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1. Introduction

Prediction is of fundamental importance in all the sciences,
including economics. Forecast accuracy is of obvious importance
to users of forecasts, because forecasts are used to guide
decisions. Forecast accuracy is also of obvious importance to
producers of forecasts, whose reputations (and fortunes) rise and
fall with forecast accuracy.

Comparisons of forecast accuracy are also of importance to
economists more generally, who are interested in discriminating
among competing economic hypotheses (models). Predictive
performance and model adequacy are inextricably linked--
predictive failure implies model inadeguacy.?

Given the obvious desirability of a formal statistical
procedure for forecast accuracy comparisons, one is struck by the
casual manner in which such comparisons are typically carried
out. The literature contains literally hundreds of forecast
accuracy comparisons; almost without exception, point estimates
of forecast accuracy are examined, without questioning whether
differences are statistically significant. Upon reflection, the
reason for the casual approach is clear: correlation of forecast
errors across space and time, as well as a number of additional

complications, makes formal comparison of forecast accuracies

! Recall, for example, the influential work of Meese and
Rogoff (1983), who argued forcefully that all members of a set of
leading exchange rate models were inadequate, because their
forecasts were no more accurate than those of a naive martingale
model.




difficult.?

In this paper we propose a widely applicable test of the
null hypothesis of no difference in accuracy between two
forecasts. We review the small extant literature in section 2,
and we propose a new and general test in section 3. Our
procedure allows for a wide class of accuracy measures; this is
important, because, as is well known, realistic economic loss
functions frequently do not conform to stylized textbook examples
l1ike mean-squared prediction error.’> Moreover, we allow for
forecast errors that are potentially non-Gaussian, non-zero mean,
serially correlated and contemporaneously correlated. 1In section
4 we perform a Monte Carlo experiment to evaluate the finite-
sample performance of our test. Section 5 contains conclusions

and directions for future research.

2. The Problem and Some Existing Approaches

It will prove useful to proceed from the most restrictive

setup to the most general. Consider two forecasts, {9“}:=1 and

{9n}:_l, of the time series {y;}T Let the associated forecast

t=1"
E-l and {e”}z_l; it will prove convenient to stack

the forecast errors into the (Tx1l) vectors e, and e,. If:

errors be {e,)

2 gee, for example, the pessimistic assessments in Dhrymes, et
al., (1972) and Howrey et al. (1974). But see also Mariano and
Brown (1983, 1989, 1991).

3 gee, for example, the recent work Dby Leitch and Tanner
(1991) and Chen and Meese (1991), who stress direction of loss,
Cumby and Modest (1991), who stress market and country timing, and
West, Edison and Cho (1991}, who stress utility~-based criteria.
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(1) accuracy is measured by mean-sguared prediction error
(MSPE), and
(2) the forecast errors are
(2a) 2zero-mean
(2b) normally distributed
(2c) serially uncorrelated
(2d) contemporaneously uncorrelated,
then the null hypothesis of equal forecast accuracy corresponds
to equal forecast error variances (by (1) and (2a)), and by
(2b) - (2d4), the ratic of sample variances has the usual F-
distribution under the null hypothesis. That is, under the null
hypothesis and the maintained assumptions (1), (2a) - (2d4), the

test statistic

ese, ,
e;e;
F-= 7 Y
;€ €;€;
T

is distributed as F(T, T).

Test stat;stic F is of little use in practice, however,
because the conditions required to obtain its distribution are
too restrictive. Let us first consider assumption (2d4),
contemporaneously uncorrelated forecast errors. Because the
forecasts being compared are forecasts of the game economic time
series, they will generally be contemporaneously correlated,
producing correlation between the numerator and denominator of F,
which will not then have the F distribution. This insight led

Morgan (1939-1940) and Granger and Newbold (1977) to propose an
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orthogonalizing transformation, which enables relaxation of
assumption (2d).* Let x = (e, + e,) and 2z = (e, - e,). Then
under the maintained assumptions (1) and (2a) - (2c), the null
hypothesis of equal forecast accuracy is equivalent to zero
correlation between x and z (that is, p,, = 0) and the test
statistic

S

Pxz

1_6?(2
J T-1

is distributed as Student’s t with T-1 degrees of freedom,

MGN =

where®

A x'z

pxz = "
Jx'x) (272)

Let us now consider relaxing the assumptions (1), (2a) -
(2¢c) underlying the Morgan-Granger-Newbold test. It is clear
that the entire framework depends crucially on assumption (1),
which cannot be relaxed. The remaining assumptions, however, can
pe weakened in varying degrees; we shall consider them in turn.

