Discussion Paper 66

Institute for Empirical Macroeconomics
Federal Reserve Bank of Minneapolis
250 Marquette Avenue
Minneapolis, Minnesota 55480-0291

June 1992

SOLVING NONLINEAR DYNAMIC MODELS
ON PARALLEL COMPUTERS

Wilbur John Coleman II*

Board of Governors of the Federal Reserve System

ABSTRACT

This paper describes an algorithm that takes advantage of parallel computing to solve discrete-time recursive systems that have an endogenous state variable.

*I wish to thank Raymond Board, Larry Christiano, Jon Faust, Christian Gilles, William Helkie, and Peter Tinsley for helpful comments, and the Institute for Empirical Macroeconomics for the use of their facilities. This paper should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or its staff.

Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and not necessarily those of the University of Minnesota, the Federal Reserve Bank of Minneapolis, or the Federal Reserve System.
Introduction

The last decade has witnessed a remarkable increase in the economic profession’s interest in solving complex dynamic general equilibrium models. Of particular note is the recent interest in studying models that contain some sort of heterogeneity: even the simplest of these models can become very complex very fast (see, e.g., Lucas (1980), Scheinkman and Weiss (1986), Aiyagari and Gertler (1990), Imrohoroglu and Prescott (1991), and Coleman (1992)). Recent efforts devoted to developing the technology to solve these models has concentrated on developing algorithms (see, e.g., Taylor and Uhlig (1990)), while comparatively little effort has been devoted to implementing these algorithms on the most advanced parallel computers available. To use these machines efficiently is not as straightforward as simply compiling existing code on them, as their efficient use requires that the code be specifically structured for parallel execution.2 This paper describes an algorithm for solving nonlinear dynamic models that can be programmed with the structure necessary for efficient execution on parallel computing systems. The effect of being able to use these systems is to enlarge significantly the class of models than can feasibly be solved.

The class of nonlinear dynamic models this algorithm is designed to solve consists of discrete-time recursive systems that may have an endogenous state variable. The first section of this paper provides a general characterization of these systems, which is used to define a particular nonlinear operator for which the system’s solution is a fixed point. This operator is used to define a sequence of functions that is assumed to converge to an equilibrium. For our

2Indeed, a common experience at the Institute for Empirical Macroeconomics is for someone to choose to run their program on a fast serial mainframe after being disappointed with the performance of the same program on the CRAY X-MP supercomputer.
purpose, computing this sequence involves many independent and identical calculations and thus forms a natural set-up for parallel computing. The particular implementation of this algorithm, however, depends on what type of parallel system is used. There are essentially two types: (1) a single-instruction multiple-data (SIMD) computer, such as a CRAY X-MP supercomputer, or (2), a multiple-instruction multiple-data (MIMD) computer, such as an Intel iPSC/860 hypercube.3 A more readily available alternative that can approximate an MIMD computer is a network of stand-alone workstations. This paper briefly describes the defining characteristics of both SIMD and MIMD systems, and then describes versions of the algorithm that are optimal for each system.

This paper is organized as follows. First, the nonlinear operator and associated sequence of functions are defined. This section is followed by an example, and then by a brief discussion on how to approximate these sequences on a digital computer. Implementations of this algorithm are then considered for both SIMD and MIMD computers, and performance results based on an example are presented. These sections are followed by some concluding remarks.

\textit{The Nonlinear Operator}

Let z_t denote a vector of exogenous state variables at time t. Assume the law of motion for z_t is Markovian and can be written as

$$z_{t+1} = f(z_t, \varepsilon_{t+1}),$$

where ε_{t+1} consists of iid random variables drawn from a distribution μ. Let x_t denote a vector of endogenous state variables and let u_t denote a vector of control variables (i.e.,

3In this terminology, the standard serial computer is a single-instruction single-data (SISD) computer.
variables chosen by economic agents, or variables, such as prices, that are set such that markets clear), which evolve according to

\[x_{t+1} = g(x_t, z_t, u_t), \quad u_t = h(x_t, z_t). \]

The functions \(f \) and \(g \) are given, and the task at hand is to find a control function \(h \) that satisfies a set of equilibrium conditions.

For many problems these equilibrium conditions can be written as

\[P(x_t, z_t, u_t) = \int Q(x_{t+1}, z_{t+1}, u_{t+1}) \mu(\sigma_{t+1}), \]

where \(x, z, \) and \(u \) evolve according to \(g, f, \) and \(h \) respectively. Using these equilibrium conditions, and the laws of motion specified above, given a control function \(h \) define the control function \(Ah \) such that

\[P[x, z, (Ah)(x, z)] = \int Q(g[x, z, (Ah)(x, z)], f(z, \varepsilon), h[g(x, z, (Ah)(x, z)), f(z, \varepsilon)]) \mu(\varepsilon). \]

An equilibrium control function is a fixed point \(h = A(h) \) of the nonlinear operator \(A \). For this paper assume that \(A \) is well defined and that Gauss-Seidel iterations based on \(A \) (i.e., \(h_{n+1} = A(h_n), n \geq 0, h_0 \) given) converge to a fixed point of \(A \). Some examples where these properties are worked out theoretically can be found in Lucas and Stokey (1987), Coleman (1991,1992), Greenwood and Huffman (1992), and Coleman, Gilles, and Labadie (1992).

An Example

As an example, consider the Brock-Mirman (1972) Stochastic Growth Model with serially correlated productivity shocks. In this model \(z \) represents the productivity shock, \(x \)
represents the capital stock, and u represents consumption. The function $h(x,z)$ thus represents the consumption function, and for the gross production function $F(x,z)$ the function

$$g(x,z,u) = F(x,z) - u$$

represents the capital accumulation function. Also, $P(x,z,u)$ equals the marginal utility function, say $M(u)$, and $Q(x,z,u)$ equals discounted marginal utility times the marginal rate of transformation, say $\beta M(u)F_X(x,z)$, so that (1) becomes

$$M((Ah)(x,z)) = \beta M\{h[(x,z,(Ah)(x,z)),f(z,e)]\}F_X\{g(x,z,(Ah)(x,z)),f(z,e))\} \mu(\eta e).$$

This condition simply states that, at the equilibrium, households are indifferent between consuming or investing an additional unit of output.

Approximating the Equilibrium on a Computer

Consider the following way to approximate a fixed point of A that is suitable for a computer. First, define a grid $D = (x_i, z_j), i = 1, \ldots, n_x; j = 1, \ldots, n_z$. Second, define the finite-dimensional set H_D in which a typical element is a function h that consists of values on the grid D along with an interpolation rule to compute the values off the grid. Third, approximate the integral in (1) by a quadrature rule with n_e points e_k and weights w_k: $((e_k, w_k), k = 1, n_e)$. Given an initial function $h_0 \in H_D$, compute h_1 on the grid D such that

$$P[x_i, z_j, h_1(x_i, z_j)] = \sum_{k=1}^{n_e} Q[g(x_i, z_j, h_1(x_i, z_j)), f(z, e_k), h_0(g(x_i, z_j, h_1(x_i, z_j)), f(z, e_k))] w_k$$

(2)
for \(i = 1, \ldots, n_x; j = 1, \ldots, n_z \). Compute values of \(h_1 \) off the grid according to the interpolation rule, so that \(h_1 \in H_D \). In this way a sequence \(\{ h_n \} \) is computed.\(^4\) Note that computing \(h_1 \) evaluated at the grid point \((x', z')\) is independent of computing \(h_1 \) evaluated at any other grid point \((x'', z'')\). This feature allows the above algorithm to be structured so that it takes advantage of parallel computing systems.

