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1. Introduction

Recursive methods are proving invaluable in the quantitative study of
business cycles. The theory underlying these methods, and how they can be
combined with modern general equilibrium theory, is developed in Recursive
Methods in Economic Dynamics by Stokey and Lucas with Prescott. However, a
crucial element missing in this book is a consideration of numerical methods
for computing the equilibrium process for a model economy. In this chapter,
we describe a procedure for computing the equilibrium process for a class of
recursive structures that have proven useful in the study of business cycles.

Our view is that any econometriec, that is quantitative-theoretic, study
of business cycles necessarily entails the computation of the equilibrium
stochastic process for some model economy. Theory alone imposes almost no
restrictions; theory has content only when quantitative restrictions are
imposed on preferences and technologies. For example, Boldrin and Montrucchio
(1986) have shown that even for well-behaved growth models with a single
capital stock and no uncertainty, without some quantitative restrictions on
agents’ ability and willingness to substitute, any continuous law of motion
for the capital stock is consistent with equilibrium for some such economy.
For theory to provide quantitative answers to issues arising in the study of
business cycles, quantitative restrictions must be placed on people'’s prefer-
ences, on the technologies to which they have access, and on the allocation
mechanisms that they employ.

The class of economies we consider is a rich one, as we illustrate via a
number of examples. The computational methods we describe are not designed to
minimize computer costs, which, in any case, are only a minute or two of

personal computer time for most business cycle applications. Rather, these



methods are designed to economize on the time spent learning to use the
techniques and to adapt them to a particular application.

Kydland and Prescott (1982) used these methods to examine the nature of
fluctuations induced by randomness in the Solow technology parameter. Their
approach was motivated by the fact that growth and fluctuations are features
of the same time series and the view that any theory accounting for one set of
features should not be inconsistent with a theory accounting for the other.
Consequently, they insisted that their model economy display the growth facts
and that it have, on average, the same elasticities of substitution and
transformation as does the deterministic growth model that accounts for these
growth facts.

A second requirement they imposed is that it be possible to compute the
equilibrium process for the model economy in order to examine whether this
process displays the business cycle facts. These requirements lead Kydland
and Prescott, and subsequently others, to consider a structure with a quadrat-
ic objective, linear constraints, an& exogenous disturbances generated by a
first-order linear vector-autoregressive process. The quadratic objective
chosen is the second-order Taylor series expansion of the deterministic growth
model’s return function evaluated at its steady state.

An additional advantage of a linear-quadratic structure is that equilib-
ria can be easily computed even when the dimension of the state variable is
large. It does, however, have the added consequence that the resulting
equilibrium law of motion is linear. This linearity is not a serious limita-
tion given that there is little evidence of major nonlinearities in the
aggregate data, In situations in which the behavior being modeled displays
important nonlinearities, other methods than those reviewed here are needed.

Many applications using this structure to investigate business cycles
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have exploited the fact that, for the model economy being studied, the
competitive equilibrium solves a social planning problem. In section 2, we
examine the stochastic growth model augmented to have a labor-leisure alloca-
tion decision and show how it can be mapped into a basic recursive social
planning problem. We also consider a number of extensions of this basic
enviromment to illustrate the flexibility of this mapping. These extensions
include time to build, indivisible labor, and geometric growth. 1In section 3
we describe computational algorithms for specifying the linear-quadratic
social plamming problem and for computing the solution to the problem.

In section 4 we deal with homogeneous-agent recursive economies in which
the competitive equilibrium need not be Pareto optimal. The first application
introduces taxes into our basic business cycle model. The second introduces a
cash-in-advance constraint for the purchase of a subset of the consumption
goods. In section 5 we describe algorithms similar to those described in
section 3 for choosing a linear-quadratiec recursive economy and for computing
the equilibrium stochastic process for that economy. Finally in section 6 we
demonstrate how these recursive computational methods can be extended to the

study of heterogeneous-agent recursive economies,

2. Social Planning Problems

In this section we describe some examples of economies for which
competitive equilibrium allocations are identical to the allocations chosen by
a social planner that acts to maximize the welfare of a representative agent.
For these economies, the Second Welfare Theorem {:11:apli_es.1 In such situations

the equilibrium allccations can be determined by solving a well behaved

See Stokey and Lucas with Prescott (1989) for details on the dynamic
general equilibrium theory underlying the approach employed in this section.
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concave optimization problem. In addition, the marginal rates of substitution
and transformation, evaluated at the optimal allocation, can be used to find
equilibrium relative prices.

For each of our examples, the social planning problem involves solving a
dynamic programming problem of the following form (primes denote next period

values):

(2.1) v(z,s) = max {(r(z,s,d) + ﬂE[v(z',s')lz]]
(2.2) subject to z' = A(z) + ¢!

(2.3) s' = B(z,s,d)

The elements of this program are as follows: =z 1is a vector of exogenous state
variables; ¢ is a vector of random variables distributed independently over
time with mean zero and finite variance (some components of ¢ may have zero
variance); s 1is a vector of endogenous state variables; and d is a vector of
decision variables.2 Equation (2.2) is the law of motion for z, where A is a
linear function.3 The realization of z is observed at the beginning of the
period. Equation (2.3) is the law of motion for the endogencus state vari-
ables, where B is also linear., Finally, r(z,s,d) is the return function and
v(z,s) the optimal wvalue function for the problem.

An important feature of this problem is that A and B are linear func-

tions, which means that any nonlinear constraints have been substituted into

Distinguishing between z and s is not important in cases where a
social planning problem is to be solved. However, it is important in cases
where the second welfare theorem does not hold. We make this distinction here
so that the notation is consistent throughout the paper,

3 Although it is clear that (2.2) allows for the possibility that
components of z evolve as a continuous state Markov process, it is not
difficult to modify the solution method described in this section to allow for
components of z to follow a finite state Markov chain. In this case, instead
of golving for a single value function, v(z,s), there is a separate value
function, vz(s), for each z in the state space.
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the return function. In section 3 we describe a method for solving a linear-
quadratic approximation of a problem of this form.

The equilibrium business cycle literature is full of applications where
dynamic programming problems of this sort are formulated and solved.4 The
examples considered in this section, which are drawn from this literature,
include a basic version of the stochastic growth model (the divisible labor
model of Hansen (1985)) and a few variants of that model., In particular, we

consider adding geometric growth, time to build and indivisible labor to the

basic model.

The Basic Model
This model is an extension of the Brock and Mirman (1972) optimal
stochastic growth model upon which much of the equilibrium business cycle

literature is based. A representative agent maximizes the utility function,
[ o]
(2.4) E EtcoﬂtU(ct,Et) , 0<g<l,

where U is concave, strictly increasing and twice continuously differentiable
in both arguments. The variables Co and Bt are consumption and leisure in
period t, respectively. The household is endowed with one unit of time that
is divided between work, ht, and leisure, so that ht + Et =1.

