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ABSTRACT

In a world where time series show clear seasonal fluctuations,ra-
tional agents will take account of those fluctuations in planning
their own behavior. Using seasonally adjusted data to model
behavior of such agents throws away information and introduces
possibly severe bias. Nonetheless it may be true fairly often
that rational expectations modeling with seasonally adjusted data,
treating the adjusted data as if it were actual data, gives
approximately correct results; and naive extensions of standard
modeling technigques to seascnally unadjusted data may give worse
results than naive use of adjusted data. This paper justifies
these claims with examples and detailed arguments.

I. The Prima Facie Case Against Seasonally Adjusted Data

In order to conserve scarce analytical capacity, quantitative
economists usually work on the assumption that the models they are
estimating include, under some setting of their parameters, the
truth. Under this assumption, it is clear that use of seasonally
adjusted data in estimating practically any model is a mistake.

It will often be true that observations on economic behavior
related to seasonal frequencies could be informative about the
unknown parameters we are trying to estimate, in which case using
seasonally adjusted data at best amounts to throwing away observa-
tions and at worst could severely bias results. Even when
seasonal variation is mostly noise, unrelated to the phenomena
being studied, a properly specified model should be able to allow
for this. Using seasonally adjusted data will then be at best an

approximation to the correct treatment of seasonal noise.

Despite these self-evident truths, Wallis (19741 and I ([1974']
showed that in distributed lag regression models with exogenous
regressors, proper use of seasonally adjusted data could produce
estimates with small approximation bias under broad regularity
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conditions. Roughly speaking, one can use a parametric form for
the lag distribution B that enforces smoothness of its Fourier
transform B across seasonal bands. With seasonally adjusted data,
this will produce small bias outside seasonal bands so long as the
parameterization is accurate outside seasonal bands. To obtain
similarly accurate results in non-seasonal bands with seasonally
unadjusted data would reguire that seasonal dynamics in the lag
distribution be modeled as accurately as non-seasonal dynanmics.
This would ordinarily require a much more elaborate parameteriza-
tion. If our interest focuses on non-seasonal (say business
cycle) frequencies, there may be a tendency not to model the
seasonal frequencies carefully enough to avoid strong bias in
results.

It has been argued that, whatever the validity of the foregoing
argument in the case of distributed lag regression with exogenous
regressors, it no longer applies in raticnal expectations models.
There is some basis for this argument -- only rather artificial
rational expectations models fit into the exogenous regressor
distributed lag regression framework. A typical rational expecta-
tions model imposes cross-equation restrictions, for example that
the coefficients in a demand equation are related to coefficients
in an equation generating forecasts of an exogenous variable,
Instead of theory’s making predictions about the lag distribution
in a single regression equation, theory predicts relations among
equations of a complete dynamic model for several variables.

In the regression framework, we deal with two variables (or
vectors of variables) y and x. The relation between them, in the
frequency domain, can be written as

Y(w) = b(w)x(w) + v(w), w in (0,2m1) (1)

We assume that the disturbance process v is uncorrelated with the



X process at all leads and lags. If y and x are both filtered
with the same filter c, so that ¥Y=c*y and X=c#*x (with "*" jindicat-
ing convolution), then the filtered variables are related by

Y(w) = b(w)X(w) + c(w)v(w). (2)

The filtered error term remains orthogonal to X, and the lag
distribution b is the same as that in (1). Thus filtering,
whether for seasonal adjustment or other purposes, leaves the
probability limit of estimates of b unaffected. The effects of
filtering can be discussed entirely in terms of effects on

sampling error and on approximation error.

When we are estimating a complete dynamic system, there is a
single observed vector stochastic process y, with a moving average
representation

y({t) = A*e(t) . (3)
Filtering y through c so that Y(t)=c*y(t) produces
Y({t) = c*A*e(t) . (4)

If ¢ has no zeros in the lower half of the complex plane (which is
called the "minimum delay" property and is almost the same as
requiring ¢ to have a one-sided inverse under convolution) then ¢
in (4) is the innovation in Y, just as in (3) it was the innova-
tion in y. However the moving average operator A has been
replaced by c*A. More generally, ¢ may fail to be minimum delay,
in which case £ as well as the moving average operator will be
different if we treat Y rather than y as our data series. Thus in
contrast to the result in the regression case ~- where b is
unaffected by filtering -- for a complete dynamic system the basic
estimated parameter A is altered by filtering.



