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1. INTRODUCTION.
The unit root issue has been of great concern in the econometrics literature
the past few years. A lot of research has been devoted to determine whether
(macro)economic time series are stationary in levels or stationary in first
differences.1’2 While the properties of Trend Stationary and Difference
Stationary time series are vastly different, the empirical tests all have low
power. Indeed, for a major U.S. macro economic time series as real per capita
GNP, Christiano and Eichenbaum [1990] show that a trend stationary model can
fit the data as well (and as parsimoniously) as a difference stationary
model.> In line with work of Quah [1990] they further contend that the whole
unit re¢ot 1issue might not be important anyway. Implications of dynamic
economic models are not very sensitive to the presence of unit roots. In this
paper we Iinvestigate this conjecture for the expectations model of the term
structure of interest rates. The conclusion will be that this is an example
of a substantive economic issue where the data are uninformative on the
existence of a unit root, yet empirical results depend crucially on the
decislon on DS or TS. In particular the conclusion that long term interest
rates are excessively volatile depends critically on the existence and number
of unit roots in a VAR system with interest rates and other macroecomic
variables.

Volatility and wvariance bounds tests have generated a voluminous

literature by itself, starting with Shiller [1979] who observed that long

1 \ . X .
For a selective overview see the special issue of the Journal of Economic

Dynamics and Control [1988], and the special issue of the Oxford Bulletin of
Economics and Statistics [1988]. Diebold and Nerlove [1989] provide a survey
of the literature on testing for unit roots.

2 The term "stationary" will in most cases be used as synonymous with

"integrated of order zero" (I1(0)), or abbreviated as TS ("trend stationary")
when there is no confusion on the meaning. Similarly "nonstationary" will
mostly be a synonym for "integrated of order one" (I(1)) or "difference
stationary”, abbreviated DS. Exact definitions are stated when necessary.

® Cochrane [1990] and Blough [1990] further question the interpretation and
usefulness of univariate unit root tests.
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term interest rates seemed to fluctuate too much to accord with rational
expectations or efficient markets. The Qolatility tests have been criticized
on many grounds, but the most pervasive issue revolves around whether or not
interest rates have unit roots.4 Early contributions by Sargent [1979] and
Shiller [1981] already demonstrated the difference in empirical conclusions
when time series are first differenced or assumed stationary. Under
stationarity the theory seemed to be rejected overwhelmingly. Kleidon [1986]
shows in great detaillwhy the early variance bounds tests are uninterpretable
when the time series invelved are non-stationary. Kleidon’s analysis 1is
formalized in Durlauf and Phillips [1988] who derive the asymptotic
distributions of the variance bounds statistics in the unit root caszse. West
[1988] proposes a variance inequality based on the variance of forecast
errors, which can be tested with stationary as well as with integrated time
series. Applied to stock market data West [1988] finds excess volatility
under both assumptions. Campbell and Shiller ({1987] explicitly impose
cointegration between stock prices and dividends, or long and short term
interest rates. Within this framework there remains no evidence of excess
volatility in the term structure.

The approach in this paper extends the methodology of Campbell and
Shiller [1987,19892]. The actual volatility of long term interest rates is
compared to the volatility implied by the net present value model of the term
structure within several Vector AutoRegressions (VAR). Apart from a long and
a short term interest rate our VAR contains three more macro economic
variables: prices, real output and money. The purpose of extending the VAR is
twofold. First, in a VAR with five variables the number of unit roots in the
system can range from =zero to five. Allowing for various patterns of

cointegration between interest rates and macroeconomic wvariables provides

* gee LeRoy [1984, 1989] for general surveys of the variance bounds

literature.



greater flexibility in modelling the relative importance of permanent and
transitory shocks over various forecast horizons. Identification of important
macroeconemic news is the second advantage of using a five variable VAR. Ve
can trace which shocks are responsible for the excess wvolatility. The
presence of the additional variables also helps to investigate the sen-
sitivity of implied annuity values of shocks.®

The paper presents several other modifications of the Campbell and
Shiller [1987] model. Moving average (MA) time series representations of long
term interest rates are derived for a very general data generating process of
the short rate. The model of Campbell and Shiller arises as a special case
when long and short term interest rates cointegrate, the long rate has
infinite maturity, and the maturity of the short rate equals the time between
subsequent observations of the short rate.6 The general MA representations
provide a tocl to investigate the sensitivity of wvolatility tests with
respect to assumptions on the order of integration and cointegration of
interest rates and other variables.

Using Monte Carlo integration the empirical distribution of conditional
variances can be computed as an exact transformation of the asymptotic
distribution of the parameters of an unrestricted VAR. The distributions can
also be interpreted as Bayesian posteriors obtained with a flat prior. The
procedure 1s designed to overcome the statistical problems noted by Flavin

[1983] when dealing with long horizon present value models and autoregressive

s In the context of the Permanent Income Hypothesis the annuity value is the

amount that lifetime permanent income changes in reaction to a one dollar
shock to income. They are another way to compare actual and implied
volatility of consumption; see Deaton [1987]. The methods can also be applied
to the term structure of interest rates.

6 Campbell and Shiller [1989] also relax the assumptions on the maturities in
their [1987] paper, but they use a slightly different form of the
expectations model of the term structure and propose a different solution to
the misalignment of the observation frequency and the shortest maturity that
implicitly Introduces complex "seasonal" unit roots.



roots close to unity.

The main objective of the paper is to investigate the sensitivity of.
empirical tests of excess volatility with respect to the presence of unit
roots. It 1is not the intention to test all implications of the term
structure. Several different test procedures have fairly well established
that the expectations model is not strictly true.’ The expectations model is
clearly too simple, but it can still be a useful first approximation, and it
helps in predicting interest rates.® Although time varying risk premia are
frequently put forward, it has been foﬁnd difficult to obtain an empirical
model that performs uniformly better than the expectations model.

The paper 1is organized as follows. Section 2 describes the data and
intreoduces the notation. Section 3 presents the basic facts relevant to
volatility tests. Section 4 deals with the time series representation of long
term interest rates and the assumptions underlying the wvolatility tests,
Section 5 discusses the econometric technigues when the model is represented

as a VAR. Section 6 contains empirical results. Section 7 concludes.

2. DATA AND NOTATION.
This section introduces the notation and describes the time series data on
interest rates. In a discrete time setup the linearized form of the

expectations model of the term structure relates a long term interest rate

R;") with maturity n periods to the one-period short term interest rate Ré“

(see Shiller [1979]):

7 See Shiller (1987] for a survey of the theory and tests of the term

structure of interest rates.

® See Fama and Bliss [1987], or Mishkin (19881].



-

-1
(1 ~8 " i, (1)
Ry = —F5 L¥ER,;

1) + ¢, (1)
1 ~ & 1i=0

where ¢(“) represents a liquidity or risk premium that is assumed constant
over time, and where & = (1+p)-1 is the discount rate around which bond

prices are linearized. The notation E(-

It) denctes conditional expectations
with respect to the market information set It' The short term interest rate

;1) is known at the end of period t and applies to the period from t to t+1,

R
Fquation (1) expresses the long rate as a weighted average of the current and
expected future short rate.

