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ABSTRACT

For the first-order univariate autoregression without constant term, the joint
p.d.f (corresponding to a flat prior) for the true coefficient p and the least
squares estimate ; is estimated by Monte Carlc and graphically displayed. The
graphs show how the symmetrie distribution of pl; coexists with the assym-
metric distribution of ;Ip. Treating tail areas of the ;Ip distribution as if
they summarized evidence in the data about the location of p amounts to ignor-
ing the shrinkage in the varlance of ;]p as p approaches one. Prior p.d.f.'s
implieit in treating classical significance levels as if they were Bayesian
conditional probabilities are caleulated. They are shown to depend sens-
itively on ; and te put substantial probability on p's above one.
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UNDERSTANDING UNIT RooTERS: A HELICOPTER TOUR

In an earlier paper (Sims [1988]) one of the authors of this paper pointed
out that -- in contrast te the usual situation in econometric inference —-
in time series models with unit roots Bayesian probability statemenis about
the unknown parameters conditiconal con ithe data are different even
asymptotically from classical confidence statements about the probability of
random intervals covering the true value of the parameter. Thalt paper
argued that the Bayesian probability statements are more useful as well as

much easler to handle analytically than the classical confidence statements.

Many economists are not used to having to make careful distinctlons between
probability statements about the leocation of unknown parameters {Bayesian
inference) and probability statements about the behavior of statistics
computed from the data in repeated samples (classical confidence
statements). The earlier paper included an example which aimed at guiding
intuition about these distinctions, but the example used discrete data and
had no evident connection to the unit root time series context. This paper
explores in more detall the distinction between confidence statements and
probability statements about parameters, in a simple time series model which

may show a unit root.

We first graphically summarize the results of a Monte Carlo study of the
Joint p.d4.f. of an unknown autoregressive coefflicient p and its least
squares estimate 3, when p is treated as uniformly distributed. Bayesian
conditional p.d.f.’s for p are cross sections of this joint p.d.f. along a
fixed—ﬁ line, while classical distributions for 3 are sections of the joint
p.d.f. along a fixed-p line. We display several views of the joint p.d.f.,
sliced in various ways (the helicopter tour of the title).

Careful econcometrics bhased on classical procedures often considers both the

distribution of the data conditional on a parameter value near the point



estimate and the distribution conditional on some special point or subspace
in which there is a unit root. The relative plausibility of the special
subspace and the region around the point estimate is then judged based on

p-values for the two null hypotheses given the cbserved data.1

This sort of procedure, while better than asymmetric treatment of the unit
root hypothesis and its alternatives, is flawed because it relies on
classical p values as measures of the relative plausiblilities of the
competing hypotheges. It can happen, and does happen In models with unit
roots, that p values are quite misleading as measures of relative
plausibility. We consider the following way of proceeding: After the
samnple has been observed, for each possible true value of p a test statistic
for the null hypothesis that this p is the true one is formed, and its p
value tabulated. Assuming that these p values have a single peak at p=3,
they are treated as if they trace out a c.d.f. for p, with P[p0<p] given by
the p value for the test of the p null hypothesis when p<3 and by one minus
the p value when p>3. This is of course not formally Jjustified by either a
Bayesian or a classical argument; it represenits an attempt to capture
formally what one is doing when one uses p values as if they imply

probabilities for sets of p’s given the cobserved data.

0Of course by varying prior p.d.f.’s, a Bayesian can emerge with varying
posterior p.d.f.’s. For a given sample and observed B, the pseudo-c.d.f. we
are constructing here can be rationalized as consistent with Bayesian
inference based on some prior. The reason the procedure nonetheless has no
Bayesian rationale is that its Bayesian interpretation is different for
different 3’5. That is, there is no way to speclify gne Bayesian prior which
leads to this p-value c.d.f. as a posterior for every 3. Nenetheless it is
interestling to compute the implied prior p.d.f. for various 3’5, and we do
s0. The results show that when 3 is near one, the p-value c.d.f. implicitly

1Christiano and Ljunggvist [1988] provide an example of careful

work along this line.




puts increasingly high prior weight on larger p’s, even for p’s above one.
1. The Model
We consider the simple univariate autoregressive model

y{t) = py(t-1} + e(t) , (1)

with i.1.d. e(t)~N(O,02]. If we observe y(t), t=0,...,T, we can form the
least squares estimate 3 of p. In this model VT(B—p) is asymptotically
normal if, say £ is 1.i.d. with bounded variance and |p|<l. When p=1, 3 is
not asymptotically normal. The likelihood, conditional on the initial
observation y{0), is Gaussian in shape as a function of p, however, and this
result of course does not depend on whether the data is actually generated

by a process with a unit root or not.

