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ABSTRACT

This paper develops a medel of competitive economy which is used te study the
effect that distortionary taxes have on the business cycle and on agents'
welfare. In the presence of distortions, the equilibria are not Pareto optimal
and standard computational techniques cannot be used. Instead, methods that take
into account the presence of distorting taxes are applied. Maximum likelihood
estimates of taste, technology and policy parameters from U.S. post—war time
series are used to obtain several results. 1 find that a significant portion of
the variance of the aggregate consumption, output, hours worked, capital stock,
and investment can be attributed to the factor tax and govermment spending
processes. Also, I compute the deadweight loss due to alternative tax changes
and compare these estimates to others in the literature. Specification of taxes
as constant versus state—contingent can have a significant effect on the results.
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1. Introduction

Real business cycle models in the tradition of Kydland and Prescott (1982)! assume
that technological change is the driving force behind growth and fluctuations observed in
post-war U.S. data. While these models have been successful in accounting for a large
fraction of the variability and comovements of the aggregate time series, they do not do
well along some dimensions. Relative to the data, the variability of consumption, hours of
work, and output is too low, and the variability of investment and the correlation of real
wages and hours are too high. One reason for this limited success may be the exclusion of

monetary or fiscal shocks.

In this paper, the basic framework of Kydland and Prescott (1982) is extended to
include a public sector. It is assumed that the government levies distortionary taxes on
factors of production to finance its expenditures. As Christiano and Eichenbaum (1988)
note, the inclusion of a public sector has the potential to improve some of the predictions
of Kydland and Prescott’s (1982) model. For example, with only productivity shocks
driving fluctuations, the model of Kydland and Prescott cannot capture the fact that the
correlation between hours and real wages is approximately zero. A shock to technology
shifts the labor demand curve but not the labor supply curve. This explains the high
correlation between hours and wages that Kydland and Prescott predict. To improve this
prediction, Christiano and Eichenbaum (1988) study a real business cycle model in which
government purchases affect agents’ utility. The expenditures are financed through lump-
sum taxes. In this case, shocks to expenditures shift the labor supply curve. However,
they predict that while the hours and wage correlation comes closer to that observed, it is

significantly positive.

Christiano and Eichenbaum (1988) do not allow for distortionary taxation. Like gov-
ernment expenditures, changes in the tax rates affect labor supply. Thus, tax rates provide
another mechanism for explaining the observed correlation between hours and wages. Fur-
thermore, if the tax rates are state contingent, then the model has the potential to improve
the predictions of variability of output, consumption, investment, and hours of work. How

the dynamics are altered will depend, however, on the particular form of the tax rules,

This paper shows that fiscal variables can be important determinants of cyclical behav-

ior. This claim is quantified by “innovation accounting.” Following Sims (1980), variances

1 See, for example, Prescott (1986), Hansen (1985), Benhabib, Rogerson and Wright (1989), and Long
and Plosser (1983).



are decomposed with fractions attributed to innovations in technology, government ex-
penditures, labor tax rate, and capital tax rate processes. It is shown that a significant
portion of the variance of the aggregate consumption, output, hours worked, capital stock,

and investment can be attributed to the government expenditures and factor tax processes.

An advantage of the model developed in this paper is that it provides a framework
for calculating the welfare costs due to capital and labor taxation. There exists a wide
range of estimates of the costs of taxes on factors of production. This is true across models
and across parameterizations. For example, Judd (1987) measures deadweight loss due to
capital and labor taxation for different choices of a single agent’s utility function and for
various tax changes. In the case of a permanent increase in the tax on labor income the
cost figures range from 2 cents per dollar revenue to over 1 dollar. For the capital income,
the range is 15 cents to over 20 dollars and in one case the revenues fell with an increase
in the capital tax rate. McGrattan (1989) also finds that the estimates are sensitive to
parameterizations of preferences and tax policies. Results depend on whether the tax rates

are assumed to be constant or state-contingent.

Because the welfare cost calculations are sensitive to parameterizations, the parame-
ters of the model are estimated using U.S. aggregate time series. As in Altug (1989), the
parameter estimates are those that maximize the likelihood function. One reason for using
maximum likelihood over methods such as generalized method of moments (GMM) is that
tax rates are assumed unobserved. The GMM procedure assumes that the econometrician
observes all variables that the agents observe. For maximum likelihood, the identification
of parameters is possible with latent variables because of the cross-equation restrictions

imposed by the assumption of rational expectations.

To construct the likelihood function, it is necessary to first compute an equilibrium.
The methods used to compute equilibria in this paper differ from those of Kydland and
Prescott (1982). With distortionary taxes, the equivalence of the equilibria of the com-
petitive system and the “planner’s problem” does not obtain. Assuming a planner that
maximizes utility for the representative agent subject to resource constraints does not work.
Instead, a competitive equilibrium is computed directly. The price functions and laws of
motion for aggregate quantities are determined endogenously and must be computed along

with the decision rules of the households and firms.

With parameters of preferences, technologies, and policies given by the maximum

likelihood estimates, welfare costs for a permanent changes in tax rates are computed.
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Estimates fall in the range of those computed by Judd (1987) and McGrattan (1989). As
in Judd (1987), the cost of the capital tax exceeds that of the labor tax. However, the

estimates of the cost of the labor tax are more robust across specifications.

The model is described in Section 2. In Section 3, a method for computing equilibria
is described. The technique involves approximating the true preferences of the household
with a function that is quadratic. This approximation technique is used by Kydland and
Prescott (1982). The estimation strategy is outlined in Section 4. The parameter estimates
are discussed in Section 5.1 and comparisons are made to related empirical studies. With
estimates imposed, the fractions of variance in aggregate time series due to productivity
shocks and to government purchases and tax rate processes are calculated. These results
are given in Section 5.2. The welfare costs for the estimated parameters and several others
are reported in Section 5.3. A comparison of methods for solving equilibria, estimation
strategies, and results is made to several recent related papers.? Concluding remarks are

given in Section 6.

2. The Model

The economy in this paper is comprised of a representative household, a representative
firm, and a government, all of whom are infinitely-lived. The household chooses sequences
of consumption, {c¢;}, investment, {¢;}, and hours worked, {n;}, to maximize expected
utility

oo
Eo Y BU(ci +9Gi,a(L)l), 0<pB<l (1)

t=0
where expectations are conditioned on the information set of the household at time 0. Cur-
rent period utility depends on the number of goods consumed, government expenditures,
Gt, and current and past hours of leisure, £;,€;_;,.... The specification of (1) assumes
that past leisure decisions affect current leisure services. If a(L) = Z?‘;u a; L7, where
L is the lag operator, then one hour of leisure at ¢ gives a; hours of leisure services at
t+j. faj=(1-n)7"la1,0<n <1, a(l) =1 as in Kydland and Prescott (1982), the
future services from one unit today are declining over time. Let k, = 3752, (1 — )~ 1n,_;

assuming a(L) has declining weights. Let H be the time endowment each period so that

ny+ € = H. (2)

? See for example Braun (1990), Cassou (1990), Greenwood and Huffman (1989).
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Then

a(L)Et = IZ_I — QMg — T](l - ag)ht (3)
heyr = (1= n)he + ny (4)

which is a recursive representation for past hours and a way to avoid The specification of the
first argument of (1) assumes that government expenditures can influence the household’s
utility if ¢ # 0. If ¥ > 0, the marginal utility of consumption decreases with an increase
in G;. If ¢ < 0, the opposite is true.