First, the unbiasedness assumption (2a), can be‘replaced by
the (slightly) less restrictive assumption that both biases (b,
and b,) are the same, while maintaining assumptions (1), (2b) and

(2¢). To see this, note that

‘¢ see also Young (1972).

s See, for example, Hogg and Craig (1978), ‘pp. 300 - 303.



Y,, =~ Cov(x, z) = 0% - ¢ + 2b} - 2b%,

whereas the difference in MSPE’s is

MSPE, - MSPE; = 0% - 0% + bf - bj.

The two are equal if and only if |b,| = [b,

. Thus, the Morgan-
Granger-Newbold assumption of zero biases can readily be replaced
with one of nonzero, but equal, biases. It appears difficult,
however, to allow for the more realistic possibility of nonzero
and unequal biases.

Second, the normality assumption (2b) may be relaxed, while
maintaining (1), (2a) and (2c), at the cost of substantial tedium
involved with accounting for the higher-order moments that then
enter the distribution of the sample correlation coefficient.®

Finally, some progress has been made at relaxing the "no
serial correlation" assumption (2¢), while maintaining (1), (2a)
and (2b). This is important because, in general, forecast errors
are serially correlated. In particular, linear least squares k-
step-ahead forecast errors follow moving averages of order (k-1),
as is easily seen by considering the linearly indeterministic

covariance stationary process {y.} with Wold representation

where b, = 1, the coefficients are square summable, and the

innovations are serially-uncorrelated, zero-mean, and constant-

¢ See, for example, Kendall and Stuart (1979), Chapter 26.
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variance. The Wiener-Kolmogorov linear least squares k-step-

ahead forecast is
Veerw = B by, i€
1=0

with associated prediction error

€k ™ € * Di€pigy v oo+t D€y

In practical applications, of course, the MA(k) error structure
is best viewed as an approximation, because forecasts may be made
from statistical models with estimated and/or time-varying
parameters, and more generally, forecasts may simply be
suboptimal.

The most naive (and inefficient) way to deal with the serial
correlation problem, which has its roots in Tintner (1940), is
simply to use only every kth observation on the forecast errors,
discarding the rest. If the forecast errors really are MA(k-1),
this procedure will completely purge them of serial correlation:

otherwise, it may be looked upon as an approximate correction.

* [T/k] * (T/k] .
Formally, let {eit}t=1 and {ejt}t=1 be series of length
[T/k] consisting of every kth element of the original forecast

T
t=1
nearest integer. Then, under the null hypothesis and the

error series {e,.} and {e“}z=1’ where [.] rounds down to the

maintained assumptions (1), (2a) and (2b), and if the forecast

errors are at most k-dependent, then the Morgan~-Granger-Newbold
* [T/K] % [T/k]
t)t=1 and {ejt}t=1 is

distributed as Student’s t with [T/k]-1 degrees of freedom.

test statistic formed from {ei
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More efficient procedures for dealing with serial
correlation, which also allow for contemporaneous correlation,
have been proposed by Meese and Rogoff (1988) and Diebold and
Rudebusch (1991). Under the null hypothesis and assumptions (1),

(2a) and (2b), it can be shown that’
\«/-T. ?xz fN(OIE) ’
where

f
X' Z
?xz-'?'

T-YI1- i‘?l] [y, (1) ¥ 52 (F) + Ve () ¥, (T) ] -

fe-—m

¥, (T) = covixX,, Z,.,).
Y, (T) = coviz,, X..).
Y (T) = COVIXy, Xe o).
¥,, (%) = cov(z,, Z.,).

Now, following Meese and Rogoff (1988), replace T with the

estimate

? This is a well-known result (e.g., Priestley (1980), pp.

692-693) for the distribution of the sample cross—autocovariance
function, cov(3..(s), j«(u}), specialized to a displacement of o.

