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1. Introduction

In studying macroeconomic business cycles, it is convenient to have some low-
dimensional characterization of economy-wide fluctuations. If an aggregate mea-
sure of economic activity—such as GNP or total industrial production—could be
widely agreed on as accurately assessing the state of the economy, then all at-
tention could focus on that measure alone. Econometric analysis and forecasting
would then be, in principle, straightforward.

But any one given aggregate measure is likely affected by many different dis-
turbances: understanding economic fluctuations then involves disentangling the
dynamic effects of those different disturbances. For instance, much has been writ-
ten on decomposing aggregate measures of output into different interpretable com-
ponents. Some of this work uses multivariate time series methods to analyze such
decompositions. Little empirical work has been done, however, proceeding in the
opposite direction, i.e., using information from a wide range of cross-section data to
shed light on aggregate fluctuations. In other words, in the business cycle analysis
triad of depth, duration, and dispersion, the third has typically been ignored.

We know that professional forecasters look at a variety of different indica-
tors to predict aggregate activity. Interest rates, measures of consumer sentiment,
the money supply, and the spectrum of asset prices are all candidates for help-
ing to predict economy-wide movements. There again, to understand aggregate
fluctuations, one needs to go beyond examining a single time series in isolation.

This paper takes the natural next step on these observations: it provides
a framework for analyzing commonalities—aggregate comovements—in dynamic
models and data structures where the cross section dimension is potentially as
large, and thus potentially as informative, as the time series dimension. Why
might this be useful for analyzing macroeconomic business cycles?

When the aggregate state of the economy affects and in turn is affected by
many different sectors, then it stands to reason that all those sectors should contain
useful information for estimating and forecasting that aggregate state, It should
then simply be good econometric practice to exploit such cross section information
jointly with the dynamic behavior to uncover the aggregate state of the economy.

Standard time series analysis, however, is not well suited to analyzing large-
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scale cross sections; rather, it is geared toward the study of fixed-dimensional
vectors evolving over time. Cross section and panel data analysis, on the other
hand, are typically not concerned with the dynamic forecasting exercises that are
of interest in macroeconomics. It is this gap in macroeconometric practice between
cross section and time series analyses that this paper addresses. While there are
many interesting issues to be investigated for such data structures, we focus here
on formulating and estimating dynamic index models for them.

The plan for the remainder of this paper is as follows: Section 2 relates our
analysis to previous work on index structures in time series. Section 3 shows
how (slight extensions of) standard econometric techniques for index models can
be adapted to handle random fields. Section 4 then applies these ideas to study
sectoral employment fluctuations in the US economy. Appendices contain more
careful data description as well as certain technical information on our application
of the dynamic index model to random fields.

2. Dynamic Index Models for Time Series

This paper has technical antecedents in two distinct literatures: the first includes
the dynamic index models of Geweke (1977}, Sargent and Sims (1977), Geweke and
Singleton (1980), and Watson and Kraft (1984), The second literature concerns
primarily the analysis of common trends in cointegrated models, as in, e.g., Engle
and Granger (1987), King, Plosser, Stock, and Watson (1991), and Stock and
Watson (1988, 1990). Because of the formal similarity of these two models—the
dynamic index model and the common trends model—it is sometimes thought
that one model contains the other. This turns out to be false in significant ways,
and it is important to emphasize that these models represent different views on
disturbances to the economy. We clarify this in the current section in order to
motivate the index structure that we will end up using in our own study.

Notice first that neither of these standard models is well suited to analyzing
structures having a large number of individual time series. When the number of
individual series is large relative to the number of time series observations, the
matrix covariogram cannot be precisely estimated, much less reliably factored—as
would be required for standard dynamic index analysis.

Such a situation calls for a different kind of probability structure from that
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used in standard time series analysis. In particular, the natural probability model
is no longer that of vector-valued singly-indexed time series but instead that of
multiply-indexed stochastic processes, i.e., random fields. In developing an in-
dex model for such processes, this paper provides an explicit parametrization of
dynamic and cross-section dependence in random fields. The analysis here thus
gives an alternative to that research which attempts robust econometric analysis
without such explicit modelling.

Begin by recalling the dynamic index model of Geweke (1977) and Sargent
and Sims (1977). An N x 1 vector time series X is said to be generated by a
K-index model (K < N)if there exists a triple (U,Y,a) with U K x 1 and Y
N x 1 vectors of stochastic processes having all entries pairwise uncorrelated, and
a an N X A matrix of lag distributions, such that:

X(t)=a+U{t) +Y(1), (2.1)

with * denoting convolution. Although jointly orthogonal, U and Y are allowed
to be serially correlated; thus (2.1) restricts X only to the extent that K is (much)
smaller than N. Such a model captures the notion that individual elements of X
correlate with each other only through the K-vector UU. In fact, this pattern of
low-dimensional cross-section dependence is the defining feature of the dynamic
index model.