The budget constraints of the household are given by
Ct+zlt _<_ (1—Tkt)rtkt+(1 —Tnt)wtnt+6Tktkt+Tt, t=1,2,.... (5)

Each period, the household purchases ¢, and investment goods i, with after-tax income
from renting the factors of production that they own to the firm. The capital income
is r¢ky, where r is the (real) price of renting capital and k is the capital stock of the
household. Labor income is wyn:, where w is the (real) wage rate. If the household
behaves competitively, then it is a price-taker in the capital and labor markets. In (5)
the prices of consumption and investment goods are normalized to 1. Capital and labor
income are taxed at rates Ty, and 7,,¢, respectively. T; are lump-sum transfer payments from
the government to the household in period ¢. The final source of income is depreciation

allowances 87y:k;, where 0 < § < 1 is the constant rate of capital depreciation.

The household owns the technology to convert investment and the current capital stock
to next period capital. As in Kydland and Prescott (1982), capital takes four quarters to

build. Total investment is a sum of investment in capital at various stages of production:

iy = 01513 + $25¢—2 + P351_1 + P45y, ¢; 2 0, Zfﬁj =1 (6)
J

where s, is investment starts at time ¢. The parameters ¢; denote the fraction of resources
allocated to projects j periods from completion. Thus, current investment consists of the
value put in place during the first year of projects started in the current period, ¢4s;, the
value put in place during the second year of projects started in the previous period, ¢3s,_1,
and so on. In this case, the investment projects adding to the end-of-period capital stock

at t are those started at ¢ — 3. Thus next period capital is
kepr = (1 — 6)k: + 543 (7)
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where § is the rate of depreciation of the capital stock in place.

Each period the firm chooses levels of output y;, capital, k;, and labor, n;, so as to
maximize profits:

Yy — riks — winy (8)

subject to the technology
ye = F(Ag, ke, ) (9)

where F is a production function exhibiting constant returns-to-scale, A; is a stochastic
technology shock, and ry, w, are input prices taken as given by the firm. Revenues are

obtained from selling goods to the households and to the government.

The government levies taxes on factors of production to finance expenditures. Any
revenue that is not used to finance current purchases is transferred to households in a

lump-sumn payment. Thus, real transfers are given by:
Ty = mrere Ky + Tosw e Ny — e K — Gy (10)

where G is government expenditures (purchased at the same price as consumption and
investment goods) and K, Ny, I; are aggregate levels of capital,.hours, and investment.?

The government’s debt is zero.

The stochastic processes governing technology shocks, government expenditures and

tax rates are assumed to follow
vigr = @(L)vs + bxoy + €441 (11)

where v; = [Ay, Gt, Tkt, Tnt)', L is a lag operator, z9¢ = [1, Ky, Si—y, Se—z, Si—3, Hy, I, NyJ'
is a vector of variables that are not controllable by households, and €4, is a vector white
noise. The specification in (11) is very general. Constant values are accommodated by
setting a(L) = 0, all columns of & but the first to zero, and &, = 0 for all . Exogeneity of the
processes in vy is accommmodated by setting & = 0. With b nonzero, specifications similar to
that in Seater (1982) are possible. Seater {1982) finds that important determinants of the
labor tax rate are federal government expenditures as a share of gross national product,
per-capita gross national product, and the inflation rate. With (11}, we can specify taxes

as a function of government expenditures and its lags and (indirectly) output. The latter is

3 Below, capital letters imply the aggregate level of the corresponding variable.
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achieved by assuming that tax rates are functions of inputs to production. These variables
are elements of x3;. The specification in (11) does not accommodate nonlinear relationships
between the elements of v;. However, the procedure used to compute equilibria requires
linear constraints. Any nonlinear functions are linearized. Thus, a linear specification is

chosen.

Let X, be the state vector for the household at time ¢. X includes current individual
levels of capital, starts across projects, and accumulated labor, all aggregate quantities both

" into variables

private and public, and technology shocks. Partition X, = [X{,, X},, X3§,]
directly influenced by the individual household’s controls, X;; = [k¢, 8i-1, 812, Si—3,
h¢]', all aggregate variables but investment and labor, X9 = [Ky, Si—1, S¢—2, St—3, He, ,
Atyeooshimly Gty oo o s Gomty Thty o ooy Tht—ly Trty -+« Tae—1)', and X3¢ = [It, Ny}, where [ is the
lag length of a(L). Then the state of the economy is [X3,, X},)’. The equations governing
the variables in X, can be read off of equations (4),(6),(7), and (11) with individual levels
replaced by aggregate levels. Functions for aggregate investment and hours, on the other

hand, depend on the individual choice functions. These functions are not known a prier:.

The household’s problem can be formulated as a stationary discounted dynamic pro-

gram with Bellman7s equation given by
V(X) = TP;{(U(C +$G, H ~ agn — n(1 — ag)h) + SE [V(X')IX]) (12)

subject to (4)-(7), the initial condition Xy, factor price and transfer functions, r(X;, X3),
w(X2, X3), T(X3, X3), and laws of motion for X3, X;. The firm maximizes its profits, (8),
subject to (9), taking as given the price functions r and w. The government satisfies its
sequence of budget constraints, (10).

Define ¥ = (A C R, % = R}, % = RE xRY X3 = Ry x ¥, and @ is a
selector matrix such that X, = ® Xy, implies k, = Ky, s,_; = 5;_;, 1 = 1,2,3, hy = Hy,
for all t. Assume that g7 is a collection of transition functions for the variables in Xj,:

Xogr1 = Qz(qu Xay, 5t+1)‘

Definition: A recursive competitive equilibrium is a collection of pricing functions, r* :
X; x X3 — R, w* : X x X3 — R, a transfer function, T : X; x X3 — R, policy functions,
c* X xXaxX3 - Ry, * X xX xX;3 - Ry, n*: X x X2 x X3 — N, production
plans, y* @ Xg X X3 — Ry, k" 1 Xy x X3 — Ry, n* @ X3 x X3 — N, laws of motion
g3 X2 x X3 X R*® — X, and a value function V* : X —» R that satisfy
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i. Utility maximization: V* solves (12) and ¢*, i*, n* are optimal taking r = r*, w = w*,
T = T*, laws of motion for X3 to be g3, and V = V™

ii. Profit maximization: given prices r*, w*, the plans y*, k*, and n* maximize the firm’s
profit function (8) subject to (9);

i1i. Government budget constraints: (10) satisfled with T =T, r = r*, w = w*, n = n*,
k= k*, and Xl = @X2

1. Market clearing:

n*(Xz, Xa) = n* (X2, Xz, Xs) (labor)
y*(X'z,X3) = C*(Q‘Xz,Xz, X3) + Z'*(‘PXQ,XQ,X3) + Xg(l + 7) (gOOdS)

9N Xo, Xy €) = [i*(‘I’Q’Z(X2aXs,E),gz(Xz,X3,€),g§(X2,X3,5))
3 2y ’ n*(@g2(X2,X3,E),gg(X2,Xg,E),g;(Xz,Xs’g))

The last term in the goods market clearing condition is government purchases which is
the (I+7)th element of X,. The last condition of (#v) says that the optimal investment
and hours decision rules coincide with the laws of motion the household believes hold in
the aggregate for investment and hours. The household has perceptions about the price
functions and laws of motion governing aggregate capital, starts, labor, and investment.
These perceptions have implications for decision rules. These decision rules combined with
market-clearing conditions, in turn, have implications for the realized laws of motion of

the aggregate quantities. In equilibrium, the realized functions are correctly anticipated.

