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ABSTRACT

The state vector in the innovation representation is asymptotic-
ally the most efficient instrumental variable estimator for the
observation matrix C. The paper compares small sample properties
of IV estimators for C, the dynamic matrix A and other matrices
with the system theoretic estimators described in foki (1987) by a
small scale Monte Carle simulations. The IV estimators appear to
be about the same as the system thecretic ones as far as their
small sample propertles are concerned. The covariance matrix of
the state vector calculated from the IV point of view are also
compared with the soclutions of the Rieccati equations. The simula-
tion results show that they have quite similar sample means and
standard deviations. This method of calculating the state vector
covariance matrices may be computationally faster than solving the
Riceati equation by the Schur decomposition algorithm.
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Introduction

Earlier, Havenner and Aoki (1988) provided an instru-
mental variable estimator interpretation for the state space model
parameter estimation algorithm described in Aoki (1987), which was
derived by extending an algorithm of the deterministic and sto-
chastic reallzation theory to state space innovation models., See
Boki (1987} for references on the realization theory. More spe-
cifically, they pointed out that the estimator of the matrix C in

the observation equation of the innovation model

yt = Czt + et,

iz identical with the Iinstrumental wvariable (IV) estimator in
- - 1 1 t ]

which the stacked data vector yt_1 = (yt-1’yt-2""’yt-k) for

some k > 0 is used as the instrument vector. They also suggested

that the state vector zy iz asymptotically more efficient than

y;_1. To construct a (balanced) innovation representation of
state space models, the matrices A and B in the dynamic equation,

called the state transition equation, =z = Az, + Be and the

£+ t
matriz C in the observation equation, Ve = Czt + e

£?
£ must be
estimated together with the noise covariance matrix & (and the
covariance matriz of the state vector ). This paper discusses IV
estimators of these system matrices in the innovative state space
medel. In the Acki algorithm the matrices A, C and M = E(ztﬂyé)
= AIC' + BA are directly estimated from the singular value decom-
position of the covariance matrix between the stacked future and

stacked past observations. Then the matrices B, A, and I are

calculated based on the minimal solution of a certain Riceatil



equation, In the IV approach, we need not solve the Riccati
equation. However, we lose the nestedness properties1 of the
estimates of the matrices A, C, and M in the IV approach.

An asymptotically most efficient estimator for the
matrix C is obtained by using the state vector z. as the instru-
ments which is a certain linear combination of y;_1. This can be
shown as in Sargan (1983, p. 45). This paper uses this and other
instrumental wvariable vectors to estimate the system matrices in
the balanced representation of the innovation models, and improve
them to have the same asymptotic efficilency as their maximum
likelihood estimates.

We also establish that appropriate choices of the weight
matrices in the generalized method of movement estimator produce
the system estimators and the IV estimators. Since  the best
welght matrix corresponding to the maximization of the concen-
trated log likelihood function is complicated, approximating the
best weight matrix with computationally easier ones are of in-
terest. Other cholices of weight matrices are also suggested.

In the econometric approach for modeling time series the
state vector is not used as instruments because the components of
the state vectors are not generally available to be used as in-
struments. One of the contributions of the system theory in
modeling time series makes them available by establishing the fact

that the vectors are related by

Zy =S¥y

where the matrixz 3 is directly estimated. This matrix Is equal to




with
cov y;_1 = R_

and the matrix S is known since & is calculated from the singular
value decomposition UIV' of the Hankel matrix which is the cross
covariance matrix between the stacked fubure data
y; = {yé,yé+1,y£+2,...,yé+J)' for some J > 0 and y;_1. The Hankel
matrix is factored in two ways; 04 and UzV', where o is the matrix
which related y; to 2., i.e., the regression coefficient matrix
when y; is regressed on z,. See Appendix 1, and (6) below. In
the the balanced model, the first half of the singular value

172 is taken to be the mabtrix

decomposition of the Hankel matrix Uz
@ and the second half S172V' as 0. See Aoki (1987) for example.
Since this fact is basic and is easy to demonstrate, we collect
some facts regarding it in Appendizx 1. This estimator of o is

later shown to be the same as the IV estimate with Z, as instru-

ment.