Such a pattern of dependence is conspicuously absent from the common trends
mode] for cointegrated time series. To see this, notice that when X is individu-
ally integrated, but jointly cointegrated with cointegrating rank N — K, then its
common trends representation is:

X(t) = al(t) + Y (1), (2.2)

where U is a K x 1 vector of pairwise orthogonal random walks, Y is covariance
stationary, and ¢ is a matrix of numbers (Engle and Granger (1987) or Stock
and Watson (1988, 1990}). As calculated in the proof of the existence of such a
representation, U has increments that are perfectly correlated with (some linear
combination of) Y. It is not hard to see that there need be no transformation of
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(2.2) that leaves the stationary residuals ¥ pairwise uncorrelated and uncorrelated
with the increments in U/. Thus, unlike the original index model, representation
(2.2) is ill suited for analyzing cross-sectional dependence in general. In our view,
it is not useful to call Y idiosyncratic or sector-specific when Y turns out to be
perfectly correlated with the common components U.

3. Dynamic Index Structures for Random Fields

While model (2.1) as described above makes no assumptions about the sta-
tionarity of X, its implementation in e.g. Sargent and Sims (1977) relied on being
able to estimate a spectral density matrix for X. In trending data, with perma-
nent components that are potentially stochastic and with different elements that
are potentially cointegrated, such an estimation procedure is unavailable.

Alternatively, Stock and Watson (1990) have used first-differenced data in
applying the index model to their study of business cycle coincident indicators—
but in doing so they restrict the levels of their series to be eventually arbitrarily
far from each series’s respective index component. Stock and Watson chose such
a model after pretesting the data for cointegration and rejecting that character-
ization. Thus, their non-cointegration restriction might well be right to impose,
but again, the entire analysis is thereafter conditioned on the variables of interest
having a particular cointegration structure.

When the cross section dimension is potentially large, standard cointegration
tests cannot be used, and thus the researcher cannot condition on a particular
assumed pattern of stochastic trends to analyze dynamic index structure. [For
instance, if N exceeds T, the number of time series observations, no (sample)
cointegrating regression can be computed.] Our approach explicitly refrains from
specifying in advance any particular pattern of permanent and common compo-
nents; instead, we use only the orthogonality properties of the different components
to characterize and estimate an index model! for the data. Tt turns out that by
combining ingredients of (2.1) and (2.2) one obtains a tractable model having three
desirable features: (1) the cross-section dependence is described by some (fixed)
low-dimensional parametrization; (2) the data can have differing, unknown orders
of integration and cointegration; the model structure should not depend on know-
ing those patterns; and finally, (3) the key parameters of the model are consistently
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estimable even when N and T have comparable magnitudes.

Let {X;(t),j=1,2,..., N,t=1,2,..., T} be an observed segment of
a random field. We are concerned with data samples where the cross section
dimension N and the time series dimension T take on the same order of magnitude.
We hypothesize that the dependence in X across j and t can be represented as:

X;(t) = a3+ U(t) + %5(0), (3.1)

where U is a K x 1 vector of orthogonal random walks; Y; is zero mean, stationary,
and has its entries uncorrelated across all 7 as well as with the increments in U
at all leads and lags; and, finally, a; is a 1 x K vector of lag distributions. Model
(3.1) is identical to (2.1) except that (3.1) specifies U to be orthogonal random
walks. A moment’s thought, however, shows that the random walk restriction is
without loss of generality: an entry in e; can certainly sum to zero and thereby
allow the corresponding element in U to have only transitory effects on X;.

Asis well known, model (3.1) restricts the correlation properties of the data: in
particular, the number of parameters in X’s second moments grows only linearly
with N, rather than quadratically, as would be usual." Further, it is useful to
repeat that (3.1) differs from the common trends representation (2.2) in having
the j-specific disturbances uncorrelated both with each other and with I/; neither of
these orthogonality properties holds for (2.2). Thus, (3.1) shares with the original
index model (2.1) the property that all cross correlation is mediated only through
the lower dimensional {/—independent of N and T. Such a property fails for the
common trends representation,

Since Yj is orthogonal to ¥/, (3.1) is a projection representation and thus (rel-
evant linear combinations of ) the coefficients a; can be consistently estimated by a
least squares calculation: this holds regardless of whether X; is stationary, regard-
less of the serial correlation properties of ¥;, and regardless of the distributions of
the different variables. Notice further that for this estimation, one does not require

! If necessary such statements concerning moments can be read as conditional on
initial values. For brevity, however, such qualification is understood, and omitted
in the text.
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observations on U7, but only consistent estimates of the conditional expectations
of certain cross products of U and X;. Finally, since Y; is uncorrelated across j’s,
and the regressors U are common, equation by equation estimation is equivalent
to joint estimation of the entire system. Many of these properties were already
pointed out by Watson and Engle (1983); here we add that if the parameters of
{3.1) are consistently estimated as T — oo independent of the value of N, then
they remain consistently estimated even when N has the same order of magnitude
as 7T.