3. The Linear-Quadratic Model

In general it is not possible to determine analytically the equilibria defined in Section
2. To compute equilibria numerically, there are several alternative methods that can be
used.* The method used for this paper is described in detail in McGrattan (1990). As
in Kydland and Prescott {1982), the nonlinear utility function U of (1) is replaced by
an “approximate” quadratic function. This latter function is typically found by taking a

second-order Taylor expansion of the utility function around the steady state.

If the model of Section 2 is fit to post-war U.S. time series, a likely outcome is a
nonstationary system. Since the approximation method to be used requires that the un-

derlying system have a steady state, some transformation of variables is necessary. It is

4 See Taylor and Uhlig (1990) for a survey of algorithms for stochastic control problems.
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assumed that Cy, I;, Gy, Y, K¢, and Si_j, 7 = 1,2,3, grow at the same geometric rate,
¢. Over the post-war sample, growth rates for investment, output, government purchases,
and capital are in the range of .49 to .63 percent per quarter. Hours of work and tax rates

are assumed to be stationary.

The nonstationary variables at ¢, say Gy, are replaced by G¢/u' to transform the
household’s problem of Section 2 to a stationary one. To avoid two sets of notation,
assume that all variables at ¢ (except hours worked, past hours, and tax rates) in the

“prime” equations to follow are detrended by u'. For the stationary model, replace (6)

and (7) by

1 = %st_g + z%st_z + %B‘St—-l + ¢4, (6")
1-46 1
ki1 = ( )kt + ;;[St—s- (7)

The transformed budget constraints for the household and government do not explicitly
involve g so (5) and (10) still hold in the transformed case. Assuming that output and
capital stock grow at the same rate may not imply that the technology shock grows at rate
p. For the Cobb-Douglas specification, A; has to be adjusted by u%, where 8 is labor’s
share of output. With y¢, Ay, and k; appropriately detrended, the production function
in (9) remains the same. Also, assume that (11) is the specification for the stationary
government expenditures and technology processes. The last change involves the discount
factor of (1). In Section 5, the utility function is specified as U(e,£) = (¢7¢17)¥ /w for
the nonlinear, nonstationary economy. Since consumption is assumed to grow at rate p
and leisure is stationary, the transformed utility function at time ¢ is p7“'U(c,/u’, &,). If
we set the discount factor as fu”, then the problem retains a constant discount factor.

From here on, assume that the variables have been detrended unless otherwise specified.
Also, assume (6'), (7') replace (6), (7).

In equilibrium, rental rates for capital and wage rates are equated to the marginal

products of capital and labor, respectively:

Ty = aF(/\t, Kt,Nt)/aKt (13)
Wy = 6F(/\t, Kt,Nt)/aNt. (14)

If these functions and (10) are substituted into the household’s budget constraint, then

consumption can be written as a function of x; = [k¢, ny, iy, by, Ay, Ky, Ny, I, Gy,
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assuming that U is strictly increasing in ¢ and the budget constraint holds with equality.

Call this function ¢(x¢). Substitute ¢(z;) into the utility function and call the resulting
function U(z;). Then,
U(C(‘Tt) + 'J)Gt} ﬁ—aom— 77(1 - ao)ht)
= U(x:)

<UD+ 550

= X;QX: + u;Rut + ZX;WU,:

(@45 D] (@ -3)

=T

(15)
where 7 is the steady state of the system, which exists because the model has been trans-
formed to a stationary one, and u¢ = [¢¢,n¢]'. To get from the second equation in (15) to
the third we use the fact that z; = A X; + Asuy where Ay and A, are the appropriate

selector matrices.

The constraints of our control problem take the form

X141 An Az A | | Xus B, €141
Xowpr1 | = | 0 Age Ay Xog | + | 0 | ue+ | €201 (16)
X3t'+1 0 Aszg Az X3¢ 0 €314-1

or Xy41 = AX; + Bu; + €41.° In our case, € is a vector of zeros for all t and ey is
a function of ;. The matrices A3z and A3z are the coefficient matrices in the transition
functions for X3. They correspond to the laws of motion g; defined in Section 2. Thus,
computing an equilibrium involves finding the values of A32 and Aj3 that impose ¢, = I,
ny = Ny (or uy = Xs¢).

If period t utility is given by the third expression in (15), then the household’s problem
can be formulated as a dynamic program with quadratic costs and linear constraints. The
value function in the infinite horizon case is given by X;PX; where P is the fixed point of
the Riccati difference equation. The optimal feedback rule for u, in this case is linear (e.g.
uy = —FX;=—F1 X1, — F2X2: — F3X3;) and depends on A3z and Az3. If the matrices A3,
and Ajs3, which are taken as fixed by the household, satisfy A3; = —(F1®+F3)Aq; — F34;;,
7 = 1,2, then an equilibrium is found. These conditions correspond to the condition (i)
of the definition for a recursive competitive equilibrium of Section 2. They imply that
the laws of motion for aggregate hours and investment taken as given by the household

coincide with those realized.

5 In our case, Ayj2 =0 and A;3 = 0 but the analytic gradients of the agent’s policy function and of the
likelihood function given in Appendix B assume only that As; =0, A3; = 0.
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In Kydland and Prescott (1982), the competitive equilibrium can be obtained by
solving the planner’s problem. The planner maximizes the expected utility of the househaold
subject to resource constraints such as the income identity. Since the planner knows that
the individual’s variables coincide with the aggregate variables, there is no distinction
made. All constraints are known and there are no X3, type states. Thus, in the distortion-

free economy, the problem is reduced to computing F and P.
Given the decision rules for investment and hours, the equilibrium law of motion for

our states can be expressed either in terms of X; or Xq4:

Xit1 = (A— BF)X,; + €144

(17)
Xopp1 = (Aoe ~ Az + B)HF1® + ) Xoe + 2011

where the second equation uses the fact that u; = X3, in equilibrium. There are redundan-
cies in the first equation of (17) since both individual and aggregate variables are included
in X. However, either equation can be used for simulating time series given realizations of
e. Note that the only nonzero elements of €; are in the equations for government purchases,

the technology shock, and the tax rates.

4. Estimation Strategy®
To either system in (17) we add an equation relating observables, Z;, and states and
thus have the state-space representation:
Xep = A Xy + €
(18)
Zy =CXy+ &

where X; is being used to mean either all states or all states in X5, depending on the
equation of (17) used, ; is a vector of measurement errors which may be serially correlated,
and Z, is assumed to be stationary. If {; is serially correlated, say &4, = D¢ + vy,

Evyv, =, Ev€; = 0, then we would replace the second equation of (18) with

2y = ZH—I - DZt
= (CA®° — D)X, + Cegyy + €1 — DE,
=CX,+ v (19)

where

6 This is the estimation strategy outlined in Harvey (1981) and Sargent (1989).
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The matrices A°, C, and ¥ are nonlinear functions of the parameters underlying prefer-

> z¢
cz 0+ C=¢'

ences, technology, and fiscal policy. The matrices D, § are functions of the measurement
error parameters. These parameters are elements of the m x 1 vector I'. If [eg41, 7] is
a normally distributed white noise process with covariance’ matrix given in (19), then
the maximum likelihood estimate is obtained by maximizing the following function with

respect to I':

L) = —%’3 In(27) — %ln|2,| - %trace(Z:ISM) (20)

where
1 T
Sea = i ) (=t = &)z = 2
t=1
Z’\t = E[ztlzt_l, Zfm Dy e nny Z],XQ]

and n is the dimension of Z. To compute this function we need the prediction of z given
past values and the covariance ¥, = F(z; — Z:)(2: — £;)'. Both are generated from the

Kalman filter equations:

X1 = A°X, + Ka,
a; =z, — CX;
=z~ & (21)
where

X, = E[X||zec1, 21-2,. . ., 21, X0]

K =(4°8¢ 4+ neHs;!