IV Estimates of System Matrices

Matrix C

The sample version of the state vector is

Ry
(1) z, = aR_ Yio

where """ denctes the sampled value,

Ro=0ovyp g =T W ¥



and where Q is the second half of the singular value decomposition

of the sample Hankel matrix

L - _' . ~ ~
H=T 1zy:yt_1 =UFz¥
i.e.,
(2) t = I : v

We immediately obtain an estimate for the state vector covariance

matrix as

i T xztzt

(3)
e _qn

oR_ a'.
The IV estimator of matrix C, using 2z, as the instrumental vari-

able vector is obtained from the observation equation

Yy 7 Czt + e
as
2 U O
4) c = (T Eytzt)n
where
T7 vzt = [8,8,.. 1R 0
- H, R g’

where Hi- denotes the first submatrix row (pxkp) of the Hankel
matrix H.

Substitute ¥y out from (4) to see

1Ee z!

SCo = T tZt



where &8C is the difference between the estimate and the true

matrix C. Its vectorized version ls

1

(m@I)vecsC = T ZZt@et.

Since T"”zztzt@et converges to a mean zero nermal random vector

with the covariance matrixzx A, we have

T(IRI}{vecsC)(vecsC)'(18I)

+ TIRA,

i.e.,

1

T{vecdC)(vecsdC)' + I '8

as T goes to infinity. Therefore, the expression H_1EA is used to

calculate an estimate of the standard error of C.

z; is equal to Ci. Hence, A = T“1£e e!

From (4) T'1Zy et

t

where €. = ¥y - Czt is equal to

- LN

&= Ay - CHC',

i.e., the nolse covariance matrix is estimated from the relation

(5 AO = CEC'+A

-~ A A

N _ _ 1
A = AO cac'.

The Observability Matrix @

The matrices CAi, i=0,1, ... are estimated by using
the stacked observation equation. The IV estimator of CAi, i=0,
1, ... can be read off from O, the IV estimate of the observ-

ability matrix which appears in (6)



+ +
(6) Yp = 0z, + Get.

The structure of the matrices © and G are descrihed in Appendix

1. The IV estimator is defined from (6) as the solution of

(7 T lyezp = en

1 ﬁ- "~ I\A- el
where the left-hand side 1is T-jzyz Ve Rt1n' - HRt1ﬂ', e.g.,
o = Uz /2,

From (6) and (7), the estimation error in @ is given by

+
1£e 2!

(8) 80I = GT t t!

from which we obtain

T{vecss) (veosa) ' + I~ '@G(IRA)G' .

Matrixz A
To estimate the dynamic matrix in the state transition
equation, advance t by one unit in (6), replace Ze,1 by Az + Bey,

and multiply the stacked future cbservation vector

6z + G

+ ot
Ve £+ b+l

oAz, + OBe, + Ge’
t+

£ £ 1

from the right by the transpose of the state vector to define A as

] ~nn

=1 + _
the solution of T Eyt+1zt = OAmL,

=1+ - o1
The left hand side is equal to T zyt+1yt_1R

-~
Q' =
AN 4 A

H'R™'a' where HPis the Hankel matriz A shifted up by one submatrix

row {p-rows) and the last p rows filled in the suitable A's.




The estimate is equal to

(9) A= V20 gfr g,

1720, nhna=1/2

This is to be compared with I U'HVET in Aoki (1987, p.121).

From the relation

e s -1 . -1, .+ .
(6A-0A)NI = OBT Ie z! + GT Tl 1Z¢s

we see that the error matrix 64 = & - A satisfies

1 ! 1.+
zetzt + GT zet+12t'

QSAT + 80-AL = OBT™
The vectorized expression on the right of (8), when magnified by
T1/2, converges in distribution to a normal distribution with mean

0 and variance Q = I8[eBAB'e'+G(I8A)C'], from which follows

o o vecsi
(10) T{n@e,(Ar)'QI} cov {Yecéé} [oRe (am)'e1f' » Q.

A special case of (10) is T[I1&C, E'QI]
cov(ﬁiﬁgg)[IﬁC' KﬁI] +> H_1®[CBA(CB)' + A]. To derive this di-

rectly, read off the 2nd p rows from {(7) to note

AN -1
(Ca)m = T2y, 20

and that

1 1

Ie,z! + T Ie

§(CA)u = CBT £t

1
te12e"

When k = 1, as a rough measure of the magnitude of cov{vecsd), we
may use, on the assumption that &C is zero, and that C is invert-

ible,

(104) T cov(vecsh) » I @[BAB'+C™a(C” )],



This is a special case in which e+G(IﬁA)G'B'+, i.e.,
2"1/2U'G(I@A)G'UZ'1/2 reduces to C~1a(C™1)' since H - aq = UzZV!

and the system estimaor of C is Uz1/2.