II. Approximation Error for Dynamic Systems

Suppose we consider a class of autoregressive filters B(-;«a),
n-vector-valued functions on the non-negative integers with
k-dimensional parameter a. Our data are the ¥(t), defined in (4)
based on the underlying true model (3). We assume B(0;a)=I for
all «. It is natural to estimate a« by fitting the eguation

Y(t) = ~B' (a)*¥(t) + 7(t) , (5)

minimizing with respect to o the sample average of n(t)z*ln(t),
where S=var(n(t)). (B (t) is defined by B’ (0)=0, B' (t)=B(t),
£t>0.) We suppose that the true moving average representation for
Y is

Y(t) = Gx{(t) . (6)

If ¢ is minimum-delay, £=¢ and G=c*A. If the model (5) contains
the truth, say when a=«,, then B(ao)'l=G and 7(t)=£(t).

Assume for simplicity that ¢~ L exists and call it By- Also, to

simplify notation, assume var(£{(t}))}=I. Then the prediction error
from using B’ (a) in (5) to predict Y is
+ +
n(esa) = (B () -Bp|*r(e) + £ty . (7)
Since £(t) is uncorrelated with ¥Y(s) for s<t,
E[n(tﬂﬂ'n(t:a)] = tr[I+[B+(a)-B;]*RY*[B*(a)-Bg]'(0)]- (8)

This means that the limiting large-sample value of o arrived at by
the usual fitting criterion will be the one which minimizes
(translating the last part of (8) into the frequency domain)

f

2n
tr[ (§+(m;a)-§;(w)]sy(w)[§+(w:a)—§;(w)] dw . (9)

0



This approximation error metric is formally similar to that which
arises in the distributed lag regression problem. It is less
easily applied to studying the effects of filtering the data,
however, because filtration here affects not only S but also BO.

Yf
Observe that SY=§81§81’=Esyé’. If ¢ is a seasonal adjustment
filter that reduces power in seasonal bands, we can expect S, and

Y
hence Iﬁoi to be small in the seasonal bands.l as lc(w)[+0 for w

in the seasonal bands, for any fixed B(a) the two outer terms in
the integrand in (9) are dominated by ﬁg. Furthermore,

ﬁg(w)—ﬁo(w)fl, whereas ﬁo
Thus the integrand in (9) approaches the identity matrix as

itself goes to infinity as |c(w)|»o0.

[c(w)[+0. Since the forecast error covariance matrix using B,
itself is the identity by assumption, the contribution to overall
prediction error of approximation error in the seasonal band due
to fixing B(w;a) arbitrarily in that band approaches, as ||c(w) -0
in seasonal bands, proportionality to the aggregate length of the
seasonal bands as a fraction of the full (0,2m) interval.

We conclude, then, that we can get an accurate picture of the
behavior of Eo outside the seasonal bands by using a parameteriza-
tion B(';a) that

-y o S Al Sy . Sy S -

1One might think that "good" seasonal adjustment would only
eliminate peaks at seasonals in Sy' not create dips at seasonals
in Sy. However analysis of seasonal adjustment as a

signal extraction problem shows that optimal seasonal adjustment

is likely to generate dips in log S, of the same size and shape as

Y
the peaks in log Sy. Furthermore, here as in the distributed lag
model, it appears that the effects of seasonal adjustment are most
easily understood and controlled when there is "overadjustment! --

reduction of power in seasonal bands to near zero.



i) is capable of matching §0 closely outside seasonal bands
and
ii) cannot vary sharply over intervals as short as the
seasonal bands,
and by seasonally adjusting the data to make power close to zero
in seasonal bands. Our argument relies on the assumption that the
seasonal bands are narrow enough to constitute a small part of the
full (0,2n) interval. Under these conditions, the best approxi-
mating B(-;a) will fit well at non~seascnal frequencies and
interpolate across the seasonal bands.