Because the likelihocod depends on both B and

T A 2
¥ (y(t)-py(t-1))
6 = 121 , (2)
P T , : :
T ¥ y{t-1)
i=1

there is no one—-dimensional way Lo summarize the sample evidence. In order
to develop insight into the relation between Bayesian and classical
inference, however, it is helpful to artificially simplify the situation
further. We will consider the situation where one cannot observe the full.

sample —— only 3. We will alsco assume that az=1 and is knowm.

These simplifying assumptions make the shape of the likelihood nonnormal and
difficult to derive. Their appeal is only that they make the Bayeslan

analytical framework consist of a two-dimensional Jjoint p.d.f., that of p



and 3. A function of two arguments is easily visualized as a2 surface in
three dimensions, while a function of three arguments is much harder to

visuallze.

We can be sure in advance that the likelihood will remain symmetric in p
around a peak at B, because conditional on & it has these properties and it

therefore will not lose them when & is integrated out.

In the next sectlion we will proceed to construct, by Monte Carlo, an
estimated Joint p.d.f. for p and 3 under a uniform prior p.d.f. on p. We
choose 59 values of p, from .815 to 1.105 at intervals of .005. We draw
10000 100x1 i.i.d. N(0,1) vectors of random variables Lo use as realizalions
of €. For each of the 10000 £ veclors and for each of the 53 p values, we
construct & y vector with y(0)=0, y(t) generated by equation {1). For each
of these y vectors, we construct 3. Using as bins the intervals [-w,.815),
[.815,.820), [.820,.825), ete. we construct a histogram which estimates the
p-d.f. of 3 for each fixed p value. When these histograms are lined up side
by side, they form a surface which iIs the joint p.d.f. for p and 3 under a

flat prior on ﬁ.




2. The Helicopter Tour

Figure 1-5 display different views of the same surface, the estimated jeoint
p.d.f. for p and 3. Figure 1 shows the surface sliced along the 3=1 and p=1
planes. This angle gives a good view of the surface shape, but the view
from lower down, centered on the corner of the viewing box, shown in Figure
2, makes it easier to be convinced that the distribution of 3[p=1, one side
of which is the section generated by the left-hand panel in Figure 2, really
is more skewed toward lower values than the conditional distribution of
p|3=1, one side of which is the section generated by the right-hand panel in
Figure 2.

Figure 3 is sliced only along the p=1 plane, so the section is just the
p.d.f. of Blp=1. Here the well known result that p is asymmetric, with a
peak at 1 but much more probability below than above one, is easily visible.
The section along the 3=1 plane shown in figure 4 confirms the theoretical
result that this p.d.f. is symmetric about p=1. Figure 5 shows that the
distribution remains symmetric along the 3=.95 plane, though it is more
dispersed. This result, that the p distribulions spread out as 3 get
smaller, is what generates the skewness when the Jjoint p.d.f. is sliced in
the other direction. The two sections shown in Figures 3 and 4 are
displayed on top of each other in a two-dimensional graph in Figure 6, with
both normalized to have the same integral. In Figure 7 they are displayed
normalized to have the same height at their peaks, so the contrast between
the symmeiry of the conditicnal distribution of p and the asymmeiry of the

conditional distribution of 3 is sharper.

If we were studying many instances of the model (1), with true values of p
drawn at random from a distribution which was uniform over (.84,1.08) (and
possibly nonuniform, but not too wildly behaved outside that interval), then
any reasonable person would have to agree ithat what the data implies about
the likely localion of p glven that we observe $=1 is given by taking the
dotted line in Figure 8 as a p.d.f. for the unknown p. The difference




between Bayesian and classical statistics is not over the logic of Bayes’
rule, but over whether it can legltimately be applied when there is no
"objective" source of randomness on which to base the notion of a

probability distrlbution for p.

So let us suppose that we really have an application where, say, someone is
generating p’s uniformly by flipping coins or drawing numbers out of a hat.
Everyone should agree that, on observing B=1, our uncertalinty about p is
symnetric about p=1. What if we nonetheless try comparing the p-values of
the null hypotheses p=.88 p=1.02 by classical procedures? The natural
classical test of p=.98, assuming we can see only 3 and not the whole
sample, Is obtalned by normalizing the p=.98 section of our p,ﬁ p.d.f. to
integrate to one, then computing the area under the curve to the right of
the observed 3. This area 1s the p-value, and one would reject p=.98 if it
fell below some critical level, say o=.05. Our Monte Carlo joint p.d.f.
implies that the p-value for p=.38 glwven an observed 3=1 is .033, while the
p-value for p=1.02 given 3=1 is .245.2 We can reject .98 at the .05 level,
in other words, while easily accepting 1.02. The actual conditional
probability of p>1.02 given observed 3=1 is .097, which is the same as the
conditional probabllity of p<.98 given $=1.3

How can this be, given that we sre already sure that any reasonable person

must agree that our bellefs about p are symmetrically distributed about p=17

2Our‘ bins for 3 are centered in between the grid points of our

true p values, with no bin centered at 1.0. Therefore the

silgnificance levels presented here were computed by interpclation.