The interest rate data used in this paper consist of three time series
of monthly interest rates for the United States, sampled on the last trading
day of the month for the period January 1962 to June 1990.° The first series
is the yield on a three month Treasury Bill. The maturity of the short rate
(3 months) does not coincide with observation frequency (monthly). Although
this creates some technical econometric problems, the 3-month serles will be
used 1n most of the empirical tests. The preferable l-month rate was only
available for the shorter period 1968 to 1990; this series will only be used
in section 3 below. The long rate is the yield to maturity on 10 year
government bonds. Figures 1A and 1B show the levels and first differences of
the long rate and the 3-month rate. Two features of the data help in
interpreting formal test results later. First, the levels of short and long
rates have about the same sample variance over the full thirty year period.
Yet the long rate is considerably smoother, since the standard deviatien of
its first difference is much smaller than the standard deviation of changes
in the short rate.

The required modification of equation (1) is easily obtained by applying

the expectations theory twice for bonds with maturities m and n, and assuming

? All data were kindly provided by the Federal Reserve Bank of Minneapolis.
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that k=n/m is an integer.

-1
(m _1-38 "oi () (n)
Rt B 1 - " igga E(Rt+i|It) te
k-1 m=-1 .
1-85 mh Jern (1) (n)
= —F T3 Y3 E(Rt+mh+jl1t) + ¢
1 - & h=0 j=0
k=1 mh . (m) (n) (m)
i hgga E(Rt+mhl1t) A A (2)

linking an m-period rate to a longer n-period rate. Eq. (2) has the sanme

structure as eq. (1). To simplify the notation the superscripts will from now

on be omitted. The long rate is represented as Rt = Rén), the short rate is

called r, = R;m), and the discount factor becomes y = 5". We also drop the

risk premium, though a constant is always included in the empirical work.

Finally we use the shorthand Et(-) for E(- It) when there can be no confusion
on the interpretation of the Iinformation set. In this notation eq. (2)

simplifies to

Sl-w T, ) (3)
Rt =T K LVE T s

Since most of the discussion in this paper centers on the effects of
imposing wunit roots, we start by examining the results of a standard
univariate unit root test. Results of the Phillips and Perron [1988] test are
reported in table 1. The tests can not reject the null hypothesis of a unit
root in the level of the three interest rate time series. But the spread
between any two interest rates is stationary according to the test. So if

interest rates are integrated, they are also CO*integrated.10

Though a classical test can not reject the unit root, this by nc means

® This is a standard result. See, for example, Stock and Watson [1988] or

Campbell and Shiller [1987].



implies that we must accept the existence of a unit root. The tests take the
unit root as the null hypothesis, and have notoriously low power. The size of

the type II error is so large that the possibility that interest rates are

I{0) cannot be ignored.

3. STYLIZED VOLATILITY FACTS.

This section replicates two well-known volatility tests with our term
structure data, and examines their sensitivity with respect to the assumption
of unit roots. GSubsection 3.1 considers Shiller’s [1979] variance bound:

subsection 3.2 deals with West’s [1988] test.

3.1. Ex-post rational long rate
The most intuitive volatility test uses the concept of the ex-post rational

long term interest rate R? introduced by Shiller [1979], which is defined as

1 -7 k-1 i
* = -~ 4
R} K LY Ty (4)
1 - 97 1=0
and differs from the actual long rate only in replacing expectations by
realizations of the short rate. Under rational expectations the forecast

error v, = R? - Rt is uncorrelated with all variables in agents’ information

set It' For any HtCIt it therefore holds that

Var (RY|H,) > Var(R,|H,) (5)

This variance inequality can easlly be verified by constructing a time series
of Rt. Since the time to maturity of the long rate is 10 years and the sample

is long enough, the serles can be constructed exactly without any further



assumptions using (4). The exact calculation of the ex-post rational long
rate circumvents the problems with the wusual backward recursion R? =

yR§+m + (1—7)rt+m, which requires some terminal cendition like R; = RT' The
volatility tests for the term structure are thus simpler than the analogcus
tests for the stock market, where the present value relation has an infinite
horizon (see Shea (1989b]). The drawback of the exact calculation is of
course the loss of 10 years of observations at the end of the sample. Figure
2 shows the actual and ex-post rational long rate.

The smooth behavior of R; and the sample unconditional variances of the
two series given in table 2 give the impression that the variance bound is
grossly violated. But the sample unconditicnal variances are uninterpretable
if interest rates have a unit root. However, since the variance inequality
must hold for any infeormation set H

{(not only Ht = {constant}), we can

t
remove the possible non-stationarity by conditioning on the past levels of
the short and long rates.11 Table 2 shows that the wvariance bound is now

easily satisfied. The wviolation of the bound thus seems closely related to

the existence of unit roots.

3.2. Variance bound test of West [1988]

The variance bounds test of West [1988] is specifically designed to cope
with nonstationari;y. The test procedure consists of comparing the variance
of two different expected present values: one using the market information
set and the other using a univariate fime series projection. The original
version of the test is designed for stock prices, but it is also applicable

to the term structure under the assumption that the maturity of the long term

1 Both R and R* are conditioned on the same information set

H(t) = {r{f-1),R(t-1),constant} and therefore not subject to the criticism of
Kleidon (1986, p. 961-962]:"confusion in interpretation of time-series plots
of price and p*(t) stems from comparing the conditional variance of price,
var{p(t)|p(t-k)}, with an inappropriate conditional variance of p*(t),
var{p*(t) | p*(t-k)}".



bond is infinite. We will apply the test to the one month Treasury Bill rate
and the 10 year rate, pretending that 120 months is close to infinity.

Define the two present values X1 and X, @s

0
_ 1
Xyp = E{ <] rt+i|1t}' (6)
1=0
o s
Xy = E{ 78 rt+ilHt}’ (7
1=0
where Ht C It’ and It denotes the information set used by agents in the

market. West [1988] proves the inequality
Var(xtH|Ht) = Var(xtlllt) (8)

The right hand side of the inequality will be estimated under the null and
compared to an unrestricted estimate of Var(xtH|Ht}. Under the null

hypothesis (1) with o, we have that = (1—6Y4Rt, and

*t1
E{Xt+1,IlIt} = (x,; - r,)/8, so that, as a slight modification of West

(1988], the conditional variance can be estimated from the equation

R, - r = 6(Rt+

t Tt T Y Y (9)

1

where Uy, = _(1—8)(Xt+1,1 - E{Xt+1,IIIt})' Under the null hypothesis the

variables in (9) are stationary, even if individual interest rate time series

are Integrated. The parameters § and ai can be efficiently estimated by GMM

with Instruments dated time t or earlier. The right hand side of (8) is thus
. A2 a2 232

estimated by & = au/{l a8)~.

To obtain a high upper bound we take H, = {constant, }. The estimate

t Fyoz

of Xy will differ between the stationary case and the integrated casze. If

the short rate is assumed stationary we estimate an AR(1), and obtain the

~

right hand side of (8) as &, = ¢./(1-35)° with § the estimated AR(1)

2
H
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parameter, and 35 the variance of the errors. Alternatively, with rt
integrated we set 5=1 and 33 = Var(Art). The long term interest rate is
excessively volatile if the variance ratio /6 > 1. Standard errors of the
variance ratio are computed as in West [1988].

