnt); the other, the standard deviation

y/n’
of log(y./n.), after the Hodrick-Prescott filter has been applied.

All model parameter values--aside from those pertaining to Alog(zt)--coincide
with those used in Christiano and Eichenbaum (1988b).16 The method used to approxi-

mate the solution to the model is also described there. An important feature of the
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solution is that it implies a linear bivariate time series representation for log(nt)
and log(yt/nt). In addition, hoth log(nt) and log(y./n,} depend partly on the present
disecounted value of expected futfure values of log(zt}. This allows us to use the
intuition developed earlier.

Table 3 reports results based on the first-difference filter‘.l7 Comparing

columns (1) and (2), we see that an/a rises more than 40 percent when ¢ drops from

¥/n
1T to 0.99. Clearly, this is due primarily to an increase in the wvolatility of ng. As
¢ drops below 1, fluctuations in z, go from being 100 percent permanent to being 100
percent temporary. As indicated above, employment responds more to temporary than to
permanent shocks hecause agents intertemporally substitute hours worked toward periods
in which the refurns to working are relatively high.

The sharp difference between these models reflects the maintained assumption that
there is only one source of shocks to-agents' environments. The analysis ahove sug-
gests that if we abandon this assumption and adopt the d = 3 components representation
of z, given by (32)-(33), then the volatility of employment should rise toward the
value implied by the trend statiomary model (¢ = 0.99). This is because a substantial
component of the shocks to the agents' environments will then be transitory. And
these are the types of shocks that induce large changes in labor supply.

The results of this ezperiment are reported in column (3) of Table 3. Notice
that the relative volatility of hours is now roughly equal to the value which emerges
from the ¢ = 0.99 model. Alsc, the other moments of the unobserved components model
match the corresponding moments of. the ¢ = 0.99. model reasonably well, Table 4
reports results for the same three model economies bhut for which the Hodrick-Prescott
filter has been used to induce stationarity. The same general pattern observed in
Table 3 emerges in Table 4.

These calculations roughly confirm the findings in our analysis of the PIH.
However, there are at least two respects in which a more complete analysis is reguired

before firm conclusions can be reached. First, we have only studied a small subset of
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the second-moment properties of the model. The ¢ = 0.99 and the difference stationary
components models may differ substantially in other dimensions. Second, we wonder
whether a components representation of Zy can mimie a trend stationary RBC model with .

substantially lower values of 4,

CONCLUSION

In this paper, we have argued that macroeconomists should not take strong posi-
tions on whether postwar U.S., real GNP is trend or difference staticnary. As we
emphasized in the introduction, there are strong a priori reasons for being suspicious
of claims in favor of difference or trend stationary representations of real GNP. A
simple way to see this is to consider parametric ARMA representations of the first-
differenced data. Blough (1988) and Cochrane (1988b) have pointed out that every
trend stationary ARMA model has a difference stationary ARMA model local teo it, and
vice versa. Distinguishing between these on the basis of a finite data set is surely
an impossible task. This a priori line of reasoning can be used to dismiss Campbell
and Mankiw's (1987a) rejection of the hypothesis of trend stationarity in favor of the
difference stationary ARMA{2,2) model. To do so, one need only consider a trend
stationary ARMA(3,3) model with autoregressive and moving average roots identical to
those of their ARMA(2,2) model plus an autoregressive root of 1 - ¢ and a moving
average root of 1. For e > O but sufficiently small, it must be true that there is no
detectable difference between the competing models.

A similar line of a priori reasoning could be used to dismiss almost any argument
in favor of a given difference stationary model of real GNP. One need only select a
trend stationary model that is arblitrarily close to it. But suppose this were the
only way to salvage the trend stationary perspective. At best, this would he a
Pyrrhic victory for that perspective since, for all practical purposes, the selected
trend stationary model would coincide with the given difference stationary model.
This is because the two models'® impulse response functions would be virtually iden-

tical at all but infinite horizons. An analogous set of observations applies to argu-
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ments in favor of a given trend stationary model of real GNP. In this paper, we go
beyond the a priori line of reasoning by showing that one cannot distinguish between
difference and trend stationary models with impulse response functions which are sub-
stantially different at horizons even as short as three years. On this issue, the a
priori line of reasoning summarized above is moot.

