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Abstract

We study the existence and robustness of expectationally-driven
price volatility in experimental overlapping generation economies. In
the theoretical model under study there exist ”pure sunspot” equilibria
which can be "learned” if agents use some adaptive learning rules. Our
data show the existence of expectationally-driven cycles, but only after
subjects have been exposed to a sequence of real shocks and "learned”
a real cycle. In this sense, we show evidence of path-dependent price
volatility. C62, C92, E17, E32, E44.
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1 Introduction

The existence of multiple equilibria in economic models has been a persistent
embarrassment to theorists and a source of controversy in the formulation
of macroeconomic policy. In models of dynamic economies, indeterminacies
frequently manifest themselves as so-called ”sunspot” equilibria. In these
equilibria, the expectation that extrinsic random events matter becomes self-
fulfilling, and causes extrinsic uncertainty to have real allocative effects.

While there is a large theoretical literature on when sunspots may matter
(see, e.g., [20], [1], [3], [22] and [2]), empirical evidence that expectationally-
driven randomness is at work in real-world markets has been scarce. For
example, econometric estimates of stock price volatility exceed the predic-
tions of economic theory (see [23], [9] or [24]). However, marshaling econo-
metric evidence to support or reject the hypothesis that stock price changes
(or any other prices) are driven by extrinsic noise is difficult for two reasons.
First, since equilibria are defined in terms of subjective expectations, inher-
ent unobservability of expectations in natural settings makes it difficult to
construct convincing tests of theory. For example, years after Shiller’s first
paper on the subject, a hot debate continues on the validity of the evidence
on "excess” stock price volatility (see [12]). Second, even if the fact of excess
volatility were indisputably established, demonstrating that it 1s caused by
extrinsic uncertainty is yet another challenge. Indeed, from an econometric
perspective, the problem of demonstrating a sunspot effect 1s enormous, since
it requires identifying the extrinsic random variable driving the process and
demonstrating that it is in fact the cause of the observed volatility.

If it 1s difficult for the econometrician to detect the sunspot variable used

by agents to coordinate their beliefs, it should also be difficult for the agents



themselves to independently choose to coordinate their beliefs on the same
extrinsic signal. If there is no communication among agents, can they share
a secret undetected by an outside observer? It seems unlikely, unless the
secret comes from common experience. In this case, the econometrician,
observing economic fluctuations caused by extrinsic uncertainty, resembles
an anthropologist trying to make sense of an unfamiliar tribal dance. If
common experience is the shared secret, then the independent formation and
coordination of beliefs can be explained as the outcome of a learning process.
Tradition is preserved in the tribe because the new generation learns the
ritual dance from the old.

If an equilibrium must be achieved as a decentralized process of learning,
then not all rational expectations equilibria (REE) might pass this stability
test. In other words, learning might serve as a guide to choosing among
equilibria. This selection of equilibria can be characterized by explicitly
defining how agents learn. For example, Marcet and Sargent ([14], [15}) and
Evans ([4], [5]} use adaptive least-squares learning in overlapping generations
(OLG) models with multiple rational expectations equilibria (REE) and show
how learning selects from the (uncountable) set of equilibria. Experimental
work by Marimon and Sunder ([16], [L7]), on the same type of OLG models,
brings evidence which is consistent with adaptive learning. For example, the
REE that can not be achieved as a decentralized process of adaptive learning
are not observed in their experimental environment. Their economic series
tend to cluster around the stationary equilibria selected by adaptive learning.

One might expect that single-parameter {or expected value) stationary
equilibria are easier to learn, and therefore more likely to emerge, than cyclic
equilibria involving multiple parameters. Woodford [25], however, shows this

intuition to be false: in simple OLG models exhibiting both monetary steady-



state equilibria and cyclic sunspot equilibria, a cyclic sunspot equilibrium
emerges asymptotically if agents follow certain adaptive learning schemes.
The study of the necessary and sufficient conditions for the convergence to
equilibrium cycles when agents learn adaptively has been further explored by
Grandmont and Laroque [10],Guesnerie and Woodford [11}, and Evans and
Honkapohja [7]. There are two basic components underlying these stability
results. The first has to do with the stability properties of the underlying
non-linear map, ¢(-), that determines current values {e.g., of prices) as a
function of future expected values; that is, p; = ¢(p{, ;). The second has to
do with the specific learning schemes used by the agents.

The beauty of experimental design is that the experimenter defines the
underlying economy and selects the stability properties of the underlying
equilibrium map. For example, for our OLG economy we choose parame-
ters that guarantee the stability of a two-period cycle under certain learning
schemes. However, the learning rules that agents actually use are not pre-
specified or constrained. Sufficient conditions for convergence to sunspot
equilibria usually require that agents use learning schemes that are ”in tune”
with the underlying cycle; and this underlying cycle is stable. This is anal-
ogous to the way in which a radio receiver must be adjusted to the correct
frequency for capturing and reproducing a clear sound signal. Some recent
theoretical results illustrate this fact. For example, Guesnerie and Wood-
ford [11] show that in a model (similar to the one we implement) both the
monetary steady-state as well as the cyclic equilibrium can be the limit for
the temporary equilibrium dynamics of the model, depending on the form
of the adaptive forecasting schemes the agent use (see Section 2). Evans [6]
has shown that, when the learning scheme is not restricted to any particular

functional form a priori, any k-period cyclic sunspot equilibrium is unstable



if an additional independent sunspot variable is introduced in the model (see
also [19}). Similarly, Evans, Honkapohja and Sargent (8], extending Wood-
ford’s results, have shown that in a simple deterministic OLG model with
equilibrium cycles if a sufficiently high fraction of agents believe that the
past fluctuations in prices arise from some steady-state distribution, then
equilibrium cycles of period ¥ > 2 disappear. This multiplicity of outcomes,
driven by alternative learning schemes, is the object of our study.

These theoretical results hinge on the difficulties of coordinating agents’
beliefs and learning schemes. Common past experience provides a natural
coordinating force. For example, if an extrinsic signal has been correlated
in the past with an intrinsic shock, and agents continue to coordinate their
beliefs on the extrinsic signal after the real shock disappears, then the signal
ends up having a real effect. We also study this form of conditional price
volatility. By studying path dependent sunspots, we also produce evidence
on the more general phenomena of path dependent equilibrium selection. In
models with multiple equilibria, historical factors might have been decisive
in selecting a particular one (e.g., by being the only stable equilibrium in
that particular episode.) This equilibrium may persist even after the cir-
cumstances that caused it to be selected disappear because the expectations -
linger on. Some macroeconomists have borrowed the term hysteresis from
physics to describe these phenomena.