The representative agent has access to a technology that produces

output, Ve from capital, kt’ and labor:

Examples from this literature which have appeared in published form
include Cho and Rogerson (1988), Christiano (1988), Greenwood, Hercowitz and
Huffman (1988), Kydland {1984), Kydland and Prescott (1982, 1988), Hansen
{1985), Hansen and Sargent (1988), and King, Plosser and Rebelo (1988). 1In
each of these papers, numerical methods are used to solve a planning problem
like (2.1). Long and Plosser (1983) consider an example where the planning
problem can be solved analytically, so numerical methods are not required in
this case.



(2.5) Ve = th(kt,ht)

The production function, F, is concave, twice continucusly differentiable,
increasing in both arguments, and displays constant returns to scale. The
variable z, is a technology shock which is observed at the beginning ocf the

peried and follows a first order linear Markov process,

(2.6) z = A(zt) + ¢

t+l t+l

where the ¢'s are i.i.d. random variables with mean zero and finite wvariance
and A is a linear function.

Total output can be freely allocated to either investment, i_, or

t’

consumption,

(2.7) Ye = St + lt .

where investment this period becomes productive capital next period. In

particular, the capital stock evelves according to the law of motion,

{(2.8) kt+l = (1-6)1{t + it ) 0<déd<1.

The problem solved by the social planner is to maximize (2.4) subject to
(2.5) through (2.8) with Zq and ko given. We, however, need to express this
problem as a dynamic programming problem that is a special case of (2.1) in
order to apply the solution method described in the next section. This is
accomplished by combining constraints (2.5) and (2.7) to eliminate Yer solving
this resulting equation for Co and substituting it inte the utility function.
This yields a version of problem (2.1) where s = k, d = (h,i), the return

function is,

r(z,k,h,i) = U(zF(k,h)-i,1-h)
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and the law of motion for s is, B(z,k,h,i) = (1-8)k + i
We now consider three additional examples that are simply elaborations

of this basic model.

Geometric Growth
As a second example, we add labor augmenting technological growth te the

basic model. We do this by replacing technology (2.5) with5
' ]
(2.5 Ve th(kt,Atht) , where A>1.

In addition, we require that the elasticity of substitution between
consumption and leisure equal one so that steady state hours worked is
constant in the presence of sustained growth. An example of such a utility

function is the following:

(2.9) Ule,,2.) - (czﬂi-a)p/p , O0<a<1l, p<landp =0

All other aspects of the model are the same as for the basic model. The
equilibrium allocation is obtained by maximizing (2.4) subject to (2.5') and
(2.6)-(2.8). A property of the solution to this problem is that consumption,
investment, output and capital all grow at the rate (A-1), In order to solve
this problem using our method, we transform the problem so that the solution
is stationary over time. The following change of variables achieves this

purpose:

3 In this example we show how to add deterministic growth to the model.

It is also possible to Introduce stochastic growth by assuming that the
technology shock evolves as a random walk with drift. The details are given
in Hansen (1989).



t t 3 . t - t
(2.10) yt = yt/A , & - ct/A , 1i_ = 1t/A and kt - kt/A

t

After this transformation, the social planner'’s problem is a special

case of (2.1) if s =k, d = (h,i),

r(z,k,h,i) = [(zF(k,h)-1)%-n)1 %P0
and

B(z,k,h,i) = ((1-86)/0k + (1/0i

In addition, the discount factor after the transformation, call it 3,

equals Aapﬂ. We assume that the parameters are such that 3 is less than one.

Time to Build

Kydland and Prescott (1982) studied a version of the basic model in
which multiple periecds are required to build productive capital. This
requires that the state vector include stocks of capital goods j periods from
completion, uj, in addition to finished capital. Thus, if it takes J periods
to build productive capital, the state and decision variables are
5 = (k,ul,...,uJ_l) and d = (h,uJ).

The laws of motion for these state variables are the following:

k' = (1-6)Yk + uy

ul = u, , for j =1,...,J-1

j j+1

Letting ¢j, for j =1,...,J, be the fraction of resources allocated to
the investment project in the jth stage from the last, total investment in the
current period is i = zjil¢juj' With investment defined in this way, the
return function for the version of problem (2.1) corresponding to this economy

is given by



r(z,k,u ug ) = U(zF(k,h)-1,1-h)

100

Indivisible Labor

We now consider an example drawn from Hansen (1983) where indivisible
labor, along with Rogerson's (1988) employment lotteries, are introduced into
the basic model. For this example, instead of a single representative agent,
there is a continuumr of ex ante identical agents. All quantities must be
interpreted as per capita values in this case., The technology is the same as
in the basic model, but the utility function is of the form u(c) + g(), where
u and g are increasing, concave and twice continuously differentiable.
indivisible labor implies that £ can take on only two values, (1-h) and 1,
correspending to working full time or not at all. An additional difference
between this and the basic model is that the competitive equilibrium involves
agents trading employment lotteries that specify a probability of working,
rather than hours of work directly.

Letting n equal the probability of working h hours, the expected utility

if a representative households is

n[u(c)+g(l-h)] + (1-n)[u(e)+g(1)]

- u(e) + ng(l-h) + (l-n)g(l) .°
since there is a continuum of households, the equilibrium value of n is also
equal to the fraction of households that work. This implies that total hours
worked, h, is given by nh. The utility of the stand-in agent, which enters

the objective function of the social planner, is the following (ignoring a

6 We have imposed the fact that with utility separable in consumption

and leisure, optimal consumption is the same for those who work and for those
who do not work.



constant term):7

U(c,h) = u(e) + ¢ h , where ¢ = [g(l-h)-g(1))/h .

Therefore, the version of problem (2.1) for this example is the same as
for the basic model except that the return function is linear in hours worked:
r(z,k,h,i) = u(zF(k,h)-1i) + ¢ h. Although individual households do not choose
hours worked under the competitive equilibrium interpretation of this economy,
the decision variables for the social planner are the same as for the basic
model.

It is also possible to solve this problem if the utility function is not
additively separable in consumption and leisure and takes the form (2.9). 1In
this case the commodity traded is an employment lottery which specifies
consumption compensation contingent on the employment status. Letting 1 be
consumption when working and <, be consumption when not working, the appropri-

ate utility function is
n U(e,,1-h) + (1-0)U(c,,1)
The resource constraint, using the fact that h = nh, is
ne; + (l-n)e, + i = zF(k,nh)

In this case, the planning problem is mapped into the notation employed

in problem (2.1) by setting s = k and d = (n,cz,i). The return function is

r(z,k,n,c,, i) = nU[(zF(k,nﬁ)-(1-n)c2-i)/n,1-ﬁ] + (1-m)U(c,,1)

Notice that although n, and net h, is a decision variable for individ-
ual household, the social planner does choose h.