MIMD Computers

An MIMD computer can be thought of as a collection of processing elements (PEs) and a network over which they can communicate (and thereby cooperate) with each other. Some examples of a network are a ring in which each PE communicates with its two closest neighbors, a completely connected network in which each PE communicates with all other PEs, and a star with one central PE to which all other PEs are connected. Each PE has access to private memory and may also have access to memory shared by each of the PEs. It is important to note that in developing an MIMD computer the chief technological problem is inventing an efficient network. Substantial communication between the PEs, their competition for shared memory and the attention of a controlling PE can all contribute to a network bottleneck. Almasi and Gottlieb (1989) present a thorough and authoritative treatment of these issues.

The star configuration seems optimal for solving the models described here. With this configuration, refer to the controlling PE and associated memory as the master PE and the remaining PEs with associated memory as the slave PEs. In the context of this paper, each slave PE loads the section of the program that computes \(h_1(x_i z_j) \) for a given function \(h_0 \) and grid point \((x_i, z_j)\). The program running on the master PE initializes \(h_0 \), sends it to each of the slave PEs (or places it into shared memory), and then sends each slave PE a different

\(^4\)For the Stochastic Growth Model, Coleman (1990) describes this procedure in more detail.
value (or group of values) of the state vector \((x_{i,j}z_j)\). A particular slave PE receives \((x_{i,j}z_j)\), computes \(h_1(x_{i,j})\), and sends the answer back to the master PE, which immediately sends another value of the state vector to this slave PE. In this way all the slave computers are always active in computing \(h_1\). Once an answer is received for all the values of the state vector on the grid, \(h_1\) is completely computed. The master PE stops if convergence between \(h_0\) and \(h_1\) is achieved; otherwise it replaces \(h_0\) by \(h_1\), sends the new \(h_0\) to all the slave PEs, and starts anew in computing \(h_1\).

The Example, Continued

Consider solving the Stochastic Growth Model on a master-slave system. In particular, in the notation above, suppose \(M(u) = u^\tau, \tau = .5; \beta = .95; F(x,z) = e^z x^\alpha + (1-\delta)x, \alpha = .33, \delta = .1\); and suppose \(z\) evolves according to \(z' = \rho z + \epsilon\), \(\rho = .95, \epsilon\) is drawn from a Normal(0,\(\sigma^2\)) distribution, \(\sigma = .1\). Choose 50 evenly spaced grid points for the log of the capital stock \(\log x\) in the interval [-1,4]. Choose 20 evenly spaced grid points for \(z\) in the interval [-1.5,1.5]. Choose 5 points in the Hermite-Gauss quadrature rule that approximates integration with respect to the Normal distribution. Use a bilinear interpolation routine on the \(\log\) of \(h_0\). Given \(h_0\), use a secant-based routine to solve for \(h_1\) on the grid and suppose convergence between \(h_0\) and \(h_1\) is obtained when the log difference between the two on the grid is less than \(10^{-6}\). Finally, initialize \(h_0\) to \(h_0(x,z) = \gamma F(x,z), \gamma = 1 - \alpha\beta/(1 - (1-\alpha)\delta\beta)\), which initializes \(h\) so that it gives the correct value at the steady states (one for each \(z\)) in the corresponding deterministic model.

The configuration used to solve this model consists of three SUN Sparc-2 workstations linked via Ethernet. The software program PVM (parallel virtual machine; see Beguelin, et.

5These parameter values (except for \(\delta\), which is set to 0) are used in Taylor and Uhlig (1990).

6Ethernet communicates at a speed of 10MB per second.
al., 1991) is used to configure this network into a master-slave system (although the physical set-up looks nothing like a star). There is no shared memory in this configuration; all communication is achieved through messages passed between PEs (i.e., workstations). Table 1 reports the performance of this configuration when the slave PEs compute h_1 for 100 values of the state vector at a time.

Table 1

Time to Solve the Stochastic Growth Model on a Master-Slave System

<table>
<thead>
<tr>
<th>no. of SUN Sparc-2s7</th>
<th>elapsed time (in seconds)8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

As Table 1 shows, for relatively few workstations the speed of the algorithm is roughly linear in the number of workstations. That is, twice the workstations results in twice the speed (half the time). Since each workstation computes one-tenth of h_1 at a time (100 grid points out of 1000), we should expect this linear dependence to continue up to ten workstations. Beyond that each workstation must receive a smaller fraction of the total number of grid points. This leads to an increase in overall communication time (due to overhead in sending a message), and thus we should expect some degradation in performance when more than ten workstations are used.9 Many problems, however, require a grid consisting of 100,000 points

7When more than one workstation is used the host workstation acts as both the master PE and one slave PE. When one workstation is used the PVM program is not used.

8Elapsed time refers to the difference in the time on a clock from when the program was submitted to when it finished. During this time there were no other users on the system.

9On the other hand, if the workstations ran at different speeds or had varying degrees of excess capacity, then reducing the number of grid points sent to each workstation would allow the master workstation to allocate more of the load to the faster workstation (you would like all the workstations to be done at the same time). This may even reduce the elapsed time to run the program. In this case there is some tradeoff between communication costs and load balancing.
(or more); based on this example we should then expect the speed to be linear in the number of workstations for even rather large numbers of workstations.\footnote{Think of solving a version of Lucas' (1980) continuum-household model with a serially correlated monetary growth rate. Suppose we approximate the distribution of money across households by a four parameter family, then a typical household's state vector consists of its money holdings, the monetary growth rate, and the four parameters of the distribution. If the grid consists of twenty values for money, and five values for each of the remaining five state variables, then the total grid size is $20 \times 5^5 = 62,500$. If this problem took fifty hours to solve on one workstation (probably not feasible), it would take five hours to solve on ten workstations (which can be solved overnight). It seems reasonable to say that many academic departments have access to at least ten workstations.} Also, if the time to compute h_1 for a single grid point is fairly long then the communication time becomes relatively less important, and here again we should expect the speed to be linear in the number of workstations for large numbers of workstations.

\textit{SIMD Computers}

An SIMD computer should be thought of in a much different way than an MIMD computer. An SIMD computer consists of an array of processing elements that operate on different data, but at any moment in time they all must execute the same instruction. In this way all the processing elements are always in perfect synchronization, thus avoiding the networking difficulties encountered in building an MIMD computer. This feature is achieved, however, at a cost of demanding much more structure on the program to exploit this capability.

For the purposes of this paper it helps to simply think of an SIMD computer as executing, subject to some restrictions, the innermost DO loops in a FORTRAN program a certain number of blocks at a time. By number of blocks I mean that a 64-processor computer executes these loops 64 blocks at a time, so that 640 iterations through the loop only takes 10 executions. This feature is referred to as \textit{vectorization}. For vectorization to occur there are a variety of restrictions (although not without exception) that an innermost DO loop must satisfy,
and I will only list four of them here. First, there must exist a least one vector on the left side of an equal sign. Second, the index for this vector must increment by a constant amount after each iteration through the loop. Third, there can be no calls to a subroutine within the loop. And fourth, there can be no conditional jump out of the loop. For this paper the last two restrictions pose the most difficulty.