S =A°SA* +T - KZ.XK'
2, =050+ 02+ C3C.

The matrices K and § are the Kalman gain and E(X, — X,)(X, — X,)’, respectively.

7 In the definition of equilibrium, consumption, investment, and hours choices are assumed to be
positive. With [e141,Pt] normally distributed and linear decision rules for investment and hours as
specified in Section 3, there is no guarantee that these choices are positive. However, in practice,
this is not » problem since means of consumption, investment, output, government purchases, capital
stock, and hours are large relative to variances. See Figures 1-12.
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Parameter Value Standard Error
) 0.02260 0.00128
0 0.5655 0.07279

@y 0.000000321 0.1852
7 1.0
0 0.2733 0.02218
w -0.6989 0.6453
P -0.01082 0.1717
Jo} 0.99273 0.01955
N 0.2543 0.01347
) 0.05246 0.01093
B3 0.3201 0.01466
i 1.0051 0.000209

Table 1. Structural Non-tax Parameter Values

Given values for the parameters in I', we compute the optimal matrix A° and construct
D, €, %, . These matrices in turn are used to compute X, S, X,. The sequence of
innovations {a;}%, are obtained recursively via (21) given an initial value for X, and a

sequence of observations {Z; 3;_:*11

5. Results

5.1. Data, Estimation, Tests of the Model

The data are per-capita aggregate output (i.e consumption plus investment plus gov-
ernment purchases), investment, government purchases, hours worked, and capital stock
for the United States over the sample 1947:1-1987:4.8 The vector of observables is given
by Z¢ = [Yi/pt, L[ pt, Gefpt, Kifut, Ny, where Y, I, G, K, and N are the data described
in Appendix A, The data are detrended by p to make the elements of Z stationary. As
shown by Dhrymes (1970), this detrending implies that L(I") must be adjusted by adding
o1 In(u~%). Because output is a nonlinear function of the state X, we used a linear

expansion of the function around the steady state for the first row of C of (18).

Starts, S;, weighted past hours, H,, and tax rates, 7, and 7,; are assumed to be

unobserved. Although there have been measurements of effective tax rates®, there are

& See Appendix A for definitions and sources. A quasi-Newton method with a Broyden-Fletcher-
Goldfarb-Shanno update was used for the hillclimbing routine. Analytical gradients were available
and are given in Appendix B.

9 See for example, Joines (1981), Seater (1982,1985), Barro (1983).
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Parameter Value Standard Error
oy 0.00947 0.002803
Oy 5.1713 0.4851
a3 -0.000989 0.009407
o4 -0.001303 0.001609
o 9.5873 | 0.2820
06 0.006626 0.02141
o7 0.002270 0.001598
a3 0.01224 0.04319
09 -0.01416

O10 0.008313 0.02805

Table 2. Values Corresponding to Variance-Covariances

large differences in the constructed series. In McGrattan (1989), different series were
used for computing welfare costs and the results varied greatly across series. One reason
for choosing maximum likelihood estimation over methods such as generalized method of
moments 1s that with GMM, testing orthogonality conditions involving the tax processes
requires observation of these series. The GMM procedure was used by Braun (1989) who
estimates a model with distortionary taxation. Braun (1989) does not consider the welfare

effects of the taxes and his results may not critically depend on his choice of series.

The following functional forms were chosen for production and utility:

FOLK,N)=AMKY*N® 0<é<1

U(c,l)=@%j£, D<y<l,w<l. (22)
Given these functions and an initial guess for I', the equilibrium decision rules are computed
at each iteration of the hillclimbing routine, and the method of Section 4 is used to construct
the likelihood function. To get a good initial guess of ' that maximizes the likelihood
function, we first estimated the parameters of preferences and technology with GMM
using tax series from Joines (1981) as the “observed” tax series. For initial coefficients
of the vector autoregression describing the evolution of tax rates, the technology shock
and government expenditures, we used least squares estimates. Any regression coefficients
not significantly different from zero were initially set to zero for the maximum likelihood

estimation.

In Tables 1-4, parameter estimates and standard errors are provided. Any parameters

not reported have been set to zero with the exception of H which was set to 1304.5, the
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Parameter Value Standard Error
214 108
€190 1078
Q35 477.49
Q44 0.6528 0.2385
255 10~8
Dy 0.9243 0.02955

Table 3. Measurement Error Parameter Values

number of weeks in the quarter times 100 hours per week discretionary time. Standard
errors are not reported for 7, o9, 233, and several coefficients in the tax rate equations of
Table 4. The value of 17 was restricted to 1.0 in estimation because it hit the upper bound
whenever free. The remaining parameters reported without standard errors were free
during estimation but assumed fixed when the standard errors were computed. This was
done because the information matrix was close to numerically singular with all parameters
included. However, comparing the standard errors with all but n free to that under the
assumption that og, €133, and some tax rate coefficients are not identified, there is very
hittle difference with the exception of the standard errors on v and w. Thus we report

errors for the subset of parameters in which we know the information matrix is invertible.

In Table 1, we give values for the parameters of the production function (4), depreci-
ation (6), time-to-build {;), the utility function (ay, @, 8, 7, ¥, w), and the growth rate
(t). The estimate of labor’s share in the production function, 8, is 0.566 with a standard
error of 0.07. This point estimate is lower than estimates typically found for models with
taxes absent. But if the tax and no-tax models are to match the same observed capital-
labor ratios, the no tax model will overpredict labor’s share. For most constructed tax
rate processes, the effective marginal tax rate for capital exceeds that of labor over the
post-war sample. (See Figures 11 and 12.) Thus, there is a larger difference in the before
and after tax return to capital than the before and after tax wage rate. As a result, a
lower level of capital labor ratio is found unless § is smaller. Altug (1989), who estimated
a version of Kydland and Prescott’s (1982) model, got an estimate for this parameter of
0.70. The estimate found in this paper is consistent with Braun (1989) who estimates a
similar model via GMM and finds labor’s share to be .54.

The value of depreciation, §, is 0.023 with a small standard error. In a model without

the time-to-build assumption on capital, this value is pinned down by observations on
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Coeflicients of veyy = a{L)v, + bz,
Uy Aet1 Gy Thi+1 Tnt41
1 0.00958 2.316 -0.0227 0.00415
(0.0069) (1.22) (0.0816) (0.010)
A 1.0995 0.0175 -0.00274
(0.0329) (0.0611) (0.023)
At—1 0.0694
(0.0822)
s 20,1448
(0.0758)
At_s -0.03131
(0.02359)
&y 1.527 -.00000177 -0.0000025
(0.0392) (0.000018) (0.000018)
G -0.4407
(0.0805)
G2 -0.0916
(0.0482)
Tkt 1.399
(2.151)
Tht—-1 -0.402
(2.147)
— 1.055
(0.0346)
Tni—1 -0.0681
(0.0350)
K, 1.17 x 10~%
I, —4.04 x 10~7
N, -0.000147
H, 0.000125

Table 4. Technology, Spending, and Tax VAR Estimates

capital and investment. Here, the starts enters the capital equation but the steady state
of starts is approximately equal to the steady state of investment, the difference being
attributed to positive growth rates. Thus, there should be consensus across models for the

rate of capital depreciation in the range of our estimate.

Three starting points were tried for the time to build parameters, ¢;: the GMM

15



estimates, Altug’s (1989) estimates, and Kydland and Prescott’s choice of .25 for each.
The resulting estimates suggest that an equal weight choice can be rejected and that most
resources {70%) are put in in the beginning two periods of the project and very little is done
in the third stage (5.2%). Using data from the U.S. Census on nonresidential construction
completions, Taylor (1982} also found little evidence for equally weighted fractions.