The estimation problem is made subtle, however, by the U’s being not ob-
servable. Nevertheless, using the ideas underlying the EM algorithm (see e.g.,
Watson and Engle (1983), Wu (1983), or Ruud (1991}), model (3.1) can be easily
estimated. The key insight has already been mentioned above, and that is that
to calculate the least squares projection, one needs to have available only sample
moments, not the actual values of U. When, in turn, these sample moments can-
not be directly calculated, one is sometimes justified in substituting in their place
the conditional expectation of these sample moments, conditional on the observed
data X. Note, however, that these conditional expectations necessarily depend on
all the unknown parameters. Thus using them in place of the true sample mo-
ments, and then attempting to solve the first order conditions characterizing the
prejection—even equation by equation—could again be intractable, for large N.

Instead, treat the projections in (3.1) as solving a quasi-maximum likelihood
problem, where we use the normal distribution as the quasi-likelihood. Then the
reasoning underlying the EM algorithm implies that under regularity conditions
the algorithm correctly calculates the projection in (3.1).

This procedure has two features worthy of note: first, estimation immediately
involves only least squares calculations, equation by equation, and thus can cer-
tainly be performed with no increased complexity for large V. To appreciate the
other characteristic, one should next ask, Given this first property, how has the
cross-section information been useful? The answer lies of course in the second
feature of this procedure—the cross-section information is used in calculating the
conditional expectation of the relevant sample moments.

To make this discussion concrete, we now briefly sketch the steps in the esti-
mation. These calculations are already available in the literature; our contribution
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here has been just to provide a projection interpretation for the EM algorithm for
estimating models with unobservables—thus, to distance the EM algorithm from
any tightly-specified distributional framework—and to note its applicability to the
case when N is large.

Write out (3.1) explicitly as:

K
X;(0) = e DUR(1) + Y;(1); (3.2)
k=:1
in words, each X; is affected by K common factors U = (Uh,Us,...,Uk) and

an idiosyncratic disturbance Y;. This gives a strong-form decomposition for each
observed X; into unobserved components: the first, in U, common across all j,
and the second Y; specific to each j, and orthogonal to all other X’s. It will be
convenient sometimes to add a term d;W (%) to (3.2), where W comprises purely
exogenous factors, such as a constant or time trend.

The common factors in (3.2) have dynamic effects on X; given by:

M,
aR(D) =D ajp(m)L™, M, finite.

m=(

Take Ux’s to be integrated processes, with their first differences pairwise orthogonal
and having finite autoregressive representation:

L(L)AU() = nu(t), . (3.3)
where I'(L) is diagonal, with k-th entry given by:
1~ go{1)L — gu(2)L% — - — gu(MHLMs; M, finite,
and 7y is A-dimensional white noise having mean 0 and the identity covariance

matrix. As suggested above, the normalizations following (3.3} are without loss
of generality because U/ affects observed data only after convolution with a. If X
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were stationary, the sequences a;—provided that M, > l--can contain a first-
differencing operation to remove the integration built into (3.3).

Recall that the idiosyncratic or sector-specific disturbances Y; are taken to be
pairwise orthogonal as well as orthogonal to all A. We now assume further that
each ¥; has a finite antoregressive representation:

BALY;(1) = ¢;(t)  forall j (3.4)
with
Bi(L) =1 —b;(1)L — b;(2)L% — -+ — b;(My)L™, M, finite.
Combining (3.2) and (3.3) and defining ¢;u(L) = B;(L)e;(L), we get:

K
Bi(D)X;(t) =D i DIUR(E) + €(2).

k=1

Notice that because o and § are individually unrestricted, we can consider the
model to be parametrized in 8 and ¢, being careful to take the ratio ¢/8 when-
ever we seek the dynamic effects of I/ on X. When W-—the set of exogenous
variables—is lag-invariant, as would be true for a time trend and constant, then
B;(L)(d;W(¢)) spans the same space as just W{(¢). Thus, without loss of generality,
we can write the model as simply: A

K

BHL)X () = $is(DIUr(t) + ¢ (2) + d;W(2) (3.5)

k=1

(possibly redefining d;). Subsequent manipulations will exploit this representation
(3.5) of the original strong-form decomposition of X given in (3.2).