That is, setting s = u = 0 gives the result stated in the text.



s\

£, 3 - L@+ 1@ 100
t=-S(1)
where
1 T
?xz(t) - (T-7) tglxrzt—v
1 T

?zx(t) - T’i::‘_!;)— E 2 Xt

1
?xx(t) = (T‘"‘r) 2 xtxt-‘l'

1
?zz(t) = —(—Z-":h;)_ 2 Z,2;p ¢

L=T+l

and the truncation lag S(T) grows with the sample size, but at a

slower rate.® This produces the test statistic,

Pz

A
z,
T

MR =

Under the null hypothesis and the maintained assumptions (1),

(2a) and (2b), MR is asymptotically distributed as standard

* If the MA(K-1) approximation is accurate, the truncation lag
need not be increased beyond k-1. The Cumby-Huisinga (1991) test
provides a useful guide to the reliability of the moving-average
approximation.



normal,’

The formula for £ shows that the correction for serial
correlation can be substantial, even if the prediction errors are
only weakly serially correlated (e.g., the prediction errors
might follow an MA(k-1) process with small coefficients)}, due to
cumulation of the autocovariance terms. Conversely, if the null
hypothesis and assumptions (1), (2a), (2b) and (2c) are
satisfied, then all terms in = are zero except v,(0) and 7,,(0),
so that MR coincides asymptotically with MGN.

Thus far we have considered relaxation of assumptions (2a) -
(2c), one at a time. Simultaneous relaxation of multiple
assumptions is possible within the Morgan-Granger-Newbold
orthogonalizing transformation framework, but even more tedious.
The distribution theory required for joint relaxation of (2b) and
(2c), for example, is complicated by the presence of fourth-order
cumulants in the distribution of the sample autocovariances.'®

In the next section, however, we propose an alternative and
simple testing framework that facilitates simultaneous relaxation

of all of assumptions (2a) - (2d) and assumptiop (}1). 1In

* piebold and Rudebusch (1991) make use of the closely related
covariance matrix estimator

S(T)
2,- Y a0 (0) ¢ 9, (019 (0].

=-3(T

T, and I, are equivalent asymptotically, because the sum in I, is
the Caesaro sum of the sequence in 3,. Thus, the weighted and
unweighted sums are equal, whenever the unweighted sum is
convergent.

i gee Hannan (1970), chapter 4, and Mizrach (1991}.
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particular, the loss function need not be gquadratic (and need not
even be symmetric), and forecast errors can be non-Guassian, non-
zero mean, serially correlated and contemporaneously correlated.
OQur procedure is based upon recognition of the fact that the null
of equal forecast accuracy can be mapped into the familiar null

that a particular random variable has a zero mean.

3. Direct Use of Nonparametric Procedures

We define the accuracy of forecast i as (the negative of
the) expected value of an arbitrary function of the forecast
error, that is, E[g(e,.}]. The loss function g(+)--that is, the
definition of accuracy--can be, but need not be, mean-squared
prediction error or mean-absoclute prediction error. The null
hypothesis of equal forecast accuracy is E{g(e; )] = E{g(es)], or
Ed, = 0, where d, = [g(e,) - g(es)]}. Thus, the "equal accuracy"
null hypothesis is equivalent to the null hypothesis that the
population mean of the time series (d.} is 0.

Under general conditions,*
JT(J - Bd,) N0, £400)),

where

1 gee, for example, Priestley (1981) and Andrews (1991}, and
the references therein.
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T

(gle;) - gle,.)]
J

d-—-l
Tt-l

is the sample mean loss differential,

1 <
fd(O) - HE Yd(T)

Tmwoo

is the spectral density of d, at frequency zero, and ¥4a{T)} 1is the
autocovariance of d, at displacement 7.'* Thus, a natural
statistic for testing the null hypothesis of equal forecast

accuracy is

DM =

d
l 21!:?‘,(0)
T
which is asymptotically N(O0, 1) under the null.

The proportionality of the limiting variance to the spectral

density at frequency zero is easily seen. Immediately,

T

T
var(d) = =Y Y v 4(t-5).

2
T 9ge1 t=1

Now make the change of variables (s, t) - (s, 1), where 1 = t-s,
so that we sum diagonals of the variance-covariance matrix and
then add the diagonal sums, rather than summing rows and adding

row sums, yielding

12 In words, the sample mean loss differential d 1is
asymptotically normal and is consistent for the population
expectation, but the dependence structure of the data must be taken
into consideration when computing its variance.
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_ =Y
var(d) = = Y (T- [t]) v4(%)
! T s 712
(T-1)
: Ll
- (1 - } oy g(e).
211»;2;1) T a

Now recall that the spectral density function of d is defined as

which implies that

£400) - == ¥ y,4(0).

o

Thus for large T we have

A 1y 2n
var(d) =~ =Y valv) = S £a(0).