The growth rate, y, is estimated to be 1.0051 with a standard error of 0.0002. The
quarterly rate of growth of .51 percent per quarter falls in the range of mean growth rates
for output, itnvestment, capital, and government expenditures, Qur assumption of balanced
growth imposes this growth rate on all of our observables except hours of work which is

assumed to be stationary.

The parameters of the utility function (g, &, 8, 1, 4, w) are also given in Table 1.
The value of 1.0 for n implies that current leisure services depend on current leisure and
leisure from the Jast period. Since the value for aq is very close to 0, this would further
imply that only n,.; enters the period t utility. These estimates differ from Altug (1989)
and Eichenbaum, Hansen, and Singleton (1988) who found evidence for both n, and ns—

entering the period ¢ utility.

The value of 1 which governs the effect of government on the household’s utility is -
-.011. For ¥ < 0, the marginal utility of the household is increased with an increase in
government expenditures. However, given a standard error of .172, we cannot reject the

specification of utility that does not depend on government consumption.

The point estimate for v implies that the share of consumption in utility is .27 with
a standard error of .022. To interpret this estimate, we follow Eichenbaum, Hansen, and
Singleton (1988) and construct a crude estimate of v as follows. We first note that the
first order conditions of our nonlinear problem imply the following marginal conditions:
Uclet, £e)- = Ugler, €)wy{1 — mne). Using the utility function of (22), solving for v and
substituting in steady state values gives v ~ ¢/(€w(1 —1,) +¢). Using approximate sample
averages'® of €, N, Y, and 7, equal to 1400, 300, 2600, and .2, respectively we have
v = 0.26. With 7, = 0, this crude estimate becomes 0.22 which is less than Kydland and
Prescott’s estimate of 1/3.

The value of w is -0.699 with a standard error of 0.645, which gives some evidence

of the preferences being different from logarithmic. However, the point estimate is just

10 gee Figures 1-12,
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barely one standard deviation from w = 0.

While the standard error on the discount factor, 8, is .019, the point estimate of .992
is economically meaningful. In many studies, an estimate for 3 greater than 1 has been

found. Altug (1989) fixes # during estimation to avoid such problems.

The parameters related to the variance-covariance matrices £ and §2 are given in
Tables 2 and 3. It is assumed that

ey 0 0 0 agp 0 0 07

0y O Op 0 O3y ©Og Og 0
o4 O7 O3 0O10 Oy 07 09 Oy

From Table 2, it is clear that the technology shock is not the only source of fluctuations.
In Table 3, the setting of €, i = 1,3,5 to 10~® implies that the measurement error of
capital, government purchases, and output are close to zero. The value of 1078 is used
to avoid numerical singularities. For hours of work the variance in the measurement error
is relatively small. For investment, however, the measurement error process is picking up

dynamics that the model (and, in particular, the tax on capital) is unable to.

In Table 4, we provide estimates for the coefficients of the v process. The series are
highly persistent which may not be too surprising given the persistence of the observed
series. {See Figures 1-12.) For stationarity, we required the eigenvalues of A° to be less
than 1 in absolute value (or less than some number strictly less than 1 for numerical
reasons). None of the eigenvalue bounds was reached during estimation. In a first pass
of this estimation problem, the processes in v; were freely parameterized. As a result,
many of the parameters of the vector autoregression were not identified and, hence, the
specification was restricted for the second pass. The technology shock and government
expenditures as reported in Table 4 are assumed to be functions of their own past values.

Effects of taxes enter via the disturbances.

In McGrattan (1989), we found that the computation of the welfare costs was sensitive
to specification of tax processes. In particular, the results differed significantly for cases
in which the tax rates were stochastic and state-contingent or stochastic as they are here
and when they were constant. Since some of the coeflicients of the tax processes are not
estimated accurately, we want to check to see if the likelihood value changes significantly
under the assumption of constant tax rates. In Table 5, we report the likelihood value from
the estimated parameters of Tables 1-4, L(T"), the likelihood value in which the coefficients
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L(T) 311477
L(D) -4061.10
ALR 1292.66

Table 5. Unconstrained and constrained Likelihood Values

in the equations of 7, and 7,,; are constrained to be zero with the exception of the constant
term and the parameters of I, L(T'), and the likelihood ratio Az = 2(L(T') — L(T)) which
is used to test the zero restrictions. The number of zero restrictions is 12 and Apg is
asymptotically distributed as x2(12). With 12 degrees of freedom, a y? value larger than
1292 has a zero probability. Thus, the value of Apr gives strong evidence against the

specification of constant tax rates.

Two additional sets of restrictions could also be tested: (1) set o; =0, j = 3, 4, 6,
7, 8,9, 10, or (#) set the constants in the 7 and 7, equations to zero. The first set of
restrictions would make 7x; and 7,¢ constant and nonstochastic as in Judd (1987) and the
second set of restrictions would give us the nested no-tax model. This latter case could be
thought of as a version of Kydland and Prescott’s (1982) model if government purchases
were included and financed by lump-sum taxes. Note that these additional restrictions will

result in lower likelihood values than that reported in Table 5 for I

5.2, Time Series Implications

Following Sims (1980), we can use the vector autoregressive representation in (17) to
determine the fraction of the variance of X attributable to each innovation. The variance-

covariance matrix, var{X), solves the equation
var(X) = A%var(X)A° + . (24)

To decompose the variance of the state into fractions attributable to each of the four shocks
in ¢, first factor (via a Cholesky factorization) ¥ as LL' where L is a lower triangular matrix
and then for each element i of e corresponding to the technology, government purchases,
and tax rate shocks, replace T in (24) with Le;; L', where ¢;; is a matrix of zeros with
element (7,7) equal to 1. With ¥ replaced by Le;; L' in (24), solve for the variances and
the fixed point will be the fraction of the variance attributable to the ith variable. Since
the ordering of the state vector affects the decomposition, the variances for two different

orderings are reported.
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First, we choose an orthogonalization that gives the technology shock its greatest role
in terms of variability. The results are given in Table 6. The ordering of the variables is
such that A is first, G second, 7 third, and 7, fourth and, for example, the fraction of
the variance of capital stock attributable to each shock is .68, .14, .18, and 0 respectively.
In this case, the technology shock is capturing only about 70% of capital, investment,
consumption, and output. Note also that only 35% of the variance of hours worked in
this case is due to the technology shock. The results of Kydland and Prescott {(1982)
also indicate that the fluctuations in hours is underpredicted with only the technology
shock included. With at least 30% of the variability in aggregate output, consumption,
investment, and hours due to government expenditures or taxes, there is evidence that not

all of the dynamics of the system can be explained by technology shocks.

The second ordering of the state vector gives the technology shock its smallest role.
The results are reported in Table 7. When A is ordered last, it captures only about 30%
of the variance in many of the aggregate quantities with 7, and G making up much of
the remainder. While comparisons can also be made across different orderings of the
government expenditures and tax shocks, our intent in reporting Tables 6 and 7 was to
point out the importance of incorporating the public sector. However, a few remarks
concerning how the tax rate and government spending processes affect the time series

might be of some help.

