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ABSTRACT

This paper efamines several grounds for doubting the value of much
of the special attention recently devoted to unit root econo-
metrics. Unit root hypotheses are less well connected to economic
theory than is often suggested or assumed; distribution theory for
tests of other hypotheses in models containing unit roots are less
often affected by the presence of unit roots than has been widely
recognized; and the Bayesian inferential theory for dynamic models
is largely unaffected by the presence of unit roots. The paper
displays an example to show that when Bayesian probability state-
ments and classical marginal significance levels diverge as they
do for unit root models, the marginal significance levels are
misleading., The paper shows how to ecarry out Bayesian inference
when discrete weight is given bto the unit root null hypothesis in
a univariate model.
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There seen to be two interacting seeds generating the recent surge
of work on unit root inference in economeirics. One ls the idea
that the question of whether or not economic time series fit models
with unit roots is closely linked to important questions about
economic behavior. The other is the idea that the presence of unit
roots in the data greatly complicates statistical inference, making
it important to work out new, correct procedures to apply to this

case. Both these seeds are essentlally sterile ideas.

This paper begins with brief remarks on why unit roots do not
deserve to be discretely singled out on the basis of reascning
about economic behavior. Then we polnt out the implications of
recent work on the classical asymptoilc distribution theory for
unit roots models, which suggest that much of the applied work
using data which have been differenced and transformed to achieve
stationarity is misguided. Finally, the main contribution of the
paper is to peint out that when unit roots are present Bayesian and
classical approaches to inference diverge substantially. The
Bayesian procedures are simpler and more reasonable, suggesting
that inference In the presence of unit roots is not sco sharply
different from inference In stationary models as the classical

theory implies.
1. Behavioral Foundations for Unit Rooi Hypoiheses

While it Is easy to write down behavioral economic models which
imply that ARMA statistical models fit to the data generated by the
behavioral models would have unit roots, for every such model there
is another with essentially the same implications for policy and
for interpretation of hehavior in which the implied ARMA models are
stationary. Scme recent work, for example, puis forward as

"economic theory implying unit roots” models including an arbitrary



postulate that technological change, an uncbservable stochastic
process about which economic theory has nothing to say (at least in
these models), is a process with a unit root. No argument is
presented that this model is more plausible behaviorally or even
substantively very different from one in which technologlcal change
is stationary but with what Granger (1968) called the "typical
spectral shape" of an econcomic time series —-— much mores power at

low than at high frequencies.

The best known example of a behavioral theory implying unit rcots
is the efficient markets hypothesis, which in its most
straightforward form implies that asset prices are random walks.
But it has been understood since Lucas (13878) that the competitive
market mechanism dees not produce random walk asset price behavior,
and my own paper (1984) shows that the intuition behind the
efficient markets hypothesis actually applies only as an
approximation at small time intervals. The theory implies only
medels with roots close to one, and the degree of their closeness
will tend to vary across applications Iin which data are collected
at different intervals. The same sort of remarks apply to Hall’'s
{1978) random walk hypothesis Tor consumptlion. It is easy to see
that the theory implies a unit root for consumption only under
special assumptions, Iincluding constant real interest rates, and
that in a full general equilibrium consumption will at most be
random-walk-1lilke over short spans of time. Futhermore, even this
approximate conclusion depends on arbitrary separability
assunptions on dynamic utlility which are justified mainly by
algebralc convenlence and professional inertia, not by experimental

evidence or intuitive plausibllity.