Vectorize the relation 3(CA) = CA + C3A& to obtain
(I8C)vecsld = vecs(CA) - (A'RI)vecsC

from which the desired expression follows.

In the applications of the estimated models, the dynamie
matrix A does not appear by itself, even though its esigenvalues
are of some intrinsic interest. The matrix A appears In the
combinations as CaiB, i=0, 1, ... since these are the Iimpulse
response matrices in conducting the dynamic multiplier analysis.
The combination C(A-BC) appear In multiple-step-ahead.. forecast

calculations;

Veur|t = Blpqlve)

C(A-BC)Zt + CByt

2
yt+2|t C(A-BC) Z, + C(A-BC)Byt+1|t + C(A-BC)Byt

for example. Therefore, the IV estimators for the matrices CAi,
which are derived above, 1 = 1, 2, ... and CB are of more direct

relevance. We later derive an IV estimator for F = A - BC.

Matrix B
From the relation M = AIC + BA, the matrix B is esti-
mated by

A AAN oA

(11) B = (M-ATC)a™ .



Multiplying the state transition equation from the left

by the matrix € and repeating the above calculations with

& =¥, - Czt as the instruments, we obtain
(CB)A = 4, - H; R_'2'C
~ _ ”1 -~ A' e - _ "~
where 4 = T zetet, e. = ¥ Czt, by dropping the term

-1 ~,
T zet+1et'
Analogous calculations yield the standard error expres-

sion for CB as

T Veca(CBIvecs(CB)T » nARCBA(CB)' + 1~ @A

where n arises from

- =1 ~_1
| - L 1
T&CHEC' = T zetztn ztet

+ nA.

The Matriz A-BC

By substitubting the observation equation into the dy-

namic (state transition) equation, we arrive at

Zeeq = F2p + By

where
F=-A -~ BC.

In some sense the matrix F is more basic since it governs the
speed of convergence of the forecast errors.

From the above define
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FI + BT

| - 1
T 22y 42 = B2y
where
T2, 2! = 5[01]*&“5' -z
t+1 ¢ -
T—1Ey z! = ﬁ ﬁ'Tﬁ' = Eﬁ
tt 1-°t :

Then an estimate for the matrix F is given by
F = (z-ﬁCn)n'1,

where B is given by (10).

Matrix M

In Aoki (1987), the matrix M is estimated by solving H 4

= GM, i.e-’
(12) M=z /en

1°

ilternatively, from the definition

-1 5z y!
(13) M= T EZy,
“le=1_. - ' o=
= @R_'T Wthh1-a&_m)‘1
since
A
A!
1
LRNE
1
B

A third way is to minimize

(vecH.1—(I®0)vecM)'W'I(vecH‘1-(Iﬂ@)vecM)
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for some weight matrix. For example, the first estimator of M is
the case when W = I is used. A limited amount of Monte Carleo
gimulations for small number of observations (T=40 and 80) with
1000 and 750 replications, respectively, seems to indicate that

(12) has better small sample properties.

Second-Round Estimators

The instrumental varlable estimators are consistent. I€
is known also that any consistent estimator can be improved, under
some technical conditions, to have the same asymptotic efficiency
as the maximum likelihood estimators {(mle) for static models by
iterating once to produce a second-round estimator, see Rothenberg
and Leenders (1964), and Bowden and Turkington (1984, Sec. 3.4)
for example.3 More specifiecally, let 8 be the vector of para-

meters. Then letting an L be the logarithm of the likelihood

function
5 -6 - A AT
R '} asae’ | 1V 3g v’

where (-).IV denotes the derivatives evaluated at 81V' Then since

eiV is consistent with sampling variance O(T"}), where T is the

sample size, 6 has the same asymptotic distribution as the mle.

