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ABSTRACT

There are two approaches to maximum likelihood (ML) estimation of the parameter
of fractionally—integrated noise: approximate frequency-domain ML (Fox and
Taqqwu, 1986) and exact time—domain ML (Solwell, 1990a). If the mean of the
process is known, then a clear finite—-sample mean—squared error (MSE) ranking of
the estimators emerges: the exact time—domain estimator has smaller MSE. We
show in this paper, however, that the finite—sample efficiency of approximate
frequency-~domain ML relative to exact time—domain ML rises dramatically when the
mean result is unknown and instead must be estimated. The intuition for our
result is straightforward: The frequency-domain ML estimator is invariant to the
true but unknown mean of the process, while the time-domain ML estimator is not.
Feasible time—domain estimation must therefore be based upon de-meaned data, but
the long memory associated with fractional integration makes precise estimation
of the mean difficult. We conclude that the frequency—domain estimator is an
attractive and efficient alternative for situations in which large sample sizes
render time-domain estimation impractical.




1. Introduction

The literature on long-memory time series processes, and in
particular, fractionally-integrated ARMA (ARFIMA) processes, has
grown rapidly since the early contributions of Granger and Joyeux
(1980), Hosking (1981) and Geweke and Porter-Hudak (1983).
Recent theoretical work includes Fox and Tagqu (1986), Robinson

(1988, 1990), Sowell (1990a, b), Gourieroux et al. (1987) and

Yajima (1985, 1988), among others.

The theory is beginning to be used in applied econometric
work, in which flexible characterization of long-run, or low-
frequency, dynamics is often of crucial importance. Examples
include Diebold and Rudebusch (1989), Haubrich and Lo (1988) and
Sowell (1990c) (real output dynamics and the unit-root
hypothesis), Diebold and Rudebusch (1990a) (disposable income
dynamics and the permanent-income hypothesis), Lo (1988)
(predictability of stock returns and the efficient-markets
hypothesis), Shea (1é90) (variance bounds for the interest-rate
term structure and Hicks’ expectations hypothesis}, Diebold,
Husted and Rush (1990) (real exchange rate dynamics and the
purchasing power parity hypothesis), Cheung (1990) (nominal
exchange rate dynamics and the efficient markets hypothesis) and
Hassett (1990) (real wage dynamics and the intertemporal
substitution hypothesis).

Most such applied work, however, makes use of estimation
procedures whose properties are incompletely understood, and

whose properties are likely to be suboptimal relative to maximum-
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likelihood (ML) under correct model specification.® Hence the
interest in recent work on exact time-domain and approximate
frequency-domain ML estimation of fractionally-integrated models.
Examples include Fox and Taggqu (1986), who construct an
asymptotic approximation to the likelihood of an ARFIMA process
in the freguency domain, Sowell (1990a), who constructs the exact
likelihood function of an ARFIMA process in the time domain, and
Li and McLeod (1986), who study the asymptotic. properties of the
ML estimator?.

Monte Carlo analyses, in particular Sowell (1990a), have
shown that (in finite samples) the time-domain ML estimator is
substantially more efficient than the frequency-domain ML
estimator, when the mean of the process is known. Thus, in spite
of the fact that time-domain ML estimation is more tedious than
frequency-domain ML (due to the (TxT) covariance matrix that must
be inverted at each evaluation of the likelihood function), time-
domain ML appears to be an attractive estimator.?®

In practice, of course, the mean is not known, so that
existing Monte Carlo results correspond to an infeasible
estimator. What happens when a feasible time-domain ML

estimator, obtained by removing an estinmated mean from the time

' The leading such estimation technigue is the two-step
procedure of Geweke and Porter-Hudak (1983), which we shall call
the GPH procedure.

2 1,i and Mcleod work under the assumption of a known mean.
Relation of that assumption is the subject of this paper.

* Here and throughout, T denotes sample size.
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series prior to estimation, is used? 1In this paper, we motivate
this guestion in light of some important differences underlying
the construction of the time- and frequency-domain ML estimators,
and we provide an answer.