It is useful to contrast our results with those in the literature on the power
properties of stationarity tests. A variety of authors have concluded that existing
tests of whether time series are difference statiomary or trend stationary have ex-
tremely poor power properties (for example, Dedong, Nankervis, Savin, and Whiteman,
1988). Power issues are of interest in the context of tests of the unit root null
hypothesis because this hypothesis is typically not rejected for postwar U.S. real GNP
data., However, power 1lssues are obviously of less interest when the null hypothesis
is rejected. This is preclsely the relevant case In the context of testing the trend
stationary null hypothesis. The major result in the literature is the strong rejec-
tion of trend stationarity for postwar U.S. real GNP (Campbell and Mankiw, 1987a).

The prinecipal focus of the first part of our paper is on this rejection. From
this perspective, the issue of interest is the size of Campbell and Mankiw's (1987a)
test, that 1s, the probability of rejecting the null hypothesis if the data-generating
mechanism is in fact trend stationary. The size characterlstices of thelr test are
excellent iIf the analyst specifiesz the correct ARMA representation of the data. How-
ever, we show that their tests give extremely misleading results if that ARMA repre-
gentation is misspecified in seemingly innocuous ways. This result complements those
of DeJong, Nankervis, Savin, and Whiteman (1988), who show that specification error in
the form of ummodeled residual correlation can lead to excessive rejection of the
trend stationary null hypothesis.

Viewed as a whole, the results here are consistent with the view that one cannot
discriminate, on the baslis of postwar data, between the null hypotheses of trend and

difference stationarity for U.S. real GNP, At the same time, economic theory offers
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no guidance on this question. As Sims (1988) has emphasized, in linear models, the
trend behavior of endogenous variables is almost always determined by the analyst's
assumptions about the trend behavior of the uncbservable forecing variables in agents'
environments. It does not emerge from some principle of economic theory. True, ocne
can construct endogenous growth models in which the prediction of difference sta-
tionarity emerges from the production of human capital. (See, for example, King,
Plosser, and Rebelo, 1988; King and Rebelo, 1986; and Christiano and Eichenbaum,
1988a.) Unfortunately, though, these implications depend very sensitively on par-
ticular functional form assumptions about which economic theory has little to say.
Should we despair at not knowing? We think not. Our results suggest that the
implications of a breoad class of dynamic models are reasonably robust to whether the
foreing variables in agents' environments are modeled as trend or difference sta-
tionmary. Ezisting -examples which purport to document eztreme sensitivity actually
demonstrate sensitivity to the extreme assumptions that all shocks are either tem-
porary or permanent. We think macroeconcmists should care very much about the rela-
tive importance of permanent and temporary shocks to agents' environments. But con-
ventional atheoretical measures of persistence convey little information about this
question. And structural inferences bazsed on such measures ocught to be viewed with
extreme skepticism. Convincing inference requires the use of economic theory in con-

Junction with the data.
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NOTES

'To see this, suppose that the model being estimated is an ARMA(p,2) with
p > 0. Denote the moving average roots by A, and i,. For simplieity, assume these
are real. Let ¢ denote the parameters of the pth-order autoregressive component. It
is well known that the exact likelihood function cbtained after conecentrating out the
innovation variance, L(¢,l1,k2), has the property that L{¢,A1,A2) = L{¢,k1,1/12).
Therefore, L3(¢,A1,1) = 0, where L3 denotes the partial derivative of L with respect
to its third argument. We can express L as a function of C(1) = k hy substituting out
for X5 in terms of k: L[¢,A1,T-k¢(1)/(1-11)]. Then the partial derivative of L with
respect to k is —L3[¢,A1,1~k¢(1)/(1—A1)]¢(1)/(1-k1), which equals zero for k = 0. Let
£(k) = L[¢,11,1-k¢(1)/(1-k1)], after maximizing out ¢ and xy. A simple envelope argu-
ment establishes that the derivative of £ with respect to k is also zero.

zEssentially, the Christiano-Ljunggvist method is a model selection strategy.
Alternative strategies are the sequential likelihood ratio tests and Akaike (1974) or
Schwartz (1978) criteria. . These model .selection procedures may be quite useful for
choosing among forecasting models when there is a clear gain to parameter parsimony.
However, they may not be appropriate for our purposes. The Christiano-L jungqvist
procedure is closely related to methods for testing nonnested models, the encompassing
principle discussed by Mizon and Richard (1986), as well as the selection criterion
used by Sargent (1976) and Christiano and Eichenbaum (1987).