2. Anomalies in Classical Inference for Unit Roots

Inference in econonmic models should not ignore the possibiliity that
the data are nonstationary, but the attempt to apply asymptotic
distribution theory allowing for nonstationarity has been in most
instances wrongheaded and unenlightening. Asymptotlc theory shows
{see Sims, Stock, and Watson (1988)) that in linear AR models with
some unit roots all linear combinatlons of coefficlients have the
same asymptotic distribution, when normalized by VT, as if the
model were estimated after transformation to stationary form with =a
priori knowledge of the location of unit roots. (Some linear
combinations have a degenerate distribution when normalized by vT;
these are the ones which would be fixed a priori in transforming
the model to stationary form.) Probably the most common source of
concern about unit roots on the part of applied econometricians is
the notion that if they do not transform a model to stationary
form, the usual distribution theory does not apply. The recent
results show that this concern is completely misplaced. The only
test statistics for which asymptotic distribution theory is simple
after transfoermation to staticnary form are those statistics which
would have a gimple asymptotic distribution theory even if the data
were not transformed. In other words, any hypothesls which can be
tested after the model is transformed, cean be tested with exactly
the same distribution theory using the untransformed model. There
is no Justification for preliminary differencing or application of
cointegration transformations in the belief that these steps are

necessary to allow use of the usual statistical tests.

This is not to deny that the asymptotic distribution theory for
multivariate models with unit roots is hard or that it may raise
unavoidable difficulties for classical inference in such models.
Simg, Stock and Watson (1987), for example, show that the

distribution theory of tests for block Granger causal priority in




autoregressive medels depends on whether unit roots are present and
where they are located in the system. But because the asymptotic
distribution theory changes discontinuously between the stationary
and unit root cases, classical hypothesis testing based on
asymptotlc theory cennot deliver reasonable procedures for

inference based on the asymptotic theory.

The central problem with classical inference in these models is
that it does not have the usual interpretation as Bayesian
inference under some disiribution of prior beliefs. This means it
will necessarily glve unreasconable signals about the relative
plausibility of various possible sets of parameter values, as we
peint out below. However there are some mechanical difficulties as
well, mainly arising out of the discontinuity of the classical

asymptotic theory.

Confidence reglons based on asymptotic theory will frequently be
disconnected because of the discontinuity in the asymptotic theory.
This is = familiar fact from existing applications of the
agymptotlic theory, once it is recognized that whenever a unit root
null hypothesis 1s accepted with the "correct" asymptotic theory
and rejected with the nalve theory the confidence region is
disconnected. That the standard stationary asymptotic theory
rejects the unit root null means that it also rejects some set of
nearby parameter settings which imply a stationary model -- for
which the stationary asymptotic theory is correct. VYet if the
point estimate of the model’s parameters is inside the stable
region of the parameter space, there is also a region of accepted
parameter values in the neighborhocd of the polnt estimate. The
confidence region therefore is in two disjoint pieces. This is not
Just 2 small sample problem if the true model does indeed contain a
unit root. 1In that case split conflidence regions will occur with

probability bounded away from zero as T w.




Consider the case of inference aboul p in the zimple univariate AR
v(t)=py(t-1}+ul(t), with {1)
u(t)~N[0,02) independent of past y

and the parameter space known to exclude true p’s above 1. If
confidence intervals are based on the usual t-statistic (even when
3>1), it is also possible to have Ltwo other types of anomaly: empty
confidence regions (when 3 is too much above 1) and confidence
regions not Including p=1 but including an interval open on the
right bounded by p=1 (which occurs because the leftward skew of the
p=1 asymptetic distribution allows easier rejection of p=1 when
B>1). In a Monte Carlo study of a univariate autoregressive model
with a sample size of 100, y{(0)=0, and p=1, one of these anomalous
cases occurred about 8% of the time in 500 trials, with 3% each in
split intervals and empty intervals and 2% in intervals open on the

right.