3Again, this computed probability involves some interpolation, and
it averages the two separate probabllities from the Monte Carlo
study for p<.88 and p>1.02. The two separate computations are
. 106 for p<.98 and .125 for p>1.02; the difference is in line with

the theoretical standard error of the Monte Carlo calculations.



The answer is that the p-values are distorted by some irrelevant
information. It is indeed about equally likely that an observed B=1 is
generated by a true p=1.02 or a true p=.88. However 3’5 much below 1 are
much more likely given p=1.02 than are 3’5 much above 1 given p=.88. In
this particular sample we have observed 321, not 3 much above one or 3 much
below one; for deciding whai this sample tells us about p the implications

of the competing hypotheses about 3’5 we have not observed are irrelevant.

A similar result holds for an observed 3=.95. Given this observation the
probability that p=1 is .07, which is the same as the probability that p=.g.
A test of the null hypothesis p=1 constructed as described in the preceding
paragraph yields a p-value of .15 for 3=.95, while a test of the null
hypothesis p=.90 ylields a p-value of .031. While the asymmeiry is not as
dramatic here, clearly classical hypothesis testing, naively applied, would
still lead to the mistaken view that when 3=.95 is observed, it is much more
likely that the true p lIs 1 or higher than that the true p is .9 or lower.
Much recent econometric work on models with possible unit roots could be
interpreted as taking Jjust this nalve approach to interpreting classical
hypothesis tests.

3. Implicit Priors

In the standard normal linear regression model, and asymptotically in most
econometric applications, Bayesian probability statements about the location
of p approximately coincide with corresponding p-values. Econometricians
could therefore essily form the habit of treating an observation that $=.98,
which has a p-value of .15 on the null hypothesis p=1, as suggesting that
the probability of pzl is about .15 given an observatlion of 3=.95. This
amounts to summing the jJoint p,S p.d.f. along each constant-p line to form a
family of ¢.d.f.’s, but then treating the values of these ¢.d.f.’'s along a
constant—S line as if they formed a c.d.f. for p conditional on the observed
3. As we have already seen, for 3 near one the resulting c.d.f. puts much

more weight on p>1 than p<1, even though a flat prior would imply a




conditional c.d.f. symmetric about p=1. It may be of interest to see what
prior is implicit in inference based on treating p-values as generating a

c.d.f. and how the implied prior shifts as the observed 3 changes.

Letting f(p,a) be the Joint p.d.f. of p and 3, the pseudo-p.d.f. for p we

are conslidering is

A
glpip) = g f(p,s) ds . (3)
dp
-

The actual conditiconal p.d.f. for pl$ based on a flat prior over p is
proportional to f(p,B). For g to emerge as the conditional p.d.f. for p]B,
therefore, requires that the prior p.d.f. on p be proportional to
g[plﬁ]/f(p,ﬁ). We make an approximate calculation of this implied prior
p.d.f. by cumulating our Monte Carlo estimate of f along constani-p planes,
then differencing the result along constant—a planes, finally dividing by
the original estimated f. For unlikely values of (p,a], these estimates are
ratlos of small numbers with high proportional standard errors. Thus in the

talls the estimates are quite erratic.

The results are displayed in Figures 8 and 8. Figure 8 shows the full range
.8 to 1.1, while Figure 9 cuts off the section above 1.0, where very high
p.d.f. values occur. One can see that the p.d.f. shifts increasing weight
toward the region above p=1 as 3 gets closer to 1. For $=.95 the implicit
prior makes p’s around 1 2 to 3 times more likely than p’s araound .9.
Furthermore, the prlor p.d.f.’s for all 3 values keep increasing in the
region above p=1 for as far as the estimates retain any reliability. Thus
naive use of classical tests’ p-values not only gives special prior weight
to p=1, 1t Implies a priori belief that a p of 1.05 is more likely than a p
of .85.

4. Conclusions

Use of classical statistical tests as measures of the plausibility of




hypotheses is logically unsound. We have shown that in the case of a simple
time series model with a unit roct, it amounts to acting as if one had a
stronger prior belief 1ln a root at or above cne, the closer to one is the
estimated value 3 of the root. What the data tell us about the parameter is
summarized in the likelihood, which can be conveniently described by
normalizing it to integrate to one and treating the result as a p.d.f., i.e.

by summarizing the implications of a f'lat-prior Bayesian analysis.
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Figure 4
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Figure 9
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