Table 3 reports empirical results. The discount factor 8 is estimated
imprecisely and implausibly low, as it implies an annual discount rate of
100(0.9897'%-1) = 14%.'® The main result 1is that the outcome of excess
volatility tests depends entirely on the stationarity assumption; under a
unit reoot the bound is easily satisfied. Also, although the point estimates
imply gross violation in the case of stationarity, the standard errors are
very large and the null hypothesis (8) can not be rejected. These conclusions
are not sensitive to the value of the discount factor &; setting & = 0.994,
corresponding to an annual discount rate of 7%, does not qualitatively affect

the results.

4. ASSUMPTIONS AND TIME SERIES IMPLICATIONS OF THE THEORY.

Te gain further insight in the way the presence of unit roots affects the
volatility of long term interest rates, we need additional assumptions. In
particular, it will be necessary to specify the behavior of short term
interest rates. Given a data generating process (DGP) of the short rate, we
can explicitly <calculate future expectations of the short rate.

Misspecification of the DGP of the short rate gives alsc room, however, for

12 Incidentally note that the low estimate of 8 is contrary to the usual

finding in empirical work. Mankiw [1986] and Shiller, Campbell and Schoenholz
[1983], for instance, find p = 1/3 =1 <0 for a large number of countries
and maturities, implying & > 1. The difference is due to the estimation
technique employed in the West procedure. It can be shown that the GMM
estimator with more instruments than just S{(t) will always produce lower
estimates of & than the OLS estimator used by Mankiw [1986] and others.
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another explanation of rejection of the expectations model.

4.1. Time series representation.

The assumed DGP of the short rate is the general moving average process

Art = c(L)et = E C.€4 4 (10)
1=0
where L is the lag operator, ¢, are (1xK) vectors of parameters, c(1) is
bounded, and £, is a (Kx1) serially uncorrelated vector of innovations with
mean zero and identity covariance matrix. The contemporaneous covariances are
modelled through €5 The presence of multiple shocks (K>1) allows for a
distinction between permanent and transitory shocks as in Quah [1990]. A
shock €4 {the ith element of et) is transitory if ci[l) = 0. If all shocks
are transitory, the lag polynomial is divisible by the difference operator,
implying overdifferencing of the original level time series. Although K
sources of stochastic uncertainty are introduced, not all of these will bhe
identifiable using interest rate data alone. Section 5 discusses the
empirical identification of the shocks. Having multiple shocks also opens the

possibility of Granger causality running from long to short as well as from

short to long rates.

It will often be convenient to work with the spread Sémm) =
R;m - R;m). Omitting the superscripts as in section 2 we get St = Rt -r,.
The relation between the spread and the short rate follows from (3) as
s=)5 "‘TE(Ar ) (11)
t m t+mi”’
i=1 1 - g

m-1
where Amrt =Y Art—j' Optimal forecasts of Art+h can be obtained from (10) as

3=0

[+3) o0

Et(Art+h} = j?icjet+h-j = JE:c)cb+jet_j (12)
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Substituting (12) into (11} and rearranging one obtains the implied time

series process for the spread as

o m-1 k-1 71 _ Wk
S, = % [ Yy ¥y —%=¢ . . ]e . (13)
t j=0\n=0 i1 1 - Wk mi+ j-h] "t-j

Noting that ARt = ASt + Ar the long term interest rate is obtalned by

t!
summing equations (13) and (10). Recollecting terms in et-j gives
k-1 71 _ Wk m-1 ® (1 - oy k-1
AR, = [co v L g L cmi-h] *X [ R LY cmi+j]£t-j
i=t 1 - ¥ h=0 j=1M ~ ¥ 1=0
00
= Yg.e, . (14)

JOJt-J

The long-run impact of a shock to the system is defined as ¢(1) for the short
rate process, and as g(l) for the n-period long term interest rate. Summing

the coefficients in (14) establishes the important property
g(1) = (1), (15)

which implies that Interest rates of all maturities cointegrate, whenever a
single component of <(1) is non-zero. Otherwise all interest rates are
stationary.

The coefficients of g(L) are finite sums of the c(L) coefficients.
Representation (14) simplifies considerably if m=1 and/or nsw. Working with
m#l is only a technical complication. The assumption of an infinite maturity,
however, which is used in the term structure model of Campbell and Shiller
[1987], while analytically convenient, might introduce severe dynamic
misspecification. First, with a finite maturity n, the gj coefficients depend
only on the first j+n entries of the c(L) polynomial. If unit roots would

only restrict the wvery long memory properties of the short rate without
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affecting the shert and medium term dynamics, the first few entries of g(L)
would not be very sensitive with respect to unit roots. Second, if the actual
maturity of the long bond is about 10 years, then a specification with rnow
puts too much weight on expected short term interest rates in the distant
future. Figure 3 shows the twe different weighting schemes for a discount
rate of 7.5%. The weights of the infinite maturity rate are almost twice
those of the 10-year rate over the first 40 quarters, reflecting the
correction factor 1-Wk = 0.485 in eq. (3) with k=40 and w=(1.075)-1/4.
Assuming an infinite maturity when the actual maturity is "only" 10 years
restricts the long term interest rate to behave more smoothly than necessary.

Representation (14) contains all conditions implied by the expectations

model of the term structure. All cross equation conditions can in principle

be tested by comparing the implied process in (14) with an unrestricted

representation

ARt=g(L)s = g.£, . (16)

A test of all the conditions implied by the expectations hypothesis entails
that g(L) = g(L). Before any implications can be tested we need to estimate
the lag polynomials c(L) -- to obtain its implication g(L} -- and g(L). This

will be discussed in section 5.

4,2, Volatility.

The volatility tests will be based on the conditional variance of the long

rate, defined as

3-1
2 _ 2] _ ,
o = Et[[Rt+j £, )7 = Tewg (17)

1=0

where wi = {;iogh' and g, is given by (14). The parameters wj are still
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functions of the parameters that describe the time series process of the
short term interest rate ry. The expectations hypothesis is capable of
explaining the volatility of the long term interest rate, if the conditional
variances defined in (17) match the conditional variances obtained from an
unrestricted time series model of the long term interest rate like (16), say
AR LTS A B

Volatility tests based on comparing restricted and unrestricted
estimates of (17) are not subject to some standard criticisms of variance
bounds tests put forward in Kleidon [1986]. First, the analysis concentrates
on conditional variances rather than the unconditional variance, which does
not exist under the unit root hypothesis. Second, the finite maturity
assumption aveoids a terminal value problem.13

The conditional variances in (17) converge to the unconditional wvariance
if jse. If the long rate is integrated, the wunconditional variance is
infinite and increases linearly in j for large j. Therefore, if we impose
cointegration of the long and the short rate, which means g(1) = g(1), the
ratio 5?/&; will approach unity when jom, regardless of whether the other
term structure restrictions hold. Under the maintained null hypothesis of
cointegration, the variance ratio must be satisfied in the limit.