The paper proceeds as follows. In section 2, we discuss the
details of our Monte Carlo experiment, in which we explore the
efficiency of the freguency-domain ML estimator (which does not
depend on the mean) relative to that of the time-domain ML
estimator (with the population mean assumed known and,
alternatively, with the arithmetic sample mean removed prior to
analysis). In section 3, we report the results of the Monte
carlo analysis; the efficiency of frequency-domain ML relative to
time-domain ML with estimated mean is strikingly different from
its efficiency relative to time~domain ML with known mean. In

section 4, we offer additional discussion. Section 5 concludes.

2, The Monte Carlo Experiment
2a. Data Generating Process
We work with the pure fractionally-integrated process
(1 - B)*X, = e, (1)
e, ~ NID(O, 1), (2)

t=1, 2, ..., T, where B is the backshift operator and ~1/2 < 4

* The restriction on d is sufficient for stationarity and
invertibility, and can always be achieved by taking a suitable
number of integer differences.



2b. Estimators

. We first consider time-domain ML estimation. Assume first
that the mean of the process is known, and without loss of
generality assume that it is zero. Under the normality
assumption, construction of the likelihood simply amounts to
expressing the autocovariances of the process in terms of the
underlying parameters (in this case d). Evaluation of the
likelihood requires inversion of the (TxT) Toeplitz covariance
matrix, Z(4d), with ij-th entry,

v [1=3]) = (-1)"* (r(1-2d) / [r(1-a+}i-j|) r(1-a-{i-j|)1j,
where 1/r'{d) = 0 when d is a non-positive integer.® The first
estimator we explore is precisely the one that maximizes this
likelihood, with the mean assumed known to be zero (and hence not
estimated).® The estimator is denoted ML1. Formally,

ML1 = arg max L(x-g; =(4)),
d

.where L(-) denotes the likelihood function. ML1 is of course not
feasible in practice, because the mean is never known, but it
will serve as a useful benchmark.

The obvious feasible counterpart to ML1 is obtained by first
removing the sample mean from the data,

MLla = arg max L((x-R):; Z(d)).
a

* This result may be traced at least to Adenstedt (1974) for
the ARFIMA(0,d,0) case, and is generalized by Sowell (1990a) to the
ARFIMA(p,d,q) case.

¢ The FORTRAN code used to evaluate and maximize the
likelihood was generously supplied by Fallaw Sowell.
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As long as % jis consistent, the feasible estimator will perform
satisfactorily in large samples. The long memory associated with
fractional integration may lead to extremely inefficient
estimates of the mean, however, leading to poor performance of
MLla in samples of the size typically available in economics.
Now we consider frequency-domain ML estimation.” Following

Fox and Tagqu (1986), we exploit the fact that maximization of
the Gaussian likelihood is asymptotically equivalent to
ninimization of

T-1

T [I(273/T) / £.(213/T, d)1,

=1
with respect to d, where I,(A) is the periodogram of X at
frequency A, and

£.(x, @) = |1 - e[
is proportional to the spectral density of X at frequency i. We
call the resulting estimator ML2; formally,

T-1
ML2 = arg min X [I,(273/T) / £(2nj/T, 4A)1.
d j=1
Some authors, such as Dahlhaus (1988) have argued that

tapering may improve the finite-sample properties of the

frequency-domain estimator; therefore, we also explore the

properties of two fregquency-domain ML estimators that make use of

? The frequency-domain procedure, which builds upon an
important result of Whittle (1951), has received substantial
attention in the estimation of short-memory ARMA and unobserved-
components models. See, for example, Nerlove et al. (1979) and
Harvey (1989).



7
trapezoidally tapered data. The first is
T-1
ML2a = arg min % [I,.{(27])/T) / £ (27i/T, d)1,
d j=1
where 1,()) is the periodogram of Xa at frequency X, and where

xa, = K. X,

with
t/a 1 <t=a
k.= {1 at+l £ t £ T-a
(T+1-t)/a T+l-a <t £ T,
where a = .1T.

The second taper is identical, except that 25% of each end
of the sample is tapered rather than 10%. The estimator is
T-1
ML2b = arg min £ [In(273/T) / £.(273/T, d)1],
d j=1
where I,.(A) is the periodogram of Xb at frequency A, and where
xb, = K.’ X,
with

t/b 1<t

A

b
ket = { 1 b+l € t £ T-b
(T+1-t)/b T+l-b < t S T,

where b = .25T.