Directly translating the model above into state space form—we do this in the
Technical Appendix below—gives:

X(t)= AZ(t) + dW(t) + Y(t);

Zt+ 1) =cZ(t)y+n(t+1). (3.6)
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The state vector Z, unfortunately, has dimension O(N): this is computationally
intractable for data structures with large N and T. Conceptually more important,
however, such a state space representation (3.6) simply describes N time series
in terms of an O(N)-dimensional vector process—certainly neither useful nor in-
sightful. The reason for this is clear: from (3.5), lagged X;’s are part of the state
description for each X; due to the 8;’s being nontrivial, i.e., due to the serial
correlation in each idiosyncratic disturbance.?

The solution to this is to notice that a large part of the state vector hap-
pens to be directly observable; the unobservable part turns out to have dimension
only O(K), independent of N¥. Exploiting this structure gives Kalman smoother
projections and moment matrix calculations that are, effectively, independent of
N.

The assertions of the previous two paragraphs are detailed in the Technical
Appendix.

The intuition then is that increasing the cross-section dimension N can only
help to estimate more precisely (the conditional expectations of) the (unobserved
part of the) state and its cross moments. This must imply the same property for
estimates of the parameters of interest. Notice further that deleting entries of X
leaves invariant the orthogonality properties on an appropriate reduced version
of (3.6). Thus, if the model is correctly specified, estimators that exploit the
orthogonality conditions in (3.6) remain consistent independent of N; at the same
time, smaller N-systems must imply less efficient estimators. This observation is
useful for building up estimates for a large N system from (easier to estimate)
smaller systems; additionally, it suggests a Wu-Hausman-type specification test
for these index structures.’®

Next, when the unknown distribution of (X, U, Y, W) generates a conditional

? This serial correlation pervades our model in particular and business cycle
data in general. It is this feature that distinguishes our work from many EM
algorithm /unobservable commiou factor applications in finance, e.g., Lehmann and
Modest (1988), where the data are either only a large cross-section or, alternatively,
taken to be serially independent.

3 We do not follow up this testing suggestion below, but leave it for future work.
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expectation E(U | X, W) that equals the linear projection of U on X and W,
then standard Kalman smoother calculations yield the conditional expectations
E(Z(1)Z()' | X,W) and E(Z(t) | X,W), taking as given a particular setting for
the unknown parameters. We will assume that the underlying unknown distribu-
tion does in fact fall within such a class.?

Iteration on this scheme is of course simply the EM algorithm and, under
weak regularity conditions, is guaranteed to converge to a point that solves the
first order (projection) conditions. Estimation of the dynamic index model for
random fields with large N and T is thus seen to be feasible.

4. An Application: Sectoral Employment

This section gives a sectoral, employment-disaggregated description of US eco-
nomic fluctuations as interpreted by our index-model structure. We consider the
behavior of annual full-time equivalent (FTE) employment across 60 industries.
The National Income and Product Accounts report on an annual basis the
number of full time equivalent workers in different industries (NIPA, Table 6.7b).
Excluding the government sector and US workers employed outside this country,
there are 60 industrial sectors for which these data are available from 1948 through
1989. The industries range from Farming, Metal Mining, and Coal Mining through
Motion Pictures, Legal Services, and Private Household Services. (The entire set of
60 industries—complete with Citibase codes—is reported in the Data Appendix.)
Figure 4.1 gives a 3-dimensional depiction of these FTE employment data; the
Sectors axis in this graph arrays the different industries in the order given in
NIPA Table 6.7b and the Data Appendix. The vertical axis is the log (times 10) of

4 Elliptically symmetrical distributions would be one such class. Some re-
searchers, such as Hamilton (1989}, prefer to work with state vectors that have a
discrete distribution—this of course need not invalidate the hypothesized equal-
ity of conditional expectations and linear projections, although it does make that
coincidence less likely. In principle, one can directly calculate those conditional
expectations using only laws of conditional probability. Thus, any simplification—
whether by using linear projections or discrete distributions—is not conceptual
but only computational.
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employment in each sector. It is possible to give a more traditional time series plot

of these 60 series. Doing so, however, reveals very little information: the different
time series lines quickly merge and the page is simply awash in black.

employment
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Figure 4.1: Log (x10) of employment, across sector and time

Since these employment figures are only available annually from 1948 through
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1989, our data are larger in the cross section than in the time series dimension
(60 = N > T = 42), No full rank (60 x 60) covariance matrix estimator is avail-
able; consequently no full-rank spectral density estimator can be formed. From
Figure 4.1 it is also clear that the data are trending, with potentially differing
orders of stochastic and deterministic permanent components. Again by N > 7T,
no cointegrating regression could be calculated; no cointegration tests could be
performed. _

Figures 4.2 through 4.4 explore the extent to which the cross-correlation across
sectors can be captured by two observable measures typically used by empirical
researchers: first, (the log of annual) real GNP, and second, (the log times 10
of ) total—equivalently, average-—employment across the sixty sectors. When we
refer to total employment subsequently we mean this second series and not to-
tal US employment. These figures plot residual sample standard deviations from
second-order autoregressions, fitted independently across individual sectors, over
1951-1987, and always including a constant and time trend. (In a study with as
high dimensionality as this one, presenting alternative specifications—varying lag
lengths, for instance—quickly becomes awkward; the signal-noise ratio in presenta-
tion falls rapidly and dramatically. Unless stated otherwise, the main conclusions
hereafter should be taken as robust across small lag length increases.)