In our experiments we find that excess market volatility can be sustained
by expectations alone, although subjects must be conditioned to expect cyclic
movements in prices before they will consistently forecast such movements.
Before these cyclic movements can be supported solely by extrinsic signals
{or sunspots) subjects must be exposed to intrinsic events that are correlated

with the extrinsic variables. In particular, we find no evidence, either in the



current set of experiments or in a preliminary set (not reported here),to
support the idea that cyclic equilibria can arise spontaneously. Nevertheless,
if subjects experience cyclic price movements (induced by fluctuations in
some factor having direct real effect), these fluctuations can be sustained by
expectations alone, even after the real shock disappears (an event that our
subjects can not detect). We interpret these results to be consistent with the
hypothesis that if economic agents believe that some random events matter
in the determination of market prices, such beliefs can be self-fulfilling even
if these events are extrinsic to the economy. We cannot reject the null-
hypothesis that only real shocks can sustain fluctuations in the long-run.
However, the learning process can be slow to adapt to changes that are not
clearly perceived by agents, causing persistency of equilibria. We discuss the
experimental results in Section 4.

The theoretical model is described in Section 2. We analyze a version of
the OLG model studied by Woodford {25] which exhibits a monetary steady-
state equilibrium, 2-period cyclic equilibria and 2-state Markovian sunspot
equilibria. Furthermore, for the chosen parameters there is a continuum of
rational expectations (perfect foresight) equilibria with a common long-run
steady state. In this set of experiments, we focus on deterministic equilibria;
these are simpler to study in laboratory and cyclic equilibria represent ex-
treme cases of Markovian sunspot equilibria (in the sense that the probability
of state transition is taken to its limit of onej}.

The experimental environment imposes some restrictions on the design
of the experiment that cause it to depart from the theoretical model. These
differences must be taken into account. Qur experimental design follows
the one used by Lim, Prescott and Sunder [13] and Marimon and Sunder

([16],]17]), although our subjects are assisted by an "expert system” that



computes their respective optimal competitive supply once subjects make
their price forecasts. In summary, we place several "model restrictions” on
our experimental subjects. They submit a point-forecast and the theoretical
model takes care of the rest. Even with these restrictions in place, the prob-
lem of indeterminacy does not disappear, and we can focus our attention on
study of learning behavior and how this affects the final outcomes.

By restricting subjects’ forecasts to be point-forecasts we preclude tak-
ing explicit account of learning processes based on the distribution of prices
(such as Bayesian learning). While the underlying model is deterministic,
market uncertainty arises naturally in our experimental environment where
beliefs are not perfectly coordinated at the outset. There is also a source of
uncertainty because subjects can not observe if a real shock is taking place.
Subjects may want to take this into account and use their forecast price dis-
tribution to compute their optimal supplies. If our subjects were risk averse,
the supplies computed from their point-forecasts would underestimate the
optimal supplies since they ignore the precautionary motive for holding cash
balances (see [16]). Nevertheless, our theoretical model gives the same quali-
tative predictions {existence of a two-period cycle, etc.) when uncertainty is
taken into account and randomness is small. More details of our experimental

environment are given in Section 3.

2 The model

The theoretical model underlying each economy had identical, two-period-
lived overlapping generations of agents trading a single completely perishable
consumption good (called chips) and fiat money. Agents were allowed to

trade in current period spot markets in each period of life but had to hold
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money in order to transfer value from one period to the next.

2.1 Agents’ characteristics

Each agent’s preferences for the consumption good are given by a modified

CRR utility function
Uler,¢z) = max{0,2[2(¢; /5)"% - 0.5(co/5)72] + 4} (1)

where ¢; denotes consumption in the first (young) period of life, and e,
denotes consumption in the second (old) period of life. The max operator
ensured that forecasting errors did not cause an unbounded negative payoff
because such a payoff would be difficult to settle in the laboratory. The
fixed payoff of 4 was included to avoid negative payoffs that may occur in
the cyclic equilibria. The parameters were chosen to ensure that the non-
negativity constraint would not be binding in any of the predicted equilibria.

Fach agent was endowed with w! = 10 units of chips when young and
w? = 0 units of chips when old. Each of the initial (Period 1) old agents was
endowed with a fixed amount of money m = 25 francs which he/she could

trade for ¢ chips, receiving utility
Viez) = 0.5(cz/5)72. (2)

Agents were permitted to trade chips for money in a single period spot
market. Young agents supplied chips to the old agents in exchange for money
(labeled francs in the lab) which was carried forward to the next period when
it was exchanged for chips. Letting p;, denote the price of chips in terms of

money, agents faced the following budget constraints.

pi-ci+my = p-w' (when young)

P - €2 = my (when old).
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Here m; denotes a young agent’s demand for money. Letting pf,; denote the
young agent’s forecast of the price at ¢ 4 1, the first-order conditions for the
optimal money demand in the model are

mi Pt Pt

my
-] =0 - (3)
When this equation is solved for m,, it yields the optimal money demand as

a function of the current price p, and the expected future price py, .

2.2 Equilibria

The parameters of the model are such that it can exhibit several distinct
stationary rational expectations equilibria. For the non-stochastic model
considered in these experiments, there can exist simple steady-state equilibria
together with cyclic equilibria of period 2. Perfect foresight equilibria in the
model can be analyzed by substituting the fixed per-capita money supply of
25 francs into the first order conditions. Upon simplifying, this yields the
equilibrium equation p, = ¢(pi,,) given implicitly by,

Pt(Pf+1)4(2Pt - 5) = 5°. (4)

It can be seen from this equation that in every economy there was a
unique monetary steady-state equilibrium at price p* = 5, where p~ solves

the equation p* = ¢(p*), i.e.,

(p)°(2p — 5) = 5°. (5)

In addition, the preferences are such that there also exist two cyclic equilibria
of period 2. Let p and p denote the cyclic equilibrium prices. The two cycles
correspond to p = ¢(p) and p = ¢(p); these are p = 2.56 and p = 14.75 and



are obtained analytically as solutions to the equation ¢(p,p) = (4(p), #(p)),
given by
= (e M () )

Whether or not either of these equilibria are obtained depends on the ways

in which agents form their forecasts, and on the stability properties of the

equilibrium under these schemes.

2.3 REE equilibrium paths and price dynamics with
adaptive learning

Is a stationary k-cycle p = (p',...,p*) locally stable in the sense that if
prices are sufficiently close to § then the series of k-prices will converge to
p? The first stability requirement is given by the local stability properties of
the map ¢(-) at p, defined by:

(B, P") = ($(%), ..., 4(5"), 8(5"))

where p; = ¢(pf,,). The second requirement is that agents’ behaviors must
reinforce the stability properties of the ¢(-) map!. To achieve this, it is

usually assumed that agents use k-order adaptive learning rules of the form
Pivs = Pf + alpe = pi)

if t mod k = j and where 0 < o < 12. In a k-cycle, pr = ¢*(pf,,), and

if, in addition, it is assumed that pf,, = p{, then price expectations evolve

'In particular, if the second requirement on learning rules is satisfied, a necessary and
sufficient condition for local stability of ¢ is the local asymptotic stability of differential
equation p = @(p:)—p-at p, provided that some regularity conditions of ¢ are also satisfied
(see [7]).