As the largest loop usually consists of the one which loops over the grid \(D \), to vectorize this algorithm efficiently requires placing this loop inside all others. In this context the loop is executed \(n_x n_z \) times, and \(h_1 \) (or any other function evaluated at each grid point) is the vector on the left side of an equal sign. The effect of being able to vectorize these loops is to compute \(h_1 = A(h_0) \) \(n_v \) blocks at a time, where \(n_v \) is the number of processors an SIMD computer has. Understanding how this is achieved requires going into a bit more detail concerning how \(h_1 \) is computed.

Computing \(h_1 \) requires solving the system of equations (1) for each value of the state vector on the grid \(D \). To be specific, suppose \(h_1(x,z) \) is computed via Newton's algorithm. Let \(T(\xi;x,z,h_0) \) represent the right side minus the left side of eq. (1) for an arbitrary guess \(\xi \) of \(h_1(x,z) \):

\[
T(\xi;x,z,h_0) = \int_\Omega [g(x,z,\xi),f(z,\xi),h_0[g(x,z,\xi),f(z,\xi)]\mu(d\epsilon) - P(x,z,\xi).
\]

The solution \(h_1(x,z) \) satisfies \(T[h_1(x,z);x,z,h_0] = 0 \). Denote the derivative of \(T \) with respect to \(\xi \) as \(T_1(\xi;x,z,h_0) \). Given a guess \(h'_1(x,z) \) for the root \(h_1(x,z) \) corresponding to the state \((x,z) \), the new guess \(h''_1(x,z) \) satisfies

\[
T[h'_1(x,z);x,z,h_0] + T_1[h'_1(x,z);x,z,h_0][h''_1(x,z) - h'_1(x,z)] = 0.
\]

\[11\text{See CRAY-2 Computing, Introduction to (1988) for more details.}\]
Suppose, also, that the derivative T_1 is approximated by a finite difference. The core of the program consists of the following steps: (i) begin with $h'_1(x,z)$, (ii) evaluate $T[h'_1(x,z);x,z,h_0]$, and $T_1[h'_1(x,z);x,z,h_0]$, and (iii) compute $h''_1(x,z)$. An efficient vectorization of this algorithm is then such that h''_1 is computed n_y blocks at a time. Specifically, an evaluation of $T[h'_1(x,z);x,z,h_0]$ is performed n_y blocks at a time, and given $T[h'_1(x,z);x,z,h_0]$ and $T_1[h'_1(x,z);x,z,h_0]$, h''_1 is computed n_y blocks at a time. To satisfy the restriction that there be no conditional jumps out of the innermost DO loop, solving for $h''_1(x,z)$ for n_y values of the state vector requires that convergence be obtained for all these values before proceeding to the next block.

For a given vector h'_1, evaluating $T[h'_1(x,z);x,z,h_0]$ n_y blocks at a time is fairly straightforward. As evaluating T usually involves an additional loop over n_x that represents the quadrature formula, one must place the loop over $n_x n_z$ inside the n_y loop. This simply involves looping over the conditioning information set for every possible transition to a state next period. Also, the interpolation routine must be placed in-line to satisfy the restriction that there can be no calls to a subroutine within the innermost loop. This is usually no problem for simple interpolation routines such as piecewise multilinear interpolation over a uniform grid.

For a given state (x,z), denote the dimension of the control vector $h(x,z)$ by n_h. If the dimension n_h is at most two then given $T[h'_1(x,z);x,z,h_0]$ and $T_1[h'_1(x,z);x,z,h_0]$ it is fairly straightforward to compute h''_1 within the loop over $n_x n_z$ (it is easy to invert a 2×2 matrix). If the dimension is greater than two then computing h''_1 requires solving a system of linear equations

$$M_n y_n = b_n$$

for each n, where M_n and b_n vary over the loop counter $n = 1, \ldots, n_x n_z$, y_n corresponds to $h''_1(x,z)$, M_n corresponds to $T_1[h'_1(x,z);x,z,h_0]$, and b_n corresponds to $-T[h'_1(x,z);x,z,h_0]$. The routine based on LU factorization of M_n to solve for y_n involves a
rather complicated nesting of loops and thus is not well-suited for vectorizing this problem. An alternative is to use an iterative method to compute \(y_n' \), such as the successive overrelaxation (SOR) generalization of Gauss-Seidel's method, and placing the loop for this iterative procedure outside the one over \(n \). Gauss-Seidel's iterative method for solving a system of linear equations involves writing \(M_n \) as the sum of its strictly upper triangular portion, say \(U_n \), and its lower triangular portion plus the diagonal entries, say \(V_n \), so that \(M_n = V_n + U_n \). Starting from a given \(y_n' \), the next guess \(y_n'' \) is computed according to

\[
V_n y_n'' = -U_n y_n' + b_n.
\]

Since the upper triangular portion of \(V_n \) consists of zeros, \(y_n'' \) can be easily computed recursively. The SOR method involves writing \(V_n \) as the sum of its strictly lower triangular part, \(L_n \), and its diagonal entries, \(D_n \), so that \(V_n = L_n + D_n \). Then for a given \(\omega \), the next guess \(y_n'' \) is computed according to

\[
(D_n + \omega L_n)y_n'' = [(1-\omega)D_n - \omega U_n]y_n' + \omega b_n.
\]

For \(\omega = 1 \) this method reduces to the Gauss-Seidel method. The optimal choice of \(\omega \) is the one which makes the largest eigenvalue of \((D_n + \omega L_n)^{-1}[(1-\omega)D_n - \omega U_n] \) as small as possible, but except for certain special cases the eigenvalues and optimal choice for \(\omega \) cannot be obtained explicitly. (Furthermore, expect for special cases one cannot guarantee convergence to the solution \(y_n'' \).) It can be shown, however, that a necessary condition for convergence is \(0 < \omega < 2 \), and for a large class of matrices \(M_n \), the optimal choice for \(\omega \) is

\[12\text{See Young (1971) for a discussion of this method. The SOR method was developed to handle very large linear systems, but as argued here it may work well in solving on a vector processor a large number of small linear systems.}

\[13\text{The product of the eigenvalues of the } n_h \times n_h \text{ matrix } (D+\omega L)^{-1}[(1-\omega)D - \omega U], \text{ say } \Pi \lambda_i, \text{ is equal to its determinant. Recall that the determinant of a product is the product of the}\]
between 1 and 2.14 In practice, before computing a good approximation to the equilibrium one usually experiments with the algorithm while computing a fairly crude approximation, and during this experimentation phase one could try a few values of ω.

\textit{The Example, Continued}

Consider again the Stochastic Growth Model along with the parameter values presented above, but now as executed on a CRAY X-MP vector processor. Although not strictly correct, think of this configuration as one in which n_v is about eight.15 Table 2 reports performance statistics for this set-up. Serial code refers to code written for efficient execution on a serial computer, vector code refers to code written for efficient execution on a vector processor,

determinants, and the determinant of a triangular matrix is the product of the diagonal elements, so $\prod \lambda_i = (1-\omega)^{n_h}$. Thus, $\max(\lambda_i) < 1$ only if $0 < \omega < 2$, and convergence of the SOR iterations requires $\max(\lambda_i) < 1$.

14See Young (1971, ch. 6).