We apply this general procedure to calculate the second-

round estimate wup the matriz C, A, and B. In practice
- '
—32£nL/3639' can be approximated by T 12(%%3%>(§%9£) . Appendix 2
t t

caleculates the necessary derivatives.
We next show that the estimators of system theory origin

and the IV estimators can be unified as =special cases of the
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generalized method of

moment estimators. Since HA is
T-1Ey;+1ygﬁ1' by definition, it is egual to oAQ +
+

“1 =1
oBT zetyt—*l +
GT'1zet+1ygl1. Taking note of (8), we calculate
B - oaq = N
where
N = 0BT 'ze V. '+ GT'1ze+(y' "-¥, 'ﬁ‘1ﬁ'ﬁ'1aﬁ)
£ t-1 te-2 “Jt-t

-t
except for the "edge" effects. (The term e'£+1yt_1 is replaced by
I
etyt_z).

The covariance of vec N is denoted by W. It has a com-
plicated structure and TW converges at T goes to infinty

{(14) TW = Tcov{vecN)

= R"BGBAB'G

+ R_GG(TQA)G' + @'A'I 'ARRG(IRA)G' + cross

product
terms.
Consider the estimate of A which minimizes
vee(ﬁﬂ-éﬂa)' el vec(ﬁg-éaa).
This is the generalized method of monment estimator. If W is

replaced with I, then the system theoretic estimate of A

~

A = 21/2U,ﬁﬂvz-1/2

results and if W is replaced with R 8I, then the estimate of A

with z, as instrument, i.e., (9) results. An improved estimator
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of A may result if W is estimated by substituting B, 4, C into the
expression W in (14). For exzample, R_@D, where D is a diagonal
matrix with A, A + H1AH', A+ HTAH' + H2AHé ..., where H 4 =

1
CAkB may be used.

Mutual Consistency Check

Since
A =T 'ze e
t°t
=8 - Cr 'zz y! - T-1zy 2!C + CIC'
0 e t't !
where
T~z yl o= E{ + T-1EZ ;'
|Adh 7 v
and
712z, 01 » 0 a.s.,

£t

~an

as shown by Lai and Wei (1985}, AO = 4 + CIC' + Oth‘*) ig consis-

tent with AO = A& + CIOC',

Similar checks reveal that

s -}
A1 = CM + Op(T JR

where

A A

M = ANC' + BA + op(T‘i).
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Monte Carlo Examples

This section reports a small scale Monte Carocl experi-
ments to demonstrate small sample behavior of the two types of the
estimators.

The goodness of the model is greatly Influenced by the
signal-to-nolise ratio to use the engineering terminology. As its
measure, it is convenient to use the ratio of tra, over tra. The
former roughly measures the power of the signal in the data and
the latter measure the power in the noise, or the Iinnovation
part. (More precisely Yp = Czt + e implies that COC' is the
power of the signal and A is that of the innovation.) We take 2
particular cases of VAR(1) in the decreasing order of the signal-
to-noise ratio,.

The models are of the form y, = ¢y._, + ng where dim yg
= 2. We can exactly calculate the system matrices in the balanced

form and Ao. The two cases are:

Case 1: @ =(_:Zl }) and cov ng =(é ?) = N.
In this case
L - (1549 .026
0 1 .026 .653
and the balanced model has the parameters
p o= { -5357 .673 c - {11089 .2343
T 1-.6338 .8643) 7 T o\-.3307 .7856
_ {1.0678 L4538 I = 1.0166 .2814
-.6338 .7565)° - .2814 .9533

and A = cov nt.

=
t
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S/N = tr(AO-N)/trN = 9.9,

Case 2: o

n
/1“‘\
=1
D
™
=
i
T
) e
18]
L] -
- Q
153
N

W - (6110 0216
0 - * .2928

L. [-5181 .55 o of -6083 181
= {5916  .7219)’ =\_.2153  .a77H
" _( 6790 .2596 - (.9446 .1834)
N\ 1785  .14669) = \J183  .8190
and A = N. S/N = 3.5

In both cases, the number of sample points is 40 and 1000 replica-
tions are made.’ The results are tabulated in Table 1 and 2.°
(The values of H given by (3) and the solutions of the Riccati
equations are also compared. They are very close to each other
and not tabulated.)

