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1. INTRODUCTION

This paper presents 2 vnified approach to nonstationary and

nonlinear time-series analysis based on time-variable and state-
dependent parameter estimation. The approach exploits recur-

sive filtering and smoothing algorithms which derive directly.

from that best known of all recursive estimation algorithms, the
Kaiman filter.

The factor which most differentiates the Kalman filter from
the prior recursive estimation algorithms of Gauss and Plackett
(see e.g. Young,1984) is its inherent ability to handle nonsta-
tionary systems; i.c. systerns where any, or all, of the parame-
ters in the dynamic model of the stochastic dynamic system
being investigated may exhibit temporal vaciation over the ob-
servation interval. But, as Kalman admitted in his seminal paper
(1960), this state space model and its variable parameters would
need to be known exacily by the analyst, prior to the applica-
}iop of the filter, in order to exploit this advantage of the formu-

ation,

In the light of this limitation in the Kalman filter, thete has
been much interest in the development of a more general
procedure for the extrapolation, interpolation and smoothing of
nonstationary or nonlinear time series; a procedure which inher-
ently incorporates time-variable parameter estimation and al-
lows the user to praceed directly from the time-series data to re-

cursive filtering and smoothing without the nced to define the |
madel parameters prior to the analysis. Clearly, such a proce-

dure needs to utilize estimation techniques which are inherently
able to handle models with parameters that may vary over time,
This was, indeed, one of the major motivations for the
development of recursive techniques for Time Varlable
Parameter (TVP) estimation, in which the object is to "model
the parameter variations” (Young,19692,b,1984) by some form
of stochastic state-space model.

Such TVP models have been in almost continual use in the
control and system'’s field since the early 1960's, when Kopp
and Orford (1963) and Lee (19G4) pioncered their use in the
wake of the Kalman (1960) and Kalman and Bucy {1961} pa-
pers. Interestingly, these two early but important contributions
demonstrate rather different approaches to TVP estimation.
Kopp and Orford recognised the nonlineardity of the state-param-
eter estirnation problem caused by the multiplication of the state
varinbles by the unknown parameters, and introduced a method
which is now universally known as the Extended Kalman
Filter. Here the unknown parameters are also considered as

state vadables and are adjoined to the state vector to formn a
composite state-parameter vector. This composite state vector is
then estimated by a suboptimal linearisation procedure applied
at each recursion.

Lee, on the other hand, realised that, by allowing the system
model to appear only in the “observation equation” of the state
space system, with the parameter variations zlone being de-

_scribed by the Gauss-Markov state equations, it was possible to
estimate the parameters using a time variable version of the re-
cursive linear least squares estimation algorithm. in other
waords, Lee reversed the roles of the states and the parameters,
with the states appearing only in an “obscrvation space™
spanned by the measured variables in the model and with the
parameters defining a “parametric” state space of dimension
greater than, or equal to, the number of unknown parameters.
This introduced some limitations on the approach, however,
since the dynamic model for the system had to be of a type
which would allow it to be considered from the standpoint of
the observation equation alone. We shall have much more to say
on this approach to TVP estimation later in the paper.

One of Lee’s proposals was that the parameter variation
should be characterised by a first order vector Random Walk
(RW) model which, because of its vnity roots, would allow for
wide temporal variability in the parameters over any finite ob-
servation interval. The present first author made liberal use of
this same device in the 1960's within the context of self adaptive
control design (Young, 196%9a, 1970, 1971,1981), and proposed
an extension to the idea if @ priori information was available
about the nature of the parametric time varability (Young,
1969b). Later, in the early 197('s, he also reminded & statistical
audience of the extensive system's literature on recursive esti-
mation and its application to TVP estimation (see
Young,1971b,1975; a?so the comments of W.D.Ray on the
paper by Harrison and Stevens (1976).

Since the carly 1970's, time varying parameter models have
also also been proposed and studied extensively in the statistical
and econometrics literatures. For example, a major line of de-
velopment has been linked to the well known “structural” or
"component” time-seres model' {e.g Harmrison and Sievens

1, The term “structural”™ has been used in other connections in
both the statistical and cconomics literatures and so we will
employ the former term.,



1971,1976; Kitagaws,1981; Harvey,1984). Here, the approach
is ar extension of the Lee procedure (although this is not overtly
acknowledged by the authors), in which the parameter varia-
tions are dgcscribcd by a higher dimensional, vector random-
walk type model termed 51: “linear growth tquation” by
Harrison and Stevens. In some of these references, the potential
importance of recursive smoothing is also highlighted and the
methodology can be compared with that proposed in the sys-
tems literature by Norton (1975) and pursued in more detail by |
Jakeman and Young (1979,1984),

The latter reference also shows how the recursive state-
space algorithms are closely related and, in some cases yield °
equivalent results, to other smoothing procedures based on the
optimisation technique known as “regularisation”, in which the
smoothed estimate 15 obtained by minimising (non-recursively)
a least squares criterion function which includes constraints on
the rates of change of the estimated variables. Recent research
in the economic literature (e.g. Kalaba and Tesfatsion, 1988),

. which terms this approach “flexible least squares”™ also uses this

kind of optimisation technique. However, we feél thal the §fafs-— -

space smoothing procedures used in the present paper provide a
tmote elegant and flexible method of smoothing estimation.

In the wider econometrics Hterature, there have been nu-
merous contributions involving the concept of TVP estimation
and Engle et af (1988), for example, present a recent brief
review of this topic and discuss an interesting application to
electricity sales forecasting, in which the model is a time
variable parameter regression plus an adaptive trend described
by an RW model. OF considerable importance, particularly in
the economics context, is the work of Sims and his co-workers
(e,g. Doan et al, 1984) on Bayesian Vector AutoRegressive
Modelling and Foreeasting (BVAR). Here the Vector
AutoRegressive (VAR) model is extended so that its potentially
time-variable parameters are each assumed to be described by
random walk models. The model is then considered within a
Bayesian framework, somewhat similar to that used by Harrison
and Stevens, but with the Bayesian hyper parameters estimated
via maximum likelihood using special methods of numerical op-
timisation.

Recent research by the present first author and his collabo-
rators {e.g. Young,1988ab.c; Young and Ng,1983, Ng and
Young,1988; Ng et al,1988} has also been concerned with the
component type of time-series model and, like the earlier contri-
butions in this context, employs the standard Kalman filter-iype
racursive filtering and smoothing algorithms, Except in the final
forecasting and smoothing stages of the analysis, however, the
justification for using these algorithms is not based on either a

ayesian interpretation (Harrison and Stevens,1976) or “opti-
mality" in a prediction error or maximum likelihood (ML) sense
(Harvey,1984), Rather, the algorithms are utilised in a manner
which aHlows for straightforward and effective sequential
spectral decomposition of the time series into quasi-
orthogonal components. A unifying element in this analysis is
the modelling of nonstationary state variables and time variable
parameters by a class of second order random walk models
which are able to handle abrupt changes, or even discontinui-
ties, in the states or parametess, so extending its range of appli-
cability.

Finally, two previous papers (Young,1978; Priestley,1980)
have attempted to consider the use of TVP estimation in a more
general context; namely the identification and estimation of
nonlinear stochastic, dynamic systems. The present first author
(Young;1978) approached this problem from an engineering
standpoint, noting that normal Taylor seres linearisation of
nonlinear dynamic systems usually produced timne variable coef-
ficient linearised models which could be estimated by TVP ver-
sions of the various recursive parameter estimation algorithms
that have been developed in recent years. In this manner, the na-
ture of the nonlinearity could be inferred and the model could
either be useful in its own right, or as a prelude fo nonlinear es-
timation based on the identified nonlinear structure and using
techniques such as maximum likelihood.

Priestiey {1980) used a more formal approach in which he

developed various linearised forms of the nanlinear models, in-
cluding Volterra series expansions. However, his basic ap-
proach, as demonstrated in a later paper (Haggan et al,1984), is
very similar to that of Young: he also uses a Taylor series ex-
pansion of & particular nonlinear model form similar to that used
by Young, and he develops recursive algorithms 1o estimate the
time variable parameters in this linearised representation.