*In their analysis, Campbell and Mankiw (1987a) ineclude data from 1947 and esti-
mate their models using a Kalman-filtering algorithm.

*The log likelihood value assoclated with these parameter values is only 0.015
below the glcbal maximum.

SAll shocks were drawn from a normal distribution with mean zero and standard
deviation 0.0100847.

®This formula can be obtained as follows. First replace the Gaussian likelihood
function by 1its frequency domain approximation [for example, equation (U45) in
Christiano and Eichenbaum, 1987]. Then replace the periodogram in that formula by the
spectral density of the true model. The formula in the text is obtained by concen-
trating out the innovation variance from the latter and by driving the number of
observations to infinity. Christiano and Eichenbaum (1987) use the unconcentrated,
multivariate version of this formula to analyze the large-sample conseguences of maxi-
mum likelihood estimation of a misspecified model. The formula in the text is also an
implication of equation (Al) in Cochrane (1988a). Both our derivation and Cochrane's

assume that C(1) # 0. The following computational experiment makes us somewhat con-




T

fident that the formula also holds when C{1) = 0. We compufed the plim of the mis-
specified ARMA(2,2) model in two ways: One corresponds to the method described in the
text. The other is a discrete analog of the formula in the text which employs 1,000
equispaced points around the unit circle. Both methods yield virtually Identical
results.

"This model is (1 - 1.5075L + 0.5296L2)ay, = (1 - 1.1930L + 0.1930L%)n,.

*e repeated all the experiments discussed in this section with the Campbell-
Mankiw ARMA({1,3) model as the data-generating process. With respect to the asymptotic
arguments, our results were virtually Iidentical. = The results of redoing the last
Monte Carlo discussed in the text were similar, though less dramatic. The effect of
reducing the autoregressive parameter from 0.95 to 0.5 is to reduce the percentage of
likelihood ratio statistics exceeding 4.356 from 38 to 22.

9In fact, T4 of the 20 likelihood ratio statistics are exactly equal to zero,

- while the largest only equals 1.77.

'e obtained the following point estimates for the ARMA(2,1) model with
Cc{1) = 0:
ay, = 1.35T8y__, ~ 0.3938y,_, + n. - n__,.
€7 ooty BT (olorsy BT E T
Numbers in parentheses are standard errors obtained by taking minus the inverse of the

second derivative of the log likelihood function.

11
Once parameter uncertainty is taken into aceount, these differences may not

even be statistically significant. For exzample, consider the old. and new Blanchard
models., Point estimates and assocliated standard errors for the latter are reported in
note 10. They show that the lag 1 and 2 coefficients in the old Blanchard model are
0.22 and 0.36 standard errors, respectively, away from the corresponding coefficients
In the new Blanchard model.

“pop example, in (15), with a quarterly interest rate of 1 percent, changes in
anticipated income even 40 years in the future receive a nomnegligible weight of
1,01‘760 = 0.2. See Christiano (1987) for an extended discussion of the view that

unit roots may matter in the context of the PIH.

13'I‘his is a general property of temporary/permanent decompositions, not just
orthogonal decompositions. For a proof, see Cochrane (1988a, p. 904).

"“For the case d = 3, a; also satisfies (ai)z'- xa; + 1 =0 for 1 = 1, 2. Here
zq and %, are the solutions to x° - (cq+i)x + (c0+201+4) = 0, where cq = 3(1—p)2/p and
e = 02/3. When p = 0.98, a, = 0.97 + 0.0067i and a, = 0.97 ~- 0.0067i, where i =

1/
(-1) .
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"SWe thank Ken West for this argument.

16In particular, the parametric values are those reported In the "Divisible
Labor"” column of their Table 1.