’In general, prices can be random variables, e.g..p; = ¢(pfiq) + €, and then instead
of a constant a, it is postulated a a‘: which must satisfy assumptions of the form a{ N O
and 37, o = +o00. These assumptions are satisfied when agents use adaptive least squares
learning on py, Ps—k, .. -, Prenxk, - . - t0 forecast peyr.



according to the k-order adaptive rule,

Pigr = P{ + (4" (p0) — ).
That is, in a two-period cycle, only past price information of even periods is
relevant for forecasting the price of an even period. Furthermore, within the
2-period cycle, this forecasting rule is self-confirmed. In particular, for the
above model, the map ¢(-) is locally unstable at the steady state p* = 5; when
it is considered as a backward map, pny1 = ¢~ '(p,.). This also means that
as a perfect foresight (forward) map p; = #(pf,,), (4) describes a continuum
of rational expectations equilibria with a long-run steady state p*. One of

these equilibrium paths is represented in Figure 1.1.
[Figure 1 about here]

In contrast, map ¢ : R? — R? islocally asymptotically stable at (p, p)(or(p, p)),
when considered as a map, (py,,,P%41) = @(py,p2). The possibility of ob-
taining a cyclic fulfilled expectations equilibrium arises if agents use a second-
order adaptive learning rule. Figure 1.4 plots a price series when agents have
homogeneous second-order beliefs. However, if agents use first-order adaptive
learning rules (i.e., they are not "tuned” with the cycle), then the resulting
temporary equilibrium dynamics will converge to the monetary steady-state
if they put sufficient weight on their own previous forecasts. Since (1-¢) is
the weight on previous forecasts, this condition requires the value of the pa-
rameter o < 0.88 in our model with homogeneous learning rules®. Figure 1.2
illustrates a price path when agents use homogeneous first-order forecasting

rules with low a's.

3For higher values of & the price process converges to a two-period cycle whose magni-
tude depends on «; as o — 1, the cycle converges to the cycles of ¢(-,-). In these cycles,
however, prices differ in an obvious and systematic way from the expected prices. See
Figure 1.3
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We will use a variation of the first-order (linear) adaptive rule, by postu-

lating forecasting schemes of the form

Pigy =1 + olpr — pi)-

We use the specification in terms of p;_; because subjects were required to
make point (rather than functional) forecasts at the beginning of time ¢,
when p, was not in their information set. While this specification does affect
the temporary equilibrium price trajectory, it does not affect the overall
convergence properties of the model.

These observations on the convergence properties of the dynamics asso-
ciated with various hypothesis about how agents forecast future prices allow
us to pose some experimentally testable hypotheses. If agents have perfect
foresight, the economy should converge to the monetary steady-state. On the
other hand, if agents forecast adaptively, then the convergence properties will
depend on the dynamics of their forecasts (see [25)], [11] or [7] for detailed
discussions of these issues). If forecasts extrapolate simple steady-states, we
should see convergence to the monetary steady-state; if forecasts extrapolate
cyclic patterns, we can expect to see cyclic equilibria.

To complete our discussion of the various types of equilibria, we deal
briefly with the equilibria which result during the periods in which expec-
tations are being conditioned. As noted in the Introduction and shown in
Section 4, cyclic patterns did not arise spontaneously. In order to study
conditional price fluctuations we exposed our subjects in several economies
to a real shock by varying the size of the generations. This real shock in-
duces cyclic movements in the temporary equilibrium prices. Table I reports
the parameters and equilibria for the various experimental sessions in which

this technique of inducing expectations was used. For the periods in which
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generation size varied, the reported equilibria were calculated numerically.
Since numerical methods tend to mimic the (backward) dynamics of the ¢(:)
map, only the cyclic equilibrium values were obtained, although theoretically,
for small shocks, there is a steady-state equilibrium. As we have said in the
Introduction, a source of uncertainty may be induced in our experimental en-
vironment by having different stages with and without real shocks. Suppose
agents were to condition their forecasts on the presence of these shocks (and
not on the perfectly correlated signal). Since the subjects do not observe
whether the shocks are taking place, they should have some beliefs about
the likelihood of occurrence of a real shock. We describe the deterministic
equilibria as denchmarks or approximation to the stochastic equilibria when

uncertainty is small.

[Table I about here]

3 The OLG experimental environment

In the experimental sessions, we forced subjects to act as competitive price
takers by soliciting forecasts from each agent, and numerically constructing
the optimal money demands for each young agent as functions of p, given
each agent’s forecast of p;+;. This was done by calculating the optimal m,
{given the forecast) over a grid of 60 possible values of p;, and interpolating
linearly between these values.

The temporary equilibria in the market were computed by aggregating
the money demands of young agents and numerically solving for the money
market clearing price, given a fixed supply of fiat money. In the experiment,
the fixed money supply was determined by the number of agents assigned to

the old generation in Period 1. Once this assignment was made, the money
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supply remained constant throughout the economy. Once the competitive
temporary equilibrium price was determined, chips were transferred from
young agents to the old in exchange for money in the amounts specified by the
young agents’ money demands {evaluated at the market-clearing price), and
according to the amount of money held by the old of that period. We report
the behavior of five overlapping generations economies, numbered 1 through
5, each operated for many (27-67) periods. (For reasons explained later in
this section, we do not report the results of eight other laboratory economies
we conducted in this series. All data are available from the authors.) The key
design features and the equilibrium predictions of the models discussed in the

previous section about the performance of these economies are summarized

in Table 1.

3.1 Experimental environment

Overlapping generations were created in the laboratory by recruiting N >
3n 41 subjects, where n was the number of agents in each generation. Each
subject was seated at a networked personal computer and shielded from
viewing the computer screens of others. In every period of the economy,
n subjects entered the market as a new generation of young agents. The
n subjects who entered the market in the preceding period constituted the
old generation, and the remaining (> n + 1) subjects, called outsiders, were
inactive. In the following period, n of the outsiders were randomly picked
to constitute the young generation of that period, before the subjects who
had just finished serving as the old were added to the pool of outsiders. This
procedure ensured that every subject sat out of the economy for at least one
period before re-entering the market, and that the number of periods for

which the subject had to sit out was random.
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At the beginning of each p;ariod, subjects saw a blinking square on their
computer screens. Color of this square cycled between red and yellow 1n al-
ternate periods. Colored squares for the prior periods remained on the screen
but they did not blink (see Figure 2). For a certain number of consecutive
periods in each economy (see Table 1), the economy was imparted a real
shock by cyclically variying the number of subjects in each generation be-
tween a high and a low number in phase with the color of the blinking square
on subjects’ computer screens. Subjects remained unaware of the existence

or absence of generation size shocks.
[Figure 2 about here]

Once the new generation of agents was assigned, all subjects were prompted
to predict prices for the current and the following periods. Price predictions
were used by the computer to form the utility-maximizing money demand
functions for the newly entering young agents, and in a direct competition
for the most accurate prediction of the current period price. The winner(s)
of the competition received a fixed payoff of 5 "utils” above and beyond any
earnings from the market activity. The competition generated incentives for
accurate predictions and was used in terminating the economy (see below).