Figure 4.2 graphs on its Vertical axis the residual sample standard deviation
when GNP at lags -2 through 2 are included as additional regressors, versus that
without on the horizontal axis.> By least-squares algebra, no point in Figure 4.2
can lie above the 45° line. The further, however, that points fall below the 45° line,
the more successfully does GNP—common to all sectors—explain employment in
each sector. From this graph we conclude that aggregate GNP does appear to be
an important common component in sectoral employment fluctuations.

Figure 4.3 is the same as 4.2, but replaces GNP with total employment across

> Notice that these regressions include past, present, and future values of GNP.
Below, we shall compare the residual variances from these regressions with residual
variances from regressions on estimates of our indexes. Those estimates are pro-
Jjections of our indexes on past, present, and future values of all the employment
series.
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Figure 4.2: Residual standard deviations projecting on own two lags
plus GNP, against those projecting on just own two lags

the sixty sectors. The message remains much the same. There appear to be
common comovements in sectoral employment, and those comovements are related
to aggregate GNP and total employment movements. We emphasize that in the
regressions above, both lagged and lead aggregate measures enter as right-hand-
side variables. The sample standard deviations increase significantly when lead
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Figure 4.3: Residual standard deviations projecting on own two lags
plus total employment, against those projecting on just own two lags

measures are excluded.

Figure 4.4 compares these two measures of common comovements by plot-
ting against each other the sample standard deviations from the vertical axes of
Figures 4.2 and 4.3. We conclude from the graph here that both GNP and total
employment give similar descriptions of the underlying comovements in sectoral
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Figure 4.4: Residual standard deviations projecting on own two lags
plus GNP, against those projecting on own two lags plus total employ-
ment

employment.

We have estimated, for the period 1948 through 1989, one- and two-index
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representations for sectoral employment.® (In the notation of the previous section
we take M, = 1, M, = 1, and M, = 2; again, small increases in lag lengths
do not affect our conclusions materially.} Figure 4.5 plots standard deviations
of the innovations in the idiosyncratic disturbances €;(t), under the two-index
representation, against the residuals in sector-by-sector projections including GNP
(i.e., the vertical axis of Figure 4.2). In other words, the vertical axis describes
the innovations upon removing two common unobservable indexes, and imposing
extensive orthogonality conditions; the horizontal axis describes the innovations
upon removing the single index that is GNP, and without requiring the resulting
innovations to be orthogonal across sectors.” Since the models are not nested
there is no necessity for the points to lie in any particular region relative to the
45° line. Again, however, to the extent that these points fall below that line, we
can conclude that the comovements are better described by the model represented
on the vertical axis than that on the horizontal,

In this Figure, twelve sectors lie marginally above the 45° line, six marginally
below, and the remainder quite a bit below. Overall we conclude that the two
unobservable indexes provide a better description of underlying commonalities in
sectoral employment than does aggregate GNP,

Figure 4.6 is the same as Figure 4.5, but it replaces GNP by total employment.
We draw much the same conclusions from this as the previous graph.

Figure 4.7 replaces the horizontal axes of Figures 4.5 and 4.6 with the standard
deviation of idiosyncratic innovations from a single-index representation. Notice
that the improvement in fit of the additional index is about the same order of mag-
nitude as that of the two-index representation over either of the single observable
aggregates.

We do not present here the calculations we have performed comparing the

& All index-model and regression calculations and all graphs in this paper were
executed using the authors’ time-series, random-fields econometrics shell tsrf.

" Thus, the vertical dimension of Figure 4.5 contains enough information to
compute a normal quasi-likelihood value for the unobservable index model; for the
horizontal dimension, however, the cross-correlations are nonzero and cannot, as
a whole, be consistently estimated.
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Figure 4.5: Standard deviations of idiosyncratic disturbances in two-
index model, against those of the residuals in the projection on own
two lags plus GNP

single uncbservable index with the two observable aggregates. The calculations
show much what one would expect from the analysis thus far. Aggregate GNP
and average employment are about as good descriptions of sectoral comovements



_19_.