2c¢. Experimental Design
Ten points in the parameter space are explored,
corresponding to @ = *.05, *.15, *.25, %.35, and t.45. Sample

gsizes of T = 50, 100, 300 and 500 are explored. Realizations of
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(2) for each T are generated by IMSL subroutine DRNNOA, and then
the corresponding realizations of (1) for each (&, T}
configuration are generated by multiplying vectors of N(0,1)
deviates by the Choleski factor of the covariance matrix of X, as
in Diebold and Rudebusch (1990b). The sampling properties of the
various time- and fregquency-domain ML estimators discussed
earlier are explored. For each {d, T, estimator} configuration,
1000 Monte Carlo replications are performed, and the bias and

mean sguared error {MSE) across the replications are computed.

3. Results

The finite-sample biases of the various estimators are
reported in table 1 and figures 1-3.° Bias is almost always
negative; that is, 4 tends to be under-estimated. TFor fixed 4,
the bias of each estimator approaches 0 as T approaches «, as
expected. For all fixed d and T, the absolute bias of ML1 is
generally smallest, followed by MLla, which generally has a
smaller bias than any of ML2, ML2a and ML2b. The absolute biases
of MLla and ML2 are roughly comparable, however, particularly for
large d. The data tapers often provide little bias reduction,
although for the most persistent parameterizations (large
positive d values) they do reduce bias, a finding that accords
with Dahlhaus (1988). We summarize these results as:

B(ML1) < B(MLla) < B(ML2) ®» B(ML2a) = B(ML2b), (Result A)

* To conserve space, we do not graph the bias for the tapered
frequency-domain estimators.
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‘ for all fixed 4 and T, where B(-) denotes absolute bias.

Second, for all fixed T, the (absolute) bias of MLl tends to
increase slightly with d, while the bias of MLla tends to
increase sharply with d. The biases of the other estimators show
no clear relationship to d. We summarize these results as:

dt = B(ML1)1t

dt =» B(MLla)t? (Result B)

dt » B(ML2)t4, B{(ML2a)ti, B(ML2b)t!{,
for all fixed T. Additional discussion and interpretation of
this result will be provided below, when we discuss the results
for MSE.

Ultimately, we are not interested in small bias per se. In
particular, the squared error loss with which we evaluate the
estimators may be decomposed into the sum of squared bias and
variance, so that high bias is acceptable if it is sufficiently
compensated for by low variance. In short, we report the biases
in order to enable the reader to mentally decompose the MSE’s, to
which we now turn, into their underlying components.

The finite-sample MSE’s of the various estimators are
reported in table 2 and figures 4-6. As expected, for fixed d,
the MSE of each estimator decreases with T. A number of
additional important results are apparent. First, for all fixed
T and d, time~-domain ML distinctly dominates frequency-domain ML
when the mean is known. Second, for all fixed T and d, time-
domain ML outperforms frequency-domain ML by a much smaller

margin when the mean is estimated. Particularly for d > 0, there
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_is little performance difference between the two estimators.
Third, although neither taper consistently produces a reduction
in the MSE of the frequency—-domain estimator, both tapers reduce
MSE when d is very close to 1/2. (Again, see Dahlhaus, 1988.)
We summarize these results as:

MSE(ML1) < MSE(MLla) = MSE(ML2) = MSE(ML2a) = MSE(MLZb),

(Result C)
for all fixed d and T.
Now consider the effects of varying d. First, note that for
each sample size, the MSE of MLl is decreasing in d. Evidently
the reduced variance of that estimator, which is obtained through
the greater unconditional variation induced by higher d values,
more than offsets the slightly increased squared bias associated
with higher d values. Second, note that for each sample size,
the MSE of MLla tends to increase in d. Here, the reduced
variance is not enough to offset the large bias increases
associated with higher d. Third, note that the MSE’s of the
frequency-domain estimators are not particularly sensitive to d.
We summarize these results as:
dt = MSE(ML1)!
dt = MSE(MLla)t (Result D)
dt » MSE(ML2)t!, MSE(ML2a)ti, MSE(ML2b)t4,

for all fixed T.