Once all subjects had entered their price predictions, the future price
prediction of each young agent was used to compute a utility-maximizing
money demand schedule (as a function of the current price) given the forecast
of the future price by solving (3). The central computer aggregated money
demand functions across the young agents and computed the market clearing
temporary equilibrium price. Chips were transferred from the young to the
old at the market-clearing price. The market-clearing price and other data

were then displayed on the subjects’ screens. Price and gross inflation were
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displayed in the color of the blinking square (red or yellow) for the period
(see Figure 2).

After market-clearing, old agents were informed of their payoff based on
total chip consumption in both periods of market participation according to
(1). Each young agent was informed of the number of chips he or she con-
sumed in the current period and the amount of money carried forward to the
next period. Old agents then joined the pool of outsiders and young agents
turned old. Results of the price prediction competition were announced and
the winner(s) received the prediction prize. This completed one period of
market activity, and the process was repeated for the next period.

The experimenter terminated each economy by selecting the termination
option after all subjects had entered price predictions for the final .period.
Subjects were informed that the economy was over and the terminal old were
allocated chips in exchange for money at the average of the terminal price
predictions entered by the outsiders in the final period.

The subjects were undergraduate students in Spear’s Intermediate Mi-
croeconomics class; they participated in the experiment as part of a class
project. They were given some initial instruction on the structure of OLG
models, the utility functions that would be used in the experiment, and the
role of forecasts in determining the temporary equilibria of the model. Prior
to the experimental sessions, however, there was no classroom discussion of
the nature and types of equilibria that could occur. Subjects received points
toward course credit in proportion to their total earnings of "utils” in the
experiment. A summary of procedures and instructions is given in Appendix

1. A full set of instructions is available from the authors.



4 Experimental results

Like our subjects, we also learned through the experiment. We briefly de-
scribe our early attempts at studying expectationally driven market volatility
in an experimental environment, before reporting the results of five experi-

mental economies.

4.1 Experimental priors

During a series of eight prior economies conducted in the spring of 1990,
we discovered several things which led us to modify the setup used in the
economies reported on here. First, in the trial sessions, subjects were re-
quired to solve the optimization problem themselves and to submit seven-
point chip supply (equivalently, money demand) schedules to the central
computer. These schedules were then aggregated to construct the market
demand schedule and find the temporary equilibrium price. Data from these
economies revealed that, given the time constraints and their lack of famil-
iarity with the optimization problem, subjects generally made large errors in
finding the optimal chip supply schedule. To control the noise this problem
introduces into data, we eliminated the need for subjects to solve the opti-
mization problem by having the computer calculate money demand functions
given subjects’ forecasts of the future price. This has the effect of controlling
for Walrasian behavior and focuses the experimental results on the question
of expectations alone.

The second issue concerns the generation of extrinsic uncertainty in the
lab. During the trial sessions and the sessions reported here, extrinsic un-
certainty was generated by changing the color of a blinking square on the

computer screen according to the realization of the sunspot variable. In ad-
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dition, the history of prices displayed on subjects’ screens was color-coded to
correspond to the realization of the sunspot variable. In the course of the trial
economies, it became apparent that subjects will not use sunspot variable in
their forecasts in the absence of any observed initial correlation of the move-
ments of prices and the sunspot variable. Most price paths converged toward
the steady-state monetary equilibrium in economies with purely exogenous
signals (flashing light on the screen, etc.); this phenomena is illustrated in
the first stage of Economy 5 (discussed below).

Our first attempt to induce subjects to consider the sunspot realizations
followed a suggestion from Woodford [1990] paper: subjects were given an
additional utility payoff depending on the realization of the sunspot. This
had no discernible effect on the observed equilibrium prices. We then ran
several sessions in which we initially "trained” expectations by varying the
chip endowment according to the realization of the sunspot variable. After
the training period, the endowment shocks were turned off and endowments
remained constant for the remainder of the session. The first such economy
generated what can be interpreted as excess volatility of prices during the
period in which endowments were constant, but this effect was not replicated
during any of the subsequent economies. We conjecture that this occurred
because subjects became aware that a regime change was being made (since
young agents in the market see the endowment realization), and this infor-
mation was communicated to the market.

This experience led us to train expectations during the current round
of economies by varying the generation size instead of varying endowments.
This procedure ensured that subjects were not directly aware of the regime
change when it occurred and could only make inferences about the state

of the economy by observing prices. As with the trial economies, once the
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training period was past, generation size was held constant for the remainder

of each session.

4.2 Session descriptions

We present data for five economies run during the week of November 3,
1990. Data on market-clearing temporary equilibrium prices, the number and
identity of subjects entering as young agents, and each subject’s prediction
of current and future prices were recorded for each period.

We present a brief description of each experimental economy and a plot
of the time-series of observed prices and generation size, before discussing

the results.

Economy 1 This economy involved 14 subjects and a prediction prize of 5.
Generation size alternated between 3 and 4 (with 4 initial old agents
and hence an aggregate money supply of 100) for the first 17 periods,
after which generation size remained constant at 4. The economy was

terminated after period 46.

Economies 2 and 3 This session had 10 subjects and consisted of two
economies. The first crashed after 27 periods (Economy 2} and the
second after 29 periods (Economy 3). Prediction prize was 5. In Econ-
omy 2, generation size alternated between 2 and 3 (with 3 initial old
and hence an aggregate money supply of 75) for the first 17 periods. In
Economy 3, generation size alternated between 2 and 3 (with 3 initial
old agents) for the first 11 periods. (eneration size in both runs was

constant at 3 after the shocks were terminated.

Economy 4 This economy consisted of a single run with 13 subjects. Pre-

diction prize was 5. Generation size alternated between 3 and 4 (with
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4 initial old agents and an aggregate money supply of 100) for the first

20 periods. It was terminated after 50 periods.

Economy 5 This economy consisted of a single run with 15 subjects. Pre-
diction prize was 5. In this economy, generation size remained constant
at 4 for the first 14 periods (with 4 initial old agents, aggregate money
supply of 100). Thereafter, generation size alternated between 4 and
5 for 22 periods (periods 15-36) at which point generation size became

constant at 4. The economy was terminated after period 67.

4.3 Temporary equilibrium price patterns

Five panels of Figures 3 plot the time-series of market-clearing prices for
the five economies, together with the steady-state and the range of the two
2-cycle equilibria. Periods in which generation-size shocks were present are
afso indicated. We would like to draw attention to four features of the ex-

perimental data.