III. Application to Seasonal Rational Expectations Models

How much comfort we should take from the results of the preceding
section depends on the extent to which conclusions about parame-
ters of interest can be based on fitting the dynamic system
accurately at non-seasonal frequencies and interpolating across
seasonal bands. We can distinguish several cases.

One case, where seasocnally adjusted data will never be useful,
arises when the behavioral mechanism being studied itself gene-
rates some of the seasonality in the data. For example, if we
were estimating a model of the construction industry with the aim
of estimating the magnitude of cost increases for winter construc-
tion, the parameters of interest are related primarily to the
seasonal bands of power in the data. Seasonal adjustment removes
the part of the data that is informative about the behavior we
wish to study.

We might instead have a situation where the behavior being studied
does not inherently generate seasonality, but in which all
variables can emerge with seasonal variation if exogenous varia-
bles have seasonal variation. Examples would be standard perma-
nent income models and standard investment models with costs of



adjustment. If the exogencus endowment process in a permanent
income model contains seasonal variation, then consumption may as
wall. If the exogenous demand process in an investment model
contains seasonal variation, then investment will as well. But
neither model will generate seasonal variation when the exogenous
driving process contains none.

In cases like these, where the source of the seascnality in
endogenous variables is behavioral response to exogenous seasonal-
ity, the effects of seasonality may be confined to the seasonal
bands. Suppose the agent in the model can separately observe the
seasonal and nonseasonal components of the data, even though the
econometrician cannot. This is perhaps not unrealistic when
seasonality is due to some aspect of the weather, for example. If
the behavioral model is linear-gquadratic, the responses of
endogenous variables to excgenous variables will be linear
distributed lags, and these linear responses can be calculated
independently for the separately observable exogenous forcing
variables. Since the seasonal component of exogenous variation
has its power concentrated in seasonal bands, the econometrician
can (to a good approximation) correctly recover the structure of
variation in the nonseasonal component of the exogenous variables
by seasonally adjusting the data and computing autocorrelations or
spectral densities from the adjusted data. Seasonally adjusting
the endogenous variables will (to a good approximation) leave, at
nonseasonal frequencies, just the responses to nonseasonal
variation in the exogenous variables. Use of adjusted data to
determine structural parameters will therefore give fairly
accurate results,

on the other hand, even if endogenous seasonality is entirely due
to responses to exogenous seasonality,seasonal variation will

affect the nature of nonseasonal variation if agents cannot



distinguish seasonal and nonseasonal components. Their reaction
to a nonseasonal disturbance in this case is likely to be affected
by their uncertainty as to whether it represents movement in the
seasonal or nonseasonal component of the data. For example, in a
permanent income model, if the nonseasonal component of income is
highly persistent, then consumption will react almost one-for-one
to random disturbances in income. If there is also a random
seasonal component, however, the reaction of consumption to an
income disturbance will be damped; the consumer will not know
whether the income disturbance is persistent, coming from the
nonseasonal component, or persistent only at a seasonal periodi-
city.

Note that under some conditions agents need not be able to observe
the underlying forces generating seasonality in order to be able
to distinguish it from nonseasonal variation. When seasonality is
purely deterministic, or even stochastic but very slowly changing,
it may contribute so little to the forecast error in the series
that agents can observe the disturbances in the nonseasonal
component with high accuracy. For example when the seasonal is
purely deterministic, if the model is linear-guadratic, the
behavioral equations can be written in terms of deviations from
the deterministic seasonal pattern, and the presence of determi-
nistic seasonality has no effect on the solution. Clearly use of
"gseasonally adjusted" data, where the adjustment is done by
regression on seasonal-dummy variables, creates no bias here.

This is not to say it is always advisable -- the model will
generally imply relations among the seasonal patterns in different
variables. Using these implications (when the model is correct)
will generally sharpen parameter estimates and strengthen tests.