Besides generating confidence regions of disconcerting topology,
the disceontinuity in the asymptotlc theory encourages unreasonable
approaches to inference. In an ordinary regresslon model suppose
we entertained as hypotheses two linear restrictions on the
coefficients, R@=y and SBE=¢. Suppose also the substantively
important restriction were RB8=y and the other were one we
entertained only as a plausible possible simplification of the
model. Then if testing SB=¢ rejected even at the .15 or .10
significance level, it would seem reasonable not to impose SE=¢ in
testing RB=y. The data are indicating that Sg=¢ is unlikely, and
we do not want to distort the results of a test of RB=y by imposing
a restriction the data indicate is probably false. This raises no
difficulty because testing RB=y in the more general model is still
easy. But in a dynamic model, if SB8=¢ is a restriction implying a




unit root and if the distribution of the test statistic for RB=y is
sensitive to the presence of the unit root, we cannot simply follow
the safe course and not impose SB=¢. James Stock and Mark Watson
{1987} apply a sequence of tests for the presence of unit roots
preparatory to testing the hypotheses of interest and condition on
the "accepted" pattern of unit roots. This results in inference
about important hypotheses hinging on maintained hypotheses about
nonstationarity which the data actually indicate to be quite
unlikely.

A better classical approach is feasible, using Monte Carlo small
sample distiribution theory, which will not be discontinuous.1 One
can generate the jolnt distribution of test statistics of interest
for a number of parameter pcoints near the likelihocd-maximizing one
and compare the likelihood of. the observed sample under the various
estimated Jolnt distributions. Christiano and Ljungquist (1887)
provide an example of analysis of this type. In highly
multivariate settings this approach becomes very complicated,
however, and doing it systematically eventually leads back to a

Bayeslan framework -- which turns out to be easiert
3. A Bayeslan Perspective on Unit Roots Econometrics

It has long been recognized that Bayesian inference concerning
paerameters of linear time series models, conditional on the initial
values of the observed sample and Gausslan disturbance

distributions, encounters no special difficulties for the case of

1It appears possible in principle that exact classical small sample
theory for likelihood ratio tests could, like the asymptotic
theory, lead to disconnected confidence regions. In several 500
trial Mente Carlo studies, however, this was not observed to occur.

It may be impossible, but I have no proof.



unit roots. The likelihood, and hence the posterior p.d.f. for a
flat prior, is Gaussian in shape regardless of whether or not there
are unit (or even explosive) roots. This simple flat-prior
Bayesian theory is both a more convenieni and a logically sounder

starting place for inference than classical hypothesis testing.

How does this theory tell us to deal with, say, the problem of
testing Granger non-causaliiy in a system which might possibly have
cone or more unit roots? It suggests simply using the same F
statistic we would use if unit roots were not present and
interpreting the statistic in the same way. What the F statistic
tells us about the llkelihood function is the same in both cases.
If we are not sure whether nonzero constant or trend terms are
present, we can include them in the model and still use the usual F
statlstic. Despite the fact that classical inference is sharply
affected by whether such terms are present in the unit root case,

the Bayeslan flat-prior theory is not.

This methodoclogical prescription is so simple that econcometricians
who have spent much time unraveling the complexities of the
classical unit-root asymptotlcs usually suspect it must contain
some hidden fallacy. But the only hidden fallacy is in the
classical theory. The flat prior theory does ignore scme
potentially important complications which we examine below, but the

classical theory also ignores them.

Some find it counterintuitive that an hypothesis which cannot be
rejected at, say, the 10% level nonetheless may have posterior
probability of only, say, 2%. Here is a simple example. Suppose =
clinician is diagnesing a patient who may have one of 10 equally
likely diseases. He recelves results from a lab test which has the
following characteristics: 1if the true disease is disease i, the

test outcome is "i" with probability .85; if the true disease is i,




with 2=i=8, the test indicates "i+1" or "i-1" with equal
probabilities of .075; if the true disease is 1=10, the test
indicates "i" with probability .0168@+(i—5)*€, i=1,...,9; and if
the true disease is i=1, the test iIndicates "i" with probability
.0166+(6—i]*e, i=2,...,10.. The following table indicates the
characteristics of the test with £=.001.