The major difference between the Young and  Priestley
methods lies in the assumptions made about the time-variability
of the parameters. Based on the nature of the first order terms in

{ié lihearisation expansion, Priestley notes that the parameters
will be “state dependent” and he uses this information to definc
the form of the stochastic model for the parameter variations.
Young, on the other hand recognises this state dependency but
widens the utility of his approach by utilising more gencral sto-
chasdc tmodels for parameter variation. In this manner, he al-
lows for dependency on other variables; variables that are not
necessarily “states” in the more limited definition of the state-
space employed by Priestley.

In the present paper, we will explore further the concepts
put forward by Young and Priestlcy and show how they can be
cast within a general recursive estimation and smoothing con-
text.

1. THE TIME-SERIES MODEL

In order to simplify the presentation, we will first consider a
scalar time-series y(k) which can be described by a nonlincar
siochastic, dynamic equation of the form,

Y00 = £ y-1), ... ulk-m), ...
e U CK), menelop) ]+ ek (1)

where f{.} is a reasonably behaved, nonlinear function depen-
dent upon past values of y(k), as well as present and past values
of a deterministic input (or exogenous) variable vector u(k) with
clements u;(k), i=1.2, ... . 1; the present and past values of a vee-

tor U(K) of other exogenous variables Uk), j=1,2, ..,s;and a

white noise process e(k).The vecior Utk) represents any other
variables which may affect the system nonlinearly but whose
importance in this regard is not clear prior to time-serics analy-
sis.

In this setting, e(k) can be considered as an “innovations™
process, with the nonlinear function acting as a “nonlinear pro-
dictor” or conditional expectation of the y(k) given all informa-
tion and data on the system up to the kth sample, ie.,

F(x(} = E[y(klk}

where (k) is, in general, a non-minimal state-space (NMSS)
vector (sce Priestley,1980;, Young et al,1987; Burridge and
Wallis, 1988) for the system with elements y(k-i), i=1,2,..n;
ufk-), i=1,2, .., 17 j=0,1,..., m; Ui(k-h) j=L...s k=01, q;
and e(k-1,1=1,2,...p.

Using the normal systets approach to linearisation and, for
simplicity, considering only a single exogenous variable ufk),
we can now expand the RHS of equation (1) in a Taylor series
about [[x(ky)] at some sampling instant kg, i.c.,

of{x(k)}

y(k) = fluck,) + m] {y(k-1) - ylkg-i}
k=k,

j=1
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+ first order terms in Utk-h), h=1,2, ..., q +

+ higher order terms ... (2}

At this point, we assume that the first order sensitivity with re-
spect to the U(k) variables is small enough for us o ignore
them, in addition to the usual higher order terms in the other
variabies, Note that this does nor mean that these variables are

unimpaortant: clearly, the partial derivatives of f{x(k}} with re-
spect to the other variables may well be functions of the U(k)
variables. In particular, we might expect these variables to influ-
ence the low frequency, wide ranging changes in these deriva-




tives and, therefore, i the resulting time vadable parameters of
the linearised model.

With some manipulation of equation (2}, y(k) can be repre-
sented in the form,

¥ + i’,amn sl =Tix()

i=1

Y b X&) uytke)

=l j=0

4 iclrx(k)] ek + o(k) 3
=1

in this equation, a, [x(k}] . by [x(k)], ¢ [x(k)] and Tlx(k)] are
coefficients in the model which are functions of the NMSS vec-
tor and the sampling index k. As a result, they can be considered
both as “state dependent” (Priestley, 1980} or “time variable”
{Young,1978) parameters, depending upon the perspective of
the analyst. The Time Variable Parameter (TVP) models intro-
duced by Young in this context are & wider class of models than
the State Dependent Models (SDM) of Priestley since they not
only include the SDM as a special case, but are also based on a
wider definition of the state which acknowliedges the potential
presence and importance of the additional variables U(k). These
additional variables, if present and found to be significant, may
lead to the requirement for additional terms in the expansion (2)
and will almost certainly affect the time variable nature of the
coefficients a;(k), bij(k), ty(k) and T(k). We believe that the

TVP concept posed in these terms is more natural in a systems
context than the SDM since it allows for a wider variety of situ-
ations encountered in applied systems analysis.

As a concrete example of the TVP model, consider an aero-
space vehicle designed to fly over an extended flight envelope.
The dynamic behaviour of the vehicle, at any particular flight
condition, will be characterised by the perturbations of those
variables which describe the motion relative to the local refer-
ence frame, Over a complete flight mission, however, the coef-
ficients of the linearised equations of motion for these variables
{the “stability and control dertvatives™) will also be functions of
those other “flight condition” vartables (playing the tole of the
U (k) variables in our formulation of the general model), such as
dynamic pressure and altitude, which define the changing envi-
ronment and significantly affect the dynamic characteristics of
the vehicle, Indeed, it is well known that iocal linearisation at a
given flight condition often results in a linearised model such as
(3), or its deterministic eguivalent, with parameters that can be
assumred sensibly constant at that flight condition for purposes
such as control system design, Thus, in the present context, the
SDM would be linear with constant parameters, while the TVP
mode]l would acknowledge the “nonlinearity-in-the-large™ and
provide a time varying parameter linear model for the whole
flight envelope, Tndeed, this is the motivation behind the self
adaptive control system of Yeung ¢1969a,b;1981) to which we
shall refer later. .

Another example from an entirely different area is the mod-
eiling of socioecconomic lime-series. Here, the UfX) variables
could represent overall, long-term economic and political fac-
tors which give rise to such phenomena as quasi-periodic “‘eco-
nomic” or “trade” cycles. Ag a result, we would expect that the
sensitivity of the nonlinear function to the major model vari-
ables would be functions of these factors, This would lead to
long term variations in all the coefficients of the linearised
moadel: for example, the T(k) parameter would then be associat-
cd with long-term “trends™ in the measured time-series, the vari-
ations of which would reflect these trade cycle cffects. This
kind of thinking Tlics behind the Bayesian Vector
AutoRegression (BVAR) approach to data-based economic
modelling and fmtcastin% used by the Minnesota School of
economists (e.g. Sims,1986).

It is now convenient to write equation (3) in the following
vector form,

¥ = 200 T a(k) + e(k) @

where,

2()T = [ 1, y(k-1); e s Y0l 07T (), ooe , uT(k-m),
e(k-1), vouee , @k} |}

a0’ = [ T(R), 2y(K), s 80K, Bk, coms By KDy s
Biay o DK €KY, eeee €10 ]

and where the TVYP nature of the model is denoted by the tem-
poral dependence of the parameters in the a vector. This tempo-
ral dependence could, of course, be due to state dependence in
the sense of Priestley and the later model identification and esti-
mation procedures will acknowledge this possibility. For sim-
plicity of exposition, however, we will drop the state dependent
argument and proceed under the assumption that the parameters
will, for various reasons, be dependent upon the time index k.
Note that it is templing, at this tirne, to compare this form of the
model with the well known, constant parameter ARMAX
model. In fact, the maodel {4) has much wider significance than
the ARMAX model, as we shall sce in later sections of the
paper.