10



J. Solving a Social Planning Problem

In this section we describe a method for solving problems of the form
(2.1) when the return function is quadratic. However, the applications we
have considered typically do not deliver quadratic return functions. There-
fore, we describe a procedure for approximating a general return function by
one that is quadratic. The advantage of solving a linear-quadratic plammning
problem is that it is possible to solve for an explicit linear policy func-
tion, dt = d(zt,st), which when substituted inte (2.3) yields a linear law of
motion for the state variables, st+1 = g(zt,st).

In this discussion, we employ the following convention te refer to the
dimension of a particular vector: let n(x) equal the dimension of a column
vector ¥, and n(x,y) equal the dimension of the stacked vector (x,y). This
implies that the vector z of exogenous state variables is of dimension
n{z) x 1. The dimensions of s (the endogenous state variables) and d (the
decision variables) are defined analogously. 1In addition, n(¢) is equal to
n(z).

Another important convention we employ is to define the first component

of z to be constant over time (equal to one, without loss of generality}.

This assumption will help to simplify accounting later.

3.1 Forming the Quadratic Approximation

The quadratic approximation of r corresponds to the first three terms of
a Taylor series expansion of this function at the steady state values for
(z,s,d) (corresponding to the certainty version of problem (2.1)), denoted
(E,E,E). The vector z is the solution to the equation, z = A(z). Given z,

the following n(s,d) equations are solved for the n(s,d) unknowns, s and d:

11



-~ - — = -——_-— 1l ===
3.1 rd(z,s,d) + ﬁrs(z,S.d)(I-ﬂBs(Z.s,d)) Bd(Z.s,d) = 0
s = B(z,s,d)

In (3.1), rd is the wvector of partial derivatives with respect to the elements
of d and is of dimension 1 x 5(d). Similarly, r is of dimension 1 X n(s).
Since B{z,s,d) is actually n(s) linear equations, BS and Bd are of dimension
n(s) X n(s) and n(s) X n(d), respectively. In practice, the first equation in
(3.1) can be made much simpler if one were to begin by substituting the laws
of motion (2.3) into the return function, eliminating some elements of d. The
idea is to rewrite the problem so that next period state variables, s‘, are
current period decision variables. In this case, all of the elements of Bs
are zero.

Let v be the stacked vector (z,s,d) and a superscript T denote the
transpose of a vector, The Taylor series expansion of r(y} at the steady

state y is
- - T, = -T2 - —
(3.2) B(y) = r(y) + Dr(y) (y-y) + (1/2)(y-y) D r(y)(y-y),

where Dr(y) is the n(y) X 1 vector of first partial derivatives of r and
D2r(§) is the n(y) X n(y) matrix of second partial derivatives of r, where
n(y) = n{z,s,d). Both are evaluated at the steady state. The first element
of Dr(y) and the elements in the first row and column of D2r(§) are zero since
the first component of y is a constant term and not a variable.

Rather than computing Dr(y) and Dzr(§) algebraically, we approximate the
components of these matrices numerically. Let hi be an n(y) x 1 vector, all
of the components of which are zero except for the ith component, hi, which is

let equal to a small positive number, h. The value of h should be chosen to

12



be as small as possible subject to avoiding computer accuracy problems.8 The
following formulas are used to obtain numerical approximations of the compo-

nents of Dr(y) and D2r(§) {recall that the first component of y is constant

over time):
D,r@ = [xF+') - rG-n") /2R
2 x(® =[x + xG-Y) - 2@ 1/GH
Dijr(§) - (eGeniady - r@ai )y - r@atad) ¢ e Gnindyi/eR?)
for 1 = j (L,j = 2,....0(y))
Exploiting the fact that the first component of y is equal to one, we

can rearrange equation (3.2) so that #(y) = yTQy, where Q@ is a symmetric

matrix of dimension n(y) X n(y). The elements of Q are given by the following

expressions:

- .~ = _ ¥ ,2 o : o
Q; Q4 [D,x(y) Ejgz (Dijr(y) yj)]/2 , for i =2,...,n(y)
2 = .
Qij = jS = (1/2)Dijr(y) , for i,j =2,...,n(y)
C ooy L 1Y) =\.o (W MIIN2 oS LT

For reasons that will be made clear below, it is important for our
method that the ordering of y, and hence the ordering of the elements of Q, be
exactly as described here. The following is the linear-quadratic dynamic

programming problem obtained from this approximation:9

8 . . =
In practice, we recommend choosing h so that the steady state computed

from the linear decision rules are the same (up to, say, six decimal places)
as the steady state for the nonlinear econocmy.
9 . . .
In the rest of this section, unless we say otherwise, references to v
are to the optimal value function for this linear quadratic problem as opposed
to the optimal wvalue function for problem (2.1).

13



(3.3) v(z,s) = max {YTQy + BE[v(z',s")|z])

subject to (2.2) and (2.3)

3.2 Solving the Dynamic Program by Successive Approximations

Problem (3.3) is a standard linear-quadratic dynamic programming
problem. Under suitable conditions, the optimal value function, v, exists,
solves this functional equation and is quadratic. Given this, the associated
policy functions are limear. In this section, we do not attempt to survey the
large literature (see, for example, Hansen and Sargent (1991)) describing
efficient techniques for solving such a problem. Instead, we describe a
simple algorithm that is easy to implement and understand. A computer program
designed to carry out these computations is easy to write and debug. One
advantage of this is that the researcher’s time is economized. A second
advantage is that it will be easy to modify the method to solve for equilibria
which are not solutions to social planner'’s problems, as in economies with
taxes or other distortions, or for studying an important class of heteroge-
neous agent economies, including ones with n-period lived overlapping genera-
tions. These will be described in later sections.

The optimal value function for problem (3.3) is identical, save for a
constant, for any covariance matrix of ¢. As a result, the optimal policy
function is independent of this covariance matrix. Given this, we solve the
programming problem for the certainty case, where the covariance matrix has
been set to zero. That is, we solve the version of (3.3) in which the
expectations operator has been dropped and ¢’ in (2.2) has been replaced with
its mean, zero.

The method of successive approximations is used to compute the optimal

14



value function, v. Following this method, we generate a sequence of approxi-
mations to v that for well behaved problems will converge to the optimal value
function.10 To solve this problem, an initial quadratic approximation for

the value function, vo, is selected and the standard Bellman mapping is used
th

to obtain the sequence of approximations, In particular, given the n

element of this sequence, the n+lSt element is obtained as follows:

(3.4) vn+l(z,s) = max(yTQy + B vn(z',s'))

subject to [z',s’] for i =1,..,5(z,s}.

i ™ Fienen Py
The Bij's in the above constraints are taken directly from equations (2.2) and
(2.3). To obtain vn+1, we first substitute the constraint into right side of
(3.4) in order to eliminate z’' and s’ from the problem. This yields a
quadratic expression in (z,s,d). Next, the first order conditions are used to
solve for the vector d as a linear function of z and s. Substituting these
into (3.4), we obtain the next approximation which is a quadratic function of
(z,s). If the problem is well behaved, this procedure is repeated until

”Vn+1

n . s
-v | < ¢, where £ is some small positive real number.