In testing the potential of their model to fit a subset of second moments, Kydland
and Prescott (1982) choose the variance of output so as to match that particular standard
deviation to U.S. gross national product. In doing so, they attribute all of the variance in
output to the technology shock. They find that the standard deviation of series such as
hours of work are significantly underpredicted. Their model hours has a standard deviation
of 1.05 (after taking logarithms and detrending) while the same statistic for the data they
report is 2.0. By restricting the shocks to enter only the production function, they also
have difficulties resolving certain correlations such as that between hours and real wages (or
productivity). The observed correlation between hours and wages is approximately zero.
As Christiano and Eichenbaum (1988) note, what is needed to match this observation
is some mechanism for affecting labor supply. They do this by introducing government
purchases in a growth model. This can also be done with taxation on factors of production.
As McGrattan (1989) shows, with taxes included, the correlation between hours and wages

is not significantly different from zero.
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In duplicating the exercise of Kydland and Prescott (1982) with both the estimates of
Section 5.1 and in McGrattan (1989) we find that variability in investment and capital is
increased significantly with increases in taxes on capital and that variability in consump-
tion, bours, and output is increased significantly with increases in taxes on labor. One
explanation for an increase in the volatility of hours worked with the inclusion of taxes is
given by the equation of 7, in Table 4. The labor tax falls with an increase in the tech-
nology shock. When there is a positive shock to the economy’s production opportunities,
agents substitute labor for leisure. From the T, equation, it is also clear that this positive
effect on labor is further increased by a decrease in the labor tax. With a decrease in the
labor tax rate, agents work more. The opposite occurs with a negative shock. Greenwood
and Huffman (1989) and Braun (1989) also find that increases in tax rates imply increases
in volatility. Cassou (1990) reports increases in volatility with increases in income taxes

but not with increases in corporate taxes.

5.3. Welfare Implications

In addition to studying the effect that distortionary taxes have on aggregate fluc-
tuations, we examine their effect on expected lifetime utility and revenues. That is, we
compute the change in utility and distortionary revenues due to a change in one of the
tax rates. This is done with the estimated parameters of Tables 1-4. Also, it is necessary
to introduce a new state variable. Let 7 be an additive shock in the equations determin-
ing Tg¢ Or Tne. If the changes in tax shocks are assumed to be permanent, the transition

function for this variable is given by

Tipr = Tt (25)

which can be appended to the vector autoregression in vy. Assume that our state vector,
X, includes this tax shock. Also assume that the matrices A, B, €, R, and W of Section
3 have been appropriately changed. Note that when 7§ = 0, this new system results in

exactly the same decision rule and time series as the old system.

To compute the change in utility and the change in distortionary revenues due to
changes in the taxes, 1t is necessary to first specify the utility and revenue functions. The

utility function is the discounted sum of the function given in (15) and can be written as
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% Variance of z Attributable to Shocks to

z A G Tk Tn
A 1.00 0.00 0.00 0.00
K 0.68 0.14 0.18 0.00
G 0.23 0.77 0.00 0.00
™ 064 | 0.3 0.23 0.00
Tn 0.05 0.06 0.60 0.29
I 0.67 0.15 0.18 0.00
N 0.35 0.20 D.12 0.34
C 0.68 0.15 0.15 0.02
Y 0.71 0.12 0.16 0.01

Table 6. Variance Decomposition Based on Ordering A\, G, ., 1,

% Variance of z Attributable to Shocks to

z Tk Tn G A
T 0.29 0.01 0.45 0.26
K 0.24 0.01 0.46 0.29
Tn 0.51 0.38 0.08 0.03
G 0.15 0.22 0.64 0.00
A 0.01 0.03 0.53 0.43
I 0.25 0.01 0.46 0.28
N 0.26 0.09 0.17 0.47
C 0.21 0.05 0.44 0.30
Y 0.22 0.01 0.46 0.31

Table 7. Variance Decomposition Based on Ordering 7, 7,,G, A

the function V(X,) where

V(Xo)=Eo Y BXi{QX¢ + uiRu + 2X{Wu,)
=0 (26)
= X{PXo + 1 _ﬁ_ ﬂtrace(PE).

P is the solution to the Riccati equation and ¥ is the covariance matrix of ;.

The present discounted value of future distortionary revenues is given by

— 8F(\, K¢, N. OF (A, Ky, N
R(Xo) =B Y p'ptr T B Mgy 7, FOLL My i)
- (27)
= Ey Y B'R(X1)
t=0
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where p§ = U.(ci + ¥Ge, H — apne — 7 (1 — ao)he), and Ey[F*plc,] is the date zero value

of date ¢ consumption.?

As in the case of the utility function, some approximation is necessary to compute the
present value in (27). Assume that R(X,) ~ X;MX,. This quadratic function is obtained
by taking a second-order Taylor expansion around the steady state. Since X contains a
constant term, the constant and linear terms of the Taylor expansion are incorporated in
M. In this case, we have

R(Xo) = Eo ¥ B'XIMX,

=0

=) BIXG(AY M(A) Xo + D67 B Boéi (A7) M(A%)'e;

=0 j=1 t=0

= X! (g ﬁ‘(A"')‘M(A")‘)XU + i B’ i Bttrace ((A"')‘M(A")’E)

j=1  t=0

(28)

=X (i‘ ﬁt(A"')‘M(A")‘) Xo+ 7 f 7 trace (i ﬂ‘(A"')‘M(A")‘E)

t=0 t=0

since X1 = A°X 46141 and Ee e}, = 0,1 # s. Hwedefine S, tobe Y oo A1(A% Y M(A°Y,
then
5, =pBA°'S,.A° + M. (29)

Solving (29) for S,, we can then write R(X,) as

R(X,) = X5, Xo + trace(5,T). (30)

g
1-4
Following Judd (1987), we define the marginal deadweight loss (M 4,) from a perma-
nent change in a tax rate to be the ratio of the derivative of lifetime utility with respect to
the tax shock to the derivative of the present value of distortionary revenues with respect
to the tax shock:

8V (Xp) ,0R(X
M = 2/ e) PR
0 0 (31)
_ G'PXO
- e’Sr.Xo

11 The pricing kernal p{ is related to Arrow-Debreu prices as follows. Let p} be the time 0 state-
contingent price of consumption at ¢ contingent on the history ¢! = (e1,€3,...,€¢:) and Xp and let
fi(€*) be the density function of €'. Then pd(c*, Xo) = pl(c*, Xo}/(8* f1 (')).
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and the welfare cost of this tax change is ~Myy. In (31), € is a vector of zeros with a
1 in the position corresponding to 75. Because of the computational procedure used in
this paper, we can analyze changes only near a particular steady state which is why we
cormapute derivatives of value functions and revenue functions. Greenwood and Huffman
{1989), on the other hand, use a technique for solving the dynamic program and simulate
time series from nonlinear decision rules. Thus, they can analyze the effects of a major

tax reform but estimation is infeasible.

In Table 8, we report estimates of the welfare costs for the estimated tax processes
from Table 4, 7 and 7, and several alternatives. All other parameters used for these
calculations are obtained in Tables 1-4. The first row in Table 8 are the costs associated
with the predicted tax rate series that have transition functions given in Table 4. These
series are those labelled “predicted” in Figures 11 and 12. The welfare cost of a permanent
change in the capital tax rate is 88 cents per dollar of distortionary revenue raised.!? The
labor tax has an efficiency cost of 13 cents per dollar revenue. These estimates fall in
the range of McGrattanTs (1989) and Judd’s (1987) estimates. They also support Judd’s
(1987) claim that “the excess burden of permanent capital taxation substantially exceeds

that of permanent wage taxation.”