[Figure 3 about here]

¢ First, extrinsic shocks (pure sunspots) are not enough to generate cyclic
patterns. For example, in Economy 5, subjects experienced generation-
size shocks during Periods 15 through 36. Without prior exposure to
such shocks, this economy exhibits approximate convergence toward
the steady-state price of 5 in Periods 1 through 14. Behavior of the
same economy during Periods 37-67, when generation-size shocks were
absent, is different. We infer that the exposure to shocks during Periods
15-36 accounts for the difference. Further experiments with longer

economies in which generation size remains fixed would be of interest.
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¢ Second, the amplitude of price fluctuations is greater during the peri-
ods in which generation size is varied cyclically compared to periods
when generation size is fixed. This feature is in accord with predictions
from the model for the cyclic stationary equilibria when generation size

fluctuates cyclically (see Table I).

e The third feature common to the data is a tendency for price fluc-
tuations to persist after generation size is fixed. This occurs in all
economies except in Economy 2. We interpret this persistence as ev-
idence for the kind of expectationaliy-driven price volatility predicted
by the sunspot equilibrium models. The persistence of fluctuations is
clearest in Economies 1 and 5, and we will focus on these two economies

in the following sections.

¢ Finally, the fourth common feature concerns the fixed-generation-size
periods in which the observed price deviates significantly from the pre-
dicted cyclic equilibrium. All economies in which cyclic fluctuations
persist after the termination of generation-size shocks exhibit periods
in which the temporary equilibrium price is closer to the predicted
steady-state price of 5 than to the cyclic price. It is interesting to note,
however, that even after prices in the vicinity of steady-state equilib-
rium are observed, the pattern of cyclic fluctuations reestablishes itself
in all economies except in Economy 2. In Economy 2, the price pat-
tern seems to converge to the steady-state. Reestablishment of cyclic
fluctuations is in accord with the stability predictions of the theoretical

model when agents’ forecasts are adapted to the cyclic equilibrium.

We turn next to a more detailed examination of the data from Economies 1

and 5.
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4.4 A closer look at Economy 1

Economy 1 provides evidence of sustained, expectationally-driven cyclic move-
ments in prices, so we focused our analysis more closely on the data from
this session. Figure 4 shows the time-series of market-clearing prices for the
periods after the fluctuations in generation size were terminated (periods
17-46). On the same graph, we also plot the steady-state equilibrium price,
and prices corresponding to one of the two stationary REE cycles of period
2 predicted by the model. Price corresponding to the second cycle of period
2 simply lag behind the prices shown by 7; these prices are not shown in the

figure to preserve its clarity.
(Figure 4 about here]

Two empirical regularities should be noted in this data. First, the ob-
served prices are consistently within the range of predicted high and the low
prices (except for period 40). It appears as if the amplitude of the observed
cycle has been attenuated. Uncertainty with respect to whether real shocks
are present, might have a dampening effect on cycles.

The second regularity is the punctuation of the persistent cycle by occa-
sional prices in the vicinity of 5, the predicted steady-state equilibrium price.
Since price forecasts were the only input from subjects, this feature of the
data is also attributable to regularities in forecasts. Hence, we turned to the
data on individual subject’s forecasts to search for an explanation of these
regularities. We consider two hypotheses about the source of the observed
deviations from the cyclic pattern. First, subjects might commit errors in
entering their forecasts into the computer. We observed several instances in
the lab when shifting the decimal point would have brought an individual

forecast in line with previous cyclic predictions. On occasion, subjects also
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seem to deliberately enter outlandish forecasts, either because of boredom or
by way of exploring the limits of software. In an economy where each young
agent makes up a third to a quarter of the market, the effects of "dinging”
the system in this way can be significant. While we observed both of these
types of behavior, we do not feel it occurred regularly enough across all five
economies to explain the observed deviations from the cyclic pattern.

The second hypothesis we entertained is that some subjects deviated sys-
tematically from second-order forecasting behavior. This could occur for
many reasons, ranging from failure to perceive the cyclic pattern in the mar-
ket clearing prices during the first 17 periods, to more sophisticated strategic
attempts to manipulate forecasts. Given the cyclic color coding of price his-
tory on subjects’ computer screens, it seems unlikely that the subjects could
have missed the relationship entirely.

To test this second hypothesis, we used the individual price forecasts to
crudely infer and classify subjects’ forecast rules?. We estimated an ordinary
least squares regression of pi,; on pj, pi_;, pe—1, and an intercept to identify
which variables have significant coefficients at 5 percent level. Forecast pf,,
was regressed again on the subset of variables which had significant coefhi-
cients in the first regression. Coefficients of the second regression {along with

their estimated standard errors) are shown Table II.
[Table IT about here]

If the estimated forecasting equation for an individual fit the second-order
scheme, he or she was classified as a second-order adaptive forecaster. Us-

ing this criterion, we classified ten subjects (all except for Subjects 3, 11,

4Data and time series charts of these and other individual forecasts discussed in the
paper are available from the aunthors on request.
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12, and 13) as second-order forecasters. We then examined the relationship
between the number of second-order forecasters in each young generation
and the deviation of prices from the predicted cyclic values. This analy-
sis indicates that the degree of forecasting homogeneity does matter: the
presence of non-second-order forecasters led to temporary equilibrium prices
which deviated significantly from the cyclic equilibrium prices predicted with
homogeneous second-order forecasters. This conclusion was also borne out
in simple simulations of heterogeneous adaptive forecasting behavior in the
model.

Why the amplitude of observed prices is less than the amplitude of the
predicted cycle remains an open question. One possibility is that subjects
systematically hedge their forecasts, based on their previous experience with
deviations from the cyclic pattern. This could be consistent with explicitly
modeling the uncertainty over the real nature of shock supporting the cycle.
While it should be possible to study this kind of effect using richer adaptive
forecasting rules, we have not yet undertaken any systematic study of this

eflect.

4.5 A closer look at Economy 5

Economy 5 was perhaps the most interesting of the five experimental economies.
It differed from the others in that the 22 periods of alternating generation
size (4-3) were'preceded as well as followed by periods of fixed generation size
(4). We analyze the results of the first 14 and the last 31 fixed-generation-size

periods of this economy separately.
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L1

4.5.1 Periods 1-14

We began this economy without changes in generation size to test the hy-

pothesis that subjects would spontaneously fix upon on the sunspot (i.e.
the blinking colored light on their computer screens and the price history
coded in corresponding colors) as being relevant to their forecasting prob-
lem. Figure 5.1 plots the price series for the first 14 periods of Economy
5, along with the steady-state equilibrium price of 5 in solid horizontal line.
For comparison, Figure 5.2 plots the price series together with the predicted
2-cycle equilibrium prices for periods 37-67 of this economy. We interpret
the observed pattern during the first 14 periods as one of convergence to the

steady-state equilibrium, although 14 periods is not a long series.
[Figure 5 about here]