Volatility is but one aspect of the term structure. Since the scalar
conditional wvariances aj are a limited set of nonlinear functions of the
original g{L) polynomial, the number of restrictions implied by (17) is less
than the full set of restrictions implied by (16). The test can be more or
less powerful than a test of all conditions depending on the actual way the
data behave in deviation from the model.

Many "efficient market” tests are concerned with the unpredictability of

excess holding period returns. To construct a time series of the return on

13 See also sections 3.1 and 4.1 above.
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holding an n-peried bond for m periods over in excess of holding the short
term m-period bond within the linearized framework of eq. (3) one needs data
about the yield of m, n-m and n périod bonds respectively.14 A minor
difference with the volatility tests is that tests based on (16) and (17)
only use data from two different interest rates. Only if we pretend rse can
we compute excess returns from twe interest rates.

In the rest of this discussicn on the relation between different tests
we consider the special case m=1 and n»w. Excess returns can then be

calculated directly as

t =TT -3 Tyo1 = T35 (18)

The last equality sign relates the observable time series Yt to shocks in the

short term interest rate using the MA representations (10) and (14). The
choice of variables z, te include in the efficient market test regression
Yt = z%_IB + u, is arbitrary, as Yt should be orthogonal to any information
dated t-1 or earlier. A test of the cross-equation restrictions based on (16)
can be rewritten as an efficient market test with I the set of lagged
innovations {et_j;jzl}. An example is the VAR test of Campbell and Shiller

[1987], which can be rewritten as a regression of Y s

on {Art-j’ t g

t
j=1,...,pr.'®

Volatility tests can also be completely independent of the orthogonality
tests. The variance of the excess return, and hence the innovation variance
of the long term interest rate, is determined by the innovation variance and
other time series properties of the short rate. The (1xK) vector 6c(5)/(1~6)
in (22) describes the immediate transmission of the K different shocks in the

short rate. An unrestricted estimate of the variance excess returns (5;) is

' gee Shiller, Campbell and Schoenholz [19831, eq. (3).
15 gee Campbell and Shiller [1987, p. 1068 and footnote 9],
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easily obtained, since Yt is directly observable. This implies that the one

1 3 Y

The restricted estimate follows from the assumed DGP of the short rate,

2
period ahead conditional variance of the long rate is given by &2 = [l—§] 32

0? = ¢(8)c(8)’. This means that even if Yt is unpredictable, i.e. even if all
"orthogonality" conditions are satisfied, a volatility test can still lead to
rejection of the model.

Assuming that both the agents in the market as well as the econcme-
trician observe the past of the shert and the long rate, they both share
(under the null hypothesis) the same expectation of next period’s long rate
1-3

} = Rt + —«—St) and the observation of the innovation of the long

(Et(R 5

t+1
rate (iéﬁYt), independent of the formulation of the vector polynomial c(L).
But the theoretical innovation variance of the long rate,

aj = c(8)e(s)’, (19)

is a functlon of c(L). Since c(L) can be a vectoer polynomial of unknown
dimension, one would not expect that (19) would hold for any marginalization
that the econometrician considers. This is the point that Quah [1990] makes
agalnst some excess smoothness results within the Permanent Income Hypothesis
using univariate time series methods. Campbell and Shiller [1987] have shown,
however, that for the term structure the marginalization does not affect the
interpretation of the volatility tests. The only two conditions are that the
information set of the econometrician and of the agents in the market both
contain at least the past level of the two interest rates and that the
information set of the econometrician is a subset of the information of the
agents. These are the same conditions as were encountered in the wvariance
bounds test of West [1988]; see section 3.2.

Before the volatility implications can be tested, we need to estimate

the lag polynomials g{L}, or c(L), and g(L). This is the subject of next
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gection.

5. ECONOMETRIC CONSIDERATIONS.

The infinite MA representations were a general tool to derive all dynamic
properties of interest rates of all maturities. An infinite MA model can,
however, not be estimated, so some assumptions on the shape of the MA

representation will be required before an econometric analysis can be

undertaken.

5.1. Estimation.
The most convenient representation for estimation purposes is a VAR. The
advantage of a VAR is that estimation is computationally straightforward, and
also provides consistent and efficient estimates of the parameters. Imposing
colntegrating vectors is alsco straightforward within a VAR framework.

The conditional variances of the long rate defined in eq. (17) can be
computed as nonlinear functions of the coefficients of an MA representation

of the pth VAR
p
X, = ? A, ;o +my, (20)

where x is a (Kx1) vector of observed time series including at least two
interest rates with different maturities. For concreteness, let the first

element in X, be the short rate r, and the second element in X, the long rate

Rt' The covariance matrix of m is denoted £. Let F be the companion matrix of

the VAR, obtained by reformulating the VAR as a first order system:



¢ A1 Az .Ap X4 I
(X, _ (I X, 0
z, = t~1 = . ‘t 2 + n,
Xt—p+1 I xt—p 0
= th—l + Gnt (21)

If the system contains unit roots, some of the eigenvalues of F will be equal
to one. We assume that all other eigenvalues are strictly inside the unit

circle. The MA representation of the time series x, is given by

t

oo s
- J
x, =HLFGn_. (22)
3=0
where H= (I 0 ... 0), a (KxKp) matrix. From (22) the MA representation of
Axt follows as
0o j—l o0
Ax, = HGm, - ngl[l - F)F Gnt_j = j?ijnt_j (23)

The error vector ny does not have an identity covariance matrix. Uncorrelated

shocks are obtained from the variance decomposition

n, = Det (24)

with E(ets%} = I, and where D satisfies DD’ = 5.1 Let Cj = BjD. The first row
of Cj contains the impulse responses of the short rate with respect to a
{(Kx1} vector of shocks €1 I.e. the first row contains the cj defining the
DGP of the short rate in eqg. (10). From the {cj}?=0 sequence we can compute

the restricted MA polynomial g(L) of ARt from eq. (14), and the restricted

conditional variances of the long rate using eq. (17). The second row of Cj

' The choice of D is not unique. See Sims [1980], Bernanke [1986], and

section 5.4. below.
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holds the unrestricted responses §j of the long rate with respect to £, (see

t
eq. (16)).

5.2. Monte Carlo Integration.

For statistical inference we need the distribution of this indirect estimator
of the restricted and unrestricted conditional variances. Since aj and Ej are
functions fj({Ai}T=1,Z) of the VAR parameters, we could in principle estimate

~

the covariance matrix of the estimated &j and 5? using the standard

~

asymptotic approximation V(&%,E%) = VF'WVF, with W the covariance matrix of
JJ J

J

the VAR parameters and Vf the matrix of first order derivatives of &j and
éiwith respect to the VAR parameters. This procedure has two serious
drawbacks, however. First, the computation of the standard errors will be
very cumbersome due to the non-linearity of the functions fj. This will be
especially important for the high order VAR that we will be estimating and
for large j.17 Second, the asymptotic approximation has been shown to be very
poor for autoregressive time series models for interest rates.