Standard:-Deviotion

— 1 T I T T L I T T TI L
i 45 deg
0.6 -
*
r -
L. L » 4
c |
3 ‘ “
'._50.4— * -
& . :
s w
E |_ **aﬂ‘ A
0.2 *; —
L * o+ .
*
*
I
L 1 | f | M L | 1 |~
0.2 0.4 .6

Innov-AR(2)-incl-Total-Empl

Figure 4.6: Standard deviations of idiosyncratic disturbances in two-
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as is the single unobservable index model.®

8 This finding is related to patterns detected in previous applications of unob-
servable index madels to aggregate U.S. time series. For example, Sargent and
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Figure 4.7; Standard deviations of idiesyncratic disturbances in two-
index model, against those in one-index model

So what have we learned up until now? If one were concerned only about
goodness-of-fit in describing the commonalities in sectoral employment fluctua-

Sims (1977) encountered so-called Heywood solutions at low frequencies: in those
solutions the coherence of GNP with one of the indices is unity.
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tions, then one might well simply use just total GNP or average employment.’
In our view, index models should be motivated by a Burns-Mitchell kind of ‘pre-
GNP accounting,’ dimensionality-restricted modelling. The idea is to allow a one-
dimensional measure of ‘business activity’ to emerge from analyzing long lists of
different price and quantity time series. We have implemented one version of this
vision, and arrived at projection estimators of one- and two-index models. In com-
puting these estimated indexes, we have used only employment series. Now we
wish to see how, in particular dimensions, our estimated indexes compare with
GNP, the most popular single ‘index’ of real macroeconomic activity. GNP is, of
course, constructed using an accounting method very different in spirit from that
used by us and other workers in the Burns-Mitchell tradition.

Thus, we turn to some projections designed to explore this difference. A
regression (over 1952 through 1989) of GNP growth rates on a constant and first
differences of our fitted two indexes, lags 0 through 3, gives an R? of 83%. A similar
regression using just the single index (estimated from the one-index model), again
lags 0 through 3, gives an R? of 72%. GNP growth rates are thus highly correlated
with the estimated index process. This correlation captures the sense in which
a purely mechanical low-dimensional index construction yields an aggregate that
closely tracks GNP growth.?

We have also experimented with vector autoregressions in GNP growth, av-
erage employment growth, and first differences of the indexes. Exclusion tests of
lag blocks of the indexes here, however, cannot be viewed as Granger causality
tests because the estimated indexes are themselves two-sided distributed lags of
employment. It would be possible to use the estimated parameters of our index

® We should emphasize again that this is true only when one proxies for those
common comovements using both leads and lags of these indicators. As already
stated above, the projection residuals get considerably larger when future aggre-
gates are excluded.

10 Note that sample versions of these indexes are estimated by a Kalman smooth-
ing procedure and therefore use observations on sectoral employment over the en-
tire sample, past and future. This is also why in Figures 4.2 on, we always used
future and past observable aggregates to make the comparison fairer.
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representations to construct one-sided-on-the-past index projections. These one-
sided projections could then be used to conduct Granger causality tests. We have
not done this here, but think that it would be a useful exercise.

In concluding this empirical section, we judge that the unobservable index
application to the large cross-section here has been, in the main, successful. The
empirical results here encourage us to be optimistic about continued use of large
cross-sections for dynamic analysis. There are, however, dimensions along which
relative failure might be argued. Most notably, the refinement in the descrip-
tion of commonalities given by the unobservable index model was not spectacular
relative to that given by observable measures, such as aggregate GNP or total
employment. While the two-index representation is a better description of sec-
toral employment fluctuations, relative to a single-index representation, not both
indexes turn out to be equally important for predicting GNP. For this exercise,
the tighter parametrization implicit in a single index appears to dominate the
marginal increase in information from a two-index representation. These fajlures
should be contrasted with our two principal successes: (i) the tractability of our
extension of standard index model analysis—simultaneously to encompass differ-
ing nonstationarities, large cross-section dimensions, and extensive orthogonality
restrictions; and (ii) the strong informational, predictive content for GNP of our
estimated common indexes.

Unlike in research on interpreting unobservable disturbances—such asin VAR
studies—we do not attempt here to name the two unobservable factors. Rather,
the goal of the present paper has been to carry out the methodological extensions
in (i} of the previous paragraph, and to examine the forecasting properties of the
resulting common factors in (ii), also of the previous paragraph. Future work
could, in principle, attempt the same exercise for the unobservable index models
here as have been performed for VAR representations elsewhere.
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5. Conclusion

We have provided a framework for analyzing comovements —aggregate dynamics—
in random fields, i.e., data where the number of cross-section time series is compa-
rable in magnitude to the time length, We have shown how, upon reinterpretation,
standard techniques can be used to estimate such index models.