The damped oscillations apparent in the data for periods 1-14 also sup-
port the hypothesis that forecasts were of first-order. Figure 6 displays the
forecast series Py, for each of the 15 subjects in the economy (superimposed
on the realized value of the market clearing price P4y in broken line). Anal-
ysis of the individual forecasts for these periods also reveals the forecasts to
be of first order. As in Economy 1, we regressed individual forecasts using
mixed first and second order forecasting equations (a constant, p,—1, p{_; and
pS as explanatory variables) for each subject and found p{_, to be significant

only for Subjects 2 and 12 (the coefficient being negative for Subject 12).
[Figure 6 about here]

We again estimated a regression of pf,, on pf and p;_; (see upper panel
of Table I1I). While the first-order scheme does seem appropriate, especially

considering the limitations of the small sample size, the estimated weights
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differ considerably across subjects. These coefficient estimates were used
to define first-order forecasting automaton versions of the fifteen individual
subjects. We simulated the first 14 periods of Economy 5 by replacing the
human subjects by their automaton representations. The resulting price
series, shown in a broken line in Figure 5.1, is almost indistinguishable from
the series generated by human subjects.

We simulated this economy for a second time by using homogenous first-
order forecasting automatons as agents. While a value of a = 0.25 generates
a reasonable approximation of the damped oscillations observed in Figure 5.1,
the simulated economy with homogenous automatons generates oscillations
that are too regular compared to the data from Economy 5. By contrast, in
the first simulated economy, consisting of automatons that used the forecast
functions estimated from the Economy 5 data, price series exhibits greater
similarity to the Economy 5 data, both in lack of regularity and in dampened

oscillations.

[Table I1I about here]

4.5.2 Periods 37-67

Figure 5.2 plots the price series for periods 37-67, together with the steady-
state equilibrium price and the prices corresponding to one of the two cycles
of period 2 predicted by the model. Again, we plot only one of. the two cycles
for the sake of clarity. Expectations were trained using cyclic variation in
generation size during periods 15-36 (see Figure 3.5), after which generation
size became constant, as in the previous four economies. The generation size
remained unobservable to the subjects.

As in the previous economies, we again observe cyclic variations in the
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prices, together with deviations from the cyclic prices to prices in the prox-
imity of the steady-state equilibrium. Also, as in previous economies, the
steady-state equilibrium is not stable; deviations toward the steady-state are
followed by reversion to the cyclic equilibrium. Unlike previous economies,
however, in this economy the cycle reestablishes itself with the phase of the
cycle reversed! Indeed, phase reversals occur three times in this economy.

One possible explanation is that these phase reversals occurred because
subjects extrapolated trends they saw in the high and low prices. This was
particularly easy to do in the lab because the color coding of the even and odd
period prices had the effect of highlighting trends in these prices. (Several
of the participants in this economy also reported that they began to expect
periodic phase reversals to occur after experiencing the first two. This may
explain the rapidity with which the final reversal occurred.)

Finally, in Figure 7 we also show the individual forecast series for these
periods superimposed on the realized prices. The lower panel of Table 111
shows the estimates of the second-order forecasting scheme for each individ-
ual. As with Economy 1, the second-order forecasting scheme again fits the
data reasonably well. However, unlike Economy 1, the coefficient estimates
for Economy 5 suggest that subjects were placing much more weight on ob-
served lagged prices than on their own previous forecasts. In Economy 5,
only 7 out of 15 subjects have statistically significant coeflicients for p¢_,,
while p;_ is significant for all but Subject 6. Furthermore, ¢ of 15 subjects
put weight of 0.85 or more on p,_,. By contrast, only one subject (Subject
14} of Economy 1 put as much weight on the lagged price in the estimated

forecasting equation.

{Figure 7 about here]
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These differences in forecasting behavior between Economy 1 and Econ-
omy 5 may explain the presence of phase reversals in Economy 5. With high
coefficients in on p;_; in the second-order forecasting equations (and 4 sub-
jects had weights greater than 1!) it is possible to have trend extrapolations
on expected prices, damped by the temporary equilibriumn dynamics. When
the forecasting schemes are of second order, with high coefficients on real-
ized prices, the -price series for odd and for even periods can follow specific,

separate, trends which may produce phase reversals.

5 Concluding remark

To our knowledge, we have provided the first experimental data that has
some bearing on the existence of expectationally driven cycles and we have
found that if agents expect sunspots to matter, they can matter (although we
can not assess how persistent they can be). The question is, and has prob-
ably always been, why should agents expect sunspots to matter? Without a
real cycling shock we have seen no evidence for the emergence of such be-
liefs. However, such beliefs can be induced after subjects have been exposed
to real cycling phenomena. Qur experimental environment might seem too
special in that we have a simple deterministic real shock inducing a two pe-
riod cycle (i.e., odd vs. even periods) and a well defined signal (color coded
prices) and subjects cannot observe when the real shock effect disappears.
Certainly, historical economies are more complex, but, at the same time,
economic agents have greater communication possibilities than our experi-
mental subjects had. Political events, decisions by important companies or
banks, or simply economic policies that in their own right would have lit-

tle impact, may be signals that, with the possible help from the press, can
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trigger and coordinate people’s expectations. Our experiment suggests that
this phenomenon is more likely to occur if the conditioning events are known
to have been associated in the past with market movements. As with any
starting work, more experimental work will need to be done to enhance our
understanding of the role of the formation of expectations in determining

equilibrium patterns.
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Table I

Parameters and Equilibria for Experimental Economies™

Economy No. of Period Generation Total Equilibrium Prices
Subjects Size Money Steady | Cyclic
(N) {(n) Supply State p q
(experience)
1 14 1-16 4-3%% 100 N.A. 2.50 35.18
(1 Trial 17-46 4 100 5.00 2.56 14.75
Economy) '
2 10 1-16  3-2%% 75 N.A. 230 49.62
(Nomne) 17-27 3 75 5.00 2.56  14.75
3 10 1-10 3-2%* 79 N.A. 2.50 49.62
(Econ. 2) 11-30 3 75 5.00 2,56 14.75
4 13 1-20  4-3** 100 N.A. 250 35.18
(None} 21-50 4 100 5.00 2.56 14.75
5 15 1-14 4 100 5.00 2.56 14.75
(None) 15-36  5-4** 100 N.A. 250 29.13
37-67 4 100 5.00 2.56 14.75

*The following parameters remained unchanged through all five economies:

Money endowment of the old in period 1 = 25 per capita

Chip endowment of the young (w') = 10
2) =0

Chip endowment of the old (w

Prize for the best price prediction each period = 5
Probability of transition for sunspot variable =1
**Generation size alternated in consecutive periods.




Table 11

Estimated Forecast equations for Individual Subjects™
Economy 1, Post-Generation Shock Periods {17-46)

Subject Pf,=ay + oy Py + P, + az Pf N R
No.