[ LT ]

Following standard practice, we obtain a consistent estimate
of 27f,(0) by taking a weighted sum of the available sample

autocovariances,

{(T-1)

21f,(0) ~ —% I(——)g 4(1),
11 d( ) T - 1 '--;;—1) §(T) ?d(“

where
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i1(m) is the spectral window, and S(T) is the truncation lag.

Numerous choices for 1(m) and S(T) have been proposed. In

the Monte Carlo study presented below, we use a triangular, or

Bartlett, window, as in Newey and West (1987):

1 - |\m|, for |[m| <1

l(m =

0 , otherwise.

The Bartlett window guarantees positive definiteness of the

estimated variance, has performed well in a variety of

applications, is readily fine~tuned

properties of forecast errors (that

to exploit the special

is, we set S(T) = k, the

choice of which is designed to reflect the fact that k-step-

ahead forecast errors are likely to

be approximately

characterized by moving average processes of order (k-1)), and is

computationally simple enough to be

Monte Carlo analysis.™

4. Monte Carlo Analysis

4a. Experimental Design

amenable to our subsequent

13 gther window shapes and bandwidth selection procedures are

of course possible. Andrews (1991)

, for example, suggests using

the quadratic spectral kernel, together with a "plug-in" automatic

bandwidth selection procedure.
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We evaluate the finite-sample size of test statistics F,
MGN, MR and DM under the null hypothesis and various of the
maintained assumptions. The design includes a variety of
specifications of forecast error contemporaneous correlation,
forecast error serial correlaticon and forecast error
distributions. 1In order to maintain applicability of all test
statistics for comparison purposes, we use guadratic loss
throughout; that is, the null hypothesis is equality of MSPE’s.
We emphasize again, however, that an important advantage of test
statistic DM in substantive economic applications--and one not
shared by the others--is its direct applicability to analyses
with alternative, more realistic, loss functions.

Consider first the case of Gaussian forecast errors. We
draw realizations of the bivariate forecast error process, (e;.,
e“}z=1' with varying degrees of contemporaneous and serial
correlation in the generated forecast errors. This is achieved
in two steps. First, we build in the desired degree of
contemporaneous correlation by drawing a {2x1) forecast error
innovation vector u, from a bivariate standard normal
distribution,

u: - uit -

and then premultiplying by the Choleski factor of the desired
contemporaneous innovation correlation matrix. Let the desired

correlation matrix be



Then the Choleski factor is

P=

10]
ﬁl-p2.
Thus, the transformed (2x1) vector v, = Pu, satisfies

Vjc

[Vit} ~ N(0,, R)

This operation is repeated T times, yielding ({(v,., v”}z_l.
Second, MA(1) serial correlation (with parameter §¢) is

introduced by taking'*

1+ 0L o
eit} (vt o Vi‘} t -1 T
€t o 1 + OL | |Vsel e

J1+ 8
We consider sample sizes of T = 8, 16, 32, 64, 128, 256 and
512, contemporaneous correlation parameters of » = 0, .5 and .9,
and moving-average parameters of ¢ = 0, .5, .9.
We also consider the case of non-Gaussian forecast errors.
The design is the same as for the GCaussian case described above,

* *
but driven by (uit' ujt)' rather than (u,., us)’, where

14 e use v, = 0. Multiplication by (1 + $2)"*/? is done to keep
the unconditional variance normalized to 1.
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(UEE) - 1

|

(uf) - 1}

V2
Thus, the forecast error process is driven by a standardized
x?(1) random variable.

Throughout, we perform tests at the a = .1 level, and we
perform R = 10000 Monte Carlo replications. Common random
numbers are used whenever appropriate, to provide variance
reduction. The truncation lag is set at 1, reflecting the fact
that the experiment is designed to mimic the comparison of 2-

step-ahead forecast errors, with associated MA(1l) structure.

4b. - Results

Results appear in tables 1 through 4 and figures 1 and 2,
which show the empirical size of the various test statistics in
cases of Gaussian and non-Gaussian forecast errors, as degree of
contemporaneous correlation, degree of serial correlation, and
sample size are varied.

Let us first discuss the case of Gaussian forecast errors.