Understanding may be deepened, and all of the results
conveniently summarized, by examining relative efficiencies. The

efficiency of estimator i relative to that of estimator j,
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denoted Rij, is MSE(Jj)/MSE(i). In particular, we define:
| R21 = MSE(ML1) / MSE(ML2)

R2la = MSE(MLla) / MSE(ML2)

R2ala

I

MSE(MLla) / MSE(ML2a)

R2bla = MSE(MLla) / MSE(ML2b).

These relative efficiencies are reported in table 3, and graphed
in figures 7 and 8, for the various T and d configurations. Here
we shall focus on the figures, which conveniently summarize a
large amount of information.

Consider first figure 7, in which the efficiency of
frequency-domain ML relative to time-domain ML with the mean
known (R21) is graphed as a function of d. Four relative
efficiency curves are shown, each corresponding to a different
sample size. Note that the absolute height of each of the four
curves is low, indicating the low efficiency of frequency-domain
ML relative to time-domain ML when the mean is known. Due to the
asymptotic equivalence of the two estimators, relative efficiency
tends to grow with T, approaching 1.0 in the limit. Also of
interest is the fact that, for each sample size, the efficiency
of frequency-domain ML relative to time-domain ML decreases with
d. This is a manifestation of Result D.

Now consider figure 8, in which the efficiency of frequency-
domain ML relative to time-domain ML with the mean estimated
(R21la) is graphed as a function of d. First, note that the

absolute height of each of the four curves is substantially

higher than in figure 7, indicating the much improved efficiency
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of frequency-domain ML relative to time-domain ML when the mean
is.estimated. Again, due to the asymptotic equivalence of the
two estimators, relative efficiency tends to grow with T,
approaching 1.0 in the limit. Second, note that, for each sample
size, the efficiency of frequency-~domain ML relative to time-
domain ML now increases with d--the more persistent the process,
the better the relative performance of freguency-domain ML.
Again, this is a manifestation of Result D.

Further insight into the deterioration of the relative
performance of time-domain ML as d grows, when the mean is
estimated, can be gained by recalling a result of Sowell (1990b,
Theorem 1), who shows that for the pure fractional process (1)-
(2), var(s..,” x.) = o(T™*). Thus, T/*~ ¢ Z.,” x. has a stable
limiting distribution, so that T/*-¢ % has a stable limiting
distribution; that is, the convergence rate of the sample mean
depends inversely on d. When d = 0 the usual root-T consistency
obtains; convergence is faster or slower than root-T as 4 is less
than or greater than 0. The larger is d, the more slowly the
sample mean converges, and the poorer the performance of feasible

time~domain ML.

4. Additional Discussion

Here we focus on certain aspects of the analysis that merit
additional attention, with particular attention paid to
directions for future research.

First, we intentionally neglect the GPH estimator in our
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Monte Carlo comparison. Such a comparison would be unfairly
biased against the semi-parametric GPH estimator, because we work
only under correct model specification. It might be desirable to
study in future work the comparative properties of GPH, time-
domain ML, and frequency-domain ML under model misspecification
of various types. Such a study, however, would be very
challenging in terms of experimental design.

Second, we intentionally focus on the case of pure
fractional noise, that is, the ARFIMA(0,d,0) case. The pure
fractional noise is of substantial interest in its own right, and
moreover, it is best to attempt a thorough understanding of the
pure fractional noise before proceeding to more complex
processes, because the insights gained from its study are likely
to provide useful guidance regarding behavior in more complex
environments. The Monte Carlo analysis of Cheung (1990) deals
with more complex models with AR, MA and ARMA components, with no
change in the qualitative nature of the results reported here
(but with a great increase in design complexity and computational
burden).