In each simulation rum, n = 2 has been a priori im-
posed. However, the Monte Carlo simulations showed that when j =
k = 2, the ratios of the average of the third singular values to
that of the first is .010 in Case 1 and .021 in Case 2. Those of
the average of the second singular values to the firat is 0.84 and
.70 in the two cases respectively. Because of these large discre-
pancies in the ratios, any automatic procedure to seleet the
dimension iz likely to choose two as the dimension. These simula-
tion results seem to show that there is little to choose hetween
the two based on the samll sample performances. If anything, the
sample standard deviations for the IV estimator tends to be

8lightly smaller.
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With the sample size T = 250 and 3600 replications, some

statistics of the system estimators for the matrix 4 Is a=s

follows:
Case 1 Casge 2
811 212 %21 222 211 212 %21 222
mean .530 .665 -.618 .84y 573  .540 -.584% .719

standard OB Relite 0583 .073 .068 .08 L1009 L1146
deviation

skewness -.304 -.486 .714 -.586 -.100 -.282 .324 201
kurtosis 1.44 2,44 1,38 2.11 .59 .61 1.19 2.54

Concluding Remarks

The recognition that 2z, 1is the asymptotically most
efficient Iinstrumental varilabhles for the matrix C leads to many
new IV estimators for system matrices of system models for time
series in (balanced) innovation presentations.

This note has shown how fo construet some of them. 1In
particular, the estimators of the mabtrice & have been shown to be
special cases of the method of movement estimators with specific
choices of the weight matrices. The use of the IV estimators
avoid explicit solution of the Riceati equation. Small sample
properties of these alternative estimators need be evaluated by
more extensive Monte Carlo studies. Evidences from a limited
amount of Monte Carlo simulations are that the IV estimators and
the system theoretic estimators have about the same small sample
properties, and the covariance matrixz of the state vector given by

(3) is about the same as that obtained by =solving the Riccati
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equation expliclitly in terms of mean values and sample vari-
ances, The results are best for the case j = k = 1. The =tate
veckor covariance matrices for the case j = 1, k = 2 tend to have
smaller 2nd diagonal element and those for j = k = 2 tend to be

larger than the true ones.
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Footnotes

1By the nestedness we mean the orthogonality of esti-
mated matrices, i.e., the properties that the appropriate subma-
trices of the estimates of matrices A, C, and M remain as the
"ocorrect" estimates when the state vector dimension is reduced,
and when the state bector dimension is increased, the estimated
matrices remain the same and newer estimated matrix elements are
added to the existing ones, i.e., these submatrices are consis-
tently estimated in the event of the dimension misspecification.

2The syscem theoretic estimator of the matrix C is

“1/2 (poki 1987, p. 121). Note that the Moore-Penrose

-1/2,

C = H, VI
pseudeo Inverse of @ is VI

*For dynamic systems, a sequence of such revisions is
probably needed.

“Even though 103 sample paths are generated hy the
random number generator of MATLAB, some of them do not satisfy the
regularity conditien (AO-CHC'>O) or otherwise the Riceati equation
sclver falls. The percentage of failure ranges from 0 to a few
percent of the number of samples generated by the random
numbers, The usable samples thus vary from models to models and
cases to cases. Since the number of failure is small, we have not
made any correction for it,

5Sample standard deviations decrease in power of 1AT.
For example with 240 sample points, the entries in =d (sample
standard deviations) are expected to be reduced by 1/V6.

With 250 replications, this observation iIs approxzimately
confirmed. (Similarly, with T = 320 and 200 replications, the

reduction by 1A/8 is approximately confirmed.)




Table 1
Case 1

v

v

sd

sd

sd

sd

=

sd

|
|

[-zzsg
s

265
094

.520

065
077

.940

.269
122

.898

1,180

[.972

[.043

195,

.004]
127]

0257
039

262]
.882]

.049]
072

.079
.088
192
.662 —270
090
.199
.390
.633 —~.274

123

063
090

.942

264 .094 313
199 153

125

.899

[.262
085

[.180

.645 .519 .646 .507
—-.597 .815 —.596 .816 —.538

.084 .050
.085 087

.192 1.036
.662 -.333

-390 821
.633 —.185

122] 253
196 086
.003] 181
127) |
.036] 069
038, |+
263 788
883, |+
048] [.038
069, | *

171,

.004
127,

.025]
.038]

207]
590]

0497
035

710 507 .716 .606
.828 -.537 827 —-514 823 —.523

118 125
.088 .091

264 1.030
.822 —-.330
207 .