We now describe these iterations in greater detail:

Step 1. Choose some arbitrary negative semidefinite matrix, vo, of size
n(z,s) X n(z,s). A possible candidate is a matrix with small negative
numbers on the diagonal and zeros for the off diagonal elements, Once
again, the ordering of the columns of this matrix is very important:
the first p(z) columns contain coefficients corresponding to terms

jnvoelving elements of z (thus the first column contains the linear

10 The return function r, given that the utility function is strictly

concave, is bounded from above. See Stokey, Lucas with Prescott (1989) for a
discussion of discounted dynamic programming with returns bounded from above.

is



terms), and the last 9(s) columns contain coefficients corresponding to

terms involving elements of s.

Steps 2 through 5 describe how to generate successive approximations of
, +
the optimal value function. In particular, we describe how to compute v 1

. . - n
given an approximation v, These four steps are repeated until the sequence

of approximations has converged.

Step 2. Let x be the stacked wvector (y,z’,s’), which is equal to
R(1(x))

(z,s,d,z',s'). Construct a matrix , which is of dimension
n(x) X n(x), that contains the matrix Q (with its elementg in the order
described ahove) in the top left corner and the matrix ﬂvn in the lower

(n(x))

right corner. The remaining elements of R are set equal to zero.

This enables us to write the expression yTQy + fv(z',s') from (3.4) as a

single quadratic form, xTR("(x))x.

The next two steps describe how to compute vn+1(z,s) by eliminating the

variables s’, z' and d from xTR(q(x))

x using the constraints in (3.4) and the
first order conditions. We begin by eliminating the last element of x and
then proceed to eliminate the second to last element, etc, until only the
elements of z and s remain. To eliminate a particular element of x, say xj,
we must be able to express xj as a linear function of the variables X, where
i is less than j. this requirement will be satisfied given the particular way
in which we have ordered the elements of x.

Each time a linear expression is used to eliminate a component of x, the

form of the quadratic objective is altered. For example, when the first

variable is eliminated, which is the last component of x, the quadratic

16



Tp(n(x)-1) (n(x)-1) g (M(x))

cbjective becomes x X, where R is the same array as

with the entries changed to reflect the substitution. In particular, the last
. s 11
row and column is now filled with zeros.
To make this more precise, suppose that after some substitutions we are

T (1)

left with the quadratic form, x x, where j > n(z,s). The jth component of

x must be eliminated next. Using (2.2), (2.3) or a first order condition, it

is possible to express x, in terms of Xso i <j, as follows:

]

(3.5) xj = Zi<j11xi

Substituting (3.5) into the quadratic objective yields a new quadratic
xTR(J-l)

objective, X, where the components in the first j-1 rows and columns

of R(j-l) are given by,

(J-L_ (), (3} (3} (3)
(3.6) Rih Rih + th 14 + Rji % + Rjj Y5l

for i,h - 1,.,,,j-1.
The remaining elements of this n{x) X np(x) array are equal to zero.
There is a matrix algebraic alternative to (3.6) that may be easier to

implement on the computer, especilally if one is using a matrix programming

language:

. . I,
3.6y ROV TR ghere T j-1

11’-‘*-a'¥j_1

and Ij-l is a j-1 dimensional identity matrix. Note that this formula is
(3

written under the assumption that R

(3

is of dimension j X j, meaning that the

last 7(y)-j rows and columns of R (which are all zeros) have been eliminat-

11 In practice, one could just as well eliminate this last row and

column. However, we have chosen to fill this last row and column with zeros
to simplify notation.
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ed. 1In all other parts of this chapter, the R matrices are assumed to be

padded with zeros so that they are of dimension n{x) X n(x).
After repeated application of this procedure, we obtain the quadratic

The matrix vn+1, defined by the mapping (3.4), is simply

form xTR(n(z’S))x.
the first n(z,s) rows and columns of R(n(z,s)). We now describe more precise-

. . . . n+l
ly the particular substitutions that are made in order to obtain v

Step 3. In this step, we substitute expressions for s’ and z’, given by the
constraints in equation (3.4), into the objective. These constraints,

which determine the last n(z,s) elements of x, are the following:

x, =2, B..x. , where i = n(z,s,d)+1,...,n(x)

and J = n(z,s,d)

As explained above, we first eliminate Xq(x)’ the last element of
g’. Using equation 3.6 with the coefficients Bq(x) ; in place of the
(n(x)-1)

v's, we obtain the matrix R After all components of g' and z'

have been eliminated, we are left with the quadratic form

xTR(n(Z.s,d))x_

Step 4. The next n{d) variables, which are the cocmponents of d, are eliminat-
ed using the first order conditions for the maximization problem on the
right side of (3.4), beginning with xq(z,s,d) - dn(d)' The following is
the first order condition with respect to the jth component of x,

assuming that all components of x with index greater than j have already

been eliminated:

3.7) xg = B IRPRD g -,
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At this stage, it is important to examine whether the second order
conditions are satisfied by checking whether Rgg) is less than zero. In
cases where the return function, r, is strictly concave, these condi-
tions will be satisfied if no errors have been made in implementing the
algorithm. However, in other cases, say where the return function is
not bounded from above, a violation of the second order conditions at
some stage indicates that a maximum does not exist, and hence a failure
of this method teo find the optimal wvalue function.

As before, (3.6) 1s used to compute R(j-l) where the vy's are given
by the coefficients in (3.7). After all of the decision variables have
been eliminated, we are left with the matrix R(n(z,s))'

Step 5. Set vn+l equal to the matrix formed by the first n(z,s) rows and

("(Z’S)). If all the elements of vn+l are sufficiently

columns of R
close to the corresponding elements of v (for example, 1if the biggest
difference is less than .00001), stop the iterations.12 If not,
repeat these steps again beginning with Step 2, using vn+1 in place of
T

v .

Step 6. Once this sequence of successive approximations has converged, the

first order conditions from the last iteration, given by (3.7), can be

used to derive the equilibrium policy functions. Equation (3.7) can be

rewritten as follows:

dj ='2: Cijxi » J=1,....,n(d)
i<k
_Rlélf)
where Cij = —mpe K = 1(2,5)+]
’ Rek
12 X

In practice, one should ignore the constant term of vt and v (the
{1,1) element) when doing this comparison. The reason is that this term takes
relatively longer to converge and has no effect on the policy functions.
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In this form, the expression for dj is a function not only of the
state variables, z and s, but also the decision variables with indices
from 1 to j-1. These policy functions can be expressed in terms of the

state variables alone as feollows:

(3.8) dj - Zgii’s)Dijxi , where for each i,
Djq = €41
Dip = Ci2 * Co(z,5y41,2011
and Dyj = Gy + zh<j[cn(z,s)+h'jnih] s J o= 3,...,0(d)

Step 7. Finally, it is wise to check whether the steady state implied by
(3.8) is the same as the steady state for the original nonlinear
planner’s problem, (E,E,E), defined by equations (3.1)., The simplest
way to do this is to substitute z and s into the right side of (3.8) and
check if the resulting vector of decisions equals d to, say, six decimal

places.