15The CRAY X-MP approximates vectorization through pipelining. See Almasi and Gottlieb (1989) for a detailed discussion of pipelining. To briefly describe pipelining, a floating point operation takes a certain number of steps (i.e., clock cycles, which are usually between 6 and 10) to execute. Instead of executing all these steps before proceeding to the next floating point operation, pipelining executes these steps on a vector in lock-step fashion: the first step in the second floating point operation is performed at the same time as the second step in the first floating point operation, and so on. The CRAY X-MP has 64 registers of high speed memory that stores the vector which is pipelined. A true 64-processor SIMD computer would execute all 64 floating point operations at the same time. As pipelining economizes on hardware, it is evidently a cost-effective alternative to a true SIMD computer.

If a floating point operation took 8 clock cycles, then aside from start-up time a true 64-processor SIMD computer would take 8 clock cycles to process each vector of length 64. On the other hand, aside from start-up time a pipelined SIMD computer would take 64 clock cycles, which is equivalent to what a true 8-processor SIMD computer would take. This is what led me to set $n_v = 8$, but the start-up time to process vectors on a true 8-processor SIMD computer is likely to be significant, so n_v should probably be a bit higher.

This discussion actually pertains to each processor the CRAY X-MP has, and the CRAY X-MP has four processors. Strictly speaking, then, it is more accurate to say the CRAY X-MP is a 4-processor MIMD computer that approximates an SIMD computer on each processor. The MIMD capability of the CRAY X-MP is not used in this paper, although the results of the first part of this paper suggests that both the MIMD and SIMD features of the CRAY X-MP can be exploited—even at the same time.
serial CRAY refers to the CRAY X-MP with vectorization turned off, and vector CRAY refers
to the CRAY X-MP with vectorization turned on. Code explicitly tailored to the CRAY X-MP
vector processor ran five times faster than code written for a serial computer (.5 seconds versus
2.6 seconds). Although not overwhelming, this is an appreciable gain in speed. Note also that
simply compiling existing code written for a serial computer did not take advantage of the
vector processor.

Table 2

<table>
<thead>
<tr>
<th>set-up</th>
<th>execution time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial code, serial CRAY</td>
<td>2.60</td>
</tr>
<tr>
<td>serial code, vector CRAY</td>
<td>2.60</td>
</tr>
<tr>
<td>vector code, serial CRAY</td>
<td>5.00</td>
</tr>
<tr>
<td>vector code, vector CRAY</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Solving the Stochastic Growth Model did not require using the successive
overrelaxation method to solve a system of linear equations (because $n_h = 1$). To get an idea
of the efficiency of the SOR method, consider solving

$$
\begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.
$$

Table 3 compares solving this system 6400 times on the CRAY X-MP using two different
methods. The first method is LU factorization as programmed in Press, et. al., (1988). The

16Execution time refers to the time the CRAY X-MP spent executing the program on one of its
four processors (the other three processor were not used).
second method is SOR with various values of ω (starting with the guess $x = (1,1,1)$;17 note that the solution is $x = (1.5, 2.0, 1.5)$). Convergence of the SOR method was said to obtain if successive iterations were within 10^{-6} of each other in the sup norm. As can be seen in this table, solving the system using the SOR method with a good choice of ω ($\omega = 1.2$) is thirty times faster than the LU factorization method (.017 versus .480 seconds). Since the execution time for the SOR method depends on the initial guess of the solution, it is difficult to know how much of the increase in speed to attribute to vectorization and how much to attribute to a good initial guess. Note, however, that the SOR method with vectorization turned on is seven times faster than when vectorization is turned off (.017 versus .123 seconds). Using the SOR method in this way thus can take advantage of vectorization, and it may thus significantly increase the speed in solving models for which $n_h \geq 3$.

Table 3

Time to Solve a 3×3 Linear System 6400 Times on a Vector Processor

<table>
<thead>
<tr>
<th>method</th>
<th>execution time (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU factorization, vector CRAY</td>
<td>.480</td>
</tr>
<tr>
<td>SOR, $\omega = 1$, vector CRAY</td>
<td>.036</td>
</tr>
<tr>
<td>SOR, $\omega = 1.1$, vector CRAY</td>
<td>.028</td>
</tr>
<tr>
<td>SOR, $\omega = 1.2$, vector CRAY</td>
<td>.017</td>
</tr>
<tr>
<td>SOR, $\omega = 1.3$, vector CRAY</td>
<td>.023</td>
</tr>
<tr>
<td>SOR, $\omega = 1.2$, serial CRAY</td>
<td>.123</td>
</tr>
</tbody>
</table>

17In solving a particular linear system while computing h_{n+1}, with the SOR method you can start with a guess of the solution equal to the corresponding solution after computing h_n. After the first couple of iterations of $\{h_n\}$ these guesses should be reasonably accurate, so the SOR method may even dominate the LU factorization method on a serial computer (for both small and large n_h).
Concluding Remarks

Parallel computing is an emerging technology that may make it feasible to solve models we would not have dreamed of solving a decade ago. Whether this technology delivers, say, a thousand-fold increase in speed over the next decade depends on both technological innovations and on the existence of applications that can take advantage of this technology. Indeed, given that the efficiency of an MIMD or SIMD computer depends on the application run on these systems, the success of a technological innovation depends every bit as much on these applications. In this light, this paper shows that a large class of models in economics can use this technology, even in the state we see this technology embodied in current hardware.

References

Appendix

This appendix contains some of the programs, data, and sample output that are used in
the text. Some additional programs to simulate the Stochastic Growth Model are also
included. These files are available on diskette from the author.

Short description of the files:

sgm.txt - Contains a description of the program sgm.f.
sgm.f - FORTRAN program that solves the Stochastic Optimal Growth Model.
hermit.f - Subroutine called by sgm.f that computes Hermite-Gauss quadrature points
 and weights.
sgm.dat - Data read by sgm.f.
tpath.f - FORTRAN program that simulates time paths using the solution computed by
 sgm.f.
gasdev.f - Subroutine called by tpath.f that returns Normal(0,1) random variates.
smpl.out - Sample output from sgm.f and tpath.f using sgm.dat.
vsgm.f - version of program sgm.f that is written for a vector processor.
vsgm.dat - Data read by vsgm.f.
The FORTRAN program sgm.f solves the Stochastic Optimal Growth Problem using the algorithm outlined in Coleman (JBES, 1990). The problem is to solve for the fixed point \(c = A(c) \), where \(A \) is defined by

\[
\begin{align*}
 u'[(Ac)(x,z)] &= \beta*E(u'[c(f(x,z)-(Ac)(x,z),z')f'(f(x,z)-(Ac)(x,z),z'))], \\
 u'(c) &= \phi(-\tau), \\
 f(x,z) &= \exp(\phi)*x^{\phi} + \phi x, \\
 z' &= \rho z + q, \text{ } q \text{ distributed Normal}(0, \sigma^{2}).
\end{align*}
\]

This note defines the program's variables and outlines the program's flow.