133
278

.342

.522 -.185

.110]

053
086

147

816

239
.089

[.180

LS

[.066

[.786

.038

263

.815 -.214
125
.264

340
519 -.307

.516

.062
.281

925

203 .
183

.832

110 [.279
159 261
.004] 178
127 X
025 069
039 |+
207 1.043
588] *
.047] 097 .
036 *

519
.306 065
112 268
054 926
620 ~.211
209 321
335 193
455 829
546 —.282
2027 307
.301] .303
.003] 182
124 | x
.027] 069
039, |+
278 1.043
867 *

113 085 .
089 R

231
299

.004]
128

.025]
038

.609
.820

317
105

077
.607

.216
.336

455
554

.889

113
085

.276}

*Symmetric elements



Table 2

Case 2
j=1=k i=1,k=2 j=2=k
S v IV S v
556 .524 554 527 523 .406 522 405 514 420 514 422
A [-577 .683 —.580 .684 —371 .719 —.368 .712 ~.436 .737 —.441 741
072 .117 070 .097 .066 .416 067 .416 060 .341 062 .342
sd [.120 .151 086 .143 412 .145 409 .144 408 .155 411 141
639 .134 641 .137 678 .139 677 .136 617 .088 615 .086
¢ |-.198 .431 —.270 437 -.290 .371 ~.287 .369 ~.248 .353 —245 .349
149 .063 148 .060 .168 .191 169 .189 151 .154 .158 .153
sd |.079 .123 079 .113 .097 .378 096 .378 092 .275 092 .275
622 .246 624 .247 574 .195 572 .195 625 .240 624 239
M |-.169 .415 —.170 .425 —.069 .260 —.670 .258 —105 .346 ~.105 .345
[.142 .054] 144 .086] 128 .078] 126 .084] 1137 .099] (141 .103]
sd [.074 .117] .066 109 .054 .288] .058 286 .082 .299] .083 .299,
[.129 .046] 130 .046] 129 .045] 129 .046] 128 .045] 130 .045]
A |.046 .106] .046 .106] ¥ 105 | * 106 | * 104 | * 107
.035 .018] 7,034 .018] [.034 .018] .035 .018] 035 .018] .035 .038]
sd | * .036] |k .025) | %025 | * 026 * 025 | % 026)
904 .170] 1,903 .169] 723 .119] 1722 .114] 817 .207] F.914 .204]
m | * .85 |+ 783 * 576 * 577 ¢824 | % .812]
050 .057] 053 .055] [.039 .147] .040 .150] 076 .171] 073 .172]
sd | * .00 | * 093] | ¥ .055] * 037 X101 | * 102

|l

*Symmetric element
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Appendix 1

We start with a forward innovation model in which the
state vector Zy is uncorrelated with the innovations of the data

vector, e, 8 = t,

8

{a.1) z = Azt + Be

t+1 t

Vg = Cx, + e.

The dimension of the vector y. Is p. Lindquist et al. (1979)
proved the existence of such a representation and that the state
space of this model iIs a minimal splitting subspace if and only if
the model 1is observable and A in invertible, or equivalently both
observable and constructible.® Let n = dim z:.

Define a stacked future and past vectors by Y; =
(Yho¥ppq's---)" and ¥y = (¥l _qr-0)'-

We briefly describe how (A.1) arises from a common state
space model such as the one in (A.2). A state space model con-
sists of two equations; one describes how the state vector evolves
with time, and the other specifies how that state vector is re-
lated to the data vector. The model involves a single lag for the

state vector. A linear state space model is then of the form

¥Note that the direction of time is reversed in these two related notions.
Observability is the ability to reconstruct (or estimate consistently) the
unobserved state vector from future observations. Constructibility has to

do with the same ability using past data.
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(A.2) X = Axt + U,

Y Cxt + vy -

The noises are assumed to be serially uncorrelated. Thils can be
achieved by suitably augmenting the state vector to inelude noise
dynamics in the state dynamic equation. This may be one of the
ways that the state vector becomes not directly available for
observation. Generally, only the wvector Yy 1is directly ob-

served. Let Zy be the estimate of Xy based on y;-i’
(8.3)  z, = E(x.]y;_q)
Then the Innovation of y. is defined to be
{a.4) e, =V - E(Ytlyt-1)
= y‘t --Czt

since uy and vy are uncorrelated with yg_1 by assumption.