Third, we use only the arithmetic sample mean to estimate
the population mean. It is apparent that the performance of the
time-domain ML estimator deteriorates significantly when the
sample mean is removed from the data prior to estimation. The
possibility arises, however, that alternative feasible time-~
domain estimators, based upon alternative estimators of the

population mean that take account of the dynamic structure of the
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data, might produce better performance.

| The obvious candidate estimator is Adenstedt’s (1974) best
linear unbiased (BLUE) estimator, which depends only on 4,
collapses to the sample mean in the d = 0 case, and can be made
feasible by using a preliminary semi-parametric d estimate from
the GPH procedure. Another candidate, which is clearly not a
fully efficient estimator of the population mean, but might
nevertheless provide substantial efficiency gains and is readily
computed using standard software, is the least-squares estimator
with a correction for first-order serial correlation.

It turns out, however, that the prospects for improving the
performance of the feasible time-domain estimator by using
alternative estimators of the mean are very limited. Samarov and
Tagqu (1988) have shown analytically that, for a variety of
sample sizes, the efficiency of the arithmetic mean estimator
relative to Adenstedt’s BLUE estimator is close to 100% over most
of the parameter space and for a wide range of sample sizes.
Similar results emerge from the Monte Carlo analyses of Mohr
(1981) and Graf (1983}.

Finally, we note that inclusion of the determinant term in
the frequency-domain Gaussian likelihood is likely to improve the
finite-sample performance of the freguency-domain estimator ML2,
as suggested by Nerlove et al. for ARMA processes and Boes gt al.
for ARFIMA processes. Thus, the prospects for improving the
performance of the ML2 estimator are pot so limited (in contrast

to those for MLla). Taken together, these insights make our main
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result even stronger: The efficiency of a simple variation of ML2
frequency-domain ML estimator relative to MLla is likely to be

even larger than that reported here for ML2.

5. Summary and Conclusions

We have examined the finite-sample performance of ML
estimators of the parameter of a pure fractional process. We
first showed that the efficiency of fregquency-domain ML relative
to time-domain ML is poor, when the mean of the process is known.
These Monte Carlo results are in complete accord with those of
Sowell (1990a). The time-domain ML estimator that assumes a
known mean is not feasible, however, whereas the frequency-domain
estimator is. We therefore compared the finite~sample efficiency
of the leading feasible time-domain ML estimator to the
freguency-domain estimator. The comparison is of key importance,
because it is the one relevant to actual practice. The results
were striking: the relative efficiency of approximate frequency-
domain ML was much improved.

To determine the implications of our results for applied
work, one must weigh costs and benefits. The feasible time-
domain ML estimator, while much less efficient than its
infeasible counterpart, nevertheless usually has somewhat lower
MSE than the frequency-domain ML estimator for the sample sizes
and parameter values examined here. (The biggest differences, of
course, arise for the smallest samples.) Time-domain ML,

however, requires tedious (TxT) covariance matrix inversion at
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each evaluation of the likelihood. Conversely, although the
' frequency-domain ML estimator has slightly higher MSE, it has the
virtue of a light computational burden.

One might be tempted to conclude that the lighter
conputational burden associated with frequency-domain ML more
than offsets its slightly higher MSE. We do not necessarily
agree. Today’s powerful computing environment makes Sowell’s
exact time-domain estimator viable for the small/medium sample
sizes in which it can really make a difference. The good news
provided by this paper is that, for the medium/large sample sizes
in which time-domain ML is likely to be prohibitively tedious (or

impossible), frequency-domain ML is likely to perform very well.
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Table 1
Finite-Sample Bias