4, Recursive Competitive Equilibrium for Homogeneous Agent Economies

For many applications, including many in public finance and monetary
economics, it is not possible to find equilibrium allocations by solving a
planning problem. Instead, it is necessary to solve for equilibrium a}loca—
tions directly by solving a fixed point problem.

In this section, we describe two applications where the methods dis-
cussed in the previous two sections can not be applied directly. Our first
example is an economy with distorting taxes and the second is an economy with
money introduced by imposing a cash-in-advance constraint. Methods for

solving linear-quadratic versions of these two examples are describe in
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section 5.
The problem faced by households in our tax example, as well as in many
other applications involving nonmonetary distortions, is a dynamic programming

problem of the following form:

(4.1) v(z,8,s) = max {r(z,S,s,D,d) + BE[v(z',5',s"')|z])
(4.2) subject to z' = A(z) + €'

(4.3) s' = B(z,S,s,D,d)

(4.4) $' = B(z,S,5,D,D)

(4.5) D = D(z,5)

As in section 2, z is a vector of exogenous state variables, possibly
stochastic, that evolves according to the first order Markov process (4.2),
where A is a linear function. The variable ¢ is a mean zero random vector
with finite variance, 1In addition, s is a vector of endogenous household
specific state variables and S is a vector containing their economy-wide (per
capita) values.13 Similarly, d is a vector of household decision variables
and D is the vector of per capita values of these same variables. Equations
(4.3) and (4.4) describe the evolution of s and S, where B is a linear
function. Note that (4.4) is obtained from (4.3) by aggregating over all
households.

The function D in equation (4.5) expresses the relationship between the
per capita values of the decision variables, D, and the state variables, z and
§. This function does not describe a feature of the environment but is

instead determined as part of the equilibrium. The primary goal of the next

13 Here, and in the rest of the paper, we use small letters (eg. h and

k) to denote quantities associated with a particular household. Capital
letters (H and K) denote economy wide (per capita) quantities that are
determined in equilibrium, but are not influenced by the actions of any
individual household.
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section is to describe a computational method for finding a function D that
satisfies our definition of equilibrium,

Morxre specifically, we wish to find a recursive competitive equilibrium
(RCE), which consists of decision rules for the households, d = d(z,8,s8); a
rule determining the per capita wvalues of these variables, D = D(z,S); and a
value function, v(z,S,s), such that:14

(i) Given the aggregate decision rules, D, the value function, v,

satisfies equation (4,1) and d are the associated decision rules.

(ii) The function D satisfies the following relationship: D(z,S) =

d(z,S,S5).

4.1 The Basic Model with Taxes

Our first example is a version of the basic model from section 2 with
taxes on labor and capital income. The particular decentralized economy that
we consider consists of a large number, N, of identical households endowed
with ko units of capital in period 0 and one unit of time each period that is
spent working or enjoying leisure. The households receive income each period
from capital and labor which is used to finance consumption and investments in
new capital. Consumption, leisure and investment are chosen to maximize (2.4)
subject to the following sequence of budget constraints (for t from zero to

infinity):

(4.6) e, +i = (I-r)wh + (l-r)rk +7

c c 6kt + TRt

k

In this equation, the variables L and r. denote the wage rate and

rental rate, respectively. The parameters L£Y and T, are the tax rate on labor

14 The notion of a Recursive Competitive Equilibrium is developed in
Prescott and Mehra (1980).
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Income and the tax rate on capital income net of depreciation, (rt~6)kt. The
capital stock owned by a given household evolves according te (2.8). The last
term, TRt' is a per capita lump sum transfer from the government to the
households,

A firm in this economy purchases labor and capital services from the
households and uses these to produce output, yi, according to the technology
(2.5) and (2.6). [The superscript f indicates quantities chosen by the firm.]
Given that the technology displays constant returns to scale, ne loss in
generality is incurred by assuming that there is only one firm, The first

order conditions for the firm’'s profit maximization problem are

W= thZ(k Jh)

and

t Hh ot Hh
t Hhot M

r = thl(k

t h

)

where ki is the amount of capital that the firm rents from the households.
Market clearing requires that ki = KtN and hi = HtN, where N is the number of

households, K_ is the per capita stock of capital, and Ht is per capita hours

t
worked. Substituting this into the above first order conditions, and using
the fact that constant returns implies that the marginal products are homoge-
neous of degree zerc, we obtain,

W, = w(zt’Kt’Ht) = thz(Kt,Ht) and

(4.7)

r, = r(zt,Kt,Ht) = thl(Kt,Ht)

Constant returns also imply that, in equilibrium, payments to factors of
production fully exhaust revenues and, as a result, dividends are zero.

The role of the government in this economy is simply to collect tax
revenue and return it to the households as a lump sum transfer. This implies

that the government budget constraint is
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{(4.8) TRt - ThWth + fk(rt-é)l(t .

The problem faced by a particular household can be expressed in the form
of (4.1) by making a series of substitutions. First, (4.8) is substituted
into (4.6) by eliminating TRt' Next, (4.7) 1s substituted into (4.6),
eliminating wt and rt. Finally, (4.6) is solved for ct and the result is
substituted into the utility function (2.4). After these substitutions, the
households optimization problem can be written as the following dynamic

programming problem:

(4.9 v{z,K,k) = max (r{(z,K,k,I,H,i,h) + ﬁE[v(z',K',k')|z]}
subject to =z’ = A(z) + €'
K' = (1-8)K + I
k' = (1-6)k + 1

I = I{z,K) and H = H(z,K)

The function r(z,K,k,I,H,i,h}) is equal to U{c,l-h), where ¢ is given by
w(z,K,H)(h+rh(H-h)) + r(z,K,H)(k+rk(K-k)) + fké(k-K) - i

The functions I and H describe the relationship perceived by households
between the aggregate decision variables and the state of the economy. We are
interested in finding functional forms for I and H that satisfy the definition
of a Recursive Competitive Equilibrium applied to this example.

This problem can easily be mapped into the framework described at the
beginning of the section. The only exogenous state variable is the technology

shock, z, and the only endogenous state variable is the capital stock, K.15

15 A natural extension of this example would be to model the tax rates

as exogenous stochastic processes, or, as depending on the endogenous state
variables. See Braun (1989), Chang (1990), Greenwood and Huffman (1990) and
McGrattan (1989) for applications of this sort to equilibrium business cycle
theory.
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The decision variables are d = (h,i) and the function B(z,K,k,I,H,i,h) for

this example is (1-6)k + i. Finally, the analog to the function D in (4.5) is

the pair of functions, I and H.