This last point has been emphasizea by Flavin [1983]. To illustrate the
point intuitively, assume, as in Flavin [1983]1, that the short rate is
generated by the AR{1) model r, =9, , + e, with |#|<1. In this case long
rates of all maturities are proportional to the short rate. For nsw the
relation is given by R, =ar, with a = (1-8)/(1-88). In empirical

applications & will be close to unity, and have a 5% confidence interval that

is open to the right at ®=1.18 A confidence interval of o based on asymptotic

7 Liitkepohl [1989] shows how to construct the asymptotic covariance matrix of
the impulse responses of a VAR. This is already a hard analytical exercise,
but for the volatility tests we need nonlinear functions of at least the
first 240 entries of the impulse responses (see section 6). The test would
require inversion of a 1200x1200 matrix. It would also require the in-
tractable first order derivatives Vf.

18 Here we maintain the assumption of stationarity. See Sims [1988] for the

peculiar forms of confidence intervals near the unit root.
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theory will also include wvalues of o>1, although these are theoretically
ruled ocut. Further, the variance of the long rate is aawz/(l—ﬁz). The
variance of the long rate will be very sensitive to & if it is close to
unity, causing the asymptotic standard error to be a poor approximation of
the true uncertainty about the volatility of the long rate.

To overcome both problems with the asymptotics we will compute standard
errors by Monte Carlo integration. It will be assumed that the asymptotic
distribution provides a good approximation to the actual covariance matrix of
the parameters of the unrestricted VAR.IQ The transformation from the
asymptotic distribution of the VAR parameters to the sequence of MA
parameters is performed exactly, taking into account the assumptions on
stationarity or co-integration on the VAR.

For a sample of T observations the unrestricted VAR can be written

compactly in matrix notation as

X =20 + U, (25)
where X = (xI,...,xT] , Z = (zo,...,zT_l) ,® = (AI,...,AP) . and U =
{nl,...,nT)’. The OLS estimator of ¢ is denoted 6, and the covariance matrix
of the residuals is estimated by £ = féﬁﬁﬁ’ﬁ' The sample size T is assumed

sufficiently large to allow the asymptotic approximation

vec(d) ~ Normal(vec[Q).Z@[Z’Z)&l)

X (26)
¥ ~ Wishart(z,T,K)

To compute standard errors of all functions fj of the VAR parameters a

sequence of N random drawings is made from the distributions below.

19 According to taste one can either adhere the classical interpretation of

the Monte Carlo integration as described in the text, or favor a Bayesian
interpretation. A Bayesian analysis with a flat prior leads to the same
numerical results.
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2(i) ~ Wishart(S,T,K)

vec(®(i)) ~ Normal(vec(@),Z(ij@(Z’Z)_i) (27)

For each 9(i) we compute the roots of the VAR and check whether it is
stable. Some drawings of the parameters must be discarded, since they produce
an explosive systen.

The Monte Carlo computation of standard errors can be applied both under
the assumption of stationarity as well as for a co-integrated system. As a
consequence of Granger’'s representation theorem (see Engle and Granger
[1987]) any cointegrated VAR can be transformed to an Error Correction Model
(ECM). Suppose there are M unit roots and R = K-M cointegrating vectors
contained in the (KxR) matrix B8. Then the VAR (20) can be expressed

alternatively as

p-1l
g * 1§1Aiﬂxt«i * My, (28)

Axt = uf’'x
where a« and 8 are both (KxR) matrices of full column rank. The Monte Carlo
integration can be applied conditional on the cointegrating vectors B, and
taking the asymptotic covariance matrix of a and {ﬂi}f:i from OLS estimation
of eq. (28). In the empirical analysis the cointegrating vectors will mostly

be specified a priori along with assumptions about the number of unit roots.

5.3. Further complications.

The tests of the expectations model do not formally incorporate all sources
of model uncertainty, and will thus ‘overstate the evidence against the
expectations model. By choosing to work with a VAR we take the value of the
discount factor & = (1+p}-1 and the order of integration of interest rate
time series as given, and ignore changes in policy regime that can possibly
alter the dynamic structure of the model. Estimation of a constant p has been

attempted by, e.g., Mankiw [1986], while Engle and Watson [1987] consider
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time varying discount rates. Both studies failed to obtain precise estimates
of the discount factor. Since point estimates of &8 larger than one (as found
by Mankiw [1986]) would preclude any further analysis of the term structure
based on discounted sums of MA parameters we have chosen to fix the discount
factor a priori at & = 0.994. For monthly data this implies an annual
discount rate of 7.5%.

The order of integration 1is probably the most important factor in
interpreting veclatility tests, as was shown in section 2 for the polar cases
of I1(0) and I(1). Shea [1989%] allows for fractionally integration (I{d) with
O=d=1}), and shows that quantifying the uncertainty about d can greatly reduce
the significance of empirical vieclations of the variance bounds. Imposing the
co-integration constraint c(1) = g(1), however, poses severe technical
problems, since estimation of fracticnally co-integrated systems is not well
developed yet. As a practical solution we will set the lag length of the VAR
at the rather high values p=12 or p=24 in order to restrict the MA represen-
tation as little as possible at the cost of some overparameterization.

A high order VAR requires long time series, so that it won’t be feasible
to look at particular subperiods, or to deal with changes in regime as in
Hamilton [1988]. Tﬁe stochastic structural breaks modeled by Hamilton [1988]
lead to non-linear responses of the long rate to some shocks of the short
rate. Again, using a long vector autoregression we hope to capture the
nonlinearities by additional flexibility in the linear effects. The results
of Hamilton [1988] suggest that there has been a temporary shift in the mean
and the error variance of the U.S. short term interest rate between the third
quarter of 1979 and the first quarter of 1982, without any further changes in
the parameters of the system. Also, the probability of regime shifts is
estimated to be virtually zero after 1982Z. The possibility of a regime shift
will thus have a very limited effect on the calculation of discounted sums of

expected future short term interest rates.
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The "peso problem" points at another potential pitfall of standard
regression tests, when there are infrequent regime shifts.?® Economic agents
might rationally anticipate a major regime shift, but 1t takes =ome time
before the switch actually cccurs. In a short sample, time series tests will
find significant systematic deviations of the orthogonality conditions and
hence wrongly reject the expectations model. The "peso problem" is another
way of expressing the need for a nonlinear model of the short term interest
rate. It dees not in any way invalidate the expectations model as represented
in eq. (3), but it suggests that a VAR might produce inadequate forecasts of
future short rates. The VAR approximation might be especially poor in
relatively small samples. The importance of the "peso problem" can be judged
from the residuals of an estimated VAR. Around a regime shift leading to
higher interest rates the equation for the long rate in a VAR will show small
positive residuals before the break, and a large residual after the shift has
taken place. In large sample a VAR will capture the second moments properties

of the true DGP.

5.4. ldentification of shocks.