Tabkle 1
Probabilities of Test Results
Test Resuli True Disease

1 2 3 4 g 5] 7 8 9 10
1 .88 .075 O 0 0 0 0 0 0 .013
2 .021 .85 .075 O 0 0 0 0 0 .014
3 .020 .075 .85 .075 O 0 0 0 o} .0158
4 .018 « L0785 .85 .075 O 0 o Q .018
B .018 O 0 .075 .88 .075 O 0 0 .017
6 .017 O 0 0 .075 .85 .075 0O 0 .018
7 .0168 © o] 0 0 .075 .85 .075 O .019
8 015 0O 0 0 0O "~ O .075 .85 .075 .020
g 014 0 0 0 0 __ 0 .0 075 .85 .021
10 .013 © 0 0 0 0 0 o0 .075 .85

If we observe a test result of 2, a likelihood ratio test of the
null hypothesgis of i=1 has a marginal p-value of .13 That is, i=l
is well within a minimum-length 380% confidence Interval. Yet the
actual probablility that the disease is the flirst disease, given
that the test indicates i=2, is only .022. This conclusion does of
course depend on the prior -- the notion that the diseases are
equally llkely before we see the test results. But the classical
p-value of .13 .cannol be regarded as simply corresponding to a
higher prior weight on the i=1 hypothesis. The marginal p-value
for the I=1 null hypothesis if we observe a test result of 10 is
below .013, yet the probability of i=1 given this observation is
.014, not greatly different from the .022 probability of this
hypothesis when the observation is 2. This reflects the actual
characteristice of the lab test: 1if i=1 is the truth, then when




the test errs, it errs nearly randemly. An observation of 10 is
only slightly stronger evidence zgainst a true i=1 than is an
observation of 2. If one puts higher prior weight on the i=1 null
hypethesis, then the probabilities of i=1 should be scaled up for
all observations in the range 2 to 10. The classical “"p-value" for
i=1 changes by 2 factor of 10 between an observation of 2 and an
observation of 10; if the p-value is interpreted as an indicator of

the strength of evidence against i=1, it 1s seriously misleading.

What happens in the foregoing example is less complicated than the
situation in an autcoregressive model. In the simplest
autoregressive model (1) we expect the standard error of estimate
of the OLS estimator 3 In a sample of given size to be smaller the
closer 1s p to one (because the sum of squared lagged y's will tend
to be larger relative to az for larger p’s). This by itself makes
it more likely that a given observed 3 is & spuriously high
estimate generated by a smaller p than that it is a spuricusly low
estimate generated by a larger p. But this does not skew the
likelihood toward lower p’s because the distribution of 3 is itself
skewed to the left for p’s near one, which by itself would make it
more likely that a given observed B is spuricusly low than that it
is spuriously high. The classical theory focuses entirely on this
latter effect, paying no attention to the danger that we can be
misled into giving too much credence to large p values because of
the more erratic behavior of estimates from models with lower p

values.

We can put this same point another way. If.the economics
profession, perhaps across many Investigators and articles, studies
many time series which satisfy the simple univariate AR model, and
if the models actually have p values scattered with some continuous
cdf in a neighborhood of p=1, then p—ﬁ, as the erreor in the

Bayesian posterior mean, will be scattered evenly above and below

10



zero. Llassical confidence reglons, even if constructed from exact
finite sample theory, will be skewed toward p=1 and will not be
centered at the true p values on average. No Monte Carlo study is
needed to check this proposition; it is simply a characterization
in words of what the Bayesian posterior mean is and of how the

classical confidence intervals differ from it.

4, Giving Unit Roois Special Prior Weight

For the reasons outlined in section 1, I think we are mistaken to
treat roots exactly on the unit cirecle as having nonzero
probability. We really have no reascn for distinguishing such
models from thelr neighbors with roots close to the unit cirecle.
Nonetheless it may be worthwhile to show explicitly how a discrete
weight on the unit root hypothesis can be accommodated in a

Bayeslan framework.