1 0.36 (0.18) 0.58 (0.15) 30 0.65
2 0.60 (0.09) 0.29 (0.08) 30 0.59
3 12.15 (2.16) 035 (0.16) 30 0.15
4 0.59 (0.09)  0.40 (0.08) 30 0.79
5 0.31 (0.11)  0.64 (0.07) 30 0.82
6 0.48 (0.13)  0.46 (0.13) 30 0.65
7 0.45 (0.13)  0.54 (0.17) 30 0.77
8 0.30 (0.14)  0.42 (0.14) 30 0.0
9 0.66 (0.10)  0.32 (0.08) 30 0.79
10 0.30 (0.16)  0.53 (0.16) 30 0.29
1 17.15 (2.70) 2055 (0.21) 29 0.2
12 0.76 (0.09) 30 043
13 3.66 (1.26) 0.50 (0.11) 30 0.42
14 0.96 (0.06) 29 0.67

*(Standard errors of estimates are given in parentheses).




) Table II1
Estimated Forecast Equations for Individual Subjects*

Economy 5 (See Figures 6 and 7 for Forecast Data)

Subject Pf,=ac + a Py + a2 PE, + az PN R?
No.
Pre-Generation-Shock Periods (1-14)

1 0.87 (0.37) 0.43 (0.25) 13 0.62
2 -0.38 (0.89) 1.44 (0.83) 13 0.16
3 0.05 (0.01) 0.98 (0.00) 13 1.00
4 -1.62 (1.48) 2.56 (1.46) 13 0.4
5 -5.76 (3.74) 6.77 (3.75) 13 0.96
6 No significant variables 13

7 -0.04 (0.16) 1.02 (0.17) 13 0.96
8 -0.37 (0.55) 1.42 (0.51) 13 0.86
9 -2.41 (0.35) 3.33 (0.32) 13 0.87
10 1.14 (0.06) -0.01 (0.01) 13 0.62
11 1.07 (0.03) -0.03 (0.01) 13 0.92
12 0.62 (0.31) 0.47 (0.25) 13 0.68
13 0.03 (0.23) 1.04 (0.20) 13 0.69
14 -0.71 (0.26) 1.75 (0.24) 13 0.85
15 -0.13 (0.13) 1.02 (0.11) 13 0.06

Post-Generation-Shock Periods (37-67)

1 0.94 (0.23)  0.24 (0.20) 31 0.60
2 0.77 (0.05)  0.23 (0.05) 31 0.93
3 1.10 (0.07)  0.09 (0.03) 31 0.42
4 0.86 (0.19)  0.22 (0.17) 31 0.57
5 1.07 (0.06) -0.05 (0.06) 31 0.86
6 -0.08 (0.02) 0.41(0.02) 31 0.85
7 0.92 (0.16)  0.16 (0.09) 31 0.17
8 0.97 (0.13) -0.01 (0.12) 31 0.74
9 0.59 (0.06) 0.35 (0.08) 31 0.85
10 0.62 (0.09)  0.40 (0.08) 31 0.85
1 0.73 (0.08)  0.28 (0.08) 31 0.8
12 0.56 (0.09)  0.41 (0.09) 31 0.72
13 0.87 (0.13)  0.14 (0.11) 31 0.58
14 1.09 (0.16)  0.01 (0.15) 31 0.71
15 1.05 (0.07) -0.05 (0.09) 31 0.85

*(Standard errors of estimates are given in parentheses).




Figure 1
Rational Expectations and Adaptive Price Dynamics

1. Forward Perfect Foresight Dynamics 2. First Order Adaptive Dynamics (o = 0.75)
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Figure 2

Main Subject Screen

Period# -5 VALUES ENTRY
Player# : 7 Please enter prediction for period 5:
) Please enter prediction for period 6:
Chip entry 10
Chip exit 0
Init. Money 25.000
Exchange 1.000
Pred. Prize 1.000 Are Predicted Prices OK (Y or N):
Sent information, please wait for results
Current Cumuiative <== space for messages from experimenter==>
Profit ($) Profit ($)
2.29 13.41
Period Money Growth Eést FE Winner MeanF
1 1.00 0.01 9 3.31
2 1.00 1.42 13 2263
3 1.00 0.04 3 3.34
4 1.00 0.28 9 19.97
5 1.00 0.36 12 2.94

F1-Selling Offer Screen

. F2-Prediction Screen F3-Main Screen

Legend:

7

Dark gray square or background = red on computer screen
Light gray square or background = yellow on computer screen

’ 3 ]
= Blinking square on computer screen

Best FE = Error in the winning price forecast
Mean F = Mean price forecast




Figure 3

Actual and Equilibrium Prices and Generation-Size Shocks
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Figure 4

Actual, 2-Cycle, and Steady State Equilibrium Prices
Economy 1 (Post Generation-Shock Periods 17-46)
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Figure 5

Economy 5 Time Series without Generation-Size Shock

1. Periods 1-14 (Actual and Robot Economy Prices and Steady State Equilibrium)
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2. Periods 37-67 (Actual Prices and 2-Cycle and Steady State Equilibrium)
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Figure 6

Individual Subjects’ Price Forecasts Before Generation-Size Shocks
g Economy 5 (Periods 1-14)

Subject 1 Subject 2 Subject 3

Subject 4 Subject 5 Subject 6

Subject 8 Subject 9

Subject 10 Subject 11

Subject 13 Subject 14 Subject 15
PERIODS -—-

Legend: PRICE FORECAST (P®,,) in solid line, ACTUAL PRICE (P,,,) in dotted line.



Figure 7

Individual Subjects’ Price Forecasts After Generation-Size Shocks
' Economy 5 (Periods 37-67)

Subject 1 Subject 2 Subject 3

Subject 10 Subject 11 Subject 12

PERIODS -—
Legend: PRICE FORECAST (P*,,) in solid line, ACTUAL PRICE (P,,,) in dotted line.



Appendix
Summaries of our experimental procedure and of the instructions given to the
subjects are given below. Full details are available from the authors.
Summary of Experimental Procedures

1. The central computer randomly chooses the initial period to be either "red" or
"yellow," and displays a blinking square of the chosen color on subject screens.
In subsequent periods, the color of the square cycles between red and yellow.

2. The computer selects n subjects from the pool of outsiders to enter the economy
in period t before the subjects who served as old in period t-1 are added to the
pool of outsiders. The number n remains fixed in periods without generation-size
shock; it cycles in phase with the color of the blinking square between two
numbers during the periods when generation-size shocks are in force (see Table
1).

3. Subjects are asked to submit their forecast of the market-clearing price of chips
in pericd t. In addition, they are asked to enter their forecasts for period t+1.

4. From the forecasts of each member of the "young" generation, the computer
constructs a money demand function using Equation (3), and aggregates the
individual demands into money demand for the generation.