Definition of Variables:

- \(nx \): number of grid points for the capital stock \(x \).
- \(x_{\min} \): smallest grid point for the log of the capital stock.
- \(x_{\max} \): largest grid point for the log of the capital stock.
- \(x \): vector of length \(nx \) containing equally spaced grid points from \(x_{\min} \) to \(x_{\max} \) for the log of the capital stock.
- \(nz \): number of grid points for the productivity shock \(z \).
- \(z_{\min} \): smallest grid point for the productivity shock.
- \(z_{\max} \): largest grid point for the productivity shock.
- \(z \): vector of length \(nz \) containing equally spaced grid points from \(z_{\min} \) to \(z_{\max} \) for the productivity shock.
- \(nq \): number of quadrature points for \(q \) used to approximate integration with respect to the Normal(0, \(\sigma^{2} \)) distribution.
- \(qz \): vector of length \(nq \) containing the quadrature points for \(q \).
- \(qw \): vector of length \(nq \) containing the quadrature weights for \(q \).
- \(azp \): matrix of dimension \(nq \) by \(nz \) which equals \(\alpha \exp(\rho z(i)+qz(j)) \).
- \(kzp \): matrix of dimension \(nq \) by \(nz \) containing values such that \(z(kzp(i,j)) \) is the nearest grid point \(z \) less than \(\rho z(i)+qz(j) \).
- \(tz \): matrix of dimension \(nq \) by \(nz \) containing the distance (between 0 and 1) to the nearest grid point greater than \(\rho z(i)+qz(j) \).
- \(f \): matrix of dimension \(nx \) by \(nz \) that equals production at the grid points.
- \(cpm \): matrix of dimension \(nx \) by \(nz \) containing the log of consumption \(c \) at the grid points at the beginning of each iteration. Consumption off the grid points is determined using bilinear interpolation. The consumption function is initialized such that \(cpm(i,j) \) is correct at the "deterministic steady state" for each \(z \), and equals the same fraction of output for other capital stocks.
- \(cm \): matrix of dimension \(nx \) by \(nz \) corresponding to the values determining consumption after each iteration.
- \(eps \): vector of length 2 containing the convergence parameters.
- \(maxit \): limit imposed on the number of iterations.

Program Flow:

The main program loops over calls to the subroutine \(a \), which successively computes \(cm = a(cpm) \). The program stops if \(cm \) is within \(eps(2) \) of \(cpm \). The subroutine \(a \) uses a secant version of Newton's algorithm to compute the root \(cm(i,j) \) to the function in the subroutine \(zfun \). A root is obtained if the function in \(zfun \) is within \(eps(1) \) of zero. The function in \(zfun \) is the rhs - lhs of the Euler equation at the top of this page. The solution \(cm \) is written to the file sgm.fun.
Program to solve the Stochastic Optimal Growth Model.

Written by John Coleman (updated: April, 1992).

```fortran
implicit double precision (a-h,o-z)
dimension cpm(100,20),cm(100,20),f(100,20),x(100),z(20),
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
* rho,sigma,xmin,dx,nx,nz,nq,maxit
c
write(*,'(a35)') 'stochastic optimal growth model'
open(10, file='sgm.dat')
read(10,'(10x,f10.4)') beta,tau,rho,sigma,alpha,delta,eps,
* xmin,xmax,zmin,zmax
read(10,'(10x,i10)') nx,nz,nq,maxit
c
call hermit(nq,qz,qw)
scalez = sigma*dsqrt(2.0d0)
scalew = 1.0d0/dsqrt(3.141592654d0)
do 100 i = 1, nq
   qz(i) = scalez*qz(i)
   qw(i) = scalew*qw(i)
100 dx = (xmax-xmin)/dfloat(nx-1)
dz = (zmax-zmin)/dfloat(nz-1)
c
dapc = 1.0d0 - alpha*beta/(1.0d0-(1.0d0-alpha)*delta*beta)
do 200 kx = 1, nx
   x(kx) = xmin + dfloat(kx-1)*dx
do 500 kz = 1, nz
   z(kz) = zmin + dfloat(kz-1)*dz
do 300 i = 1, nq
      zp = rho*z(kz) + qz(i)
      azpe(i,kz) = alpha*dexp(zp)
      kzp(i,kz) = 1 + dmax1(0.0d0, (zp-zmin)/dz)
      if (kzp(i,kz).ge.nz) kzp(i,kz) = nz-1
      zr = zmin + dfloat(kzp(i,kz))*dz
      tz(i,kz) = (zr-zp)/dz
300 do 400 kx = 1, nx
      f(kx,kz) = dexp(z(kz))*dexp(x(kx))*alpha + delta*dexp(x(kx))
500 cpm(kx,kz) = dlog(dapc*f(kx,kz))
400 continue
500 continue
c
sup = 1.0d10
do 800 numit = 1, maxit
   call a
   sup = 0.0d0
do 700 kz = 1, nz
   do 600 kx = 1, nx
      sup = dmax1(sup, dabs(cm(kx,kz)-cpm(kx,kz)))
600 cpm(kx,kz) = cm(kx,kz)
700 continue
    write(6,'(a10,i5,a10,f10.4)') 'a iter. #',numit,'norm = ',sup
   if (sup.le.eps(2)) goto 900
800 continue
```
write(*,'(a40)') ' maximum no. of iterations exceeded'
continue

open(11, file='sgm.fun')
write(11, '(8f15.5)') ((cm(kx,kz), kx=1,nx), kz=1,nz)
stop
d

c***

 subroutine a
 c
 c cm = a(cpm)
 c***
 implicit double precision (a-h,o-z)
 dimension cpm(100,20), cm(100,20), f(100,20), x(100), z(20),
 * azpe(21,20), kzp(21,20), tz(21,20), eps(2), qz(21), qw(21)
 common/pm/cpm, cm, f, x, z, azpe, kzp, tz, eps, qz, qw, beta, tau, alpha, delta,
 * rho, sigma, xmin, dx, nx, nz, nq, maxit
 do 300 kx = 1, nx
 do 200 kz = 1, nz
 croot = dexp(cpm(kx,kz))
 croot = dlog(croot/(f(kx,kz)-croot))
 croot2 = croot + eps(2)
 call zfun(croot,kk,kz,zval)
 call zfun(croot2,kk,kz,zval2)
 if (dabs(zval2).lt.dabs(zval)) then
 swap = croot
 croot = croot2
 croot2 = swap
 swap = zval
 zval = zval2
 zval2 = swap
 endif
 do 100 numit = 1, maxit
 adj = (croot2-croot)*zval/(zval-zval2)
 if (dabs(adj).lt.eps(1)) goto 200
 croot2 = croot
 zval2 = zval
 croot = croot + adj
 call zfun(croot,kx,kz,zval)
 if (dabs(zval).lt.eps(1)) goto 200
 write(*,'(a40)') ' warning: max no. of iter. in z exceeded'
 cm(kx,kz) = dlog(f(kx,kz)/(1.0d0+dexp(-croot)))
 200 continue
 return
 enddo
 300 continue
 end