ML1 MLla ML2 ML2a ML2b
=50
d=-.45 -.0193 ~-.0389 ~.0781 -.0933 —.0987
=-,35 -.0291 -.0630 ~.08456 -.0932 -.0983
=-.25 ~-.0206 -.0695 ~.0991 -.1016 -.1081
d=-.15 ~.0237 -.0740 -.0979 -.1002 -,1044
d=-.05 -.0329 -.0893 -.1022 -.1014 -.1035
d=.05 -.0283 -.0950 -.1030 -.1007 .0989
d=.15 -.0213 -.0916 -.0972 . 0979 L0971
d=.25 -.0318 -.1068 -.1031 -.0966 -.09086
d=.35 -.0365 ~.1182 -.0929 -.0796 .0664
d=.45 -.0433 -.1339 -.0886 -.0473 .0121
=100
d=~.45 -.0134 -.0230 -.0349 -.0474 -.0499
d=-.35 -.0156 -.0331 ~-.0437 -.0529 -.0570
d=-.25 -.0072 -.0308 -.0392 -.0436 -.0468
d=-.15 -.0165 -.0451 -.0524 -.0555 -.0583
=-.05 -.00921 -.0410 -.0472 -.0480 -.0494
d=.05 -.0150 -.0494 -.0530 -.0543 -.0540
d=.15 -.0143 -.0503 -.05602 -.0490 -.0504
d=.25 -.0137 -.0528 -.0471 ~-.0437 -.0418
d=.35 -.0188 -.0594 -,0435 -.0353 -.0299
d=.45 -.0271 -.0789 -.0412 -,0119 .00D49
£=300
d=-.45 -.0028 -.0053 -~.0057 -.0178 -.0185
d=-.35 -.0044 -.0110 -.0119 -.0183 -.0184
d=-.25 ~.0036 -.0136 -.0148 -.0172 -.0205
d=-.15 -.0029 ~.0143 -.01690 -.0182 -.0141
d=-.05 -.0017 -.0167 -.0177 -.0168 -.0207
d=.05 -.0048 -.0173 -.0184 -.0195 -.0204
d=.15 -.0041 -.0174 -.0170 -.0166 -,0182
d=.25 -.0041 -.0186 -.0156 -.0141 ~.0136
d=,35 -.0064 -.0224 -.0147 -.0121 -.0101
d=.45 -.0133 -.0349 -.0253 -.0088 .0082
T=500
d=-.45 -.0036 -.0048 -.0041 -.0104 ~-.0104
d=-~.35 -.0016 -, 0075 -.0070 -.0100 -.0126
d=-.25 -.0033 -.0091 -.0092 -.0111 -.0120
d=-.15 -.0022 -.0100 -.0107 -.0139 -.0103
d=~.05 -.0030 -.0122 -.0121 -.0120 -.0117
d=.05 -.0019 -.0095 -.0135 -.0186 -.0193
d=.15 -.0013 -.0094 -.0116 -.0090 -.0108
d=.25 -.0020 -.0119 -.0097 -.0090 -.0086
d=,35 -.0018 ~-.0113 -.0057 -.0054 ~.0057
d=.45 -.0056 -.0195 -.0105 -.0018 -.0010

Note to table 1: The mnemonics are defined as follows. ML1:
time-domain ML, true mean removed; MLla: time-domain ML,
arithmetic mean removed; ML2: frequency-domain ML; ML2a:
frequency-domain ML, taper a; ML2b: frequency-domain ML, taper b.
The bias is the mean estimate over the Monte Carlo replications,
less the true value.



Table 2
Finite-Sample Mean Squared Error

: ML1 MLlia ML2 ML2a ML2b
T=50 .
d=-.45 .0175 .0191 .0294 .0320 .0352
d=-.35 .0190 .0235 .0210 .0329 .0370
= _25 L0173 .0246 .0333 .0337 .0386
=-.15 .0163 .0241 .0329 .0354 .0389
==.05 .0169 .0278 .0338 .0340 .0388
d=.05 .0156 .0280 .0335 .0342 .0380
d=.15 0127 L0274 .0342 .0353 .0378
=,25 .0128 .0296 .0343 .0344 .0362
d=, 35 .0102 .0297 .0311 .0295 .0316
d=.45 .0079 .0302 .0307 .0254 .0287
T=100
=-,45 .0078 .0086 .0107 .0114 .0130
d=-.35 .0080 .0094 .0114 .0126 .0149
d=-.,25 .0075 .0092 .0106 .0117 .0143
=-,15 .0074 .0104 .0117 .0135 .0159
=-,05 .0074 .0102 .0112 L0117 .0138
d=,05 . 0076 .0110 .0121 .0133 .0152
d=.15 .0062 .0103 0111 .0118 .0139
d==,25 . 0060 .0105 .0112 .0113 .0125
d=.35 .0049 .0103 .0109 .0104 0110
d=.45 .0035 .0114 .0113 .0102 .0120
T=300
d=-,45 .0024 .0023 .0027 .0030 .0036
d=-, 35 .0026 .0024 .0027 .0032 .0036
d=-.25 L0022 .0025 .0026 .0032 .0035
d=-.15 .0024 .0024 .0025 .0029 .0032
d=-.,05 .0021 .0028 .0029 .0030 » 0040
=,05 .0022 0027 .0027 .0030 .0036
d=.15 .0021 .0026 .0027 .0029 .0035
=,25 .0020 .0026 .0027 .0029 .0034
d=.35 .0020 .0027 .0028 .0029 0034
d=.45 .0014 .0028 .00286 .0021 .0023
T=500
d=-.45 .0013 .0014 .0015 .0014 0018
d=-,35 .0013 .0015 .0016 0017 .0020
=-,25 .0013 .0015 .0016 .0015 .0020
==,15 .0012 .0015 .0015 .0017 .0020
==,05 .0013 .0016 .0015 .0016 L0020
d=.05 .0014 .0016 .0016 .0021 .0023
d=.15 .0013 .0014 .0015 .0017 .0022
d=,25 .0012 .0015 . 0015 .0016 .0018
d=.35 .0011 .0014 . 0015 .0016 0019
d=.45 .0008 .0013 .0012 0012 .0014