Priors in which there 1s discrete weight on unit roots are priors
with discrete weight concentrated on a lower-dimensionazl
submanifold of the original parameter space. In this respect they
are formally similar to models with discrete weight on short lag
length models embedded in long lag length models and to regression
models with discrete weight on equations with small numbers of
variables embedded in less parsimonious specifications. Practical
workers in time series analysis now widely apply the Akaike and
Schwartz criteria (see Judge et al {1980), section 11.5) for
choosing lag length because of the obvious unreasonableness of
clasgical hypothesis testing in this problem. The Schwartz
criterion has an asymptotic Bayesian Justification. It suggests
comparing the twice the difference in log likelihoods between a
larger and smaller model (the chi-squared statistic) to the
difference in numbers of parameters beiween the two models,

multiplied by log of sample size.

11




In our simple first order AR model, the p=1 restriction is a
zero—dimensional linear subspace of the one-dimensional general
parameter space. It might appear that the Schwartz criterion

applies directly and suggesis comparing

Tly(t)-y(t-1))2
log

Tly(t)-By(t-1))2

to log(T), where T is sample size and 3 is the least-squares
estimate of p. This is not correct, however, even asymptotically.
The Schwartz criterion’s asymptotlcs depend on the distribution of
the estimate converging at the same rate for all true parameter
values inp a neighborhood of the null hypothesis, and that is not

true here.

We can get asymptotically correct procedures, however, along the
lines of Leamer’s (1978) more general verslon of the same idea
embodied in the Schwarz criterion. Suppose in ocur univariate AR
model we Iinitially put probability « uniformly on the

interval (0,1), probability l-« on p=1, and independently a uniform
prior on 10g(&2)=10g(VarIu(t)]). The likelihood then has a
norma.l-inverse~gamma shape, conditional on the initial
observations? and the marginal likelihood for p is a t distribution
with T-1 degrees of freedom and scale parameter‘ab=V[¢2/E(y(t—1)2].
This distribution is, for large T, very close to N(S,cﬁ]. We let

® be the c.d.f. for the standard Normal distribution and ¢ be its
p-d.f and 1let T=(1—3)/0b stand for the conventional t statistiec for
p=1. Then for large T the odds ratio in favor of the p=1 null

2That is, it has the form of the product of z gamma marginal p.d.f.

on o 2 with a normal conditional p.d.f. for ploz.

12




hypothesis is l-« times the normally shaped likelihood value at T
divided by « times the integral of the normally shaped likelihood
over (0,1}. It is easy to see that this is just

(1—&)¢(r)/ob{aQ(T)} ,

assuming that the posterior probability on p<0 turns out to be
negligible. This would reduce asymptotically to the Schwarz
criterion were it true that o behaves asymptotically like a
constant times 1/vT. Thus the Schwarz criterion would apply for
testing p=.9 against a smoothly distributed alternatlive; bui since
when p=1 ob behaves asymptotically like a constant times 1/T, we
-cannot avoid including Ub explicitly in the eriterion. The
analogue of the Schwarz critericn here suggests comparing 12 to

2
-logl( .
og ob)

Note that the result will not even approximate the results of
classical hypothesis testlng In general, though it will strongly
favor the unlt rcet null hypothesis. The Bayesian procedure gives
the unit root hypothesis an edge which depends on.ab. This is
reagonable, because if p=1 is true, Gb should shrink much faster
with sample slze than if p2l. One of the unreasconable aspects of
the classical approach to this problem is that likelihood ratio
tests meke no use of our knowledge that a large ob in a large
sample is evidence against p=1 even if the t statistic for p=1 is

fairly small.