In systems that contain some unit roots we can discriminate the different
responses of interest rates due to permanent or transitory shocks. These
shocks can be derived as a specific variance decomposition of the VAR, i.e.
we Will put structure on the transformation matrix D in (24). The distinction
between permanent and transitory shocks follows from the properties of the

long-run impact matrix, defined as the sum of the MA parameter matrices

=
I
~18

B. = H(1in F))G (29)
0 J00

J

2 gee Lewis (19911 for an application of the “peso problem"” to the term
structure.
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By Granger’s representation theorem the rank of B is equal to M, the number
of unit roots in the system. The typical element bij of B measures the
long-run effect of an innovation njt on output component xit'

innovations have permanent as well as transitory effects. The transformed,

In general, all

mutually uncorrelated shocks g,

i3 are chosen such that some of them only have

transitory effects on all K variables in the VAR. The remaining elements of
g€, have persistent effects on at least some of the elements of the output

t

series x_ . By definition a shock e,

¢ jt is transitory if it does not affect any

output Xi in the long run, i.e.

t

ED . = 0, ) (30)

where D.j is the jth column of D. A shock 1is persistent if it is not
transitory. If the system contains M unit roots, it is always possible to
decompose m into M persistent shocks and R = K-M transitory shocks. Partition
€, = (e}t eét)’, where €14 contains the first R elements of £ and represents
the transitory shocks. The transformation matrix D is partitioned accordingly
as D = (Dl DZ)' The covariance matrix £ is decomposed inte a part due to
purely transitory shocks and a part due to persistent shocks:

T = DIDI + D2D2 = 21 + 22, {31)

and where the definition of €, as the transitory shocks implies that Dl must

be chosen subject to
BD, = 0 (32)

It 1s clear that condition (31) does not fully identify D, since it is always

possible to find orthogonal matrices TI and T2 such that ﬁl = DITI and

ﬁz = D2T2. The matrices 21 and 22 are exactly ldentified though, as will be
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shown below in the construction of the decomposition.

The decomposition can be constructed directiy from the parameters of the
VAR written in error correction form, since the persistence matrix is closely
related to the cointegrating vectors B and the error correction parameters «
of the system. Using Granger’s representation theorem the persistence matrix
B has the following two properties:

(1) Bax = 0 (33)

(ii) B'B =0,

Property (i) establishes that D, must be in the space spanned by the error

1
correction parameters «, whlich have been estimated by OLS from the linear
representation of the VAR in eq. (28). Let T be a (RxR) nonsingular matrix,

then

DI = all, ‘ (34)

and the decomposition problem can be stated as finding a I and D2 such that

T =T + DZDé (35)
Take D to be any Choleski decomposition of Z. Then the decomposition is

simply a Seemingly Unrelated Regression problem of the form Y = XB + U, with

=B, X=e, BT, E(W’')=Z. Letting T = (oc'z‘la)'loc'z‘lﬁl, it follows that

of = ala’'s 'a) to/ D {36)

o
I

™
il

oIT o’ = ale’ S 'a) e, (37)

and that D2 and 22 can be obtained from the "residuals":
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D = (1 - a(a'z"a)'ia'z"]ﬁ (38)

T - ale'T o) e (39)

™
i

Neither T nor D2 is unique.21 However, the matrices 21 and 22 are exactly
identified, since they do not depend on the particular choice of D.
With the above decomposition of EZ, the variance of the j-step ahead

predictions of the long term interest rates is decomposed into a transitory

2 2
part GTj and a permahent part ij as

3-1
2 _ ,
orj = L ¥
=D
(40)
2 -1
o2 -

Pj L VYpi¥p;»

1=0

where wi = (wTi wPi) is partiticoned analogously to D. For example, the

unrestricted transitory conditional variance of the long rate uses the
. .

elements wTi zmmgTh’ with B1p, equal to the second row of BhDI' The other

conditional variances ("restricted permanent", "restricted transitory", and

"unrestricted permanent") are defined similarly.

6. EMPIRICAL RESULTS.

The interest rate data have been introduced in section 2. In addition three
macro economic variables are included in the VAR: Industrial Production (y),
Money stock M1 (M), and the Consumer Price Index (p). All data are seasonally

adjusted monthly series taken from the Citibase tape. Series enter the VAR in

2l The matrix D is fully identified only if K=2 and M=1, the case studied in

Blanchard and Quah [1989].
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logarithms and after detrending. The macroeconomic series are detrended by
regressing on a constant and time trend if a series is assumed trend
stationary, and by regressing first differences on a constant in case of I(1)
series. The two interest rates are in deviation from the sample mean. No
constant term or trend is included in the VAR. All differences in the
empirical results are entirely due to assumptions about the dynamic
specification.
Five different VAR's are compared:
(4) A 24th bivariate VAR in levels, containing only the two interest rates.
Interest rates are I(0) in this model,
(B) A 12th order VAR with all five variables; all series are assumed
stationary.
c) A 24*™ order bivariate VAR with a single unit root. Both interest
rates are I(1) but cointegrate with cointegrating vector g = (1 -1)‘.
(D) A 12" order VAR with all five variables and 4 unit roots. All
individual time series are I(1), but the two interest rates cointegrate
with cointegrating vector g = (1 -1)’.
(E) A 12" order VAR with all five variables and 3 unit roots. All

individual series are I(1), and there is one additional cointegrating

relation, linking the short rate to velocity: Yy f p, - Mt - 0.066rt is

: 22
assumed to be a stationary series.

Comparing the two bivariate models (A) and (C) gives insight in the

2 The cointegrating vector has been estimated by an OLS regression of

velocity on the short term interest rate. The Phillips-Perron test of the
residuals, adjusted for 12 lags, gives a "t"-statistic of -3.08, which is
close to being significant at the 5% level in a bivariate cointegrating
regression test (see Engle and Granger [1987]). The ML test for cointegration
between velocity and the short rate within a bivariate system (24 lags)
yields Amax = 6.6, which is significant at the 10% level (see Johansen and
Juselius [1990, table A3]). Within the five variable VAR Johansen’s
unrestricted ML estimator produces rather different cointegrating vectoers. It
is beyond the scope of this paper to provide a detailed analysis of the
cointegration relations among the major U.$. macroeconomic variables.
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importance of the assumption that interest rates cointegrate. Models (B) and
(D) convey the same information within a multivariate model. Comparing the
two pairs of models can highlight the sensitivity with respect to the
information set wused to forecast interest rates. The most important
difference between model (E) and the other VAR’s is the cointegrating vector
which relates the long-~run properties of the interest rates to macro economic
variables. Table 4 gives summary statistics of the different VAR's, and
suggests that the unit root assumptions do not greatly affect the fit of the
model. The five variable VAR’s provide some improvement over the bivariate
VAR for the equation of the short rate.23 The estimates roots of the VAR also
that the unit root restrictions are empirically plausible. The largest roots
of the staticnary VAR are very clese to unity. In a univariate model with
unknown intercept and trend a unit root can be rejected at the 10% level if
the estimated root is smaller than 0.947.24

Figure 3 gives a first impression of the volatility implications of the
different VAR’'s. The three broken lines in the figure show the standard
deviation of the long rate (cj] over various forecast horizons (j) implied by

the expectations model of the term structure and conditional on a VAR with O,

Formal Granger causality tests (not reported in the tables) have been
performed to reveal more about the dynamic structure of the VAR’s. For all
five VAR’s there is Granger causality in both directions between the two
interest rates. In the cointegrated model the spread is significantly error
correcting in the equation for the change in the long rate. The causality
pattern in the five variable VAR's depends on the number of unit roots and
the parameterization of the VAR. Model (E) provides an example. Using F-tests
and a 10% significance level the causality structure can be summarized in the
matrix in the following matrix (A + denotes significance):

y+p~M-ar R-r Ay Ap AM Ar AR
Ay - - + - - - -
Ap - - - ¢ - - -
AM - - - + + + +
Ar + + + - + + +
AR + + + - + + +

Most of the error correction takes place through the interest rates.