The vector Z evolves with time as follows

(4.5) Zt+1 = E:(}'{1:,+1|:"‘rt)

~

= Blxy g lyg_poey)

= E(xt+1|yt_1) + Bet
= Azt + Bet
where
E(xt+1]yt_1) z E(Axtlyt_1)
= Az

t
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and
B = E(xt+1|et)
E(x e’)i.\'1
t+17t
with
A = cov (et)
Note that
- 1 - [}
BA = E(x sep) = E(z, jep)
- - |
= Blzy, 1 (yg-02y)")
= M - Anc?
where
- 1]
M= Bz, qyy)
and
I = covz,.

The state space model (A.2) is thus put into the innovative repre-
gentation which consists of (A4.4) and (4.5). This is called a
forward innovation model because time flows from past to future.
Later a backward innovation model is introduced in which the time

flow is reversed. From (A.2) we can relate y; to the state vector

(A.6) y: = ox, + Gez
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where e; is defined similarly and O is the matrix,
{C’A’C'A'zc'...]'. The matrix G is block lower triangular with
with the main diagonal submatrices are the p-dimensional identity
matrix, i.e., the determinant of the matrixzx G is one.

Consider predieting y: by its orthogonal projection on
the manifold spanned by the data wvectors. Using the notatlion

E{ujv) to denote the orthogonal projection of the vector u on the

manifold spanned by v, we derive
P T -1_-
(A.7) E(y lye_q) = HR_ 'y _,

where H is the covariance matrlx between the two stacked vector,

called Hankel matrix, and
R_= cov{yt_1).

Alternatively from (A.6), since e: is uncorrelated with the

stacked data vector, we can write (A.7) in view of (A.3) as

(A.8) E(yzlyg_1) = GE(xtlyE~1) = 0z,

enR:1

H

Y1
where we define a matrix

(a.9) 2 = BE(x Y = E{z

r
= [
Y- 1 Fe-1)

since x_ - z

£ is orthogonal to Yeoqe

£

From the two right-hand expressions in (A.7) and (A.8) and denot-
ing the orthogonally projected image of the state vector by z; in
(A.3), we obtain its explicit relation in terms of the stacked

data vector as
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(&.10) L

Zt = QR Ye_1
if 0 is full rank, i.e., if (A.2) is cbservable. The state space
model in (A.1) is observable by construction. Eq. (A.10) shows

that the covariance matrix of the vector is

1

o0=0R 'Q'.

From the definition we also have a useful relation between the two
state vectors Xy and Zy
<
eov(zt) < cov{xt)-
i.e., the model with =z, as its state vector has the smallest

covariance matrixz of all state vectors.
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&ppendiz 2
In Koopmans (1950, p. 115) we find

2 an |p| = tr (07 2

where 8 is a scalar variable, and

ALr(LMN) _ [ o

aM

We apply these relations. When e, is normally distributed with -

zero mean and finite variance, the concentrated log-likelihocd

function is
anlL* = k - g an|D|

where

e
T !:etet

L=
1§

~n=1 t -1 TAI
AO - CT xztyt T zytth

AR

+ COC*'.
From this, we obtain
1Z(de el + e de )

where

i.e.,
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dD = -dCX' - XdC' - CdU' - d4uc’

where
i = T-1z; z!
£t
and
du = T Ve, dz
£t
From

d gn L* = - %—tP(D-1dD)

we calculate

* - ~
(a.1)  2EmCt oty
Using
dzt = dAzt_1,
3 E.H L ] -1 -
(A.2) 34 =z C'D X_1
where
ﬁ = T-1z; z!
-1 E7E-1"
Finally using dz, = dBe, 1
3 Ln L¥ -1
(4.3) —m = C'Da_,
where
5= 1lye o
-1 tTe-1"
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From (A.1)

(a n L*) (a 2n L# ) = (trm) A-1

TE (8 n L*) (B ¢n L¥ ) = tr’('{l’)(cfﬂ-‘iC)

TE (a n L*) ( on L* ,) - (era)cratle
aB

TE (3 an C") ( an _C* ') = (tr am)a~lc
Y

TE (a n C") ( g'IB‘ c¥ ') = tr(Ba)a~'c
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