F is correctly sized in the absence of both contemporaneous
and serial correlation, but is missized in the presence of either
contemporaneous or serial correlation. Serial correlation pushes
empirical size above nominal size, while contemporaneous
correlation pushes empirical size drxastically below nominal size.

In combination, and particularly for large p and ¢,
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contemporaneous correlation dominates and F is undersized.

MGN is designed to remain unaffected by contemporaneous
correlation and does remain correctly sized so long as ¢ = 0.
Serial correlation, however, pushes empirical size above nominal
size.

MR is drastically undersized in small samples in the
presence of serial and/or contemporaneous correlation. The
asymptotic distribution obtains rather quickly, however,
resulting in approximately correct size for T > 100.

DM is only moderately oversized in small samples. In
percentage terms, the small-sample size distortion of DM is much
less severe than that of MR. Nominal and empirical size converge
very quickly in the case of pure contemporaneocus correlation, but
are slower to converge when strong serial correlation is present.

To summarize the results for the Gaussian case, it is clear
that the size of the MGN statistic is distorted when forecast
errors are serially correlated. MR and DM, on the other hand,
are approximately correctly sized for moderately large T. In
very small samples, MR is undersized while DM is oversized; the
size distortion associated with MR is the more severe.

Finaliy, let us discuss the case of non-Gaussian forecast
errors. The striking result--readily apparent in figqure 2--is
that F, MGN and MR are drastically missized in large as well as
small samples. DM, on the other hand maintains approximately

correct size throughout.
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5. Conclusions and Directions for Future Research

We have proposed a formal test of the null hypothesis of
equal forecast accuracy. We allow the forecast errors to be non-
Gaussian, non-zero mean, serially correlated and
contemporaneously correlated. Finally, and importantly for
applied work, we do not require the loss function to be
gquadratic. (That is, we do not reguire accuracy to be measured
by mean-squared error.)

For Gaussian forecast errors, the nominal and empirical size
of our test were generally the closest, although the Meese-Rogoff
test was a close contender. For non-Gaussian forecasﬁ errors,
however, all tests except ours were severely missized. We
believe that these results, combined with the fact that our test
is applicable under a wide variety of loss structures, makes our
test quite attractive.

We expect that our test will be a useful addition to the
applied econometrician’s tool kit. We hasten to add, however,
that comparison of forecast accuracy is but one of many
diagnostics that should be examined when comparing models. 1In
particular, the superiority of a particular model in terms of
forecast accuracy does not necessarily imply that forecasts from
other models contain no additional information. That, of course,
is the well-known message of the forecast combination and

encompassing literatures.'®

. 1% See Chong and Hendry (1986), Clemen (1989), Fair and Shiller
(1990), Diebold (1989) and Ericsson (1991).
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We now discuss several extensions of the results presented
here, which appear to be promising directions for future
research.

First, although our test performs well in samples as small
as 40 or 50, fewer forecast-error observations are sometimes
available in practice. Thus, it would be useful to have
available an exact finite-sample test of predictive accuracy, to
complement the asymptotic test presented here. Such a test could
be based, for example, on either the observed forecast errors or
the ranked forecast errors, using Fisher’s randomization
principle or the Wilcoxon’s rank-sum approach, respectively.
These ideas are pursued in Diebold (1991).

Second, although we have focused in this paper on the case
of two forecasts of one variable, extensions in several
directions would be useful:

(a) Multiple forecasts of one variable.

(b) oOne forecast for each of multiple variables. This

would aid, for example, in assessing the relative
degree of predictability of different variables in a
multivariate model.

(c) Most generally, multiple forecasts for each of multiple

variables.

Third, the framework developed here may be broadened to
examine not only whether forecast-error loss differentials have
nonzero mean, but also whether other variables may explain loss

differentials. For example, one could regress the loss
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differential not only on a constant, but also on a "stage of the
business cycle" indicator, in order to see whether relative
predictive performance differs significantly over the cycle.
Finally, the technology developed in this paper may prove
useful in developing a test of exclusion restrictions in time-
series regression, which is valid regardless of whether the data
are stationary or integrated. The desirability of such a test is
apparent from papers like Shapiro and Watson (1988), Stock and
Watson (1989), Christiano and Eichenbaum (1990), Rudebusch
(1990), and Toda and Phillips (1991), in which it is
simultaneously apparent that:
(a) it is difficult to determine reliably the integration
status of macroeconomic time series, and
(b) the conclusions of macroeconometric studies are often
critically dependent on the integration status of the
relevant time series.
One may proceed by noting that tests of exclusion restrictions
amount to comparisons of restricted and unrestricted sums of
squares. This suggests estimating the restricted and
unrestricted models recursively, and then using our test of
equality of the mean-squared errors of the respective one-step-
ahead forecasts. Some initial progress in this direction is made
by Diebold and Rudebusch (1991) in a framework of real-time

causality testing.
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Table 1
Empirical Size, Test Statistic F