Note to table 2: The mnemonics are defined as in table 1.



Table 3
Finite-Sample Relative Efficiency

R21 R2la R2ala R2bla
=5
d=-,45 .5952 .6497 .5969 . .5461
d=-,35 L6129 .7581 .7143 .6351
d=~,25 .5195 .7387 .7300 .6373
d=-,15 .4954 .7325 .6808 .6195
g=-.05 .5000 .8225 .8176 7165
=,05 . 4657 .8358 .8187 .7368
=,15 .3713 .8012 .7762 . 7249
d=, 25 .3732 .8630 . 8605 .8177
=.35 .3280 . 9550 1.0068 .9399
=.45 . 2573 .9837 1.1890 1.0523
=10
d=-.45 «72920 .8037 .7544 .6615
d=~, 35 .7018 .8785 .7460 .6309
d=-,25 .7075 .8679 .7863 .6434
==,15 .6325 .8889 . 7704 .6541
d=-.05 L6607 .9107 .8718 .7391
d=,05% L6281 .9091 .8271 .7237
da=.15 .5586 .9279 .8729 .7410
=,25 .5357 .9459 .9292 .8400
=.35 .4495 .9450 .9904 .9364
d=.45 <3097 1.0088 1.1176 .9500
T=300
==,45 .8889 .8519 . 7667 .6389
=-,35 1.0000 .9231 . 7500 .6667
==,25 .8462 «9615 .7812 .7143
==,15 .9600 .9600 .8276 .7500
=-.,05 + 7241 9655 9333 .7000
=.05 .8148 1.0000 .9000 <7500
d=.15 .7778 .9630 .8966 .7429
d=.25 .7407 .9630 .8966 .7647
=,35 .7143 .9643 .9310 .7941
=,45 .5385 1.0769 1.3333 1.2174
T=500
d=-.45 .83667 .9333 1.0000 JF777
=-,35 .8125 .9375 .8823 .7500
d=-.25 .8125 .9375 1.0000 . 7500
d=-.15 .8000 1.0000 .8824 .7500
d=-.05 .8667 1.0670 1.0000 .8000
=.05 .B8750 1.0000 .7619 .6956
d=.15 .8667 .9333 .8235 .6364
=.25 .8000 1.0000 .9375 .8333
d=.35 .7333 .9333 .8750 .7368
d=,45 L6667 1.0833 1.0833 .9286

Note to table 3: Rij denotes the efficiency of estimator j
relative to that of estimator i. Thus, R21 = MSE(ML1l) / MSE(ML2),
R21a = MSE(MLia) / MSE(ML2), R2ala = MSE(MLla) / MSE(ML2a), and
R2bla = MSE(MLla) / MSE(MLZ2Db).
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MSE, Time Domain ML, Mean Known
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Relative Efficiency

FIGURE 7

Relative Efficiency, Mean Known

R21 = MSE(ML1)/MSE(ML2)
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FIGURE 8

Relative Efficiency, Mean Estimated
R21 = MSE(ML1a)/MSE(ML2)
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