2% See Fuller (1976, table 8.5.11), p=1-18.1/341 (T=341 is the sample size for
the VAR).
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3 and 4 unit roots, respectively. The ranking is clear: the more unit roots
in the system, the higher the implied standard deviation of the long rate.
The solid line in the figure shows the unrestricted estimates &j implied by a
stationary VAR. The unrestricted estimates for a VAR with 3 or 4 unit roots
(not shown in the figure) almost coincide with those of the stationary VAR
for the first 80 periods, but they will of course slowly diverge to infinity
if the forecast horizoen j increases. Fiéure 3 illustrates the sensitivity of
the excess volatility results with respect to the presence of unit roots.

In the fligure the differences between the alternative models appear
small for the one period ahead innovation variances, the starting point of
the four lines. To investigate the statistical significance of the deviations
between actual and implied volatility we used the Monte Carlo Integration;
results are in table 5. Part I of the table shows that the actual volatility
EI -- which is just the standard error of the residuals of the equation of
the long rate in the VAR -~ is estimated quite precisely. It does not vary
greatly over the alternative models, indicating that all the VAR’s fit the

long rate about equally well. The implied volatilities ¢, are estimated less

1
precisely and differ substantially across the models. The third column in
table 5 presents the estimated probabilities of excess volatility for each of
the models. The estimates confirm the pattern of figure 3. There is
(significant) excess volatility if we believe in a stationary model. Imposing
a common stochastic trend in the two interest rates, a seemingly innocuous
resiriction, leads to completely opposite results. The variance inequality is

reversed, with the probability of excess volatility falling to 0.15 and 0.04

respectively.25 The model with 3 unit roots (and the cointegration between the

> The results do not depend on assumptions about the number of unit roots in
the macroeconomic variables, as long as they are not related to the
non-stationarity in the interest rates. For example, the results for a VAR
with a single unit root in the two interest rates and trend stationary
macroeconomic variables are similar to model D with difference stationary
macroecohomic serles. Also, a model with stationary interest rates, but
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short rate and velocity) takes a middle position just as in figure 3.

The last three columns of the table focus on the endpeints in the curves
of figure 3, i.e. the long term (120 periods ahead) variances. For the
stationary VAR the variances have converged to the unconditional variances.
The Monte Carle results provide strong evidence of excess volatility for the
two stationary models (Models A and B). No clear evidence of excess
volatility is obtained if interest rates are assumed to be cointegrated
(models C, D, and E}. The latter result is in line with the theory in section
4.2. The varliance ratio converges to unity when the forecast horizon goes to
infinity.

The results suggest that the cointegration between the interest rates
and velocity somehow resolves the wvolatility puzzle, Parts II and III of
table 5 show that this is not true. Using the decomposition in tramnsitory and
persistent shocks described in section 5.4 it appears that long rates
overreact to transitory shocks but underreact to permanent shocks. The
probabilities of excess volatility with respect to transitory shocks are very
high for all five models. In contrast, the probabilities of excess volatility
wlith respect to permanent shocks are low for all five models. For model E the
excess volatility with respect to the transitory shocks happens to cancel to
excess smoothness due to the permanent shocks for the innovations variance
ratio. Over longer horizons the permanent components will eventually dominate
all series, and any evidence against excess volatility or excess smoocthness
will disappear in the 1limit. The two transitory components are still
important in the last VAR, even over a horizon of 120 months.

The variance decomposition In the second part of table 4 shows that by
varying the number of unit roots in the VAR we have succeeded in obtaining

models where the transitory component in the the DGP of the short rate either

integrated macro economic variables is similar to the stationary VAR.
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explains all variance (the stationary models A and B), is almost absent (C
and D}, or somewhere in between (E). In contrast, a purely transitory shock
always has a sizable effect on the long rate. Since the long rate
should reflect long term expectations of the short rate, the expectations
model implies that the permanent shocks must take account of most of the
innovations to the long rate. This is evident in the last line of table 4,
which tells that the long rate must react less to the transitory shocks, and
relatively more to the persistent shocks. This is another way of stating the
conclusion that followed from table 5.

Three general explanations are possible of the volatility puzzle. First,
the expectations model fails; second expectations of economic agents are
irrational or the bond market is inefficient; third, a linear VAR 1is
seriously misrepresents the DGP of the short rate. While the first two
options can not be excluded, I am moré inclined to misspecification of the
different VAR's. Table 6 provide some diagnostic statistics. The first line
shows that the errors are conditionally heteroskedastic. Correcting for ARCH
will lead to time dependent volatility statistics and maybe to less
significant varlance ratioc statistics. But unless the correlation structure
of the error covariance matrix varies a lot over time ARCH will not affect
the general conclusions. The significant skewness of the short rate is a
first indication of possible nonlinear effect. The other two diagnostics in
the table provide further evidence of nonlinearity, which seems to be present
despite the overparameterization of the linear effects.?® The nonlinear
reaction of the short rate to the lagged spread implies that the impulse
responses will become time dependent, with volatility depending on the
current slope of the term structure. In the continuous time literature the

interest rate process of Cox, Ingerscll and Ross [1985), and Marsh and

26 The residual diagnostics are similar for all VAR’s. Only the test for

nonlinear error correction is special for this model.
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Rosenfeld [1983] introduce nonlinear mean reversion. Extending these medels
to the multivariate case seems a worthwile alternative to the linear

cointegrated VAR.

T. CONCLUSION.

One main conclusion emerges from the empirical results. Whatever the form of
a VAR that 1s fitted to interest rate data, the long rate will overreact to
pure transitery shocks and underreact to permanent shocks. The assumptions
about which variables contain a unit root and how they cointegrate largely
determine the empirical results with respect to wolatility. But these
assumptions are extremely hard, if not impossible, to test for time series of
U.S. interest rates.

The econometric procedure that we used excludes a number of possible
explanations for this conclusion. First, the finite maturity of 10 years of
the long term interest rate aveoids transversality problems with infinite
horizon models. Second, the Monte Carlo integration technique controls for
small sample effects that might invalidate asymptotic approximations in
models with near unit roots. Third, the results hold for various specifi-
cations of the VAR, both bivariate and with additional macroeconomic
variables. Fourth, since the importance of the permanent shocks in the short
term interest rate ranges from zero to 98%, results are not sensitive to the
assumed "size of the random walk".