/
Fo- eiei
€;€y
Gaussian Non-Gaussian

§=0.0 =0.5 §=0.9 §=0.0 =0.5 §=0.9
T p
8 .0 0.106 0.132 0.147 0.224 0.212 0.212
a8 .5 0.075 0.097 0.115 0.145 0.147 0.151
8 .9 0.007 0.013 0.019 g.000 0.003 0.006
16 .0 0.09¢9 0.134 0.148 0.264 0.254 0.256
16 .5 0.074 0.102 0.118 0.185 0.187 0.190
16 .9 0.004 - 0.007 0.012 0.000 0.001 0.003
32 .0 ¢.101 0.128 0.145 0.287 0.284 0.286
32 .5 0.070 0.102 0.118 0.212 0.212 0.214
32 .9 0.003 0.006 0.010 0.000 0.001 0.002
64 .0 0.096 0.127 0.142 0.292 0.297 0.299
64 .5 0.068 0.098 0.113 0.226 0.232 0.235
64 .9 0.002 0.005 0.008 0.000 0.001 0.003
128 .0 0.101 0.125 0.140 0.300 0.307 0.309
128 .5 0.068 0.098 0.114 0.240 0.245 0.250
128 .9 0.003 0.006 0.008 0.001 0.004 0.007
266 .0 0.100 0.126 0.141 0.299 0.307 0.312
256 .5 0.068 0.098 0.112 0.237 0.248 0.252
256 .9 0.003 0.006 0.008 0.002 0.007 0.010
512 .0 0.094 0.123 0.137 0.291 0.301 0.305
512 ) 0.073 0.096 0.108 0.235 0.246 0.252
512 .9 0.002 0.005 0.008 0.004 0.011 0.015

Notes: T is sample size, p is the contemporaneous correlation

between the innovations underlying the forecast errors and ¢ is the
coefficient of the MA(l) forecast error. All tests are at the 10% level.
10000 Monte Carlo replications are performed.
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Table 2
Empirical sSize, Test Statistic MGN

o~

MGN = Pxz
1 - ﬁi‘z
T-1
Gaussian Non-Gaussian
§=0.0 §=0.5 8=0.9 =0.0 #=0.5 §=0.9

T p

8 .0 0.106 0.158 0.192 0.329 0.307 0.318
2 <5 0.107 0.154 0.190 0.290 0,277 0.295
8 .9 0.109 0.148 0.188 0.148 0.184 0.209
16 .0 0.103 0.157 0.189 0.420 0.396 0.409
16 +5 0.101 0.159 0.187 0.370 0.359 0.367
16 .9 0.100 0.156 0.186 0.182 0.216 0.238
32 .0 0.108 0.155 c.183 0.467 0.468 0.468
32 .5 0.100 0.159 0.190 0.410 0.413 0.419
32 .9 0.105 0.161 0.190 0.201 0.238 0.257
64 .0 0.098 0.143 0.175 0.489 0.494 0.497
64 .5 0.101 0.149 0.180 0.429 0.444 0.447
64 .9 0.098 0.148 0.175 0.226 0.260 0.278
128 .0 0.106 0.148 0.173 0.504 0.516 0.524
128 .5 0.106 0.147 0.178 0.453 0.464 0.477
128 9 0.108 0.155 0.183 0.233 0.273 0.294
256 .0 0.104 0.151 0.178 0.507 0.525 0.532
256 .5 0.102 0.154 0.180 0.445 0.467 0.475
256 .9 0.108 0.156 0.181 0.229 0.263 0.284
512 .0 0.091 0.134 0.157 0.496 06.505 0.512
512 5 0.108 0.151 0.171 0.435 0.455 0.466
512 .9 0.114 0.158 0.180 0.212 0.265 0.286