In order to complete the model description, it is now neces-
sary to introduce some form of mathematical description for the
temporal variation in the parameters of model (4). There are a
number of different ways of approaching this problem, but here
we will choose to “model the parameter variations” (see
Young,1978,1984) by the following Gauss-Markov process,

x(K) = Fk-1) x(k-1) + G{k-1)1(k-1) &)

where x{k) is a “state” vector representing the parameters in
atk) as well as any other elements required in the complete state
description of their evolution through time. The dinension of
x(k) will be equal to0 or greater than that of a. The masrices
F(k-1) and G(k-1) are, respectively, appropriately dimensioned
transition and input matrices whose eioments may also vary
over time; while 1itk) is a white noise vector with zero mean
and (possibly time-variable) covariance matrix Qk), ie.,

] 1 for k=]
E{n&nk j=Qk H o=
P ¢ B { 0 for kstj

The nature of the matrices Fik-1), G(k-1), Q(k} and the state
vector x(k) (including varicus possible forms for their temporal
dependence) will become clearer in Section 5. of the paper,
when we discuss special examples of the general model. For the
maoment, it will suffice to note that this model, in one form or
another, has been employed on many occasions over the past
30 years as a device for modelling parameter variations. For ex-
awple, with ¥ and G both equal to the identity matrix, the
?Itio\gf)l is simply the well known and used vector Random Walk
From the inherent complexity of the model {1} with its ill-
defined, nonlingar functional dependence, we have evolved the
fairly straightforward TYP representation described by equa-
tions (4) and (5). The major estimation problem associated with
the model arises from the presence of the unobservable stochas-
tic terms e{k-1) 1o e(k-p} in 2{k). However, the model can be
simplificd further to a linear TVP relationship if it is possible 10
asswme that the stochastic influences in equation (4) reside com-
pletely in the additive white noise term £k}, so that z(k) does
not depend on the past values of this variable, The stochastic
disturbance vector 7(k) in the parameter variztion equation (5)
then constitutes the only other other stochastic input to the sys-
tem and, as we shall see, this can be associated directly with the
constraints we choose to impose on the nature of the vardable
parameters in equation (4).

4, IDENTIFICATION and ESTIMATION of the TVP
MGDEL

The model described by equations (4) and (5) can be represent-
ed in the following state-space setting,

x(k) = Fk-1) x(k-1) + Glk-1) i(ke-1) )
¥k} = Hk-1) x(k) + e} £




where H(k-1) is an observation vector chosen so that the obser- ‘

vation equation (7) represents the TVE model (4). The specific
form of H will, of course, depend upon the application hut the
specific examples discussed in Section 6 will help to ¢larify the
nature of this vector

Nominally, this model presents a quite formidable estimation
Eroblcm since it involves the estimation of a combination of un-

nown time-variable parameters and states appearing in nonlin-
ear relation to each other. From a theoretical standpoint, the
most obvious approach is to formulate the problem in
Maximum Likelihood (ML) tetms. If the stochasiic distarbances
in the model are normally distributed, the likelihood function
for the observations may then be obtained from the Kalman
Filter via “prediction error decomposition™ (Schweppe,1965).
For a suitably identified model, therefore, it is possible to
maximise the likelihood with respect to any or all of the
unknown parameters in the state-space model, using some form
of numetical optimisation.

This kind of maximum likelihood approach has been tried
by a number of research workers but their results (e.g. Harvey
and Peters (1984), which provides a good review of competing
methads of optinisation) suggest that it can be quite complex,
even if particularly simple structural modeis are utilised (e.g.
those containing trend and  seasonal moedels, in which the only
unknown parameters are the variances of the stochastic
disturbances). In addition it is not easy to solve the ML problem
in practically useful and completely recursive terms; ie, with
the parameters being estimated recursively, as well as the states.
If we consider first Lghe simpler linear TVP representation, where
z(k} is assumed to be independent of the past values of e(k),
however, then the recursive estimation of the parameters in a(k)
is fairly straightforward.

4.1 The Linear TVP Model

In thig case, the Recursive Least Squares (RLS) algorithm,
suitably modified to aflow for time variable parameters de-
scribed by & Gauss-Markov model such as (5), can be applied
directly to the model. For this to be successful, however, the an-
alyst must be able to specify the “system™ matrices F(k) and
Gk), for all k, together with information on the statistical char-
acteristics of the stochastic disturbances e(k) and 1M(k) {sce
Young, 1984).

This latter requirement is eased somewhat by the scalar
form of equation (4}, which we now recognisc as the “observa-
tion™ equation in a stale-space model. It is easy to show that ,
for the purposes of estimation, it is not the absolute values of o2
and (k) that are important, but their relative values. As a re-
sult, without any loss of generality, we can consider g%=| and
define a “Noise Variance Ratic” (NVR) matrix Q(k), ie.,

Qk)=Qk)/a? @®

For simplicity, it is normally assumed that Qr(k) is a diagonal
matrix with elements (the NVR values) qﬁ(k), i=1,2, ...

n+00+2, that are agsociated with the time variable nature of the
parameters ai(k), i=1,2,...,n; bij(k)' i=1,2, ..., 17 j=0,1,....,m; and

Tk).

The RLS algorithin, with the TVP modification and the in-
troduction of the NVR matrix, takes the following prediction-
correction form,

Algorithim §
Prediction - N
S/k-1} = FlleDik-1)
e
Pk/k-1) = Fk- D) P(k-1) Fk-1) 4 Gk-1) [Quk-1)] Gk nT
Correction :

8ok = Rk- 1)+ P/ DELG- 137
T1+ Hk-DP/A-DBEG-DT1{ k) - Hik-DRG&K-1)) 0

PO = P/k-1) - Pl/-1)Hk-1)7.
[+ Hgk-DP(/&-1D)Hk-1T] Hik-1) Piv/k-1)

Here, R(k) denotes the recursive estimate of x(k) at the kih sam-
pling instant, while R{k/k-1) is the recursive estimate of x(k} at k
conditional on data up 10 and including ( k-1)th sample. [t can

be shown that P{k)*=P(k)fO'2 provides an estimate of the cova-
riance matrix for the estimate vector x(k) and so, with this sta-

tistical interpretarion, P(k/k-1)/o? is an estimate of the covari-
ance &l k conditional on the information processed up 10 the
(k -1)th instant.

The algorithm [ is, of course, identical in form to the
Kalman filter algorithm. We choose to describe it within the
RLS parameter estimation context because the vector FEk-1),
which plays the role of the observation vector in conventional
Kalman ﬁﬁcr terms is, in part, compaosed here of stochastic vari-
ables measured in the presence of noise. Formally, the Kalman
filter requires that the elements of this vector should be exactly
known, dererministic variables. While this formal requircment
is not critical to the success of the present algorithm in estima-
tion terms, it is impottant that we recognise the differences be-
tween the present formwmlation and the more conventional
Kalman filter. In this manner, it should be possible to ensure
that these differsnces do not cause estimation probletns or that
we do not read more into the statistical propertics of the esti-
mates than s justified.

Bearing these caveats in mind, it is possible to proceed one
step further in the estimation of x(k); namely the generation of a
“smoothed estimate” for the TVP vector. The algorithin | pro-
vides an estimate of x({k) at the kth sampling instant which is
based on the data up to and including the kth sample, ie.
§0ky=%0/%). If we are pursuing off-line analysis and are con-
fronted with a data set with N>k samples, however, it s an ad-
vantage, in this TVDP situation, to obtain an estimate X(k/N) at
the kih instant conditional on alt of the available data qver the
observation interval. This smoothed estimate will not then be af-
fected by the phase lag which is inherent on the filicred estimate
x(K) it will have lower estimation error variance. This argo-
ment suggests the generation of such a smoothed estimate by
the use of a “fixed interval® smoothing algorithm (see e.g,
Bryson and Ho (1969); Gelb (1974))

There are a variety of algorithms for off-line, fixed interval
smoothing but the onc we will consider here utilises the follow-
ing backwards recursive algorithm, subsequent 1o application of
the above Kalman filtering forwards recursion (scc t.g.
Norton,1975; Young,1984),

Algorithm I

RN = Flly? { &G+ TN + GAOQAIGKRILEKKY]  (11)

where,
LN)=0;

N is the total number of observations {the "fixed interval™y; and

L(k) = [ I- PO+ DHETHE)] ... .
[ Flo# DTLG+1) - BT {ytk+ 1) - BEOFRORD}  ¢11A)

.is an associated backwards recursion for the “Lagrange

Multiplier” vector L{k) required in the solution of this two point
boundary value problem,

Finally, the covariance matrix P*N) = o?P(N) for the
smoothed estimate is obtained by reference to P(k/N) generated
by the following matrix recursion,

POINY = P(K) + PGORGOT PR+ 10T T .
[P(k+1/N)- P+ 1A PG+ 17K)] P (ROP(R) (12)

while the smoothed estimate of original series y(k) is given
simply by,

A A
y&/N) = He(/N) (13
ie., the appropriate linear combination of the smoothed state
variables.
As in the forward fillering pass, these recursions are only
formally applicable if z{k} is a purely deterministic vector.
Indeed, the problem here is rather more problematic than in the




filtering case and the smoothing estimates obtained in this man-
ner are sub-optimal in strict maximum likelihood or Bayesian
sense. However, as we shall see, this sub-optimality is not of
major practical significance in the present comext.