If the sensitivity with respect to unit roots would extend to other data
sets, the value of a VAR as a tool to test models of forward looking behavior
would be much reduced. The diagnostics tests of the linear VAR's analyzed in

this paper reveal important non-linearities.
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TABLE 1: UNIVARIATE UNIT ROOT TESTS

Series Sample p=20 p =12
1 menth 68:1 - 90:5 —-2.89% -2.75
3 menths 62:1 - 90:5 ~2.33 ~2.28
10 years 62:1 - 90:5 -1.64 -1.71
spread (10 yr./ 1 m.) 68:1 - 90:5 -4, 17» -4.14%
spread (10 yr./ 3 m.) 62:1 - 90:5 -3.60% -3.59%
spread (3 m. / 1 m.} 68:1 - 90:5 -11.80% -13.47%

Test statistic is the adjusted t-statistic as proposed in Phillips and Perron
[1988]; p is the number of additional lags. Critical value at the 1%, 5% and
10% level are -3.46, -2.88 and -2.57 respectively (see Fuller [1976, table
8.5.2]).

TABLE 2: VARIANCE OF EX-POST RATIONAL LONG RATE

Series Unconditional Conditional variance
variance given Rt~1 and Ly

Rt 5.36 ' 0.096

R? 2.91 0.604

R; constructed using actual short rates as in equation (4). The conditional
variance is the residual variance of the regression of xt=a+Blrt_1+Bth_1+et,
where ¥ is R and R* respectively.

Sample period: 62:1 to 80:9.
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TABLE 3: WEST'S [1988] VARIANCE BOUNDS TEST

GMM estimation (standard error in parenthesis]):

Rt -r, = 0.989 (Rt+1 - rt) U o, = 0.181
(0.017)
d 3 &I &; s.e
0 0.989 9.78 10.67
1 0.989 0.26 0.96
0 0.994 23.61 19.82
1 0.994 0.2¢6 0.60

NOTES: d is order of integration of the short term interest rate; & is the
monthly discount factor; 3?/@; is the variance ratioc described in the text;

s.e. 1s an estimate of its standard error, computed as in West [1988].
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TABLE 4: SUMMARY STATISTICS OF VAR'S

(I) Measures of fit and roots

Model o, op P R AI AZ A3 A4 A5

A: Bivariate I(0) 0.593 0.371 0.629 0.982 0.955

B: Stationary VAR 0.588 0.371 0.633 0.994 0.994 0.984 0.984 0.967

C: Bivariate I(1) 0.551 0.357 0.585 1 0.957

D: 4 unit roots 0.571 0.363 0.586 1 1 1 1 0.985
E: 3 unit roots 0.565 0.360 0.578 1 1 1 0.982 0.968
F: 3 unit roots, 1 1 1 0.980 0.980

(stationary interest rates)

(II) Proportion of variance due to transitory components

Short rate Long rate Long rate
Model {unrestricted) (restricted)
A: Bivariate I(0) 1.00 1.00 1.00
B: Stationary VAR 1.00 1.00 1.00
C: Bivariate I{1) 0.02 0.45 D.00
D: 4 unit roots 0.02 0.33 0.00
E: 3 unit roots 0.72 0.65 0.18

NOTES: Specification of different VAR models (A to E) is given in the text.
Model F has unit roots in the macro economic variables, but stationary
interest rates. o, is the innovation standard error of the short rate; GR the
innovation standard error of the long rate; er is the correlation between
the innovations; hi (i=1,...,5) are the largest roots of the system. The

variance decomposition is described in section 5.4 in the text.
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TABLE 5: VOLATILITY OF LONG TERM INTEREST RATES

~

P ‘
~ 1 ~ 120
E(01) E(ﬁl) Pr[E—>1] E(@leJ E(@lzo) Pr(@ >1]
1 120
(I) Total variance
A: Bivariate I(0) 0.345 0.213 0.939 2.715 1.151 1.000
(0.015) (0.079) (0.006) (0.859) (0.786) (————- )
B: Stationary VAR 0.327 0.159 0.988 2.559 1.266 0.997
(0.014) (0.048) (0.003) (0.668) (0.700) (0.001)
C: Bivariate I(1) 0.345 0.473 0.155 4.879 5.074 0.544
(0.015) (0.160) (0.009) (1.753) (2.522) (0.013)
D: 4 unit roots 0.333 0.540 .0.042 5.872 6.499 0.264
(0.014) (0.171) (0.005) (2.017) (2.970) (0.011)
E: 3 unit roots 0.329 0.360 0.500 4.077 3.820 0.773
(0.015) (0.125) (0.013) (1.353) (1.957) (0.011)
(II) Variance due to transitory components
A: Bivariate 1(0) 0.345 0.213 0.939 2.715 1.151 1.000
(0.015) (0.079) (0.006) (0.859) (0.786) (—~--)
B: Stationary VAR 0.327 g.159 0.988 2.559 1.266 Gg.997
(0.014) (0.048) (0.003) (0.668) (0.700) (0.001)
C: Bivariate I(1) G.224 0.023 0.991 0.748 0.094 1.000
(0.061) (0.020) (0.002) (0.261) (0.127) {——==)
D: 4 unit roots 0.220 0.024 0.994 0.611 0.138 0.997
(0.048) (0.023) (0.002) (0.209) (0.152) (0.001)
E: 3 unit roots 0.259 0.111 0.973 1.471 0.592 0.989
(0.038) (0.064) (0.004) (0.647) (0.470) (0.003)
(I11) Variance due to permanent components
A: Bivariate I(0) 4] -_— _
B: Staticnary VAR 0 _ _—
C: Bivariate I(1) 0.249 0.462 0.051 4.814 5.073 0.448
(0. 058) (0. 150) (0.006) (1.753) (2.520) (0.012)
D: 4 unit roots 0.241 0.538 0.994 5.836 6.497 0.228
(0. 047) (0. 170) (0.002) (2.017) (2.968) (0.010)
E: 3 unit roots 0.194 0.334 0.083 3.738 3.748 0.653
(0. 050) (a,131) (0.007) (1.376) (1.949) (0.012)

NOTES: E(§j) and E(@j) are posterior means of the innovation standard error;

posterior standard errors are in parentheses. Pr(&j>0j) is the posterior

probability of excess volatility; numerical accuracy of the estimates is in

parentheses. All entrles are based on 1500 Monte Carlo replications,
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TABLE 6: DIAGNOSTICS OF COINTEGRATED VAR (MODEL E).

Ayt Apt AMt Art ARt
LMARCH 8.82% 13, 1% 4.96 22.8% 15.9%
Skewness 0.06 0.54% -0.12 -0.62% 0.24
Kurtosis 2.03% 3.60% 0.41 4.16% 2.16%
Nonlinear ECM 2.58 7.59 4.84 13.1% 5.02
RESET 6.82 6.80 7.14 36.2% 15.2%

NOTES: LMARCH is a x°(4) LM test for 4" order ARCH. Nonlinear ECM is a x°(4)
2 s3 22

5 t-1° “t-1° “t-1
zt-l’ where z, is the residual of the cointegrating regression of velocity on

test for nonlinear error correction by adding the variables §

the shert term interest rate. RESET is a x2(10) test for nonlinear effects
formed by adding fitted values of all five equations raised to the second and
third power. Skewness = ¥ ﬁi/T&s, Kurtosis =} ﬁ:/T34 - 3. An asterisk ()

denotes significance at the 5% level.
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FIGURE 1A: Interest rates (levels)
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FIGURE B: Interest rates (differences)
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FIGURE 3: Weighting scheme for future expectations
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FIGURE 4: IMPLIED VOLATILLITY
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