5. The central computer computes the point of intersection of money demand with the
(constant) supply of money (25n for all economies reported here). Market clearing
price is announced and individual subjects are informed of their aliocations. Price

is displayed on computer screens in red or yellow color as appropriate.



' 6. The old are informed of the number of dollars they earned on the basis of the
chips they consumed in their young and the old period. Members of the old
generation then join the pool of outsiders.

8. The young are informed of the units they consume in period t, and the number of
units of fiat money they carry into period t+1.

9. The results of the price prediction competition are announced and the winner
receives the prediction prize.

10.  Cycle resumes at step 1.

Summary of Subjects’ Instructions for Economy 1

This is an experiment in decision-making. The instructions are simple; if you follow
them carefully and make good decisions, you might earn a considerabie number of points.

We shall operate a market in which you may buy and sell chips in a sequence of
periods. The type of currency used in this market is francs. The only use of this
currency is to buy and sell chips. The points you take home with you are called dollars.
The procedures for determining the number of dollars you take home with you is
explained in these instructions.

You will participate in the market for two consecutive periods at a time: your entry
period and your exit period. Different individuals may have different entry and exit
periods. You may be asked to enter and exit more than once depending on the number

of periods for which the market is operated.



You will see a flashing square on your computer screen in either red or yeliow
color. The color of the square alternates between red and yellow over periods.

Your dollar earnings are determined on the basis of your sale and purchase of
chips. At the beginning of your entry period, you will be given @' chips. You may keep
them or seil some of them to others in exchange for francs. You cannot buy chips in this
period. The number of chips you sell in your entry period (t) depends on your (and other
entrants’) price forecast for the following period (t+1). The central computer uses your
forecast to construct your optimal money demand function that maximizes your earnings.
The money demand functions of all entrants are aggregated to obtain the money demand
function for the generation. The central computer calculates the point of intersections of
this demand function and the money supply function (from the old) to arrive at the market-
clearing price. All transactions take place at this price. The number of chips you
"consume” (c,) at the end of the entry period is »' minus the number you sell. The francs
you receive from selling any of your chips are carried over into your exit period.

In your exit period, you are given no chips (w® = 0). You can use the francs
carried over from your entry period to buy chips from others. The number of chips you
buy in your exit period is determined by the prevailing market price of chips in that period
and the number of francs that you obtain by selling chips in your entry period. Francs
have no use for you after you exit. Your computer has been programmed to
automatically use up all your francs to purchase as many chips as possible at the market

price. You cannot sell chips in your exit period. Thus the number of chips you
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“::onsume" in your exit period (c,) is the number of chips your francs can buy. The
number of points you earn at the end of your exit period is:
Earnings = maximum {0, 4 + ((8¢c,/0')"® - 0.5 x {(0'/2¢,)?)}

where @' = the number of chips you are given in entry period, i.e., 10,

¢, = the number of chips you "consume" (' - what you sell) in your entry period,

and

c, = the number of chips you "consume" (what you buy) in your exit period.

Your computer calculates and tells you this dollar amount. Note that your earnings
cannot be negative. All chips are forfeited at the end of each period. The enclosed table
(not included here) shows some calculations of your dollar payoff for several levels of
chips "consumption” in entry and exit periods. The enclosed figure (not included here)
shows various combinations of chip consumptions needed to earn a given dollar amount.

For some of you the first period itself is an exit period. In this case, you will
receive 25 francs, in addition to the exit period endowment of O chip at the beginning of
this period. Your computer automatically uses all your francs to purchase chips. Your
dollar eamings for this period are determined by the following formuia:

Maximum { 0, {8c,/@')*®}.

The second source of your earnings is a prediction game. At the beginning of
each period, ali subjects are asked to predict the market price for that period and the
following period. The winner (smallest error in predicting the current period price)

receives $5.00. If there is a tie, the prize is split equally among the winners.



After the outside participants have entered their price forecasts for a period, the

experimenter may terminate the economy. In this case, the francs being heid by the exit

participants are transformed into chips using the "average predicted price" provided by

the outside participants.

(1)

(3)

()

(6)

Thus the specific rules are:

All entry-period players are sellers and all exit-period players are buyers of chips.
Computers are programmed so all franc holdings of every exit-period player will
be used up to buy chips from the entry-period players at the market price of chips
for the period.

On the basis of the price prediction you (the entry subject) provide for the next
pericd (t+1), the computer figures out the number of chips you should sell at
various prices in order to maximize your points. It does the same for all entry
players, and figures out the number of chips all entry players would like to sell at
various prices.

After considering the amount of francs in the hands of the exit-period players and
the number of chips entry-period players would like to sell, the computer calculates
and informs you about the market clearing price, your transactions and balances.
The francs received by the entry-period players in the entry period are used to buy
chips in the exit period which follows immediately.

At the end of each period, the computer informs you about the average predicted
market price for the current period and the winner(s) of the prediction game.

Winner(s) receive a $5.00 prize.



(7)  Atthe end of the experiment, francs held by all entry-period players are converted
into chips using the average of predicted current period market prices by outside-
market players.

(8) At the end of the experiment, the computer screen shows your cumulative profit.

This is the number of points you have earned from the game.



List of Symbols

¢1: ¢ subscript 1.

¢zt ¢ subscript 2.

k: roman lower case k.

m: m bar.

mq: m subscript 1.

N: (roman) upper case N.

n: (roman) lower case n.

p{: (roman) lower case p superscript e subscript t.

Piyi: (roman) lower case p superscript e subscript t+k.

Pfy: (roman) upper case P superscript e subscript t+1.

Pi41: upper case (roman) P subcript t+1.

p*: lower case (roman) p superscript asterisk.

Pt p bar.

p: p underscore.

p:: lower case roman p subscript t.

pi—x: lower case roman p subscript t-k.

: Ellipsis.
Pi—nxk: lower case roman p subscript (t-n times k).
pt ey 1ower case (roman) p supercript e subscript t+1.
!,..., P p bar superscript 1, p bar superscript k, etc.

p. p dot

pr: p of (greek) tau.

Pnt+1: lower case roman p subscript n41.

V{(cz): (roman) V of ¢ subscript 2.

Ufey, 2): (roman) upper case U of (roman ¢ subscript 1, roman ¢ sub-
script 2).

a(p; — pf): (greek) alpha times (expression).

af: (greek) alpha superscript j subscript t.

a; N\, 0: (greek) alpha superscript j subscript t converges to zero from
above,

a — 1: (greek} alpha converges to 1.

3, af: (greek) alpha superscript j subscript t, summed over t.

#(piy1): (greek) phi of lower case (roman) p supercript e subscript t+1.

¢(-): function of (greek) phi.

¢*(p,1): phi to the power k of (p supercript e subscript t+k).
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¢~ '(p.): phi inverse of (p subscript n).
#(-}: function phi.

@(-,-): function script phi.

m: (greek) pi.

wy: (greek) lower case omega subscript 1.
wi: (greek) lower case omega subscript 2.
co: infinity.