4.2 The Basic Model with Money

Leaving the preferences and technology of our basic model unchanged,
fiat money will not be valued in equilibrium.l6 This follows from the fact
that money would be dominated Iin rate of return by privately issued assets.
The two most common ways of overcoming this obstacle is to include money as an
argument in the utility function or to assume that previously accumulated cash
balances are required for the purchase of some consumption goods (cash-in-
advance).17 In this section we will describe an example that illustrates
the second approach,

Households choose consumption and leisure to maximize
4.10 Ex " gtu( 2.) 0<B<1
(4.10) B Uleg iy ) B<1,

where ¢ is consumption of the "cash good," c, is consumption of the "credit
good," and £ is leisure. The period utility function, U, is bounded, continu-
ously differentiable, strictly increasing, and strictly concave. In addition,
Inada condition are required to insure that agents consume positive quantities
of both consumption goods.

The petriod budget constraint is,

16 See Sargent (1987) for a detailed discussion of this issue.

17 Both of these types of models are discussed in Sargent’'s (1987)
textbook and standard references are provided. Papers which contain applica-
tions of these monetary models to equilibrium business cycle theory include
Cooley and Hansen (1989), Huh (1989) and Kydland {(1989).
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(4.11) Cle v G t it + mt+1/pt < wtht + rtkt + mt/pt + TRt/pt

This constraint reflects the assumption that ¢y and Co) in addition to
investment, are perfect substitutes in production and hence sell at the same
relative price. Households enter the perilod with nominal balances equal to m
which is augmented with a lump sum transfer of newly printed money, TRt'

Using our notational convention, Mt denotes beginning of period (pre-transfer)
per capita money balances and m denotes the money holdings of a particular
household. Thus, TRt = Mt+1 - Mt' The price level is denoted by P.-

Purchases of the cash good, must be financed with nominal cash

“1e’
holdings at the beginning of the period (post-transfer). This requirement is

formalized by the cash-in-advance constraint,
(4.12) P.Cy, S m_ + TR .

trai i + + < i

The resource constraint is ci1e ¥ So¢ it < Yo where Y 1is produced
according to the production function (2.4). This implies that the wage rate
and rental rate are given in equation (4.7).

The money supply, M_, evolves according to the following rule,

t 1

(4.13) M_ ., —gM

t+l t

The monetary growth factor, g, is constant over time, but, as in the case of
the tax rates in the previous example, a natural extension is to model g as an
exogenous state variable or as depending on the economy wide state.

In this example, as well as in most applications involving cash-in-
advance models, we impose conditions on the money growth rate such that (4.12)
holds with equality (that the Lagrange multiplier associated with this
constraint is positive in equilibrium). The precise form that this restric-
tion takes depends on the form of the utility function. In general, this

26



restriction is equivalent to requiring that an appropriately defined nominal
interest rate be positive.

OQur solution method requires that all variables fluctuate around a
constant mean. However, if g is greater than one, both M and p in this
example will grow without limit, This motivates introducing the following

change of variables:

(4.14) h, = m_/M and ﬁt = pt/M

t tt t+l

With this change in variables, assuming that the cash-in-advance
constraint is binding, the dynamic programming problem solved by households

is,

(4.15) v(z,K,k,m) = max{U(c 1-h) + BE v(z',K' k', @")

1!c2!

subject to z' = A(z) + €'

K' = (1-8)K + 1
k' = (1-8)k + 1
¢y + Cy + i+ &'/p=w(z,K,H)h + r(z,K,H)k

+ (i+g-1)/(g"D)
e = (hrg-1)/(g*D)

I =1I(z,K}, H=H(z,K), and f = P(z,K)

An important feature of this problem which is absent in (4.9) is the
function P that expresses the relationship between the price level and the
state of the economy. Because of this feature, this problem can not be mapped
into the notation of problem (4.1). In that problem, there is no analog to
relative money holdings, #, or the price level, p. However, the following
modified version of problem (4.1) incorporates these features. This more

general formulation would also apply to other applications involving money in
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the utility function or cash-in-advance in addition to the particular example

described ahbove.

(4.16)
(4.17)
(4.18)

(4.19)

v{z,5,s5,m) = max {r(z,5,s,m,D,p,d,m') + BE wv(z',5',s"',m*))
subject to z’' = A(z) + ¢'
s' = B(z,8,s,m,D,d,p,m")
S' = B(=z,8,5,1,D,D,p,1)

D"D(Z:S) ’ p-P(z»S)

In this problem, m and p are the households nominal money holdings and

the price level, both expressed relative to the per capita money supply.

Thus, they correspond to & and p in the above example,

A recursive competitive equilibrium consists of a set of decision rules

for the household, d = d(z,S,s,m); a decision rule determining the amount of

money

the household carries into the next period, m'" = m(z,S,s,m); a set of

aggregate decision rules, D = D(z,8); a function determining the aggregate

price

level, p = P(z,5); and a value function, v{(z,5,s,m) such that:
(i) Given the functions D and P, the value function, v, satisfies
equation (4.16) and d and m' ave the associated decision rules.
(ii) Given the pricing function, P, individual decisions are consistent
with aggregate outcomes:
D(z,8) = d(z,5,58,1) and 1 = m(z,5,5,1)
[Note that in equilibrium, m’ must equal one since m' is defined

to be money holdings relative to the per capita money supply.]

It is straight forward to express our cash-in-advance economy in terms

of this notation. As in the first example, d = (i,h) and the function B is

simply (1-6)k + 1. The return function, r, is given by
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r(Z,K,k,ﬁl,I,H,p,i,h,ﬁl’) - U(C 1"h)

1'%
where cy = (d+g-1)/(g*P)

and e, = w(z, K, Hh + r(z, X, Ok - i - @'/p .

3. BSolving for a Recursive Competitive Equilibrjium

In this section we describe a method for finding a function D (for an
economy without money) or a pair of functions D and P (for a monetary economy)
that satisfies the definition of a RCE. As in section 3, we consider econo-
mies for which the return function is quadratic. Since our examples do not
generally deliver guadratic objectives, we again make use of the procedure
described in section 3.1 feor computing a quadratic approximation of a nonlin-
ear return function. We first explain how to compute a RCE for a nonmonetary
economy using methods similar to those described in section 3.2. HNext, we
show how essentially the same methods can be applied to economies with money.

We begin by considering an economy where the problem solved by house-
holds is (4.1). As in section 3, z in equation (4.2) is an n{(z) X 1 vector of
exogenous state variables, the first component of which is assumed to be
constant over time (equal te one, without loss of generality). We continue to
use the function n(x) to denote the length of a column vector, x.