What is true for strictly deterministic seasonals will also be

true for stochastic seasonals that change so little or so slowly



that errors in projecting the seasonal pattern are unimportant in
overall short-term forecast error -- so long as seasonal adjiust-
ment is done by a method that properly accounts for the highly
predictable nature of the seasonal.

IV, Dangers of Modeling Seasonality Directly

Using seasonally adjusted data can only be justified if there is
substantial danger of making mistakes in attempting to model the
unadjusted data. There is such danger. Because a seasocnal
component of variation is by definition one in which the same
pattern of variation within the year tends to persist from year to
year, apparently "good" forecasts of a seasonal component are
easily available simply by extrapolating seasonal patterns from
the last year or two. On the other hand, there may be little
statistical evidence to distinguish among forecasting formulas for
seasonal components even when the coefficients in those formulas
appear very different. In quarterly data, for example,

?(t)=.5[¥(t—4)+¥(t—8)] (10)

and
2(t)=.05 ¥ .95%%y (t-4s) (11)
s=1

may have similar forecasting performance in macroeconomic time

gseries samples, as both use a sort of average of past seasonal
patterns in forming forecasts.

This situation, which is much like that arising in modeling trend
components of series, tends to lead to practical modeling proce-
dures in which the true weak identification of the stochastic
structure of the seasonal is masked by strong assumptions of
convenience about the form of seasonal variation. These assump~
tions of convenience will not harm forecasting performance much if

incorrect, indeed they may improve forecasting performance by



reducing "overparameterization". But they will in general have
effects on the estimated form of the model which can strongly
distort model interpretations, particularly in rational expecta-
tions medels.

V. Examples

We illustrate the argument of the paper with some examples. We
consider a simple standard linear-quadratic permanent income
model, and focus attention on the implied regression coefficient
of endowment (or "labor income") innovations on consumption
innovations. When this coefficient is large, it implies that
consumption is smoother than income, reacting less to a given
disturbance than does income.

Suppose that agents maximize

® PR

E[ ) [c -.5C2 18 ] (12)
t=1l t t]

subject to

CotWy = pW,_. + Y . (13)

We follow convention in assuming that solutions exploding at a

rate faster than B—t/z are ruled out, and for simplicity we
consider the case B=p_1. As is well known, this leads to the
first order condition

Et[ct+1] =, . (14)

Note that equation (14) holds for the seasonally unadjusted data,
even if seasonality is present in Y, . The theory can be tested
using (14), therefore, without any requirement that seasonality in
Y be modeled explicitly. This situation is generic. In models

10



where the behavioral mechanism is not generating seasonality,
there are usually Euler equations implied by the theory that can
be tested using unadjusted data without any explicit modeling of
seasonality. However, as has been recognized in the literature on
the permanent income model, such tests are weak, as they do not
use the all the theory’s implications about the relation between
variation in endogenous variables (here C) and exogenous variables
(here Y).

Suppose there is deterministic seasonality in ¥, in particular a
quarterly pattern of the form 1/v2,0,-1/¥2,0. Suppose the
nonseasonal part of Y satisfies

Y, = 1.8Y,_, - .8lY + e (15)

t 1 t-1 t’

where E ey, 40 and we normalize the variance of this nonseasonal
part of Y at 1. Equation (15) gives ¥’s characteristic equation
two roots of .9 and makes Y highly persistent. Y is so persis-

tent, in fact, that the innovation in € (which by (14) is just
Act) noves almost exactly one-for-one with the innovation in Y

t

(which by (15) is €¢). In fact, the regression of £, on AC, is
.99,

What happens if we generate data from this model but fit the wrong
model of Y? 1In particular, say we do not include seasonal dummies
in our model for Y but instead use a model implying all seasonal-
ity is stochastic, with Y a 9th order autoregression. The
resulting estimated autoregressive model for Y will, in large
samples, tend to the form

Yt = 1.792Yt_1—1.1156Yt_2+.5775Yt_3+.0464Yt_4*.5775Yt_5

-.0464Y -.0590Y +£

+.5775Y 7—.2084Yt_8 £-9

t-6 £ £ (16)