 c***

 subroutine zfun(croot,kx,kz,zval)
 c
 c input: state (kx,kz), guess croot. output: zval = rhs - lhs of foc
 c***
 implicit double precision (a-h,o-z)
 dimension cpm(100,20), cm(100,20), f(100,20), x(100), z(20),
 * azpe(21,20), kzp(21,20), tz(21,20), eps(2), qz(21), qw(21)
 common/pm/cpm, cm, f, x, z, azpe, kzp, tz, eps, qz, qw, beta, tau, alpha, delta,
 * rho, sigma, xmin, dx, nx, nz, nq, maxit
 c = f(kx,kz)/(1.0d0+dexp(-croot))
 xpe = f(kx,kz) - c
 xp = dlog(xpe)
 kxp = 1 + dmax1(0.0d0, (xp-xmin)/dx)
 if (kxp.ge.nx) kxp = nx-1
\[\text{xr} = \text{xmin} + \text{dfloat(kxp)} \times \text{dx} \]
\[\text{tx} = (\text{xr} - \text{xp}) / \text{dx} \]
\[\text{w} = 0.0 \times 0 \]
\[\text{do} 100 \text{ i = 1, nq} \]
\[\text{cp} = \text{tx} \times \text{tz(i, kz)} \times \text{cpm(kxp, kzp}(i, \text{kz})) \]
\[+ (1.0 \times 0.0 - \text{tx}) \times \text{tz(i, kz)} \times \text{cpm(kxp+1, kzp}(i, \text{kz})) \]
\[+ (1.0 \times 0.0 - \text{tx}) \times (1.0 \times 0.0 - \text{tz(i, kz)}) \times \text{cpm(kxp+1, kzp}(i, \text{kz}) + 1) \]
\[+ \text{tx} \times (1.0 \times 0.0 - \text{tz(i, kz)}) \times \text{cpm(kxp, kzp}(i, \text{kz}) + 1) \]
\[\text{cp = dexp(cp)} \]
\[\text{dfxp = azpe(i, kz) \times xpe**((alpha - 1.0 \times 0.0) + delta)} \]
\[\text{w} = w + \text{cp**(-tau)} \times \text{dfxp} \times \text{qw(i)} \]
\[\text{zval} = \text{beta} \times w - \text{c**(-tau)} \]
\[\text{return} \]
\[\text{end} \]
subroutine hermit(nn,x,a)
 Computes nn points x and weights a for Hermite-Gauss quadrature
 that approximates integration with respect to exp(-x**2).
 This program was copied from Stroud and Secrest, Gaussian
 implicit double precision (a-h,o-z)
 dimension x(50),a(50)
 eps = 1.0d-10
 fn = nn
 nl = nn - 1
 n2 = (nn + 1)/2
 cc = 1.7724538509*gamm(f)n/(2.0d0**n1)
 s = (2.0d0*fn + 1.0d0)**0.16667d0
 do 10 i = 1, n2
 if (i-1) 10, 1, 2
 10 if (i-2) 10, 3, 4
 if (i-3) 10, 5, 6
 if (i-4) 10, 7, 8
 if (i-5) 10, 9, 1
 if (i-6) 10, 11, 0
 if (i-7) 10, 13, 1
 if (i-8) 10, 15, 2
 if (i-9) 10, 17, 3
 if (i-10) 10, 19, 4
 if (i-11) 10, 21, 5
 if (i-12) 10, 23, 6
 if (i-13) 10, 25, 7
 if (i-14) 10, 27, 8
 if (i-15) 10, 29, 9
 if (i-16) 10, 31, 10
 if (i-17) 10, 33, 11
 if (i-18) 10, 35, 12
 if (i-19) 10, 37, 13
 if (i-20) 10, 39, 14
 if (i-21) 10, 41, 15
 if (i-22) 10, 43, 16
 if (i-23) 10, 45, 17
 if (i-24) 10, 47, 18
 if (i-25) 10, 49, 19
 if (i-26) 10, 51, 20
 if (i-27) 10, 53, 21
 if (i-28) 10, 55, 22
 if (i-29) 10, 57, 23
 if (i-30) 10, 59, 24
 if (i-31) 10, 61, 25
 if (i-32) 10, 63, 26
 if (i-33) 10, 65, 27
 if (i-34) 10, 67, 28
 if (i-35) 10, 69, 29
 if (i-36) 10, 71, 30
 if (i-37) 10, 73, 31
 if (i-38) 10, 75, 32
 if (i-39) 10, 77, 33
 if (i-40) 10, 79, 34
 if (i-41) 10, 81, 35
 if (i-42) 10, 83, 36
 if (i-43) 10, 85, 37
 if (i-44) 10, 87, 38
 if (i-45) 10, 89, 39
 if (i-46) 10, 91, 40
 if (i-47) 10, 93, 41
 if (i-48) 10, 95, 42
 if (i-49) 10, 97, 43
 if (i-50) 10, 99, 44
 continue
 do 20 i = 1, nn
 20 x(i) = -1.0d0*x(i)
 return
end

subroutine hroot(x,nn,dpn,pnl,eps)
 implicit double precision (a-h,o-z)
 iter = 0
 iter = iter + 1
 call hrecur(p,dp,pnl,x,nn)
 d = p/dp
 x = x - d
 if (dabs(d) - eps) 3,3,2
 if (iter - 10) 1,3,3
 dpn = dp
return
end

c
subroutine hrecur(pn,dpn,pnl,x,nn)
implicit double precision (a-h,o-z)
pl = 1.0d0
p = x
dpl = 0.0d0
dp = 1.0d0
do 1 j = 2, nn
 fj = j
 fj2 = (fj - 1.0d0)/2.0d0
 q = x*p - fj2*pl
 dq = x*dp + p - fj2*dp
 pl = p
 p = q
 dpl = dp
 dp = dq
1 continue
pn = p
dpn = dp
pnl = pl
return
end
c
double precision function gamm(x)
implicit double precision (a-h,o-z)
gam(y) = ((((0.035868343d0*y - 0.193527818d0)*y
* + 0.482199394d0)*y - 0.756704078d0)*y + 0.918206857d0)*y
* - 0.897056937d0)*y + 0.988205891d0)*y - 0.577191652d0)*y + 1.0d0
z = x
if (z) 1,1,4
1 gamm = 0.0d0
write(2,*) z
2 format(2x,19harg error for gamma ,e15.6)
goto 14
4 if (z - 70.0d0) 6,1,1
6 if (z - 1.0d0) 8,7,9
7 gamm = 1.0d0
goto 14
8 gamm = gam(z)/z
goto 14
9 za = 1.0d0
10 z = z - 1.0d0
if (z - 1.0d0) 13,11,12
11 gamm = za
goto 14
12 za = za*z
goto 10
13 gamm = za*gam(z)
14 continue
return
end
File: sgm.dat.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>0.95</td>
</tr>
<tr>
<td>tau</td>
<td>0.50</td>
</tr>
<tr>
<td>rho</td>
<td>0.95</td>
</tr>
<tr>
<td>sigma</td>
<td>0.10</td>
</tr>
<tr>
<td>alpha</td>
<td>0.33</td>
</tr>
<tr>
<td>delta</td>
<td>0.90</td>
</tr>
<tr>
<td>eps1</td>
<td>1.0d-8</td>
</tr>
<tr>
<td>eps2</td>
<td>1.0d-4</td>
</tr>
<tr>
<td>xmin</td>
<td>-1.0d0</td>
</tr>
<tr>
<td>xmax</td>
<td>4.0d0</td>
</tr>
<tr>
<td>zmin</td>
<td>-1.5d0</td>
</tr>
<tr>
<td>zmax</td>
<td>1.5d0</td>
</tr>
<tr>
<td>nx</td>
<td>50</td>
</tr>
<tr>
<td>nz</td>
<td>20</td>
</tr>
<tr>
<td>nq</td>
<td>5</td>
</tr>
<tr>
<td>maxit</td>
<td>1000</td>
</tr>
<tr>
<td>nt</td>
<td>10000</td>
</tr>
</tbody>
</table>
Program to simulate time paths for the Stochastic Optimal Growth Model

implicit double precision (a-h,o-z)
dimension cm(100,20),eps(2),v(4),vmin(4),vmax(4),vmean(4),stdev(4)
character*8 vname(4)
data vname/' x', ' z', 'c(x,z)', 'f(x,z)'/

open(10,file='sgm.dat')
oread(10,'(10x,f10.4)') beta,tau,rho,sigma,alpha,delta,eps,
* xmin,xmax,zmin,zmax
read(10,'(10x,i10)') nx,nz,nq,maxit,nt
open(11,file='sgm.fun')
read(11,'(8f15.6)') ((cm(kx,kz),kx=1,nx),kz=1,nz)
dx = (xmax-xmin)/dfloat(nx-1)
dz = (zmax-zmin)/dfloat(nz-1)