The constant tax rates .583 and .092 for the second calculation are the steady state
values of 74 and 7, given the estimates of Tables 1-4. That is, the second tax rates are the
elements of X corresponding to 7 and 7, with parameters of preferences and technologies
set to their estimated values. From Figure 11, we see that .583 is the maximum value for
the capital tax rate over the sample. From Figure 12, we see that .092 is the minimum
value for the labor tax rate over the sample. Thus, the steady state values are not equal to
the sample means. This is due in part to setting Xy = X when estimating.!® Since initial
capital is the low poh;t of the sample and initial hours worked is high, the steady state tax
rate on capital is high and the the steady state tax rate on labor is low. (See Figures 7, 9,
11, and 12.)

The third set of tax rates are the estimates found with zero restrictions imposed on the

tax rate equations. These restrictions are imposed in computing the constrained likelihood

12 «Dollar” refers to the value in terms of date 0 consumption.
'3 An attempt was made to use the initial observations on Z to avoid steady states not being approxi-

mately equal to sample means, The result of this exercise was large initial innovations because initial
values chosen for unobserved states were not consistent with those set for the observed states.
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Welfare Costs for
Current rates Tk Tn

Tk = Tk, Tan = Tn 0.879 0.131
7+ — 583,  7,—=.092 | 0503 | 0.004
T = 475, 1, = .35 0.400 | 0.223
T = .583, Tn = .3 0.539 0.201
T = .3, Tn = .092 0.167 0.061
R 0473 | 0.129
P—— 7. =002 | 1.019 | 0095

Table 8. Welfare Costs of Permanent Changes in v, 7,

value described in Section 5.1. Note that these values (.475, .35) come closer to the sample
means of 7x and 7,. Two additional sets of constant tax rates are also used. The high tax
rate case has 7, = .583, 7, = .3 and the low tax rate case has r;, = .3, 7, = .092. Finally,

we analyze the cases with one rate stochastic and the other set to its steady state value.

Comparing the costs for the estimated tax rates to those with rates at their steady
state values, we find the costs are underestimated by the latter. The cost of the capital
tax for the estimated rates is almost twice that of the constant rates. The same is true for
constant rates closer to the sample means. Comparing the different constant tax cases, we
see that the cost increases with the rates (or level of distortions). This is also the case for
Greenwood and Huffman (1989) and Judd (1987) who both specify constant rates. More
evidence of the sensitivity of the results to specification of tax processes is found when
comparing the first case with the last two. This is especially true for' the costs due to the

tax on capital.

The estimates of the costs of capital taxation also vary widely across nonconstant
specifications of the tax processes. Although not reported, we found with estimates from
the first pass of our estimation procedure (i.e. with A\; and G; processes more freely
parameterized) that the welfare calculations implied a permanent increase in 7y, actually
decreased the present value of revenues. That is, an increase in 73 caused a decline in
investment and output and, hence, a decline in income from renting capital and labor. The
welfare cost was negative. In McGrattan (1989), for several cases with state-contingent
taxes similar results are obtained. Also, the calculations of the effect of labor taxation
are found to be more robust to specification of parameters and tax processes. With these
results, there is some apprehension in concluding that the burden of permanent capital

taxation exceeds that of permanent labor taxation. Also, the efficiency losses from labor
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or income taxes may be underpredicted in this model with the human capital element of
labor ignored. Driffill and Rosen (1983) predict greater costs of labor taxation when agents

can accumulate human capital.

6. Conclusions

The effects of distortionary tax policies are studied in the context of a dynamic recur-
sive stochastic equilibrium model. The model is a modified version of the distortion-free
economy studied by Kydland and Prescott (1982). The presence of distortions in our
model requires abandoning their method of computing.an equilibrium, which exploited
the optimality of the equilibrium of their distortion-free economy. In the spirit of Kydland
and Prescott (1982), we study a linear quadratic approximation to the distorted economy

and use methods designed to compute equilibria for such approximate economies.

Estimates of the parameters underlying the model are obtained via maximum likeli-
hood with United States post-war data. Given the particular tax policies implied by the
estimates, the model is used to study the time-series and welfare implications. Some of
the predictions of Kydland and Prescott (1982) can be improved by the inclusion of taxes.
It is shown that government expenditures and tax rate shocks have a significant effect on
the variance of most of the variables in the model. The variance of output attributable to

a technology shock is estimated to be at most 70%.

The estimates of the welfare cost of capital and labor taxation are 88 cents and 13 cents
per dollar of revenue, respectively. Specifying taxes as constant versus state-contingent are
important for this result. For the capital tax rate, the choice of the transition function may
also be critical. That is, the estimated costs of capital taxation are a function of the zero

restrictions imposed during estimation. The results for labor taxation are more robust.

The methods described in this paper can be applied to formulate and estimate a
variety of recursive equilibrium models with externalities and distortions. The present
paper serves partly to illustrate the feasibility of using these methods to study artificial
economies with relatively large state spaces. In future work, our hope is to compute
the equilibrium directly from the nonlinear model to see how robust are the results from
using linear-quadratic approximation. We would also like to relax the assumption of a
representative agent so as to explore the distributional effects of taxation across agents

with different preferences and investment opportunities.
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Appendix A

The data used in this study are real aggregate data of the United States for sample

1947:1-1987:4. All annual series (i.e. capital and tax rates) are log-linearly interpolated

to obtain quarterly observations. The final numbers were obtained by dividing the series

listed by the population series given below.

i

2.

(118

0.

vt

vil.

vi1L,

C,: personal consumption expenditures of nondurable goods and services (Source: Na-
tional Income and Product Accounts, Table 1.2 or Citibase variables GCN82, GCS82)

I;: private fixed investment plus personal consumption expenditures of durable goods
(Source: National Income and Product Accounts, Table 1.2 Citibase variables GIF82,
GCD82)

G'+: government purchases of goods and services (Source: National Income and Prod-
uct Accounts, Table 1.2 or Citibase variable GGE82)

N¢: total manhours employed per week (Source: U.S. Department of Labor, BLS, The
Employment Situation-Household Survey or Citibase variable LHOURS)

Ky constant-dollar net stock of fixed private capital plus net stock of durable goods
(Source: John Musgrave, “Fixed Reproducible Tangible Wealth in the U.S.: Revised
Estimates,” Survey of Current Business, January, 1986, Table 4, row 1, and Table
20, column 1 (with updates in Survey of Current Business, issues: August, 1987 and
October, 1988)

Tre: effective marginal tax on capital income

a. Source: rates constructed by Joines (1981), Table 3, columns 2-5 (MTRKj, j =
1,2,3,4)

b. Source: rates constructed by Seater (1982), Table 2, column 7
Tne: effective marginal tax on labor income
a. Source: rates constructed by Barro (1986), Table 2, column 6 (7)

b. Source: rates constructed by Joines (1981), Table 2, columns 2-5 (MTRLj, 5 =
1,2,3,4)

¢. Source: rates constructed by Seater (1985), Table 2, columns 2,3,6,7 (AMTRAGI,
AMTRGNP, AMTRHI, AMTRMPL)

Population measure: civilian noninstitutional population, 16 years and older (Source:

U.S. Department of Labor, BLS, The Employment Situation or Citibase variable P16)
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Appendix B

In this appendix, we provide analytic gradients for the likelihood function given in
(37).1% The formulas provided assume that the control problem solved is of the form
maximize ), BY(X;QX; + uiRu, + 2X{Wu,) subject to the constraints (16). It is also
assumed that the gradients VA;;, VA2, VA, VB, VC, VE, W, Vi, 8U(z,p)/0z’,
j =1,2,3, dU(z, p)/Op, and &U(z,p)/dz’ Op, j = 1,2 are known, where column i of VA is
equal to vec(0A/IT;), T = [1,...,I'm]’. The function & is the same one given in (15) but
we have made the parameter argument, p, explicit. The vector z = A1 X + Aju are those
states and controls entering the return function. To simplify expressions for gradients, we

will also make use of the following definitions:

R =(R+pB{P,By)™"

B = fRB,
W, = R(BB\Pud; + W), j=2,3

Qj = Quj + PAY PnAy; — W], j=2,3

Fy = (R + BBy{P11B1) ' (BB P11 A + W)

F;=(R -}-ﬂBiPuB])_l (BB1(P11A1j + PiaAg; + PizAsj) + W;), 1=2,3 (B1)
Pij = @ij+ B(An — BiFy)' (P Ay + PrgAg; + Piadaj) - AW}, j=1,2,3
Al = An - B R

U= —(I+F)" (R +F)

I=AX+ A

=D X1+ DXy + D3 X5 + Aqii.