4.2 The Pseudo-linear Time-Serfes Model

Strictly, the filtering and smoothing algorithms I and 1T are not
directly applicable in the more general case of equation (4)
where the z(k) vector is a function of past values of the unob-
served e(k) variable. Nevertheless, an approximate recursive so-
lution can be evolved using a device first proposed by Young
(1968) and Panuska (1969) where, at each recursion, the e{k-i)
elements in z(k) are mf)lacod by their estimates c(k-i} obtained
recursively from the following equation,

k) = y (o) - M- 1K) = v - 27T 2k (14

The resulting filtering algorithm has been termed either the
Approximate Maximum Likelihood (AML) or Extended Least
Squares (ELS) estimation procedure; it is an inteitively appeal-
ing approximation which allows us to develop a fairiy simple
recursive solution to the estimation problem posed by equation
{4) using linear-like estimation procedures.

It is not obvious, of course, that this “pseudo-linear™ RLS
algorithm will converge under all conditions. However, it has
been used successfully in many practical applications.
Moreover, Solo {1980} has considered ils convergence from a
theoretical standpoint and shown that it possesses reasonable
characteristics in this regard.

The smoothing algorithm in this pseudo-linear case is less
well known, As far as we are aware, only Norton (1975) has
previously used the smoothing algorithm IT in this context and,
although we can confirm the generally good performance he re-
ports, there is clearly need for further research on this topic.

4.3 The Transfer Function {TF) Time-Series Model

Finaliy, we should mention another approach to the estima-
tion problem posed by the TVE model of equations (4) and (5)
which we will not exploit in the present paper but which has
been used very successfully for TVP estimation, The approach
emerges if we consider first the transfer function (TF) form of
equation (3), i.e.,

BZY
vk = Tk + z wk)
gA(z'l)

Neh)
AED

(k) {15

where Az H=Ak, 1), Bz )=B,k, z') and Dz)=D(k, =1
are time variable coefficient polynomials in the backward shift
operator =), Le. 2iytk) = y(k-i}, each characterised, respective-
1y, by the vime variable parameters a(ky, 'nij(k) and ¢,(k).

In this model, the system and noise transfer functions are
both characterised by the same denominator polynomial A{z1).
However, if we choose to separate out the effect of u(k) into a
second nonlinear function g{.) when formulating the original
nonlinear model, ie.,

y(k) = f{y(k-1}, ..., y(k-n), e(k-1), ..., e(e-p)} +
gly(k-1}, ..., y(k-n)uck), ..., u(k-m)] + e(k)

then equation (15} would be transformed into the following al-
fernative form,

B(ZY :
N ufk) + D{ZI) e(k) {16)

Y0 = T+, o
x

i=1 A(z'l) '

In the constant parameter situation, Jakeman and Young
(1981,1983) have shown that there are some advantages to con-
sidering this second “Box-Jenkins” model form rather than the
common denominator “ARMAX” form of equation (15), see
also the discussion in Section 5.5,

In this alternative setting, the recursive filtered estimates of

the TF model parameters can be obtained by appiication of the
recursive Instrumental Variable (IV) or Instrumental Variable-
Maximum Likelihood (TV-AML) algorithms {e.g. Young,1984);
while the smoothed estimates can be obtained from an IV modi-
fication of the fixed interval smoothing algorithm I (sce
Kaldor,1978).

4.4 Parametric Nonstationarity and Variance Intervention

In practical time-series analysis and modelling, the exact nature
of the parametric variation in TVP models is difficult to predict:
while the changes in the behavioural characteristics of dynamic
systems are often relatively slow and smooth, more rapid and
viclent changes do occur from time-to-time and lead to
similarly rapid changes, or even discontinuities, in the nature of
the related time serdes, One limited approach to this kind of
?mblcm in 2 conventional time-serics coniext is the method of
‘intervention analysis™ (see e.g. Box and Tiao, 1975), where
dummy inputs are introduced to account for the observed rapid,
and otherwise unexplained changes in the time-series. However,
the OM model for the parameter vardations allows for more
flexibility in this regard and is able to account for rapid changes
in the levels and slapes of either the low frequency components

. of the time series or the parameters of the models representing

the other components,”

If the parameters in the GM model (5) are assumed constant
then, as we shall see, the model can be used to describe 2
relatively wide range of smooth variation in the associated trend
or model parameters. Moreover, if we allow the parameters 10
change over time, then an even wider range of behaviour can
be accommeodated. For example, large but otherwise arbitrary,
instantaneous changes in the diagenal elements of the Q, ma-

trix {e.g.increases to values = 109 introduced at selected

“intervention” points, can signal to the associated estimation
algorithm the possibility of significant changes in the associated
parameter at these same points. The sample number associated
with such intervention points can be identified either
objectively, using statistical detection methods (e.g. Tsay,1988);
or more subjectively by the analyst (see Young and Ng, 1988).

It is interesting to note that this same device, which we term
Variance Intervention (Young and Ng,1988) can be applied to
any state-space or TVP model: Young (1969a,b, 1971, 1981),
for example, has used a similar approach to track the significant
and rapid changes in the level of the model parameters of an
acrospace vehicle during a rocket boost phase, Note that less se-
vere changes in the model parameters can normally be tracked
by selection of a suitable GM model, but it may sometimes be
useful to intreduce more moderate variations in the NVR values
applied over a number of samples, rather than instantanecously
(see T.J. Young et al,1988)

5.SPECIAL EXAMPLES of the TYP MODEL

Although equation (4) is not completely general in nonlin-
ear terms, it is capable of representing a wide variety of nonlin-
ear and nonstationary phenomena. In order to demonstrate its
efficacy in this regard, It us consider some special exampies
which have particular practical significance and are related to
well known constant parameter, linear models. In all these mad-
els, estimation of the time-variable parameters will, of course,
be controlled by the nature of the GM process (5) selected by
the analyst, which provides information to the estimation algo-
rithm on the expected nature of the parameter variations.
Specific examples of the GM model that can be used with any
of the models outlined in this Section are discussed in Section 6.

5.1 The Dynamic Trend (DT) Model

The simplest example of the TVF model desctibed in equa-
tions (4} and (5) is obtained if we wish to examine only the low
frequency or trend behaviour of a time-serics, as represented by
T¢k) in equation (4). If, for the moment, the other terms on the
RHS of (4), except e(k), are considered negligible, then the
mode] becomes,

¥k} =Tk) + (k) (7




The estimation of T(k}, sultably modelied by some form of GM
process, can be considered as a problem of trend estimation,
with the GM model merely providinﬁ prior information on the
expected nature of the variations in the scalar frend component
of the time series.

This simple model is very useful in practice and recursive
smoothing algorithms, based on an associated GM model in the
form of an Integrated Random Walk (see next Section 6), have
been wsed for many g‘ears in the microCAPTAIN program
{Young and Benner,1938) for both trend estimation ard remov-
al in data pre-processing. In this particular application context,
the algorithms are normally used in a suboptimal manner, in the
sense that the residuals will not normally be simply the white
noise e(k) but also functions of the other variables on the RHS
of equation {4). Nevertheless, the algorithm works very well in
this sub-optimal setting and its use can be justified in alternative
spectral terms (see Young,1988a).