Notes: T is sample size, p is the contemporaneous correlation

between the innovations underlying the forecast errors and ¢ is the
coefficient of the MA(1l) forecast error. All tests are at the 10% level.
10000 Monte Carlo replications are performed.
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Table 3
Empirical Size, Test Statistic MR

MR - T
A
Ea
T
Gaussian Non-Gaussian
f=0.0 6=0.5 #=0.9 #=0.0 §=0.5 §=0.9
T P
8 .0 0.003 0.002 0.001 0.054 0.011 0.005
8 .5 0.004 0.002 0.003 0.048 0.008 0.004
8 .9 0.004 0.001 0.001 0.010 0.002 0.001
16 .0 0.038 0.029 0.027 0.295 0.202 0.159
16 .5 0.037 0.027 0.026 0.252 0.168 0.128
leée .9 0.040 0.026 0.023 0.094 0.055 0.042
32 .0 0.072 0.065 0.062 0.411 0.335 0.307
32 D 0.068 0.066 0.064 0.359 0.294 0.268
32 .9 0.070 0.064 0.060 0.161 0.130 0.118
64 .0 0.083 0.078 0.077 0.466 0.408 0.381
64 -5 0.081 0.077 0.076 0.407 0.350 0.326
64 .9 0.083 0.083 0.076 0.200 0.169 0.156
128 .0 0.096 0.088 0.089 0.491 0.447 D.426
128 .5 0.098 0.089 0.090 0.441 0.391 0.367
128 .9 0.100 0.093 0.091 0.220 0.194 0.184
256 .0 0.098 0.093 0.093 0.500 0.459 0.435
256 .5 0.098 0.098 0.097 0.439 0.397 0.378
256 .9 0.105 0.097 0.096 0.222 0.199 0.188
5i2 .0 0.089 0.088 0.087 0.494 0.450 0.428
512 .5 0.105 0.098 0.097 0.432 0.390 0.370
512 .9 0.112 0.101 0.104 0.209 0.197 0.187

Notes: T is sample size, p is the contemporaneous correlation

between the innovations underlying the forecast errors and ¢ is the
coefficient of the MA(1) forecast error. All tests are at the 10% level.
10000 Monte Carlo replications are performed.
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Table 4
Empirical Size, Test Statistic DM

DM - _Ji_,
g
T
Gaussian Non-Gaussian

8=0.0 #=0.5 §=0.9 6=0.0 §=0.5 §=0.9
T P
8 .0 0.154 0.172 0.187 0.086 0.122 0.152
8 5 0.152 0.168 0.183 0.044 0.073 0.102
8 .9 0.149 0.166 0.183 0.061 0.093 0.114
16 .0 . 0.126 0.151 0.167 0.069 0.090 0.117
16 .5 0.121 0.151 0.165 0.040 0.057 0.078
16 .9 ¢G.118 0.143 0.157 D.049 0.072 0.090
32 .0 0.116 0.140 0.151 0.077 0.101 0.130
32 .5 0.109 0.141 0.154 0.059 0.077 0.098
32 .9 0.115 0.137 0.152 0.065 0.091 0.107 -
64 .0 0.110 0.125 0.136 0.088 0.116 0.145
64 +5 0.108 0.130 0.137 0.074 0.095 0.113
64 .9 0.104 0.126 0.137 0.078 0,107 0.123
128 .0 0.110 0.128 0.134 0.093 0.125 0.151
128 .5 0.110 0.126 0.137 0.082 0.110 0.133
128 .9 0.111 0.130 0.142 0.093 0.114 0.134
256 .0 0.106 0.125 0.135 0.09% 0.134 0.154
256 .5 0.106 0.132 0.140 0.088 0.113 0.137
256 .9 0.113 0.129 0.137 0.089 0.120 0.134
512 .0 0.096 0.112 0.121 0.097 0.130 0.150
512 .5 0.112 0.124 0.131 0.087 0.123 0.142
512 .9 0.114 0.130 0.138 0.089 0.121 0.136

Notes: T is sample size, p is the contemporaneous correlation

between the innovations underlying the forecast errors and § is the
coefficient of the MA(1) forecast error. All tests are at the 10% level.
10000 Monte Carlo replications are performed.
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Figure 1
Empirical Test Size, Gaussian Forecast Errors
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Figure 2
Empirical Test Size, Non-Gaussian Forecast Errors
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