Clearly this equation differs from (15), and in a way that allows

11



it to correctly forecast most of the determistic seasonal varia-
tion in Y despite the absence of seasonal dummy variables. This
equation alsc implies that a non-trivial part of the innovation in
Y is due to a stochastic seasonal component, resulting in a
theoretical value for the regression of £, on Act of 1.26. That
is, the misspecified model implies substantially less reaction of
consumption to income than the correct model. The use of the
incorrect model (16) will not bias our estimate of the regression
of the innovation on ¥ on the innovation in C, however. The
model’s structure implies that AC is the innovation in C,
regardless of the autoregressive equation for Y. Using (16) to
predict Y will produce suboptimal forecasts, but the forecast
errors from (16) will consist of the true innovation in Y plus an
additional component orthogonal to the true innovation. According
to the model, AC and the true innovation are exactly collinear, so
a regression of the suboptimal forecast errors from (16) on AC
will produce the same coefficient as a regression of the residuals
from {15) on AC.

We might be led to conclude, then, that the actual regression
coefficient relating £ to AC in the data is smaller than that
implied by the theory, since the true coefficient of .99 will be
recovered from the data even if we mismeasure € by estimating it
from the 9th order AR with no seasonal dummies.

Note that in this model we would get correct results also from
seasonally adjusted data, so long as we did not allow our predic-
tive model for Y to "unravel the seasonal adjustment”. Estimating
a second-order AR for Y on the seasonally adjusted data would give
approximately correct results, for example, so long as the
seasonal bands removed by adjustment were not too wide.

Thus we have verified that in a model with a highly predictable

12



seasonal, use of unadjusted data together with a model that cannot
match the highly predictable nature of the seasonal, results in
substantial bias. Use of seasonally adjusted data in this same
situation would result in little bias and would not regquire
precise knowledge of the structure of seasonal variation.

:
Of course, we can construct a model with precisely the reverse
lesson. In fact, the biased 9th-order AR that would asymptotic-
ally be recovered from the data in the previous example was taken
as a true data-generating mechanism to generate a second example.
on AC

t t
represents the truth. In an infinitely large sample, none of the

Now the coefficient of 1.26 in the regression of ¢

stochastically varying seasonality implied by this model could be
captured in seasonal dummy variables. In a sample of size 100,
however, nearly all of it will be captured by seasonal dumnmies
with high probability. The dummies can capture seasonality that
changes little. Eventually, the model implies the seasonal will
change. Within a sample of size 100, the model. implies a low
probability of much change in the seasonal.

A second-order autoregression with 4 seasonal dummies was used as
a mecdel of Y and fit to 100 random samples from the data generat-
ing mechanism described above, which actually has no deterministic
seasonality. The median estimate of the theoretical regression
coefficient for £ on AC was 1.64, with interguartile range
{1.26,2,.14), Thus the median bias for using a simple determinis-
tic seasonal adjustment scheme on these data containing stochastic
seasonality was biased upward by a factor of 1.30, about the same
as the asymptotic bias factor (1.26) when a stochastic seasonality
model is used with unadjusted data containing a deterministic
seasonal.2

e o —  ——— T — i ———— —

2While it is interesting to note that both biases are in the same
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VI. Conclusion

Our aim in this paper has been to show that seasonality is
important, and that there is no way to avoid confronting the true
depths of our ignorance about it. It is true that use of season-
ally adjusted data in estimating rational expectations models can
produce large bias, but in some situations the bias may be small.
It is also true that use of unadjusted data and a correctly
specified model of seasonal variation is always the best option.
But conventional approaches to modeling stochastic seasonals may
often produce incorrectly specified models of seasonal variation
that appear to perform well. 1In such cases the bias from use of
unadjusted data can be large, even though use of adjusted data
would produce small bias.

direction, it is not generically true or even commonly true that
any use of the wrong model for Y implies a larger regression
coefficient for the regression of ¢ on AC. In fact, it is easy to
generate examples where false imposition of a unit root on the
model for Y, despite its being easily accepted by conventional
statistical tests, produces very strong downward bias in the
theoretical implied coefficient for the regression of £ on AC.
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