***** initialize variables to compute summary statistics
nvars = 4
do 100 i = 1, nvars
 vmean(i) = 0.0d0
 vmin(i) = 1.0d10
 vmax(i) = -1.0d10
100
 stdev(i) = 0.0d0
xs = (xmin+xmax)/2.0d0
zs = (zmin+zmax)/2.0d0

***** simulate time series of length nt
idum = -1
do 500 n = 1, nt
***** compute new values of variables
v(1) = xs
v(2) = zs
kx = 1 + dmaxl(0.0d0, (xs-xmin)/dx)
if (kx.ge.nx) kx = nx-1
xr = xmin + dfloat(kx)*dx
tx = (xr-xs)/dx
kz = 1 + dmaxl(0.0d0, (zs-zmin)/dz)
if (kz.ge.nz) kz = nz-1
zr = zmin + dfloat(kz)*dz
tz = (zr-zs)/dz
c = tx*tz*cm(kx,kz) + (1.0d0-tx)*tz*cm(kx+1,kz)
 * + (1.0d0-tx)*(1.0d0-tz)*cm(kx+1,kz+1)
 * + tx*(1.0d0-tz)*cm(kx,kz+1)
v(3) = c
 c = dexp(c)
 y = dexp(zs)*dexp(xs)**alpha + delta*dexp(xs)
v(4) = dlog(y)

***** compile summary statistics
do 600 i = 1, nvars
 vmean(i) = vmean(i) + v(i)
 if (v(i) .lt. vmin(i)) vmin(i) = v(i)
 if (v(i) .gt. vmax(i)) vmax(i) = v(i)
600
 stdev(i) = stdev(i) + v(i)**2

***** compute next period's values of the state variables
xs = dlog(y-c)
zs = rho*zs + sigma*gasdev(idum)
continue
c

***** compute summary statistics
do 800 i = 1, nvars
 vmean(i) = vmean(i)/dfloat(nt)
800 stdev(i) = dsqrt(stdev(i)/dfloat(nt)-vmean(i)**2)
c
write(*,'(/25x,a20)') 'summary statistics'
write(*,'(/10x,4a15)') (vname(i),i=1,nvars)
write(*,'(/a8,4f15.4)') 'mean',(vmean(i),i=1,nvars)
write(*,'(/a8,4f15.4)') 'min',(vmin(i),i=1,nvars)
write(*,'(/a8,4f15.4)') 'max',(vmax(i),i=1,nvars)
write(*,'(/a8,4f15.4)') 'sd',(stdev(i),i=1,nvars)
return
end
double precision function gasdev(idum)
c Returns a Normal(0,1) random variate (idum < 0 for first call).
c This program was copied from Press, Flannery, Teukolsky, and
implicit real*8 (a-h,o-z)
data iset/0/
 if (iset.eq.0) then
 v1 = 2.0d0*ranl(idum) - 1.0d0
 v2 = 2.0d0*ranl(idum) - 1.0d0
 r = v1**2 + v2**2
 if (r.ge.1) goto 1
 fac = dsqrt(-2.0d0*dlog(r)/r)
 gset = v1*fac
 gasdev = v2*fac
 iset = 1
 else
 gasdev = gset
 iset = 0
 endif
return
end

c
double precision function ranl(idum)
implicit real*8 (a-h,o-z)
dimension r(97)
parameter (m1=259200,ial=7141,icl=54773,rm1=1.0d0/m1)
parameter (m2=134456,ia2=8121,ic2=28411,rm2=1.0d0/m2)
parameter (m3=243000,ia3=4561,ic3=51349)
data iff /0/
 if (idum.lt.0 or. iff.eq.0) then
 iff = 1
 ixl = mod(icl-idum,m1)
 ixl = mod(ial*ixl+icl,m1)
 ix2 = mod(ixl,m2)
 ixl = mod(ial*ixl+icl,m1)
 ix3 = mod(ixl,m3)
 do 11 j = 1, 97
 ixl = mod(ial*ixl+icl,m1)
 ix2 = mod(ia2*ix2+ic2,m2)
 r(j) = (dfloat(ixl) + dfloat(ix2)*rm2)*rm1
 continue
 idum = 1
 endif
ixl = mod(ial*ixl+icl,m1)
ix2 = mod(ia2*ix2+ic2,m2)
ix3 = mod(ia3*ix3+ic3,m3)
j = 1 + (97*ix3)/m3
if (j.gt.97 .or. j.lt.1) pause
ranl = r(j)
r(j) = (dfloat(ixl) + dfloat(ix2)*rm2)*rm1
return
end
File: smpl.out.

stochastic optimal growth model

\begin{verbatim}
a iter. # 1 norm = .0695
a iter. # 2 norm = .0511
a iter. # 3 norm = .0378
a iter. # 4 norm = .0280
a iter. # 5 norm = .0205
a iter. # 6 norm = .0149
a iter. # 7 norm = .0106
a iter. # 8 norm = .0074
a iter. # 9 norm = .0050
a iter. # 10 norm = .0033
a iter. # 11 norm = .0021
a iter. # 12 norm = .0013
a iter. # 13 norm = .0007
a iter. # 14 norm = .0004
a iter. # 15 norm = .0002
a iter. # 16 norm = .0002
a iter. # 17 norm = .0001
a iter. # 18 norm = .0001
\end{verbatim}

summary statistics

\begin{verbatim}
\begin{tabular}{lcccc}
 & \(x\) & \(z\) & \(c(x,z)\) & \(f(x,z)\) \\
 mean & 1.1528 & -.0069 & .1372 & 1.4619 \\
nmin & -.2480 & -1.1442 & -1.2460 & .0658 \\
nmax & 2.8203 & 1.1893 & 1.7877 & 3.1249 \\
 sd & .4443 & .3218 & .4386 & .4428 \\
\end{tabular}
\end{verbatim}
File: vsgn.f.

c

c**c
Version of the program to solve the Stochastic Optimal Growth Model
that is written for a vector processor computer.
Written by John Coleman (updated: April, 1992).
c**c

implicit double precision (a-h,o-z)
dimension cpm(200),cm(200),f(200),x(100),z(20),
* azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
* rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec

write(*,'(a35)') 'stochastic optimal growth model'
open(10,file='vsgn.dat')
read(10,'(10x,f10.4)') beta,tau,rho,sigma,alpha,delta,eps,
* xmin,xmax,zmin,zmax
read(10,'(10x,i10)') nx,nz,nq,maxit,nvec
ns = nx*nz
c
 call hermit(nq,qz,qw)
scalez = sigma*dsqrt(2.0d0)
scalew = 1.0d0/dsqrt(3.141592654d0)
do 100 i = 1, nq
 qz(i) = scalez*qz(i)
100 qw(i) = scalew*qw(i)
c
dx = (xmax-xmin)/dfloat(nx-1)
dz = (zmax-zmin)/dfloat(nz-1)
c
dapc = 1.0d0 - alpha*beta/(1.0d0-(1.0d0-alpha)*delta*beta)
do 200 kx = 1, nx
 x(kx) = xmin + dfloat(kx-1)*dx
do 500 kz = 1, nz
 z(kz) = zmin + dfloat(kz-1)*dz
do 300 i = 1, nq
 zp = rho*z(kz) + qz(i)
 azpe(i,kz) = alpha*dexp(zp)
 kzp(i,kz) = 1 + dmax1(0.0d0, (zp-zmin)/dz)
 if (kzp(i,kz).ge.nz) kzp(i,kz) = nz-1
 zr = zmin + dfloat(kzp(i,kz))*dz
300 tz(i,kz) = (zr-zp)/dz
do 400 kx = 1, nx
 k = kx + nx*(kz-1)
 f(k) = dexp(z(kz))*dexp(x(kx))*alpha + delta*dexp(x(kx))
400 cpm(k) = dlog(dapc*f(k))
500 continue
c
 sup = 1.0d10
do 800 numit = 1, maxit
 call a
 sup = 0.0d0
do 600 k = 1, ns
 sup = dmax1(sup, dabs(cm(k)-cpm(k)))
600 cpm(k) = cm(k)
write(6,'(a10,i5,a10,f10.4)') 'a iter. #',numit,'norm = ',sup
if (sup.le.eps(2)) goto 900
800 continue
 write(*,'(a40)') ' maximum no. of iterations exceeded'
900 continue
 c
 c open(11,file='sgm.fun')
c write(11,'(8f15.6)') ((cm(k),k=1,ns)
 stop
 end
 c
 c**
 subroutine a
 c
 cm = a(cpm)
c**
 implicit double precision (a-h,o-z)
 dimension cpm(2000),cm(2000),f(2000),x(100),z(20),
 * azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
 common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
 * rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec
 do 100 k = 1, ns
 croot(k) = dexp(cpm(k))
 croot(k) = dlog(croot(k)/(f(k)-croot(k)))
 croot2(k) = croot(k) + eps(2)
 call zfun(croot,zval)
 call zfun(croot2,zval2)
 do 200 k = 1, ns
 if (dabs(zval2(k)).gt.dabs(zval(k))) goto 200
 swap = croot(k)
 croot(k) = croot2(k)
 croot2(k) = swap
 swap = zval(k)
 zval(k) = zval2(k)
 zval2(k) = swap
200 continue
 nbk = 1 + (ns-1)/nvec
 do 500 nk = 1, nbk
 n1 = 1 + (nk-1)*nvec
 n2 = min0(n1+nvec-1,ns)
 do 400 numit = 1, maxit
 conv = 0.0d0
 znorm = 0.0d0
 cdir$ shortloop
 do 300 k = n1, n2
 adj = (croot2(k)-croot(k))*zval(k)/(zval(k)-zval2(k))
 conv = dmax1(conv, dabs(adj))
 znorm = dmax1(znorm, dabs(zval(k)))
 croot2(k) = croot(k)
 zval2(k) = zval(k)
300 croot(k) = croot(k) + adj
 if (conv.lt.eps(2) .or. znorm.lt.eps(2)) goto 500
 call zfuns(croot,n1,n2,zval)
400 continue
 write(*,'(a40)') ' warning: max. no. of iter. in z exceeded'
500 continue
 do 600 k = 1, ns
600 cm(k) = dlog(f(k)/(1.0d0+dexp(-croot(k))))
 return
 end
 c
 c**
subroutine zfun(croot,nl,n2,zval)
 c input: state (kx,kz), guess croot. output: zval = rhs - lhs of foc
 c**
 implicit double precision (a-h,o-z)
 dimension cpm(2000),cm(2000),f(2000),x(100),z(20),
 * azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
 common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
 * rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec
 cdir$ shortloop
 do 100 k = nl, n2
 c(k) = f(k)/(1.0d0+dexp(-croot(k)))
 xpe(k) = f(k) - c(k)
 xp = dlog(xpe(k))
 kxp(k) = 1 + dmaxl(0.0d0, (xp-xmin)/dx)
 if (kxp(k).ge.nx) kxp(k) = nx-1
 xr = xmin + dfloat(kxp(k))*dx
 tx(k) = (xr-xp)/dx
 100
 w(k) = 0.0d0
 cdir$ shortloop
 do 200 k = nl, n2
 kz = 1 + (k-1)/nx
 il = kxp(k) + nx*(kzp(i,kz)-1)
 i2 = il + 1
 i3 = i2 + nx
 i4 = i3 - 1
 cp = tx(k)*tz(i,kz)*cpm(i1)
 * + (1.0d0-tx(k))*tz(i,kz)*cpm(i2)
 * + (1.0d0-tx(k))*(1.0d0-tz(i,kz))*cpm(i3)
 * + tx(k)*(1.0d0-tz(i,kz))*cpm(i4)
 cp = dexp(cp)
 dfxp = azpe(i,kz)*xpe(k)**(alpha-1.0d0)+delta
 200
 w(k) = w(k) + cp**(-tau)*dfxp*qw(1)
 300
 cdir$ shortloop
 do 400 k = nl, n2
 400 zval(k) = beta*w(k) - c(k)**(-tau)
 return
end
 c**
 subroutine zfun(croot,zval)
 c input: state (kx,kz), guess croot. output: zval = rhs - lhs of foc
 c**
 implicit double precision (a-h,o-z)
 dimension cpm(2000),cm(2000),f(2000),x(100),z(20),
 * azpe(21,20),kzp(21,20),tz(21,20),eps(2),qz(21),qw(21)
 common/pm/cpm,cm,f,x,z,azpe,kzp,tz,eps,qz,qw,beta,tau,alpha,delta,
 * rho,sigma,xmin,dx,nx,nz,ns,nq,maxit,nvec
 do 100 k = 1, ns
 c(k) = f(k)/(1.0d0+dexp(-croot(k)))
 xpe(k) = f(k) - c(k)
 xp = dlog(xpe(k))
 kxp(k) = 1 + dmaxl(0.0d0, (xp-xmin)/dx)
 if (kxp(k).ge.nx) kxp(k) = nx-1
 xr = xmin + dfloat(kxp(k))*dx
\begin{verbatim}
tx(k) = (xr-xp)/dx
w(k) = 0.0d0
do 300 i = 1, nq
 do 200 k = 1, ns
 kz = 1 + (k-1)/nx
 i1 = kxp(k) + nx*(kzp(i,kz)-1)
 i2 = i1 + 1
 i3 = i2 + nx
 i4 = i3 - 1
 cp = tx(k)*tz(i,kz)*cpm(i1)
 * + (1.0d0-tx(k))*tz(i,kz)*cpm(i2)
 * + tx(k)*(1.0d0-tz(i,kz))*cpm(i3)
 * + tx(k)*(1.0d0-tz(i,kz))*cpm(i4)
 dexp = dexp(cp)
 dfxp = azpe(i,kz)*xpe(k)**(alpha-1.0d0)+delta
 w(k) = w(k) + cp**(-tau)*dfxp*qw(i)
 enddo
200 continue
 do 400 k = 1, ns
 zval(k) = beta*w(k) - c(k)**(-tau)
 enddo
300 continue
400 return
end
\end{verbatim}
File: vsgm.dat.

beta 0.95
tau 0.50
rho 0.95
sigma 0.10
alpha 0.33
delta 0.90
eps1 1.0d-8
eps2 1.0d-4
xmin -1.0d0
xmax 4.0d0
zmin -1.5d0
zmax 1.5d0
nx 50
nz 20
nq 5
maxit 1000
nvec 64