5.2 The Dynamic Linear Regression (DLR) Model

By “dynamic linear regression”, we mean here a simple, nonsta-
tionary lincar regression model with regression coefficients that
may vary over time. In terms of equation (4), the DLR model is
obtained if, in addition to e(k), the only terms of importance on
the RHS of the equation are the trend T(k) and the contempora-
neous values of the exogenous variables u,(k), i=1,2, .., r; i,

I
¥®) = TR + D, bl yk) + efk) )
izl
fere, y(k) is the “dependent variable™, ui(k). i=1,2, ..., T are the
“independent variables” or “regressors™; and the time-variable
regression cocfficients are T(k) and bfk), =12, .., 1. The

model! is, in other words, a “static™ version of cquation {4) but is
“dynamic™ in the sense that its coefficients are time variable,

5.3 The Dynamic Harmenic Regression (DITR) Model

The DHR modcl is similar to the DLR except that the u,(k) vari-

ables are chosen in the special form required by the harmonic
regression (or Fourier) relationship, ie., ‘

x
¥ = Ty + 2; by, (K) SINRREKY+ by fK) cos@REK)
<

+ (k) (19)

where the sdditional third subscripts (1,2) are required since -

each term in the regression is now characterised by both sine
and cosine functions in the frequency £, i=1,2, ..., r. This modei
is particularly useful for the estimation of nonstationary periodic
or seasonal components in time-series and it has been be used as
the basis for adaptive forecasting and seasonal adjustment of pe-
rlodic time-series (see Young,1988a.b,c; Ng and Young,1988;
T.1.Young et al,1988; Todd and Young, 1989,

5.4 The Dynamic AvtoRegression (DAR) Model
Here, in addition to the e(k) term, only the trend T(k) and the

past values of y(k) are considered of importance on the RIS of
equation (4}, i.e.,

yk) = Tk} + iai(k) ylk-} + ek)

i=1

)]

This model is particularly useful for adaptive forecasting and
for estimating the changing spectral characteristics of nonsta-
tionary time-series. Its estimation in this TVP form aflows for
the definition of time-variable “maximum entropy” spectra
which evolve over time and can be presented either in a three
(liigtg%lsiona! representation or 2 contour plot (see T.J. Young,

5.5 The Dynanmiic ARMA (DARMA) and Dynamic ARMAX
(DARMAX) Models

These models follow direcily from the DAR model and are ob-
tained simply by retaining more terms on the RIS of equation
(4). In the DARMA case, the y(k-i), i=1,2, .., n, and e(k-),
I=1,2, .., p are the primary vanables; while in the DARMAX
case, the u-lj(k-j), i=1,2, .., 5; j=1,2, ..., m are also present.
Unlike the previous four cases, these models are nonlinear in
form since the unknown ¢(k) parameters are multiplied by the

unobserved e(k-1) white noise variables. In both cases, however,
they can be considered as pseuda-linear regressions if we secur-
sively estimate the e(k) terms and substitute them back into the
equation, as discussed in Section 4.2, Equivalently, we could re-

lace these terms in the model by their conditional expeciations,

nce again, these models can be useful for forecasting or cvolu-
tionary spectral analysis, The DARMAX model is also popular
for adaptive and self-tuning control, where it is sometimes
termed the Extended Least Squares model (ELS).

5.6 The General Transfer Function (GTF) Model

This is, of course, the model given by equation (16), which we
referred to ?rcviously in Section 4.3, {ikc the DARMAX model
it is particularly useful in adaptive control system design, In es-
timation terms, the TF model has the advantage (see Jakeman
and Young, 1981, 1983) that, in the constant parameter case, the
ML estimates of the system TF (i.¢ the coefficients of the poly-

nomials A(z} and B(z'1)) are asymptotically independent of
the ML estimates in the noise TF (i.e. the cocfficients of C(z‘l)

and D(z!)). In certain circumstances, these advantages wiil
carry over to the TVP situation and can simplify the estimation
problem by allowing for the separation of the system aad noise
parameter estimation using instrusnental varfable (V) methods.

5.7 The Component Model

The component model (see Young,1988a) is really a selective
combination of the other models mentioned above in Sections
5.1 to 5.6, the exact natuts of which will be dependent upon the
nature of the application, For example, the DT model could pro-
vide the trend component if such behaviour was identified in the
data; the DLR could account for any contemporancous effects
from other exogenous variables; the DHR mode! could provide
a description of any markedly periodic characteristics; and the
GTF in its fully stochastic form (i.e. featuring no deterministic
input variable TF) could account for the “coloured noise” ef-
fects. This composite model is, however, described ir detail
elsewhere (Young,i988ab,c; Ng and Young,1988) and it will
suffice here to point out that the model is particeiarly useful
when the various components can be separated sufficiently in
spectral terms to be considercd “quasi-orthogonal”, The proce-
dure of “sequential spectral decomposition” (e.g. Young,I%SSa)
is then applicable and can yield a model which exhibits excel-
lent performance in applications such as forccasting and season-
al adjustment.

5.8 Dynamic Vector (Multivariable) Models

Each of the models described in Sections 5.1 to 5.7 have vector
equivalents and these multivariable models can aiso be consid-
ered in TVP terms using the approach presenied in this paper
{see Ng et al, 1938). Perhaps the best known and used multi-
variable time-series model is the Vector AutoRegression
goﬁckl)‘ The dynamic version of this is the following DVAR

¥k) = Tk) i Ak YD) + o)

i=1

(21

where now T(k) and A;(k), i=1.2, ..., n, are appropriately dimen-

sioned TVP matrices.

Clearly this model and its vector DVARMA, DVARMAX
and DVTFE relatives present a much higher dimensional chal-
lenge in estimation terms. Also the problems of identifying a
suitable structure for the parameter matrices should not be un-
derestimated {see e.g. Young and Wang,1986; Mittnik,1988).




A notably successful example of this vector TVP model is

the Bayesian Vector AntoRegression (BYAR) procedures de-

veloped for economic forecasting at the Federal Reserve Bank
of Minncafzolis {Doan ¢t al,i984; Sims,{988). Ilere, the GM
model (5) for the parameter variations is selected in its simplest
vector Random Walk (RW) form {sce next Section 6), and con-
stralnts are applied on the estimated variation of the parameters
by the defimtion, using ML estimation, of the prior statistics
{i.e. x(0), P(0)) and the statistical properties of the stochastic in-
puts (i.e. the NVR matrix Q).

6. SPECIAL EXAMPLES of the GM for the PARAMETER
VARIATIONS

The GM model is clearly very general in form and can spawn a
wide variety of special cases. Here, we will concentrate on thase
special model forms that have either proved particularly useful
in practice, or are important in coneeptual terms. We will con-
sider first the simplest GM meodels, where the elements of the
F(k) and G(k) matrices have constant elements. These have
very wide application potential becavse they are so straightfor-
ward and easy to apply. The more complicated GM models are
potentially capable of yielding more precise and detailed infer-
ences on the nonlinear characteristics of the sysiem under inves-
tigation. But their complexity, their greater need for a priori as-
sumptions and information, and the subsequent constraints these
assumptions agf\[y on the analysis, may make them less attrac-
tive in practical application, There is, of course, a rich opportu-
nity to dcvclo*: other models within this very general madel
form. We will leave the reader, however, to consider other pos-
sibilities, hopefully stimulated by the examples given here.

6.1 The Generalised Random Walk (GRW)
In the GRW, the GM mode! takes the specific form,

XKy =F x -1} + G nk-1) (32}

where,

% (k)= 1K) d(k) I and Mo =[ Ny (kYm0 1

ol 1ol ]

Here, the subscript t is used merely to differentiate the matrices
in this specific GM process from the general GM matrices F

and G and does not relate to time; while n,,(k) and T (k)
represent zero mean, serally uncorrelated, discrete white noise
inputs, with the wvector M(k) normally characterised by a
covadance matrix Q,, i.¢.,

and,

1 for k=j
T . =
E{nnd’} =Q38,;  § ;= {ofor ke

where, 3, g 18 the Kronecker delta fenction. Unless there 1s
evidence to the contrary, Q, is assumed to be diagonal in form
with unknown clements g,y and gy, respectively.