The steady state for the certainty version of this economy, (Z,S,s,D,d),
which is required in computing the quadratic approximation of the return

function, r, is the solution to the following set of equations:
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[In (5.1), r,, etc. have the same definition as in equation (3.1).]

rd,

Define y to be the stacked vector (z,5,s,D where

191 Prcay ey
the subscript denotes a particular component of D or d. Given the steady
state of y, the guadratic approximation can be formed in precisely the manner
described in section 3.1. From this we obtain the following linear-quadratic
formulation of the household’s problem, where the functions Di are the unknown

aggregate decision rules:

(5.2) v(z,5,s) = max {yTQy + B E[v(z',5",5")]|z]}
subject to (4.2)-(4.4)

and D; = D;(z,5,D,...,D

107 i-l)’ where the Di’ i=1,...,n(d),

are linear functions.

5.1 Finding a Recursive Competitive Equilibrium by Successive Approximations

Qur computational procedure for finding the functions Di that satisfy
the requirements of a RCE for a linear-quadratic economy makes heavy use of
the methods described in section 3.2. As in the earlier section, we focus
only on the certainty version of the household’s problem (5.2) since the
decision rules will be independent of the variance of ¢. Successive approxi-
mations of the optimal value function, v, are obtained by iterating on the

following mapping:

(5.3) vz 5, 5) = max (ylQy + g v?(z',8',s"))
subject to (4.2)-(4.4)

and D, = D?(Z,S,D for i = 1,...,n(d).

.o Dy .
1’ 1-1)
The functions D? are the linear aggregate decision rules associated with the
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th . . . ;
n  approximation of v. The precise way in which these functions are computed

is described in Step 4 below.

Step 1. Choose a negative semidefinite matrix, vo, of size n(z,5,s) x

n{z,5,s).

Steps 2 through 7 describe how to obtain successive approximations of

. ! -
the value function, v. Given a matrix v, these steps explain how to compute

n+l
v .

Step 2. Define x to by the stacked vector (y,z’,8',8') =
(z,S,s,Dl,dl,...,Dn(d),dq(d),z',S',s'). Construct a matrix R(n(x)),
which is of dimension n(x} X 5(x), that contains the matrix Q in the top
left corner and the matrix ﬁvn in the lower right corner. All other
elements are set equal to zero. The quadratic expression on the right
side of (5.3) can now be written xTR(q(x))x.

Step 3. Eliminate s', S’ and z' using the linear laws of motion (4.2)-(4.4).

This is done using equation (3.6) from section 3.2. After these

substitutions, the quadratic expression becomes xTR(n(y))x.

The next three steps are used to eliminate the aggregate and individual
decision variables, Dj and dj' Beginning with j = n(d), these steps must be
repeated n(d) times to eliminate each of the Dj and dj in turn. The descrip-
tion here assumes that the jth decision variable (Dj and dj) is being elimi-
nated, which corresponds to the J-lst and Jth elements of x, where J =

n(z,5,s8)+2j. Decision variables with index greater than j are assumed to have

already been eliminated,

31



Step 4. To obtain the function D?, consider the first order condition with

respect to dj:
(5.4) =, RYIx. ~0 , where J = 5(z,S,s) + 23

At this point it is important to examine if the second order

conditions are satisfied by checking whether if jo) is less than zero.
Substitute the aggregate consistency conditions into (5.4) by

setting s = § and di = Di for i = 1,...,3, thereby eliminating s and the

remaining components of d. Solving for Dj’ we obtain the aggregate

decision rule D?,

J-2
(3.3 Xp.1 = Dy = Btk
where
(J)/R for 1 =1,...,n(z)
J J = .
(R( " R§ i+ (y)/R For L= n@@)+l,...,n(z,5)
61 =4 0 for i = 5(z,8)+1,...,9(z,5,s)

®$D4 RéJ)+1)/E for 1 = n(z,8,8)+1,...,J-3

(increments of 2)
0 for i = n(z,8,s)+2,...,J-2

L (increments of 2)

and R = -(Rﬁjg 1 + R(J))

The first set of é's are the coefficients on the components of z in
(5.5). The remaining four sets of &’'s are coefficients on the compo-
nents of 5§, s, D and d, respectively. Since (5.5) is an aggregate
decision rule, the coefficients on s and d are equal to zero,

Step 5. Solve equation (5.4) for Xy and use the resulting linear exXpression
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to eliminate x; = dj from the right side of (5.3) using the substitution

procedure described in section 3.2.
Step 6. Use equation (5.5) to eliminate S Dj'
Steps 4 through 6 are repeated until all decision variables have been

eliminated. After these substitutions, the right side of (5.3) becomes

xTR(“(z'S'S)x,

Step 7. Define vn+1 to be the matrix formed by the first 5(z,S,s) rows and
P y

columns of R(n(z,S,s))-

Compare the elements of vn+1 with the elements
of v, ignoring the (1,1) element. If they are sufficiently close, stop
the iterations. If not, repeat the procedure beginning with Step 2,

using vn+1 in place of v,

Once the iterations have converged, the equilibrium aggregate decisions
rules can be computed from the set of n{d) equations (5.5) obtained in the
last iteration., The procedure for obtaining these is analogous to the
procedure described in Step 6 of section 3.2. Finally, it is recommended that
one check 1f the steady states obtained from solving equations (5.1) are the

same as the steady states implied by the linear equilibrium decision rules.

5.2 Solving for a Recursive Competitive Equilibrium in a Monetary Economy

We mow explain how this method can be modified to solve for a RCE in a
monetary medel, where money is introduced either through a cash-in-advance
constraint, as in section 4.2, or by introducing money directly into the
utility function.

The problem solved by households in these models is stated in equation
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(4.16). As usual, the first component of z is equal to one. The additional
variables, m and p, are defined in section 4.2, Both of these are one-
dimensional wvariables.

The quadratic approximation of the return function, r, is formed in the
same way as above, where the vector y is defined to be the stacked vector

{(z,8,s,m,D The steady state is computed by solving

d,,...,D ,d P,m' ).
1% Pray Oncay PR
a set of equations analogous to (3.1) or (5.1), noting that steady state money
holdings, m, are equal to omne.

The steps involved in generating successive approximations are very

similar to those described in section 5.1. Successive approximations are

computed by iterating on the following mapping which is similar to (5.3):

(5.6) vz s, 8) = max (ylQy + 8 v(z*,8',8"))
subject to (4.17)-(4.19)
Di=D2(Z,S,D1,...,D. l)l iﬂlr"'!n(d) ]

n
d = P (z,8,D,,...,D
an P ( 1 n(d)’

The functions D? " are the aggregate decision rules and pricing function
associated with the nth approximation of v.