In applying the model to estimate aggregate dynamics in employment across
different sectors, we discovered that a model with two common factors turns out to
fit those data surprisingly well. Put differently, much of the observed fluctnations
in employment in those many diverse industries are well explained by disturbances
that are perfectly correlated across all the sectors.

The econometric structure we have used here seems to us quite rich and po-
tentially capable of dealing with many different interesting questions. Among
others, this includes issues of (a) the relative importance of different kinds of dis-
turbances, e.g., Long and Plosser (1983) and Prescott (1986); (b) convergence
across economic regions, e.g., Barro and Sala-i-Martin (1991) and Blanchard and
Katz (1992}, (c) aggregate and sectoral co-movements, e.g., Abraham and Katz
(1986), Lilien (1982), and Rogerson (1988), and (d) location dynamics, condition-
ing on exogenous policy variables, e.g., Papke (1989). Previous work, however,
have used measurement and econometric techniques that differ substantially from
that which we propose here; clearly, we think our procedure is closer in spirit to
the relevant economic ideas. Questions on the appropriate definition and measure-
ment of inflation, comovement in consumption across economic regions, the joint
behavior of asset prices observed for many assets and over long periods of time,
can all be coherently dealt with in our framework. In future research we intend to
apply our techniques to these and similar, related issues.
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6. Technical Appendix

This appendix constructs a state-space representation for the model of Section 3;
this is needed to compute the Kalman-smoothed projections that are in turn used
in applying the EM algorithm to our estimation problem.

Recall that ¢;x = B;a;, and that the maximum lags on 3; and aj, are M,
and M, respectively. Define My = M, + M,; this is the maximum lag on ¢;.
From M, the maximum lag on [ in (3.3), define M}, = max(M;, M,), and let:

o= Uy, Ut~1),...,U(t- M)

and conformably ’
fm(t) = (Tju(t)', o,..., 0’) .

Then write (3.3) in first order form as:
Oty = CU(t - 1) + 7iu(t), (6.1)

where C is (1 + M) X K square, with the following structure: Call a collection
of K successive rows (or columns) a K-row (or column) block. The last M K-
row blocks comprise simply zeroes and cones, in the usual way, forming identities.
Consider then the k-th row (k = 1,2,..., K) in the first K-row block. The first K-
column block of this row vanishes everywhere except in the k-th position where it
contains gx(1)+1; the (1+M,)-th A-column block of this row vanishes everywhere
except in the k-th position where it contains —g,(M,). For K-column block m
(m=12,3,...,M,), the entries again vanish everywhere except in the k-th position
where they equal gi(m)— ge(m —1). This pattern of coefficents comes from (3.3)’s
being in first differences whereas (6.1) is in levels.
Turning to the observables, write

X(1) = (X:(2), Xa(t),. -, Xn(t)) s

since this is observed at time ¢, we denote

info(t) = { X(8), X(t- 1), X(z - 2),... }.
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Let
X(ty= (X{), X(t-1),...,X(t- My +1)")".

Also, write out ¢;(L) explicitly as

My
$in(L) =3 fie(m)L™.
m=0

We can then rewrite equation (3. 5) as

X(t)= 4 ( Xg(_{)l)) +AW(D) + €(t) = aZ(t) + dW(t) + (1),  (6.2)

where d has rows formed from d;, and A has the following structure. Its j-th row
has the first (1 + M) K entries given by:

(£7100), -+, £ik(0), fn (1), - -, fi(My));

the remaining entries in this row differ from zero only in M, places. After the first
(1+ Mu)K entries (not first (1 + M;)K') there are My, N-row blocks. Each such

block vanishes except in the j-th entry which equals b;(m),for m =1, 2, ..., M,.
Now augment the transition equation (6.1) with X and W, i.e., write:
Z(t+1) =cZ(t)+ 6W({t) +n(t + 1) (6.3)
with

( C 0 )
e =
€21 €22

where the first N rows of (¢31 ¢g2 ) contain @ and the remaining rows comprise
just 0’s and 1’s; the matrix é vanishes everywhere except in the N rows after the
first (1 4+ M) K —in those N rows it is comprised of d; and finally,

it + 1)
n(t+1) = E(;) -
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Notice that (6.3) contains within it (6.2).

Since all but the first (1 + M} )K entries of Z(t+ 1) are observed at time ¢, it
will be natural to let P(Z(t+1) | info(t)) equal X(t) except in its first (1 + M) K
entries. Similarly, we will choose the conditional mean square Var(Z(t+1) | info(t))
to be zero everywhere except in the leading (1 + M} )A square diagonal block.