This GRW model subsumes, as special cases (see e.g.
Young,1984): the very well known and used Random Walk

(RW: a=I; f=y=0; n,(k)=0); the Smoothed Random Walk
(SRW: fi=yel; O< a<l.0; 1, (k)=0); and, most importantly in
the present paper, the Integrated Random Walk (IRW:
a=f=y=1; 1,(k)=0). In the case of the IRW, we sec that t(k)

and &(k) can be interpreted as level and slope variables
associated with the variations of the trend, with the random

disturbance entering only through the d(k) equation. If 1,;(k) is
non-zero, however, then both the level and slope equations can

“have random Auctuations defined by T(k) and ng(k),

respectively. This variant has been termed the "Lincar Growth
Modei* by Harrison and Stevens (1971,1976).

The advantage of these random walk models is that they
allow, in a very simple manner, for the introduction of
nonstationarity infto the time series models. By introducing a
simple GM model of this type for each of the unknown parame-
ters, we arc assuming that they can be characterised by a vari-
able mean value with stochastically variable level andfor slope.
The nature of this variability will depend upon the specific form
of the GRW chosen: for instance, the IRW model is particularly
usefu] for describing large smooth changes in the parameters;
while the RW model (in which the slope is not separately de-
fined) provides for smailer scale, Iess smooth variations
(Young,1984). In all cases, the variance intervention procedure
described in Section 4.4 can be used to allow for any abrupt
changes in the level or slope at specified points over the obser- -
vation interval.

6.2 The Periodic Random Walk (PRW)

The simplest formulation of the PRW model is given by the
equation,

p(k) = pk-1} + 1 (k-1)
where np(k) is a white noise input sequence with the usual sta-
tistcal properties. The associated GM process takes the form,

X,() = Fpx (k1) + G (k- 1) (23)
where,
%, = [ p&) py(k), ey P(R)JT
Here p(k) is the pericdic function and p{k), i=1.2, ..., w, are ad-
ditional state variables which are introduced to span the season-

al period. The state transition and input matrices take the fol-
lowing form,

[0 0 ... 0 I 1]
10 0 0 0
01 00 0
Fp= . ) v Gp=
0 0 ... 1 0] 0

and T}P(k) is the white noise input sequence with the usual statis-
tical properties.

This model allows for general periodicity in the parameters
and will be most useful in those cases where there is known to
be some reason for periodically varying parameter values. It has
also been used for time-series forecasting and smoothing, when
it is empioyed to model seasonal components (sec Young,
1988a; Ng and Young, 1938).

6.3 The State Dependent Model of Young (SDM1)
The Taylor series linearisation approach used in Section 2 sug-
gests that the variations in the linearised parameters will be

time-dependent functions of the state y{k). Probably the sim-
plest general assumption which acknowledges this stalz depen-

dency is that ack) is linearly related to functions of y(k}, i.c.,
a(k) = Mx(k)] (k) 24)

or,
a(k) =m(k)Tak) 5 i=L2, .., nimle2 (25)




where M]x(k)], which we will denote below simply as M(k), is
a transfonmation matrix functionally dependent upon (k)
mi(k)T is the ith row of M(k); a;(k) is the ith element of a(k);

and c(k) is a transformed parameter vector which, in certain,
ideal circumstances, could have time invariant elements.

Given the generality of the model (4}, however, it seems un-
likely if such an ideal situation will apply in practice and it is
necessary to add a statistical degree of freedom to the relation-

ship by assuming that ¢t(k) can be modelled as a GM process.
And, in the simplest case which certainly seems the most appro-
priate in general aaplications, we might assume that this GM
process is a vector RW, e.g.,

k) = afk-1) + 71 (k1) 26)
with the usual assumptions about the white noise vector N k.

If M is a square, nonsingular matrix, ther we can substituie
from equation (24) into (25) and obtain 2 GM model for the
variations of alk) which is similar in form to equation (5) with,

F(k-1) = M(k) M(k-l)" ; Gk-1) = M) (27)

and, in this case, x(k)=a(k).

This particular approach to the modelling of parameter vari-
atlons was first used as a device for tmcking the rapld variations
in the cocfficients of a lincarised model of an airborne vehicle
for the purposes of adaptive control (Young,1969ab; 1971,
1981). In this example, M{k) was chosen to be diagonal in form
with diagonal elements m, (k) defined as physically motivated
functions of certain “air data™ variables, such as dynamic pres-
sure and altitude. These variables can be interpreted as “extend-
ed” state variables and are associated with the elements of the
Uck) vector in equation (1), In other words, the functional de-
pendence is restricied (o these other variables and a tighter state
dependence in terms of the primary state variables of the system
(i.c. y(k).u,(k) and e(k) in the present context) was not found to
be necessary.

1f M(k) is diagonal, then we see that F(k-1) is also diagonal
with elements f,(k-1)=m(k}/m;(k-1); in other words, this
mode! has a particularly simpie effect on the recursive estima-
tion algorithm, with the ith parameter estimate &(k) being updat-
ed via a prediction equation (cf Algorithm I, equation (9)),

Blvk-1) = [my(k)m(lc-1}] &k-1)

In this manner, a large increase (decrease) in my(k), in relation
to its prior value at the previous sampling instant my(k-1), will
iead to a similar proportionate increase {decrease) in the infer-
sample predicted value of the parameter, which will then be up-
dated on receipt of the next data sample by the correction equa-
tion (10).

Of course, M(k} need not be diagonal, in which case the ;

simple interpretation of the tode! given above does not apply

and the resulting stale-space representation would be more com- .
plicated. Also, we migit wish 1o consider other, more compii-

cated formy of state dependence, such as those discussed in the
next Section 6.4..

6.4 The State Dependent Model of Priestley (SDM2)

In several important papers on nonlinear and nonstatipnary
time-series analysis and in a recent book, Priestley and his col-
laborators (198(,1984,1988a,b) have presented an SDM ap-
proach to nonlinear modelling which 1s similar to the progce-
dures discussed in the present paper, Within the present context,
Priesticy’s approach yields models which can be considered as a
subset of the models proposed here. The major differences in
the models and the associated algorithms lies in the definition of
the GM model form for the parameter variations. Also, Priestley
employs only the recursive filtering algorithm for parameter es-
timation and does not utilise fixed interval smoothing, as pro-
posed here,

Priestley’s starts the most practically relevant part of his
analysis from a nonlinear model similar to equation {1}, but
without the U(k) variables included in the nonlinear function.
He then employs Taylor series expansion, similar to equation
{23, but explicitly nses the form of the resultant first order terms

"H the expansion to define the parameter variation law directly

in terms of the primary state variables® y(k), (k) and ufk). In

;garticular, hF assumes that eech unknown parameler evolves in
time according to an equation of the form,

afk) = ak-1) + Az(Toyk) ; i=1,2, . nimils2  (28)

where Az(k) = z(k}-z(k-1) is the incremental change in the state
vector % over the sampling interval; while o(k) = fee (k)y vy

L S ﬂ(k)]T is a vector of unknown “gradient” parameters as-

sumed to vary as a vector RW process, ie.,
k) = gk-1) + m_(k-1) (29)

with ﬂc(k) a white noise input vector defined in the usual man-

ner. This model can be put in the normal GM form of squation
(5) with,

1 A7
Fk) = ; Gay=f01 e 1]
0 nim+l+2 (30)

x(k) = x(k) = { a,(l) o ()T 5T

where I o100 is the (n+m++2)th order identity matrix. This
GM can be compared directly with the IRW model: for exam-
ple, in the case of a first order AR(1) model with T(k)=0, we sce
that the identity matrix is reduced to a scalar of unity and 5o the
only difference between the madel (30) and the IRW is that the
f15(k) element of F{k) is now defined as the change y(k-1)-y(k-
2}, rather than unity,

Of course, for higher order equations, the GM model for
each parameter is considerably more complex. And the com-
plete GM model for the vector x(k), as obtained by combining
the individual models (30} into a composite state-space form, is
of quite large dimension®. As a result, the filtering and smooth-
ing algorithms are relatively expensive in relation to the other
GM models discussed previously. Also, the sclection of this
particular GM places quite heavy constraints on the nature of
the parameter variations. This is, of course, an advantage if the
linearisation assumptions are appropriate to the nonlinear sys-
tem under investigation. However, it could yield poor perfor-
miance in prediction (forecasting) terms if the lincarisation as-
sumptions are not appropriate.