Steps 1-3 can be followed almost exactly as described, except that v0
must be of dimension (n(z,S,s)+1)x(n(z,5,8)+]l) and x is defined to be the

stacked vector, (z,$,s,m,D,,d

1 1,...,Dn(d),dn(d),p,m',z’,S',s,m'). Notice that

m’ appears in this vector twice since it enters the value function for the
next period as well as the current return function. The second m’ is elimi-

nated in Step 3 using the equation, x that is, by setting the

= K N

n(x) n(y)
second m' equal to the first m’,

Step 4 for this problem differs from the nonmonetary case since the

pricing function, Pn(z,S,D must be obtained in addition to the

1!"'!Dn(d))P
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agegregate decision rules, denoted by Dn,.. The function P is

n
D .

n(d)
computed from the first order condition associated with m' by imposing the
aggregate consistency conditions (s = §, m = m' = 1, and di - Di'

i=1,...,7(d)) and solving for p. The expression p = Pn(z’S'Dl""’Dn(d)) is

used to eliminate xn(y)-l as described in Step 6.

Step 5 can usually be followed without modification, but not always.
For example, Cocley and Hansen (1989) found that in their cash-in-advance
economy the first order condition with respect to m’ could not be used to
solve for m’ since the coefficient on this wvariable turned out to equal zero.
In such cases, one can use the equilibrium condition m’ =1 (xn(y) = xl) to
eliminate m'.

The rest of the procedure is unchanged from that described in section
5.1 except that the accounting is slightly different given the additional
components of x. The decision variables, d and D, are eliminated as explained
in Steps 4-6 and vn+1 is computed, Successive approximations of v are
computed until they converge. Finally, the equilibrium decision rules and

pricing function are computed from the functions P" and D?, i=1,..,n(d),

associated with the last approximation of v.

6. Extensions to Heterogeneous Agent Econocmies

An advantage of the methods we have described in this chapter is that
they can be extended in a straight forward manner to an important class of
economies in which agents are not ex ante identical. 1In this final section,
we describe how to compute an equilibrium for an extension of the basic model
in which agents differ according to preferences and initial capital holdings.
More complicated heterogeneous agent environments, including economies with

n-period lived overlapping generations, can be studied employing methods
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similar to the one used in the context of this example.18

Suppose that the economy consists of N types of households with X, being

i
the fraction of type i = 1,...,N. It follows that the total measure of

households is one. A household of type i solves the following problem:

(6.1) max E E, 08U, (e, 8, ) . 0<p<1
subject to hit + Eit =1

(6.2) Zeyp ~ A Fe

(6.3) Sie t Fie T Viehie Tk

(6.4) ki,t+1 = (1-6)1(it + LI

(6.5) W = thH(Kt’Ht)

(6.6) £, = 2 Fp (K H)

The initial kiO is given as well as the stochastic process generating sequenc-
o

es {Kt,Ht]t_o.

The variables Cigr Xipo hit’ Eit’ and kit denote consumption, invest-
ment, hours worked, leisure and capital stock of household i in time t.19
Equatjons (6.5) and (6.6) are the wage and rental rates as derived in section
4.1 under the assumption that there is a single constant returns to scale
technology. As usual, Kt =3 xiKit and Ht =3z AiHit are the per capita

capital stock and hours worked, respectively, where Kit and H . are the per

i
capita capital stock and hours for households of type i. Equation (6.2) is
the law of motion for the technology shock, where A is a linear function and ¢

is an iid random variable with finite variance.

18 Rios-Rull (1990) extends and applies these methods to the study of n-

period lived overlapping generations environments.
19 s . . : .
Notice that we have switched notation from previous sections.
Previously, investment was denoted it but the letter i is now used to index
type of household. Therefore, we now use X to denote investment.
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In what follows, we utilize the following notational conventions: ki is
the capital stock of a particular household of type i; Kj, for j=1,...,N,
are the per capita capital stocks of households of types j; and K =
(Kl,...,KN)T is a vector describing the entire distribution of capital stocks.
These same conventions apply for the decision variables hours, h, and invest-
ment, X.

Substituting (6.5) and (6.6) into (6.3), solving (6.3) for Ciy and
substituting the resulting function into the utility function, household i's

optimization problem can be expressed as the following dynamic programming:

(6.7) v;(z,K. k) = max (r,(z,Kk XHx; h) + BE[v,(z' K" k{)|z])

subject to z' = A(z) + €' ;

(6.8) ki = (l-é)ki + X

6.9 K! = (1-8)K. + X, , f i =1,...,N;

( ) 3§ ( ) 5 § or j

(6.10) Hj = Hj(z,g) , Xj = Xj(z,g) for j = 1,...,N .

Notice that although factor prices depend only on the per capita capital
stock, the state of the economy includes the vector of per capita stocks held
by each type. Equations (6.9) are the laws of motion for the Kj' Equations
(6.10) state that the per capita hours and per capita investment (for each j)
are given functions of the state of the economy.

A recursive competitive equilibrium for this economy consists of a set

of decision rules for households of type i, hi(z,ﬁ,ki) and xi(z,E,ki) for i =
1,...,N; a set of per capita decision rules, Hi(z,g) and Xi(z,K), for each i;
and a set of value functions, vi(z,g,ki) for each i, such that:
(i) Given the per capita decision rules, the value function for type i,
Vi satisfies equation (6.7) and hi and x, are the associated

decision rules.
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(ii) Hi(z,g) - bi(z,g,Ki) and Xi(z,g) = xi(z,K,Ki) for each 1i.

To compute an equilibrium, we approximate the return function of each
type by a quadratic function using the procedure described in section 3.1. To
obtain successive approximations of the value function for type i we iterate

on the following mapping, where ¥g is the stacked vector <Z’E’ki'§’ﬂ’xi’hi):

n+l T N, ., oy o1,
(6.11) vy (Z.K.ki) = max (y.Q.y, + 8 v,(z' K" ,k}))
subject to z' = A(z) , (6.8), (6.9)

and X, - X?(z,g) and H, - H?(z,g) for j = 1,...,N .

To compute v2+1, X? and H? for a household of type i given a quadratic
function v?, we first employ the substitution procedure described in section
3.2 to eliminate z', K’ and ki using the linear equations z' = A(z), (6.9) and
(6.8). This must be done for each 1i.

Next, for each type i, we take the first order conditions with respect
- X_,

i i

hi - Hi and ki - Ki for each i, into these first order conditions, we obtain

to X, and hi' Substituting the aggregate consistency conditions, x

2N equations that are used to solve for the 2N unknowns X and H as functions
of z and K. These are the functions X? and H?, for j = 1,...,N, that appear
in the mapping (6.11).

The third step is to use the first order conditions to solve for x, and

i
hi as a function of (z, K, ki’ X, H) for each i. The resulting functions are
used to eliminate X and hi from the right side of the mappings (6.11). The
final step is to eliminate X and H using the linear functions X? and H?, for
each j. From this we obtain a quadratic function of z, K and ki that is used
n+l

as the next approximation of Vie Vi The procedure is repeated until the

iterations have converged.
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