In any actual sample, the choice of the prior weight « on the open
unit interval, can have sirong effects on the statistic suggested
here. In fact, it is probably not reasonable to treat the prior as
uniform over all of (0,1). In practice, we are concerned with the
situation where the likellhood is concentrated somewhere near one.
The prior is probably also concentrated near there, though we may

suppose that with reasonable sample sizes it will nearly always be
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nearly flat in the range of p values for which the likelihood is
large. How concentrated the prlor will be near one obviously
depends on the time units in which the data are measured, with
concentration getting stronger as time unit gets smaller. If we
think of the prior as concentrated mainly on (.5,1) for annual
data, then since .5 %=.84 and .5'712=. 84, it should be on (.84,1)
for quarterly data and on (.94,1) for monthly data. With a«=.5
then, a t statistic of 2 for the p=1 null hypothesis leaves the
odds even between p=1 and the alternative if $=.82 for annual data,
it 3=.98 for quarterly data, and if $=.99 for monthly data. If «
were .8 instead of .5 (which seems more reasOnab%e to me}, then the
foregoing Q’s at which a t of 2 leaves the odds even correspond
instead approximately to the levels at which a t of 1 leaves the

odds even.

Though I think it unreasonable to look for exact unit roots, in
practlice we may need to simplify our models for computational
reasons, and then an odds ratio test like that described above is
reasonable. To be completely explicit, the criterion would be to

compare 72 (the squared t statistic) to

1/5

21ogt(1—a)/a)—1og(a—§)+21og(1—2‘, ),

where S is the number of periods per year (e.g. 12 for monthly
data) and we are ignoring a term -2log(®(r)) which will ordinarily
be quite small when 3<1 and is asymptotically negligible. Using
a=.8 as I prefer, this becomes for the three leading cases of

annual, quarterly, and monthly data

W8}

-logle)-4.15

N oo

-log(o"}-6.45 (2)

s

—10g(0§)-8.53,

respectively.
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This approach generalizes to more complicated models, where it
amounts to modifying likelihood ratio tests along the lines of
Leamer’s suggested modification of the F t.est3 in single-equation
regression models. Of course in more general models there is
usually no one root or pattern of roots on the unit circle which
has an a priori special status, and the justification for departing
from a continuous prier p.d.f. is even more strained than in the

univariate first order model.

When we are testing a set of linear restrictions, the crude
multivariate verslon of the c¢criterion, corresponding to comparing
12 to —1og(02}, is to compare the chi-squared statistic {(or
numerator degrees of freedom times F-statistic) with -log|Zl, where
Z is the covarlance matrix of the linear combination of
coefficlents being restricted. In some cases nonstationarity null
hypotheses correspond to sets of linear restrictions —-- that
certain sums of coefficients are one or zero. In these cases the
reasoning which led to the criteria displayed in (2) generalizes
directly, with the criteria in (2) applying separately to each sum
of coefficients being tested. For testing k null hypctheses
Jointly, the correctlon factors in (2) are each multiplied by k,
the statistic becomes the chi-squared instead of the t, and log(og)
is replaced by log(IZ[}. °

More generally, though, we might be interested in, say, 2 single
unit root in an m-variable system, so that m—-1 linear combinations
of the variables are stationary. If we don’t know & priori which
m-1 linear combinations are stationary, the generalization of the
conventional priors which led to {2) is not so obvious. We will

not pursue this point here, simply noting that the analytical

—

3See Leamer (1978), section 4.5.

15




difficulties of the further generalizaticn are simpler than those

in the classical asymptotic theory for this case.
5. Initial Conditions and Constant Terms

A Bayeslan perspective on dynamic models with possible
nonstationarity focuses attention on the fact that inference in
these models really requires assessment of prior beliefs about
whether initial conditlons were generated by the same mechanism
generating subsequent data. When one is certain the mechanism is
stationary and has been operating a long time, then it is
reasonable to believe that the parameters of the dynamic model
determine the marginal distribution of the initial conditions. 1In
our simplest univarlate AR example, this means that
y(O)»N(O,cz/(l—pzl). If this were so, inference based on the
conditional p.d.f. for y(t) t=1,..,T given y(0) would be throwing
away important information. On the other hand, in a nonstationary
model there 1s no unique marginal distribution for y(Q), so it does

make sense to.condition on initlial observations.