17The second-moment properties reported in Tables 3 and Y4 were obtained by apply-
ing the appropriate inverse Fourier transform to the speckral density of the filtered

bivariate system. (For example, see Sargent, 1987, chap. 11, sec. 6.)
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Table 1
Results Based on Parametric Models of Persistence

Roots
Likelihood
Model Ratio Statistic*# ~ Moving
p,q% {p-value) c(n Autoregressive Average
0,1 568.719 - 1.275 -.275
(.00)
0,2 275.825 1.577 -- -.153+.4981
(.00)
0,3 170.775 1.838 -- -.392,
(.00) .025+.6081
1,0 - 1.602 .376 -
1,1 23.684 1.746 524 .168
(.00)
1,2 11.2T4 1.772 .260 -.034:,4911
(.00079)
1,3 110 1.816 -.089 .012+.6221,
(.74) -.151
2,0 - 1.830 .55H, -~ 542 -
2,1 .B40 1.798 .508,-.542 -.365
(.36)
2,2 4.356 1.530 .293x.6141 .139:£.7761
(.0H)
2,3 .990 1.605 .168+.6681 .108+.8481,
(.32) -.206
3,0 -— 1.604 432:.2971, —
-.518
3,1 .569 1.365 .631+.3401, 514
(.45) ek
3,2 3.020 1.657 .249, .108:.867i
(.08) L1491, 7201
3,3 .000 .000 .299+.5651, .1332. 7471,
(1.00) .949 1.000

¥p,q = autoregressive and moving average order, respectively, of ARMA
fit to Ayt.

#4¥Tyice the difference between log 1likelihood values obtained when
C{1) = 0 is and is not imposed. (The p-value is obtained using the
chi-square distribution with 1 degree of freedom.)




Table 2

Nonparametric Estimates of Persistence

Model

¥ c(n¥ vk ARMA(3,3)  ARMA(1,3)  ARMA(2,2)

(n (2) (3) () (5) (6)

10 1.4 1.71 29 L34 B
(5.49)

20 1.24 1.32 .37 A .63
(3.07)

30 1.14 1.12 .34 .37 .65
(2.14)

40 1.00 .86 .38 Ao .68
(1.43)

50 .86 L6l LAy Ll .73
(.95)

60 .88 .67 .31 .32 .62
(.91)

75 .90 .70 .18 .20 A8
(.85)

Notes:

Columns (2) and (3): E(T)k is defined in equation (14); Gk, in (7).

Columns {(4)-(6):
indicated ARMA model, that the simulated ﬁk exceeds the corresponding
empirical value reported in column (3). The ARMA(3,3) and ARMA(2,2)
models are those we estimated and reported in Table 1. The ARMA(7,3)

Frequency, in artificial data generated by the

model is the trend stationary model reported in Campbell and Mankiw
(1987a).



Tahle 3
Results Based on First-Difference Filter

Components
Model
No-Components Model
g = 1
¢ =1 ¢ = .99 p = .98
(1} {2) (3)
.68 .97 .96
.0065 .0086 .0085
.0096 L0088 .0089
cov(n,n_1) -.026 -.026 -.026
cov(y/n,y/n_1) .060 .073 .084
cov(n,y/n_1) -.072 -.074 -.072
cov(y/n,n_i) .023 .031 .032
Table 4
Results Based on Hodrlek-Prescott Filter
Components
Model
No-Components Model
¢ = 1
$ =1 $ = .99 p = .98
(1) (2) (3)
.67 .94 LG4
.0084 01 011
.013 012 012
.71 .1 .T1
cov(y/n,y/n_1) T4 .75 .75
cov(n,y/n_q) .59 BT .57
cov(y/n,n_,) .75 .15 .15
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Figures 2a—-2b

Accounting for the ARMA(2,2) Results
From the Trend Stationary Perspective

Figure 2a Frequency Distribution of the Likelihood Ratio Statistic

for Testing C{1)=0
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Figures 3a-3¢
Why the Trend Stationary Perspective Can Accotnt for the ARMA(2,2) Results
A Large-Sample View
Figure 3a  Unconstrained Results
Data Generatad by Estmated ARMA(3,3) Model
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Fgure 4

Accounting for the ARMA(1,3) and ARMA(3,3) Results
From the Difference Statlonary Perspactive

Frequency Drstnbution of C(4)
Using Data Generated by Estimaied ARMA2,2) Model
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