Finally, two comments on the SDM2 approach are in order.
Firstly, we see from equation (28) that,

Aafky = Az(k)T o) 3 i=1.2, ., nbmadle2

If this is comgarcd with equation (25) of the SDM1 approach,
we see that the major difference in the assumptions are that
here, in SDM2, the changes in the unknown parameters are re-
Iated linearly to the changes in the state variables; whilg in
S§DM1 it is the levels that are refated. Also, equations (24) and

(25) permit nonlinear functions of x(k) in the M(r(k) matrix,
Secondly, we might question on practical grounds the insertion
of differenced stochastic variables in the F{k) matrix, since it is
weil known that such differencing can cause high frequency
noise amplification which, in turn, could lead to problems in the
implementation of the filtering and smoothing algorithms.

This latter point certainly justifies the use of fized interval
smoothing, which should help to suppress some of the noise
amplification effects. However, it may be better to look for
other solutions such as replacing these differenced state cle-
ments in F{k-1) by their conditional expectations. For example, -

2. Initially, Priestley considered only univariate processes, but
he introduced deterministic input variables in later work
(1988a,b)

3. Note that, for clarity, we have concentrated here on the
model at the individual parameter level, Priestley (1980,
1988a) presents the complete model in a block form with
F(k) and G (k) defined accordingly.



since only T(k-1) is required at the kth instant and this matrix
depends only on y(k-2) and y(k-3), we could consider replacing

these variables by their fixed lag smoothed estimates y(k-2/k)

and y(k-3/k), respectively, We are examining this and other re-
tuted possibilities,

7. EXAMPLES

The general approach to nonstationary and nonlinear time-series
analysis and medelling presented in previous sections of this
paper has significance in many different areas where the adap-
tive extrapolation, interpolation and smoothing of nonstationary
or nonlinear time-series s important, These areas inciude: digi-
tal signal and image® processing; forecasting and seasonal ad-
Justment of socioeconomie, business, ecological and environ-
mental dats; geophysical, biological and medical data process-
ing; and adaptive, learning, or self-tuning control,

The results of such analysis in some of these areas are given
in a number of recent papers (Young, 1988a,b,c; Young et al,
1988; Ng and Young, | SE; ng et al, 1988; and T.J. Young et al,
1988). Because of space restrictions, therefore, we will consider
here only three examples; one based on simulated data, and the
other two on real data, Other examples will be presented at the
Conference. The results in the first example were obtained usin
the recursive smoothing option i Version 20 o
micro CAPTAIN (Young and Benner, 1988); those in the second
from a prototype forecasting/smoothing program developed by
Dr CN. Ng and the first author, which is planned for incorpora-
tion in later versions of microCAPTAIN; and those in the last
example, from a general smoothing program for TVP/SDM

modelling developed by the authors using the GAUSS program-

ming language.

7.1 A Simple Simulation Example: TVP Estimation of the
Nonlinear Growth Equation

It is useful to consider a simulation example since our knowl-
edge of the exact nature of the signal generation process then al-
lows us to assess the performance of the analytical procedures.
Following our carlier genmeral paper on the TVP estimation
(1978), we will consider the well known “logistic” growth equa-
tion, i.e., in continuous-time,

dx{1}
SF = 1C- X1 %0

y{t) = w(} + ety

where x(t) is the gmwlh variable (the “population™, C is the
“carrying capacity”; and e(c} is white observation noise which
we assume here will be state dependent (i.e. dependent on x(t)).

The discrete-time version of this model, as obtained by the

simplest discretisation procedure for a sampling interval At
takes the form,

x{k) = x(k-1) + k) x(k-1)
or(k) = [C — x(k-1)] At GhH
vk} = x(k) + x(k) ek}

where ¢(k) is a zero mean, serially uncorrelated sequence with

varlance o*

Fig.! shows the variation of y(), k=12, ... 100, as ob-
tained by simulating the model with the following settings for
the parameters in (31),

C=10; At=0.015; x(0) =0.01; &%=0001

The full line shows the deterministic forecast of the estimated
TVYF mode! from a forecasting origin at k=50. This model is in
the form of a first order DAR model, in which the unknown
a,(k) coefficient can be associated with 1+ auk), and the GM
model for the parameter variations is chosen as an IRW process

4. research is procceding on the extension of the techniques to
2D signal and image processing, where the smoothing
power, with itg varjance intervention capability could be
particularly useful,

' parameter; but we see that raising the

“without intervention. Fig.2 compares the actual variation in the

parameter a(k) with the smoeothed estimate obtained with an
NVR=0.001, and we sec that very good parameter tracking has
been achieved. For these results and those discussed below, the
recursive algorithm 1 was initiated using the “diffuse prior as-
sumptions, i.e., with P(0)= ¥ I and %(0)=0, where 7, in this case
was set to unity.

Fig.3 shows the varation of y(k) and the dcierministic
mode] forecast when the growth rate is changed abruptly from
the normal logistic form to a constant rate of G.15 between k=49
w0 k=59; ie.,

ok ={C - x(k-1)] A for 50>k=39

afk)=0.15 for 49<k<60
Figs.4 1o 6 illustrate various TVD estimation results in this case,
First, in Fig.4, we see the recursive estimate of a,(k) obtained

when we model the parameter variations as an IRW without in-
terventions and with an NYR=0.1. This higher NVR is neces-
sary to accommodate the required sharp changes in the DAR{1)
VR in this manner has a
deleterious effect on the estimation results during the periods of
relatively smooth change.

To address this problem, we can resort to variance interven-
tion as discussed in Section 4.4, But if this were a real problem,
how would we choose the intervention point locations? One

ossible subjective approach is shown in Figs.5 and 6: in Fig.5
interventions are introduced every 10 samples, using an RW
model with NVR=0.001. When introducing muliiple interven-
tions like this it is advisable to use the RW model for parameter
variations since Iittle change is expected between interventions.
On the basis of these results, a third run is carried out in Fig.6,
where interventions are only applied at the S0th and 60th sam-
ples, now with an IRW medel and NVR=0.001. The resulting
estimation results are quite acceptable and the TYP model with
these estimates was used to generate the deterministic forecast-
ing results in Fig.3.

Of course other, less subjective, methods for inferring
where the sharp changes occur could be devised but the results
here will suffice for illustrative purposes. The main poiat to
note is the importance of techniques such as variance Interven.
tion if the beneflts of recursive smoothing are going to be ex-
ploited in this kind of rapid TVP situation, Note also that the
forward pass filiered estimates in this case would not be able to
track the parameters s¢ well because of the inherent lag and
higher varance of the fillered estimates.

Finally, we could use an SDM approach in this example.
However, we will consider SDM modelling in the final exam-
ple.

7.2 Adaptive Forecasting and Smoothing of the Airline
Passenger Data

In this example, we consider the well known monthly air-
line passenger data of Box and Jenkins (1970). However, unfike

. Boz and Jenkins, who analysed the logarithmically transformed

data, we will deal with the original, uatransfonmed series. This
will help to illustrate better how the TVP approach is able to
handle the marked nonstationarity which characterisas this par-
ticular data set.

The periodogram of the series suggests that the periodicity
can be represented quite well by the first two harmonics, with
periods of 12 and 6 months, respectively, ‘This suggests a DHR
model such as (19) with r=2, £;=1/12, and fo=1/0. Fig.T shows
the adaptive estimation and forecasting results obtained using
this DIR, in which the GM is defined with T{k) represented as
en IRW process with NVR=0.00001, and the 4 cocfficients aie
aiso each modelied as IRW processes with NVR=0.0001. The
choice of these NVR values is based on the specteal properties
of the smoothing algorithms, as discussed in the references by
Young et al. cited earlier.