Our treatment of the stationary and nonstationary cases should not
differ discontinucusly. A stationary model with a root implying
decay toward the mean very slowly relative to the length of the
avallable sample may imply that the model mechanism would have to
have been operation for a perlod many times longer than the
available sample in order to guarentee convergence of the marginal
distribution of the data to its staticnary value. It is usually
not reasonable to assume the mechanism has operated unchanged for
so long, so the stationary marginal distribution should not be
taken to be exactly the marginal distribution of y(0). Ideally our
pricr should use the initial observation in inference for
stationary parameter settings and blend smoothly into conditioning

on initial observations for nonstationary settings. There are no

16



standard procedures to do this. We may take some comfort in
observing that for stationary models the difference between
inference conditioned on initial observations and inference taking
account of the dependence of y{0) on the parameters will be small
in large samples, so that inference conditioned on initilal

observatlions may be a good approximation most of the time.

If the model contains constant terms, then It might be natural to
take the prior to be flat in the unceonditional mean of the data
rather than in the constant terms themselves. This idea interacts
with the guestlon of whether to condition on initlal observations,
however, since there is no unique unconditional mean for a

nonstallonary model.

6. Nonnormality

Bayesian analysis of linear time series models is easy only under
the assumptiion of Gaussian disturbances. The classical asymptotic
theory is nonparametric, in that it is unaffected by the form of
the distribution of disturbances so long as they are, say, I1.i.d.
and of finite variance. Though the literature in this area for
Bayesian models is much less rich, it is clear that similar
nonparametric behavior applies to Bayesian inference. That is, one
can assert that with high probability Bayesian inference on

normality assumptions will be close to that for the true
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digtribution of disturbances in large samples.4 Furthermore, in
the Bayesian procedure it is clear how to check whether the sample
is large enough and how to proceed if it turns cut not to be. One
can find the peak of the posterior distribution and the second
order derivatlves of its logarithm at the peak (this determines the
covariance matrix of the Gaussian approximation to it) under
normality assumptions, then compare the shape of the approximate
Gaussian likelihood to the shape ilmplied by alternative nonnormal
disturbance distributions. The Caussian agsumptions allow easy
computation of the peak and the second derivative matrix; assessing
the accuracy of the approximation requires only evaluabtling the
likelihood under nonnormal assumptions at a number of parameter
points, not maximizing and differentiating it. Of course if the
Gaussian approximation turns out to be poor, cone can only proceed
with the more burdensome computations using the nonnormal

likelihood.

The robustness of asymptotic theory to nonnermality does not apply
to models with roots strictly larger than one in their
autoregressive metricegs (strictly inside the unit circle in their

characteristic polynomials). This applies alsc teo Bayesian

4This is a simplification. The most direct analogue to classical
asynptotic results is the result that eny true likelihood function
converges in shape to a normal distribution. Results like these
appear in Hartigan (1983). But this is a guide to convenient
computation or summary of the likelihood function, not a robustness
result. Robustness results would be of the form: Bayesian
Inference using the true distribution but conditioned on
observation of the Gaussian sufficient statistics (not on the full
sample) converges to Bayesian inference using a Gaussian likelihood
based on the full sample. I do not know where such resulis may

have appeared, though they are clearly cobtainable.
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inference. Since the data often meke roots slightly inside the
unit circle look likely, econcmetricians should be paying more
attentlon to the consequences of nonnormality and to the degree to
which the data support a normality hypothesis. My own research
{1988) shows strong evidence of nonnormality in macroeconomic Lime
series data. The Bayesian framework maskes investigating
nonnormality a straightforward computational problem, albeit not an

easy onhe.

7. Conclusion

There are important research problems in time series analysis which
interact with the presence of nonstationarity —- nonnormality of
disturbances and proper accounting for the evidence about
parameters contained in initial conditions, for example. A
Bayesian framework for Iinference focuses attention on these
problems and suggests approaches to dealing with them. Classical
inferentizal procedures, precisely because they do differ
substantially from Bayesian procedures in this context, are
misleading, and they throw up analytical difficulties in simple

cagses which prevent our making progress on the real issues.
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