Analytical derivatives of the likelihood function require dA°/0T;, 0C/9T;, 0%/0r;,
901/dT;, 8D/OT; for each free parameter [;. The first of these derivatives is found by
analyzing the formulations from the control problem. Since, A° = A — BF, we need
derivatives for A, B, F. It is assumed that gradients for all partitions but Aj,, A3z are
known for A, and that VB, is known. Thus, we must derive VA3, VAz3, VF. These

matrices are functions of the matrices of the return function which in turn are functions

14 Derivations of these gradients are not provided but are available upon request.
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of U(x) when evaluated at the steady state. Thus we need:

FU(z,p)
oz?
VR = %(A; ® AL) Vg

8°U(z, p)

Vq = VJ: =X VE + V 6:172 =X

: (B2

1
VI/VJ' = §Ink(D;- & A'Q) Vq

where column ¢ of V;4 is equal to vec(0A/dz;) and I, is a matrix of zeros and ones
defined by vec(A') = Innvec{A) for any m x n matrix A. The subscripts n and % on

I in (B2) and below indicate the dimension of the vector X, and u respectively. Let
f(M) = 5(M' Vb —M'8*U(z,p)/0z° Vz +(z' @ M') Vq), where

2 7 #
w_ PUED)| g, W)

dx? =z 0z0p li=z (B3)

If element i of X3 is 1, then add f(D)) to the rows of Vi@, corresponding to this element
and f(A;) to the rows of VW, corresponding to this element.

In computing F) we solved the Riccati matrix for the first partition and thus need the

gradients:

VP = [I - B(A @ AD™H{ V@u + (I @ 47" Puy) + (A7 Pia ® I)1,] VA1

— BI(F; @ A} Pry) + (A3 Py @ F{) 1.} VB + (F, @ F{) VR

~{(F{ o)+ (I ® Fy)L.] YW1} (B4)
VF, = B(I @ RBy P11 ) VA1 + [B(AS' Py @ R)I .k — (F] ® BPy,)| VB,

- (F1 @ R)VR+ (I @ R)ni VW, + (A ® B) VPy;.

Note that these derivatives should correspond to those derived by Zadrozny (1988) and
would be used with A, B, Q, W, P and F replacing A1,, By, @11, Wi, Pi1, Fy m a

distortion-free economy.
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For VF,, VF;, we require a few intermediate computations:
VR = —(R®R) VR — [(BP11 ® R)Ink + (R ® BP1,)] VB, — 7B ® B) VPn,
VB = (B} @ I) VR + (I ® R)I.x VBy
VW; = f((A1;Pu B+ W;) ® I) VR + B(A' ;P11 ® R) I VB + (A}; ® B) VP,
+ (I ®BP11) VA + (T ® R) VW,
wj = YW; + (A};(Pz + Pis¥) @ I) VB + (I @ B(Pyz 4 Pi3¥)) VAy;
VQ; = VQu; + B(A ;P11 ® IInn VA1 — (A} P11 ® F} )k VB,

— [B(A};P1B1 @ I) + (W; @ DIk VFy + B(A}; ® A} ) VP (B5)
+0(1I® Alo'Pu) VA;; —(I® F{)Ink VW;

VA = VA - (I ® F1) VB, — (B; ® I) VF,
g = VQ; + B(A};(Pi2 + Pi3¥Y ® Doy VAS + (1 ® BAY (Prz + P13 0)) VAy;
VF; = wj + (A ® BT — ((Az22 + A237) @ BAY — Pis((I+ F3)7'B)))~*
(62 + (¥ ® I)as = (%' @ Pua(I + Fy)™ws — (' @ Pra(I + F2) ™) VP,
— (I @ Py (I + Fs)_l)wz]

for j = 2,3. Combining the submatrices of F' and computing the gradients for VAj;, we

have
VF,
VF = | VF,
VF,

W=—-(VoU+E)HWVRAR-—(@(I+FR)HVR~-I(+F) )V
VAs; = (Aby @ I) VI + (I @ T) VAy;.

(B6)

The derivatives of VAjs;, j = 2,3, use the fact that X3, = ¥X,,. Thus, some modification
of these derivatives would be required in the case that equilibrium conditions took another
form than u; = X3,.

Given VA°, V€, VD, VZ, WA, we can then derive 8L/8T;.1 In the formulas

provided we require the following sums: S, = T} Z;‘r:i ajay, Sy, = T71 23::1 X.d),

15 Note that A? can be obtained for the large system with state vector X; or the small system with
state vector Xs;. For both we require gradients for all partitions of F.
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ke = T 23;1 Xt(\o:!‘-l-lﬁ Sap = T ;r=—11 a@ir1, Sz = T71 EL Ziay, and Sz, =
T-! 3:11 Z1pyy, where y is generated by

Wy = (Ao —_ K:C_')’L,th.l + C’E;lat (37)
o = C_'E;IGT

and the remaining variables are as defined in Section 4. In addition, to simplify notation,
we define My, My, M3 as follows:
My =371 - S )
M, =C'M, € -28715,,(A° — KC) (BS)
My = (A° - KC)Y M3(A° — KC) + .5(Ma+ M),
Given these definitions and the those of Section 4, we obtain the following expression for

the derivative of L with respect to some parameter I';:
oL 0A° : a1 At . : s 1o S
a7 = 2trace[ﬁ;—{(—SX‘p ~ ST S )(I ~ KC) + SE€' My C — (Sg, + S(4° — KEY'SL)

B71C + 5(4° — KCY M — SA M;KC }]

$)>

ar';

+ 2trace [g?

+ trace[ {C'(M1 + K'MaKYC — 2C'S72S,,(I - KCY + M; — 2C'JC'M3}]

!

{EC’(Ml + K'M3K) + (A°SE + £C)DT18,K — A°S(A° — KEY
(85,27 = 8,57 D + MsK) — (I - C'K")§, 5!

—~ SC' (M + 5, 1S,K)D + A°SC' My — A°Sg, + 571 + 5S¢, 271D
~ S¢,KD + A°5; K — SMyK + S(A° — KC) M;KD |

+ trace [ ol
ar’;

+ 2trace[§§{—CSéf(Ml + K MK + B715,,K) — (S — €S, )T7?

~ €8¢, K + CS((4° = KC) 5,571 + A°' MsK) + S7,K } |

{25715,k + My + K' MoK} |

— 2trace [g—f—icp(tg )/T] .
(B9)
The computations of the gradients for matrices corresponding to the control are exten-
stons of Zadrozny (1988) and the gradient of the likelihood extends the work of Wilson and
Kumar (1982). Zadrozny (1988) did not assume any distortions were present and Wilson
and Kumar (1982) did not assume growth in the observables, a nonzero or parameter-

dependent initial state, or serially correlated measurement errors.
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