The TVP estimation algorithms were initiated with the dif-

fuse prior, as in the previous example, with 4=105. Since this
implies littie confidence in the initial estimates, we see that the

- algorithm requires about 2 years of data to converge to sensible

values. Thercafter, however, the one-step-ahead forecasts
(shown dashed) are quite good, as we can see from the lower
plot in Fig.7, which shows the forecasting errors and their asso-
ciated standard error bounds {also shown dashed). After 108




samples, multi-step ahead forecasting is initiated and, once
again, the forecasting performance is good, with the forecasting
residuals very litile different from the one-step-ahead results up
to sample 108,

Fig.8 shows the estimate of the seasonal component ob-
tained during the analysis and, below this, we see the recursive
estimates of the two amplitude parameters, A(k), associated
with each harmonic, i.2.,

' 62 A2
Ay =" big; + bz

This illustrates quite well the initial convergence of the esti-
mates; the onc-step-ahead trackin% £eﬁomanm up to k=108;
and the multi-step ahead forecast of the two amplitades over the
final three years.

Figs. 9 and 10 Hiustrate the fixed interval smoothing results
obtained by backwards recursion using algorithm 1l applied
from sample 108 to the beginning of the data set. The upper plot
in Fig.9 shows the smoothed estimate of the series and the esti-
mated trend component; while the lower plot shows the smooth-
ing residuals, which can be compared with the larger forecastin
residuals in Fig.7 and demonstrate well the advantages of fixe
interval smoothing, Finally, the smoothed estimate of the sea-
sonal component is given In the upper plot of Fig.10; while the
lower plot shows the smoothed estimate of the A(k) variations.

7.3 State-Dependent and TVP Modeliing of the Sunspot
Data

Qur third example is concerned with the well known and
much analysed annual sunspot data (1700 to 1945) shown in
Fig.11, We will consider SDM2 analysis but recursive smooth-
ing is used here to improve the estimates, The SDM model used
is that suggested by Haggan et al (1984) for this same data. This
is an AR(2) model of the form,

ye) =Tl + a0k yk-1) + ag(k) y(k-2) + efk)

where each parameter is modelled by the GM model {30); e.g.
in the case of T(k) the model takes the form,

T(k) = T(le-1) + oty (K} y(k-1)-y(k-2)] + o (k) y(le-2)-y(k-3)]
oy(ky= ogk-1)+ 1 (k-1)
k) = ogk-1)+ 1 (k-1)

In an attempt to compare our results with Haggan et al, weusea |

simitar initiation procedure to them (although the diffuse pror

approach used in the two previous examples could be used if ¥
is chosen judiciously). This involves computing the estimates of
the a constant parameter AR(2) model bashcd on the first 20 ob-
servations and using the results to prime X(() and P(0), and fo
define the NVRE. However, we found that their effective choice
of NVR=0.01 was too large, in the sense that a very good fit to
the data (see Fig.11) can still be obtained with NVR=0.001.
Indeed, Inck of time prevented us from investigating this further
and it is possible that this value is also too high (see discussion
below), .- .

An excellent fit to the data such as that shown in Fig.it can
be deceptive when using TVP or SDM methods. In this kind of
estimation, it is important to choose the NVR in order 1o obtain
a sensible balance between parameter tracking and smoothing
(see Young,1984). If the NVR is chosen too large then the sta-
tistical degrees of freedom will be too great and the estimates
will tend to fluctuate rapidly in order to “force’ the moded to fit
the data. Consequently, we need to examine the estimated time-
variable parameters in order to ensure that this is not happening,
IF we look at Figs.12 and 13, which show the smoothed estimate
of T(k) plotted apainst k and y(k-1), respectively, then we might
conclude that this, indeed, happening in this case,

5, Note that Haggan et al use the basic form of the recursive
filtering algorithm rather than the NVR form preferred in

this paper. However, their “smoothing factor”™ o is, in effect,

the same as the NVR. Their use of “smoothing” in this con-
text is ambigzmus; they only use forward pass filtering in
their applications.

The results in Figs. 12 and (3 are typical of those obtained
for the other two parameters a,(k) and &;(k}, and it is clear that

the estimates obtained with NVR=0.00] are being allowed to
vary rapidly and over 2 wide range. And, of course, the filtered
estimates used by Hagpgan et al vary to an even greater extent
than thess. More importantly, the associated gradient parame-

ters &l(k) and &z(k) also vary to a large exient as we see from

the plot of 3.1(1:) associated with the a,(k) parameter in Fig. 14.

Unfortunately, it is difficuit to compare these results any
further with those of Haggan et al, since they do not provide full
information on their results. In particular, they do not supply
plots of the estimated parameter variations against k or y(k-1)
and choose, instead, o show only 2 smoothed version of the
scatier plots of the estimates against y(k-1), as obtained using a
“Gaussian Smoothing kernel”, which we were unable to repro-
duce. In addition, during this smoothing (again not to be con-
fused with fixed interval recursive smoothing), they reject cer-
tain “outliers™ caused by “end effects”, but without giving pre-
cise details of the points so rejected. All that can be concluded,
therefore, is that our estimated parameters exhibit the same gen-
eral pattesn of variation revealed by the Haggan et al analysis.

So what can we conclude from our results and, by infer-
ence, those of Haggan ¢t al? First, there seems 1o be good cvi-
dence that too much freedom is being allowed for TVP/SDM
estimation and the good fit to the data showa in Fig.11 is decep-
tive. Second, because it employs the highly emratic differenced
dats terms in the GM model, the SDM procedure may be sus-
pect in its preseat form. We feel that this aspect of the proce-
dure serves ot enly to amplify the effects of noise on the data,
but also tends, in certain circumstances, to place too much re-
striction on the nature of the parameter variations. For example,
we have chosen to display the T(k) estimales since it is our be-
tief that T{k) being, in effect, a “trend” parameter, should follow
the lower frequency fluctuations in the sunspot data caused by
the long term amplitude modulation, which is so obvious in the
data (see T.J. Young, 1987). By constraining T(k) to be a func-
tion of the higher frequency content, differenced data, its esti-
mate has strong higher frequency components associated with
the more famous 11 year” cycle. Might it not be better to
model it, as in the TVP approach, by a simpler, non state-depen-
dent, IRW process? We are examining this and other possibili-
ties and hope to report this in future papers.

8. CONCLUSIONS

This paper has introduced an approach to nonlinear and
nonstationary time-series anaiysis for a fairly wide class of lin-
ear time variable parameter {TVP} or nonlinear stystcms. The
method theory presented here exploits recursive filtering and
fixed interval smoothing algorithms to derive TVP linear madel
approximations to the nonlinear or nonstationary stochastic sys-
tem, on the basis of data obtained from the system during
planned experiments or passive monitoring exercises. This TVE
model includes the State Dependent type of Model (SDM) as a
special case, and two particular SDKA forms due to Pricstley
(1980} and Young (1969h; 1978) are discussed in detail. The
procedure used here 1o estimate the Priestley type of SDM is,
however, somewhat different to that proposed by Priestley,
since Fixed interval smoothing is used both to improve the noise

- rejection qualities of the state dependent model and to remove

the inherent lag in single-pass, filiering algorithms.

The methodology presented here has wide application po-
tential. It will prove useful as an off-line method for the detec-
tion and identification of nonlinearitics in time-series. In this
context, it can be considered as a pre-processing procedure, in
which the recursive filtering and smoothing algorithms are used
for identifying the nonlinear model structure, prior to more effi-
cient parameter estinmation based on these identification resulis.
Becanse of its fully recursive formulation, however, the off-line
identification analysis can be a prelude to the development of
on-line procedures for the adaptive estimation, forecasting and
control of nonlinear and nonstationary dynamic systems. Here,
the recursive filtering algorithms used in the earlier off-line
studies can form the basis for adaptive system design, 50 inte-
grating the processes of systems analysis and synthesis in a rath-
er useful and elegant manner.
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