In summary our state space representation is:

Z(t +1) = cZ(t) + §W(2) + n(t + 1);
X (1) = AZ(1) + dW (1) + €(t)

with Var(Z(1) | infe(0)) initialized to vanish everywhere except in the leading
(1 + M,)K diagonal block. The disturbance vector (n(t + 1),€(t)') is serially
uncorrelated and has covariance matrix:

_ (e
a= (" G,
where (1, is singular, @, contains Q., and Q. is N x N diagonal. We write (),

to denote the first (14 M} ) K rows of £2,.; and £, to denote the leading (14 M) K
diagonal block of £2,,.

Partition Z() as {Z,(2)', Z2(1)") where
Zy()=0() (I+M)K x1

and

c= (cu 612) with ¢;; = C (14 M},)K square and ¢j3 = 0.
€21 €22

Thus 7(t) is also partitioned into (m(t)’,ng(t)')' with 7y = Gy (1 4 Mp)K x 1).
We can now write the measurement equation

X =(a1 a2) (g;%g) + (1)
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where a; comprises the first (1 + M;)K columns of a. Note that Var(Z,(t)|info(s))
is thus only (1 + M,)K square, and has dimensions that are invariant to N.
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Data Appendix

Real GNP in the text refers to the annual version of GNP82 obtained from
Citibase July 1991. This series is normalized to constant 1982 dollars, and is no
longer available—the new constant-dollar GNP series in Citibase is normalized to
constant 1987 dollars, and is available only from 1959. Since the employment data
we use goes back through 1948 we decided to use the older GNP82.

Next, the sectoral description we study is from:

National Income and Product Accounts: Employment

1. FTE EMPLOYEES BY INDUSTRY (ANNUAL)

Private Industries
1. Farms (GAFAF1)
Agrc., Forestry, and Fisheries (GAFAFT)
Meta!l Mining (GAFM10)
Coal Mining (GAFM12)
Oil and Gas Extraction (GAFM13)
Nonmetallic Minerals, Except Fuels (GAFM14)
. Construction (GAFCC)
Manufacturing
Durable Goods
8. Lumber & Wood Products (GAFD24)
9. Furniture & Fixtures (GAFD25)
10. Stone, Clay, and Glass Products (GAFD32)
11. Primary Metal Industries (GAFD33)
12. Fabricated Metal Products (GAFD34)
13. Machinery, exc. Electr. (GAFD35)
14. Electric & Electronic Eq. (GAFD38)
15. Motor Vehicles & Equipment (GAF371)
16. Other Transportation (GAFD37)
17. Instruments and Related Products (GAFD38)

A ol
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18. Misc. Mfg. Industries (GAFM39)
Nondurable Goods

19. Food & Kindred Products (GAFN20)

20. Tobacco Manu. (GAFN21)

21. Textile Mill Products (GAFN22)

22. Apparel & Other Textile Prod. (GAFN23)
23. Paper & Allied Prod. (GAFN26)

24. Printing & Publ. (GAFN2T)

25. Chemicals & Allied Prod. (GAFN28]

26. Petroleum & Coal Prod. (GAFN29)

27. Rubber & Misc. Plastic Prod. (GAFN30)
28. Leather & Leather Prod. {(GAFN31)
Transportation & Public Utilities

29. Railroad Transportation (GAFT40)

30. Local & Interurban Passenger Transit (GAFT41)

31. Trucking & Warchousing (GAFT42)

32. Water Transportation (GAFT44)

33. Transportation by Air (GAFT45)

34. Pipelines, except Gas (GAFT46)

35. Transportation Services (GAFT47}
Communication

36. Telephone & Telegraph (GAF481)

37. Radio & TV Broadcastings (GAF483)
38. Electric, Gas, & Sanitary Sves. (GAFUT)

39. Wholesale Trade (GAFW)

40. Retail Trade (GAFR)

Finance, Insurance, and Real Estate

41. Banking (GAFF60)

42. Credit Agencies other than Banks (GAFF61)
43. Security & Commodity Brokers (GAFF62)
44, Insurance Carriers (GAFF63)

45. Insurance Agents and Brokers (GAFF64)



46.
47.

Real Estate (GAFF85)
Holding & Other Investment Co. {GAFSTF)

Services

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

Hotels and Other Lodging Places (GAFS70)
Personal Services (GAFS72)

Business Services (GAFS73)

Auto Repair Svcs., & Garages (GAFSTS)
Misc. Repair Sves. (GAFST76)

Motion Pictures (GAFS78)

Amusement & Recr. Sve. (GAFS79)
Health Services (GAFS80)

Legal Services (GAFS81)

Educational Services (GAFS82)

Social Svecs. & Membership Org. (GAFS86)
Misc. Professional Sves. (GAFS89)

Private Households (GAFS88)
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